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Guest Editorial: Foreword
to the Special Issue on
Graph-Based Localization
and Tracking

The advent of graph-based processing in information fu-
sion has offered a theoretical framework and a com-
prehensive toolkit for modeling the intricate statisti-
cal structures inherent in data fusion problems and has
provided efficient and modular algorithmic solutions to
high-dimensional problems, creating new benchmarks
for performance, scalability, and flexibility. Graph-based
methods have rapidly evolved to address the complex
challenges of heterogeneous sensing environments, and
today, they are at the forefront of pioneering solutions in
applications as diverse as autonomous navigation, ocean
sciences, asset tracking, future communications, and the
burgeoning Internet of Things.

The papers featured in this special issue on Graph-
Based Localization and Tracking underscore the versa-
tility of graph-based approaches to overcome challenges
posed by the non-Gaussian uncertainties of inexpensive,
low-power sensing devices, often manifested as missed
detections, false positives, and measurements of uncer-
tain origin.

We commence with a paper on multipath-based si-
multaneous localization and mapping (SLAM), present-
ing a novel Bayesian particle-based sum-product algo-
rithm (SPA) that can be interpreted as passing messages
on a graphical model that adeptly fuses multiple mea-
surements per virtual anchor, enhancing robustness in
challenging indoor propagation environments.
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Our journey into the underwater realm showcases
a graph-based mapping algorithm implemented by au-
tonomous underwater vehicles in mine countermeasure
operations.The SPA’s application in this domain demon-
strates the potential of graph-based Bayesian inference
for object detection and estimation in a challenging un-
derwater environment.

We also delve into a comparative study between a
traditional Joint Integrated Probabilistic Data Associa-
tion filter incorporating target-provided measurements
and a multitarget tracking approach derived using a
probabilistic graphical model. This work provides crit-
ical insights into the performance trade-offs in scenar-
ios with closely spaced targets andwith targets executing
sharp maneuvers.

Lastly, the special issue introduces an integrated
learn-then-optimize framework for condition-based
predictive maintenance scheduling. This fusion of deep
learning and optimization underscores the transfor-
mative power of graph-based methods in predictive
maintenance models, surpassing traditional methods in
ensuring fleet availability and cost-effectiveness.

We invite our readers to immerse themselves in the
insights provided by these studies, which shed light on
the current state of graph-based localization and track-
ing and suggest avenues for future research.

Guest Editors:
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E-mail: erik.leitinger@tugraz.at

Jason L.Williams
Commonwealth Scientific and

Industrial Research Org.
E-mail: jason.williams@data61.csiro.au

Florian Meyer
University of California San Diego

E-mail: flmeyer@ucsd.edu
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Multipath-Based SLAM for
Non-Ideal Reflective Surfaces
Exploiting Multiple-
Measurement Data Association

LUKASWIELANDNER
ALEXANDER VENUS
THOMASWILDING
ERIK LEITINGER

Multipath-based simultaneous localization and mapping

(MP-SLAM) is a promising approach to obtain position infor-

mation of transmitters and receivers as well as information regarding

the propagation environments in future mobile communication

systems. Usually, specular reflections of the radio signals occurring

at flat surfaces are modeled by virtual anchors (VAs) that are mirror

images of the physical anchors (PAs). In existing methods for MP-

SLAM, each VA is assumed to generate only a single measurement.

However, due to imperfections of the measurement equipment such

as noncalibrated antennas or model mismatch due to roughness

of the reflective surfaces, there are potentially multiple multipath

components (MPCs) that are associated with one single VA. In this

paper, we introduce a Bayesian particle-based sum-product algorithm

(SPA) for MP-SLAM that can cope with multiple-measurements

being associated to a single VA. Furthermore, we introduce a novel

statistical measurement model that is strongly related to the radio

signal. It introduces additional dispersion parameters into the likeli-

hood function to capture additional MPC-related measurements. We

demonstrate that the proposed MP-SLAM method can robustly fuse

multiple measurements per VA based on numerical simulations.

I. INTRODUCTION

Multipath-based simultaneous localization andmap-
ping (MP-SLAM) is a promising approach to obtain
position information of transmitters and receivers as
well as information regarding their propagation environ-
ments in future mobile communication systems.Usually,
specular reflections of radio signals at flat surfaces are
modeled by virtual anchors (VAs) that are mirror im-
ages of the physical anchors (PAs) [1]–[4]. The positions
of these VAs are unknown. MP-SLAM algorithms can
detect and localize VAs and jointly estimate the time-
varying position of mobile agents [3]–[5]. The availabil-
ity of VA location informationmakes it possible to lever-
age multiple propagation paths of radio signals for agent
localization and can thus significantly improve localiza-
tion accuracy and robustness. In nonideal scenarios with
rough reflective surfaces [6], [7] and limitations in the
measurement equipment, such as noncalibrated anten-
nas [8], those standard methods are prone to fail since
multiple measurements can originate from the same PA
or VA.This shows the need for developing newmethods
to cope with these limitations.

A. State of the Art

The proposed algorithm follows the feature-based
SLAM approach [9], [10], i.e., the map is represented
by an unknown number of features, whose unknown
positions are estimated in a sequential (time-recursive)
manner. Existing MP-SLAM algorithms consider VAs
[3], [4], [11]–[13] or master VAs (MVAs) [14]–[16] as
features to be mapped. Most of these methods use es-
timated parameters related to multipath components
(MPCs) contained in the radio signal, such as distances
(which are proportional to delays), angle of arrivals
(AOAs), or angle of departures (AODs) [17]. These
parameters are estimated from the signal in a prepro-
cessing stage [17]–[23] and are used as “measurements”
available to the MP-SLAM algorithm. A complicating
factor in feature-based SLAM ismeasurement origin un-
certainty, i.e., the unknown association of measurements
with features [3], [4], [11], [22], [24]. In particular, (i) it is
not known which map feature was generated by which
measurement, (ii) there aremissed detections due to low
signal-to-noise ratio (SNR) or occlusion of features, and
(iii) there are false positive measurements due to clutter.
Thus, an important aspect of MP-SLAM is data associ-
ation between these measurements and the VAs or the
MVAs.Probabilistic data association can increase the ro-
bustness and accuracy of MP-SLAM but introduce ad-
ditional unknown parameters. State-of-the-art methods
forMP-SLAM are Bayesian estimators that perform the
sum-product algorithm (SPA) on a factor graph [3], [4],
[11] to avoid the curse of dimensionality related to the
high-dimensional estimation problems.

In these existing methods for MP-SLAM, each
feature is assumed to generate only a single mea-

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 18, NO. 2 DECEMBER 2023 59



surement [25], [26]. However, due to imperfections
in the measurement equipment or model mismatch
due to nonideal reflective surfaces (such as rough
surfaces characterized by diffuse multipath [6], [7]),
there are potentially multiple MPCs that need to be
associated with a single feature (VAs or MVAs) to
accurately represent the environment. This is related to
the multiple-measurement-to-object data association in
extended object tracking (EOT) [24], [27]–[29]. In EOT,
the point object assumption is no longer valid; hence,
one single object can potentially generate more than
one measurement, resulting in a particularly challenging
data association due to the large number of possible
association events [28], [30], [31]. In [24], [29], an innova-
tive approach to this multiple-measurements-to-object
data association problem is presented. It is based on
the framework of graphical models [32]. In particular,
an SPA was proposed with computational complexity
that scales only quadratically in the number of objects
and the number of measurements, avoiding suboptimal
clustering of spatially close measurements.

B. Contributions

In this paper, we introduce a Bayesian particle-
based SPA for MP-SLAM that can cope with multiple-
measurements associated with a single VA. The pro-
posed method is based on a factor graph designed for
scalable probabilistic multiple-measurement-to-feature
association proposed in [24], [29]. We also introduce a
novel statistical measurement model that is strongly re-
lated to the radio signal. It introduces additional disper-
sion parameters into the likelihood function to capture
additional MPC-related measurements. The key contri-
butions of this paper are as follows.

1) We introduce the multiple-measurement-to-feature
data association proposed in [24] to MP-SLAM [3],
[11].

2) We use this multiple-measurement data associa-
tion to incorporate additional MPC-related mea-
surements originating from nonideal effects such as
rough reflective surfaces or noncalibrated antennas.

3) We introduce a novel likelihood function model that
is augmented with dispersion parameters to capture
these additionalMPC-relatedmeasurements that are
associated with a single VA.

4) We demonstrate based on synthetically generated
measurements that the proposedMP-SLAMmethod
robustly associates multiple measurements per VA
and that it is able to significantly outperform state-
of-the-art MP-SLAM methods [3], [11] in case addi-
tional MPC-related measurements occur.

This paper advances over the preliminary account
of our method provided in the conference publication
[33] by (i) presenting a detailed derivation of the factor
graph, (ii) providing additional simulation results, and

(iii) demonstrating performance advantages compared
to the classical MP-SLAM [3], [11].

C. Notation

Random variables are displayed in sans serif, upright
fonts; their realizations in serif, italic fonts. Vectors and
matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable and
its realization are denoted by x and x, respectively, and a
randomvector and its realization by x and x, respectively.
Furthermore,‖x‖ and xT denote theEuclidean norm and
the transpose of vector x, respectively;∝ indicates equal-
ity up to a normalization factor; f (x) denotes the prob-
ability density function (PDF) of random vector x (this
is a short notation for fx(x)); f (x|y) denotes the condi-
tional PDF of random vector x conditioned on random
vector y (this is a short notation for fx|y(x|y)). The cardi-
nality of a setX is denoted as |X |. δ(·) denotes the Dirac
delta function.Furthermore, 1A(x) denotes the indicator
function, that is, 1A(x) = 1 if x ∈ A and 0 otherwise, for
A being an arbitrary set and R

+ being the set of positive
real numbers.Finally,δe denotes the indicator function of
the event e= 0 (i.e., δe = 1 if e= 0 and 0 otherwise). We
define the following PDFs with respect to x: The Gaus-
sian PDF is

fN(x;μ, σ ) = 1√
2πσ

e
−(x−μ)2

2 σ2 (1)
,

with mean μ and standard deviation σ [34]. The trun-
cated Rician PDF is [35, Ch. 1.6.7]

fTRice(x;s,u, λ) = 1

Q1( us ,
λ
s )

x
s2
e

−(x2+u2 )
2 s2 I0

(x u
s2

)
1R+ (x−λ),

(2)

with noncentrality parameter u, scale parameter s, and
truncation threshold λ. I0(·) is the zeroth-order modified
first-kind Bessel function and Q1(·, ·) denotes the Mar-
cumQ-function [34].The truncated Rayleigh PDF is [35,
Ch. 1.6.7]

fTRayl(x; s, λ) = x
s2
e

−(x2−λ2 )
2 s2 1R+ (x− λ), (3)

with scale parameter s and truncation threshold λ. This
formula corresponds to the so-called Swerling I model
[35]. The Gamma PDF is denoted as

G(x;α, β) = 1
βα�(α)

xk−1e− x
β , (4)

where α is the shape parameter,β is the scale parameter,
and �(·) is the gamma-function. Finally, we define the
uniform PDF fU(x; a,b) = 1/(b− a)1[a,b](x).

II. GEOMETRICAL RELATIONS

At each time n, we consider a mobile agent at po-
sition pn equipped with a single antenna and J base
stations, called PAs, equipped with a single antenna and
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Figure 1. Exemplary indoor environment (a) and representative re-
alization of a received signal (b).The floor plan in (a) includes an agent
at position pn, a PA at position p( j)pa , and two VAs at positions p( j)l,va for
corresponding surfaces. The signal shown in (b) is received by PA at
position p( j)pa . Nonideal antennas or reflective surfaces as indicated in

(a) by generic impulse responses h( j)ant,n(τ ) and h( j)surf,n(τ ) lead to the

received signal s
( j)
rx,n shown in (b) (c.f. received signal without disper-

sion). Resulting measurements (MPC parameter estimates) z( j)m,n are

indicated in the received signal s
( j)
rx,n shown in (b) alongside the pro-

posed dispersion model.

at known positions p( j)pa = [
p( j)1,pa p

( j)
2,pa

]T ∈ R
2, j ∈

{1, . . . , J}, where J is assumed to be known, in an en-
vironment described by reflective surfaces. Specular re-
flections of radio signals at flat surfaces are modeled by
VAs that are mirror images of PAs. In particular, VA
positions associated with single-bounce reflections are
given by

p( j)l,va = p( j)pa + 2
(
uTl el − uTl p

( j)
pa

)
ul, (5)

where ul is the normal vector of the according reflec-
tive surface, and el is an arbitrary point on this surface.
The second summand in (5) represents the normal vec-
tor w.r.t. this reflective surface in direction ul with the
length of two times the distance between PA j at posi-
tion p( j)pa and the normal-point at the reflective surface,

i.e., 2
(
uTl el − uTl p

( j)
pa

)
. An example is shown in Fig. 1(a).

VA positions associated with multiple-bounce reflec-
tions are determined by applying (5) multiple times. The

current number of visible VAs1 within the scenario (as-
sociated with single-bounce and higher-order bounce re-
flections) is L( j)

n for each of the J PAs.

III. RADIO SIGNAL MODEL

At each time n, the mobile agent transmits a signal
s(t) froma single antenna,and eachPA j∈{1, . . . , J} acts
as a receiver having a single antenna. The received com-
plex baseband signal at the jth PA is sampled Ns times
with sampling frequency fs = 1/Ts yielding an observa-
tion period of T = Ns Ts. By stacking the samples, we
obtain the discrete-time received signal vector

s( j)rx,n=
L( j)
n∑

l=1

α
( j)
l,n

(
s
(
τ
( j)
l,n

)+S( j)l∑
i=1

β
( j)
l,i,ns

(
τ
( j)
l,n +ν

( j)
l,i,n

))+w( j)
n, (6)

where s(τ ) � [s(−(Ns − 1)/2Ts − τ ) · · · s((Ns − 1)/
2Ts − τ )]T ∈ C

Ns×1 is the discrete-time transmit pulse.
The first term contains the sum over the line-of-sight
(LOS) component (l = 1) and theL( j)

n −1 specularMPCs
(for l ∈ {2, . . . ,L( j)

n }) termed main components. The lth
main-component is characterized by its complex ampli-
tude α

( j)
l,n ∈ C and its delays τ

( j)
l,n . The second term con-

tains the sum over S( j)l additional sub-components char-

acterized by complex amplitudes α
( j)
l,nβ

( j)
l,i,n and by (rela-

tive) delays τ
( j)
l,n +ν

( j)
l,i,n,where ν

( j)
l,i,n is the excess delay and

β
( j)
l,i,n ∈ R is a relative dampening variable.The delays τ

( j)
l,n

are proportional to the distances (ranges) between the
agent and either the jth PA (for l=1) or the correspond-
ing VAs (for l ∈ {2, . . . ,L( j)

n }). That is τ
( j)
1,n = ∥∥pn−p( j)pa

∥∥/c

and τ
( j)
l,n = ∥∥pn − p( j)l,va

∥∥/c for l ∈ {2, . . . ,L( j)
n }, where

c is the speed of light. The measurement noise vector
w( j)
n ∈ C

Ns×1 is a zero-mean, circularly-symmetric com-
plex Gaussian random vector with covariance matrix
σ ( j)2INs and noise variance σ ( j)2 = N( j)

0 /Ts. The compo-
nent SNR of MPC l is SNR( j)

l,n = |α( j)
l,n |2‖s(τ ( j)

l,n )‖2/σ ( j)2.
The component SNR of the subcomponents is given as
SNR( j)

l,i,n = β
( j) 2
l,i,n SNR( j)

l,n . The corresponding normalized

amplitude is u( j)l,n � SNR
( j) 1

2
l,n and u( j)l,i,n � SNR

( j) 1
2

l,i,n , re-
spectively. Details about the signal model given in (6)
are provided in Appendix A.

A. Signal Model Assumptions

To capture effects such as noncalibrated antennas
[22, Section VII-C], the scattering from a user-body [36],
[37], rural environments [38], [39] as well as nonideal re-
flective surfaces [6], we introduce the dispersion param-
eters ψ

( j)
τ,l,n and ψ

( j)
u,l,n. In this work, we assume the fol-

1AVAdoes not exist at time n,when the reflective surface correspond-
ing to this VA is obstructed with respect to the agent.
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lowing restrictions to this model: (i) the additional sub-
components with excess delays ν

( j)
l,i,n ∈ [0, ψ ( j)

τ,l,n] after

each MPC l have the same support, i.e., ψ
( j)
τ,l,n � ψτ,n

and (ii) the corresponding dampening variables are con-
stant β

( j)
l,i,n � ψ

( j)
u,l,n with the same value for each MPC

l, i.e., ψ ( j)
u,l,n � ψu,n. This model can be applied to ultra-

wideband systems with noncalibrated antennas [22, Sec-
tion VII-C] that introduce delay dispersion or to envi-
ronments containing moderate nonideal reflective sur-
faces [6], [7] that are approximately similar in behavior
and do not change significantly over the explored area.
An exemplary signal as well as the dispersion model is
shown in Fig. 1(b).2

B. Parametric Channel Estimation

By applying at each time n, a channel estimation
and detection algorithm (CEDA) [18]–[23] to the ob-
served discrete signal vector s( j)rx,n, one obtains, for each
anchor j, a number of M( j)

n measurements denoted by
z( j)m,n with m ∈ M( j)

n � {1, . . . ,M( j)
n }. Each z( j)m,n =

[z( j)τm,n z( j)um,n]T representing a potential MPC parame-
ter estimate, contains a delay measurement z( j)τm,n ∈
[0, τmax] and a normalized amplitude measurement

z( j)um,n ∈ [γ ,∞), where γ is the detection threshold.
The CEDA decomposes the signal s( j)rx,n into individual,
decorrelated components according to (6), reducing the
number of dimensions (as M( j)

n is usually much smaller
than Ns). It thus compresses the information contained
in s( j)rx,n into z( j)n = [z( j)T1,n · · · z( j)T

M( j)
n ,n

]T. The stacked vector

zn = [z(1) Tn · · · z(J) Tn ]T is used by the proposed algorithm
as a noisy measurement.

IV. SYSTEM MODEL

At each time n, the state xn = [pT
n vTn ]

T of the agent
consists of its position pn and velocity vn. We also in-
troduce the augmented agent state x̃n = [xTn ψ

T
n ]

T that
contains the dispersion parameters ψn = [ψτ,n ψu,n]

T.
In line with [11], [22], [26], we account for the unknown
number of VAs by introducing for each PA j potential
VAs (PVAs) k ∈ K( j)

n � {1, . . . ,K( j)
n }. The number of

PVAs K( j)
n is the maximum possible number of VAs of

PA j that produced measurements so far [26] (i.e., K( j)
n

increases with time). The state of PVA ( j,k) is denoted
as y( j)

k,n �
[
x( j)Tk,n r

( j)
k,n

]T with x( j)k,n = [
p( j)T
k,va u

( j)
k,n

]T, which in-

cludes the normalized amplitude u
( j)
k,n [11], [22]. The ex-

2Note that the proposed algorithm can be reformulated in line with
[24] to the general case with individual delay supports ψ

( j)
τ,l,n and

to more complex amplitudes distributions for β
( j)
l,i,n, especially when

multiple-antenna systems provide multiple MPC parameters (delay,
AOA,AOD) [4], [11], [16].

istence/nonexistence of PVA k is modeled by the exis-
tence variable r

( j)
k,n ∈ {0, 1} in the sense that PVA k exists

if and only if r( j)k,n = 1. The PVA state is considered for-

mally also if PVA k is nonexistent, i.e., if r( j)k,n= 0.
Since a part of the PA state is unknown, we also

consider the PA itself a PVA. Hence, we distinguish be-
tween the PVA k = 1 that explicitly represents the PA,
which is a priori existent and has known and fixed po-
sition p( j)1,va = p( j)pa , and all other PVAs k ∈ {2, . . . ,K( j)

n }
whose existence and position are a priori unknown.Note
that the PVAs state representing the PA still consid-
ers the normalized amplitude u

( j)
1,n as well as the exis-

tence variable r
( j)
1,n. The states x( j)Tk,n of nonexistent PVAs

are obviously irrelevant. Therefore, all PDFs defined
for PVA states, f (yk,n) = f (xk,n, rk,n), are of the form

f (x( j)k,n, 0) = f ( j)k,n fd(x
( j)
k,n), where fd(x

( j)
k,n) is an arbitrary

“dummy” PDF and f ( j)k,n ∈ [0, 1] is a constant. We also

define the stacked vectors y( j)
n �

[
y( j)T
1,n · · · y( j)T

K( j)
n ,n

]T and

yn �
[
y(1)T
n · · · y(J)T

n
]T. Note that according to the model

introduced in Section III, ψn is common for all PVAs.
However, this model can be extended to individual dis-
persion parameters for each PVA (see [24]).

A. State Evolution

For each PVA with state y( j)
k,n−1 with k ∈ K( j)

n−1 �
{1, . . . ,K( j)

n−1} at time n−1 and PA j, there is one “legacy”

PVA with state y( j)
k,n �

[
x( j)Tk,n r

( j)
k,n

]T with k ∈ K( j)
n−1 at

time n and PA j. We also define the joint states y( j)
n

�[
y( j)T
1,n · · · y( j)T

K( j)
n−1,n

]T and y
n
�

[
y(1)T
n

· · · y(J)T
n

]T. Assuming

that the augmented agent state as well as the PVA states
of all PAs evolve independently across k, n, and j, the
joint state-transition PDF factorizes as [3], [26]

f
(
x̃n, yn|x̃n−1, yn−1

) = f (xn|xn−1) f (ψn|ψn−1)

×
J∏
j=1

K( j)
n−1∏
k=1

f
(
y( j)
k,n

∣∣y( j)k,n−1

)
, (7)

where f (y( j)
k,n

|y( j)k,n−1) � f
(
x( j)k,n, r

( j)
k,n

∣∣x( j)k,n−1, r
( j)
k,n−1

)
is the

legacy PVA state-transition PDF. If PVA did not exist at
time n−1, i.e., r( j)k,n−1 =0, it cannot exist as a legacy PVA
at time n either. Thus,

f
(
x( j)k,n, r

( j)
k,n

∣∣x( j)k,n−1, 0
) =

⎧⎨
⎩
fd

(
x( j)k,n

)
, r( j)k,n= 0

0, r( j)k,n=1.
(8)

If PVA existed at time n − 1, i.e., r( j)k,n−1 = 1, it either

dies, i.e., r( j)k,n = 0, or survives, i.e., r( j)k,n = 1 with survival
probability denoted as ps. If it does survive, its new state
y( j)
k,n is distributed according to the state-transition PDF

f
(
x( j)k,n

∣∣x( j)k,n−1

)
� δ

(
p( j)
k,va

− p( j)k,va

)
f
(
u( j)k,n

∣∣u( j)k,n−1

)
[3], [11].
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Thus,

f
(
x( j)k,n, r

( j)
k,n

∣∣x( j)k,n−1, 1
)

=
⎧⎨
⎩
(1− ps) fd

(
x( j)k,n

)
, r( j)k,n= 0

ps δ
(
p( j)
k,va

− p( j)k,va

)
f
(
u( j)k,n

∣∣u( j)k,n−1

)
, r( j)k,n=1

. (9)

The agent state xn with state-transition PDF f (xn|xn−1)
is assumed to evolve in time according to a two-
dimensional, constant velocity and stochastic ac-
celeration model [40] (linear movement) given as
xn = A xn−1 + Bwn, with the acceleration process wn

being independent and identically distributed (i.i.d.)
across n, zero mean, and Gaussian with covariance
matrix σ 2

w I2, σw is the acceleration standard deviation,
and A ∈ R

4×4 and B ∈ R
4×2 are defined accord-

ing to [40, p. 273], with observation period T . The
state-transition PDFs of the dispersion parameter
states f (ψn|ψn−1) = f (ψτ,n|ψτ,n−1) f (ψu,n|ψu,n−1) are
assumed to evolve independently of each other across
n. Since both dispersion parameters are strictly pos-
itive and independent, we model the individual
state-transition PDFs by Gamma PDFs, given by
f (ψτ,n|ψτ,n−1) = G(ψτ,n;qτ , ψτ,n−1/qτ ) and f (ψu,n|
ψu,n−1) = G(ψu,n;qu, ψu,n−1/qu), respectively, where qτ

and qu represent the respective state noise parameters
[24], [27]. Note that a small q implies a large state
transition uncertainty. The state-transition PDF of the
normalized amplitude u( j)k,n is modeled by a truncated Ri-

cian PDF, i.e., f (u( j)k,n|u( j)k,n−1) = fTRice(u
( j)
k,n; σu,k,u

( j)
k,n−1, 0)

with state noise parameter σu,k. The truncated Rician
PDF was found to be useful for the proposed amplitude
model [22] [see (12) in Section IV-B].3

B. Measurement Model

At each time n and for each anchor j, the CEDApro-
vides the currently observed measurement vector z( j)n ,
with fixed M( j)

n , according to Section III-B. Before the
measurements are observed, they are random and rep-
resented by the vector z( j)m,n = [z( j)τm,n z

( j)
um,n]T. In line

with Section III-B, we define the nested random vec-
tors z( j)n = [z( j)T1,n · · · z( j)T

M
( j)
n ,n

]T, with length correspond-

ing to the random number of measurements M
( j)
n , and

zn = [z(1) Tn · · · z(J) Tn ]T.The vector containing all numbers
of measurements is defined as Mn = [M(1)

n · · · M
(J)
n ]T.

If PVA k exists (r( j)k,n = 1), it gives rise to a ran-
dom number of measurements. The mean number of
measurements per (existing) PVA is modeled by a Pois-
son point process with mean μm

(
ψn,u

( j)
k,n

)
. The indi-

vidual measurements z( j)m,n are assumed to be condi-

3In [41], it is shown that for Swerling models I and III, a Gamma state-
transition PDF represents a conjugate prior for making an analytical
derivation possible.

tionally independent, i.e., the joint PDF of all mea-
surements factorizes as f (z( j)n |M( j)

n , xn, ν
( j)
k,n, β

( j)
k,n, x

( j)
k,n) =∏M( j)

n
m=1 f (z

( j)
m,n|xn, ν( j)

k,n, β
( j)
k,n, x

( j)
k,n).

If z( j)m,n is generated by a PVA, i.e., it corresponds
to a main-component (LOS component or MPC), we
assume that the single-measurement likelihood func-
tion f (z( j)m,n|xn, ν( j)

k,n, β
( j)
k,n, x

( j)
k,n) is conditionally indepen-

dent across z
( j)
τm,n and z

( j)
um,n. Thus, it factorizes as

f (z( j)m,n|xn, ν( j)
k,n, β

( j)
k,n, x

( j)
k,n)

= f (z( j)τm,n|pn, ν( j)
k,n, β

( j)
k,n, x

( j)
k,n) f (z

( j)
um,n|β ( j)

k,n,u
( j)
k,n). (10)

The likelihood function of the corresponding delaymea-
surement z

( j)
τm,n is given by

f (z( j)τm,n|pn, ν( j)
k,n, β

( j)
k,n, x

( j)
k,n)

= fN
(
z( j)τm,n; τ (p( j)k,va, pn) + ν

( j)
k,n, σ 2

τ (β
( j)
k,nu

( j)
k,n)

)
,

(11)

with mean τ (p( j)
k,va,pn) + ν( j)k,n and variance σ 2

τ (β
( j)
k,nu

( j)
k,n),

where τ (p( j)
k,va,pn) = ‖pn −p( j)

k,va‖/c. The standard devia-
tion is determined from the Fisher information given by
σ 2

τ (u) = c2/(8π2 β2
bw u

2) with βbw being the root-mean-
squared bandwidth [42], [43] (see Section VI). The like-
lihood function of the corresponding normalized ampli-
tude measurement z( j)um,n is obtained as4

f (z( j)um,n|β ( j)
k,n,u

( j)
k,n)

� fTRice(z
( j)
um,n;σu(β

( j)
k,nu

( j)
k,n), β

( j)
k,nu

( j)
k,n,γ ), (12)

with scale parameter σu(β
( j)
k,nu

( j)
k,n), noncentrality param-

eter β( j)
k,nu

( j)
k,n, and detection threshold γ [22], [46]. The

scale parameter is similarly determined from the Fisher
information given by

σ 2
u (u) = 1/2 + u /(4Ns) . (13)

Note that this expression reduces to 1/2 if the ad-
ditive white Gaussian noise (AWGN) variance σ ( j)2

is assumed to be known or Ns to grow indefinitely
(see [22, Appendix D] for a detailed derivation).
The probability of detection resulting from (12) is
given by the Marcum Q-function, i.e., pD(β

( j)
k,nu

( j)
k,n) �

Q1(u/σu(β
( j)
k,nu

( j)
k,n), γ /σu(β

( j)
k,nu

( j)
k,n)) [22], [47] (see Sec-

tion I-C). Using the assumptions introduced in the Sec-
tion III-A, the joint PDF of the dispersion variables can

4The proposed model describes the distribution of the amplitude esti-
mates of the radio signal model given in (6) [22], [44]–[46].
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be constructed as follows:

f (ν( j)
k,n, β

( j)
k,n|ψn) =1

2

(
δ(ν( j)

k,n) δ(β ( j)
k,n − 1)

+ fU(ν
( j)
k,n; 0, ψτ,n)δ(β

( j)
k,n − ψu,n)

)
,

(14)

where the according delay dispersion random variable is
given as ν( j)k,n ∼ fU(ν

( j)
k,n; 0, ψτ,n) and the amplitude dis-

persion random variable is β( j)
k,n ∼ δ(β ( j)

k,n − ψu,n). The

PDF of a single measurement z( j)m,n can now be obtained
by integrating out the dispersion variables as

f (z( j)m,n|x̃n, x( j)k,n) = f (z( j)m,n|xn,ψn, x
( j)
k,n)

=
∫

f (z( j)m,n|xn, ν( j)
k,n, β

( j)
k,n, x

( j)
k,n)

× f (ν( j)
k,n, β

( j)
k,n|ψn)dν

( j)
k,n dβ

( j)
k,n

= f (z( j)τm,n|pn, x( j)k,n) f (z
( j)
um,n|u( j)k,n)

+ f (z( j)τm,n|pn,ψn, x
( j)
k,n) f (z

( j)
um,n|u( j)k,n, ψu,n), (15)

with the main-component delay PDF

f (z( j)τm,n|pn, x( j)k,n) = fN(z( j)τm,n; τ (p( j)k,va, pn), σ 2
τ (u

( j)
k,n))

(16)
and the main-component amplitude PDF

f (z( j)um,n|u( j)k,n) = fTRice(z
( j)
um,n; σu(u

( j)
k,n),u

( j)
k,n, γ ), (17)

as well as the additional subcomponent delay PDF

f (z( j)τm,n|pn,ψn, x
( j)
k,n)

= 1
ψτ,n

∫ ψτ,n

0
fN

(
z( j)τm,n; τ (p( j)k,va, pn)+ν

( j)
k,n, σ

2
τ (ψu,nu

( j)
k,n)

)
dν

( j)
k,n

= 1
2ψτ,n

(
erf

(
τ (p( j)k,va, pn) + ψτ,n − z( j)τm,n

στ (ψu,nu
( j)
k,n)

√
2

)

− erf

(
τ (p( j)k,va, pn) − z( j)τm,n

στ (ψu,nu
( j)
k,n)

√
2

))
(18)

and the additional subcomponent amplitude PDF

f (z( j)um,n|ψu,n,u
( j)
k,n)

= fTRice(z
( j)
um,n;σu(ψu,nu

( j)
k,n), ψu,nu

( j)
k,n,γ ). (19)

The according probability of detection is given as
pD(u

( j)
k,n) for the main-component of each PVA or

pD(ψu,nu
( j)
k,n) for the additional subcomponents, respec-

tively.
It is also possible that a measurement z( j)m,n did not

originate from any PVA (false alarm). False alarm mea-
surements originating from the CEDA are assumed sta-
tistically independent of PVA states. They are modeled
by a Poisson point process with mean μfa and PDF
ffa(z

( j)
m,n), which is assumed to factorize as ffa(z

( j)
m,n) =

ffa(z
( j)
τm,n) ffa(z

( j)
um,n).The false alarm PDF for a single de-

lay measurement is assumed to be uniformly distributed
as ffa(z

( j)
τm,n) = fU(z

( j)
τm,n; 0, τmax). In correspondence to

(12), the false alarm likelihood function of the normal-
ized amplitude measurement is given as ffa(z

( j)
um,n) �

fTRayl(z
( j)
um,n ;√

1/2 , γ ) with the scale parameter, given
as

√
1/2 and detection threshold γ .
Considering the measurement model for the nor-

malized amplitudes in (12), the mean number of PVA-
related measurements μm

(
x̃n, x

( j)
k,n

)
� μm

(
ψn, u

( j)
k,n

)
is

well approximated as

μm
(
ψn, u

( j)
k,n

) = pD(u
( j)
k,n) + Nnyψτ,n

c Ts
pD(ψu,nu

( j)
k,n) (20)

The right-hand side fraction denotes the average num-
ber of additional subcomponents estimated by the
CEDA at a detection threshold of γ = 0 dB, where we
assume an average of Nny components to be detected
within one Nyquist sample.Accordingly, the mean num-
ber of false alarms is approximated as μfa = NnyNs e−γ 2

with e−γ 2 = ∫ ∞
γ

ffa(z
( j)
um,n) dz

( j)
um,n denoting the false

alarm probability.

C. New PVAs

Newly detected PVAs, i.e., actual VAs that generate
a measurement for the first time, are modeled by a
Poisson point process with mean μn and PDF
fn

(
x( j)m,n|x̃n

)
. Following [3], [26], newly detected VAs are

represented by new PVA states y( j)
m,n,m ∈ {1, . . . ,M( j)

n },
where each new PVA state corresponds to a measure-
ment z( j)m,n; r

( j)
m,n = 1 implies that measurement z( j)m,n was

generated by a newly detected VA.Since newly detected
VAs can potentially produce more than one measure-
ment, we use the multiple-measurement-to-feature
probabilistic data association and define this mapping
as introduced in [24], [29]. We also introduce the joint
states y( j)

n �
[
y( j)T
1,n · · · y( j)T

M( j)
n ,n

]T and yn �
[
y(1)T
n · · · y(J)T

n

]T.
The vector of all PVAs at time n is given by yn�

[
yT
n

yTn
]T.

Note that the total number of PVAs per PA is given by
K( j)
n = K( j)

n−1 +M( j)
n .

Since new PVAs are introduced as new measure-
ments are available at each time, the number of PVAs
grows indefinitely. Thus, for feasible methods, a subop-
timal pruning step is employed that removes unlikely
PVAs (see Section IV-F).

D. Association Vectors

For each PA,measurements z( j)m,n are subject to a data
association uncertainty. It is not known which measure-
ment z( j)m,n is associated with which PVA k, or if a mea-
surement z( j)m,n did not originate from any PVA (false
alarm) or if a PVA did not give rise to any measurement
(missed detection). The associations between measure-
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ments z( j)m,n and the PVAs at time n is described by the
binary PVA-orientated association variables with entries
[24], [29]

a
( j)
km,n �

{
1, if measurementm was generated by PVA k
0, otherwise .

We distinguish between legacy and new PVA-
associated variable vectors given, respectively, as
a( j)
k,n� [a( j)k1,n · · · a

( j)

kM( j)
n ,n

]T with k ∈ K( j)
n−1 and a( j)

k,n� [a( j)k1,n

· · · a
( j)
kk,n]

T with k ∈ M( j)
n and a( j)

k,n � [a( j)T
k,n · · · a( j)T

k,n ]T

[29]. We also define a( j)
n � [a( j)T

1,n · · · a( j)T

K( j)
n ,n

]T and

an � [a(1)T
n · · · a(J)T

n ]T. To reduce computational com-
plexity, following [3], [25], [26], we use the redundant
description of association variables, i.e., we introduce
measurement-orientated association variable

b
( j)
m,n �

⎧⎨
⎩
k ∈ {1, . . . ,K( j)

n }, if measurement m was
generated by PVA k

0, otherwise,

and define the measurement-oriented association vec-
tor b( j)

n = [b( j)
1,n · · · b

( j)

M( j)
n ,n

]. We also define bn �
[b(1)T

n · · ·b(J)T
n ]T. Note that any data association event

that can be expressed by both random vectors an and
bn is a valid event, i.e., any measurement can be gener-
ated by at most one PVA.This redundant representation
of events makes it possible to develop scalable SPAs [3],
[22], [25], [26].

E. Joint Posterior PDF

By using common assumptions [3], [22], [26], and
for fixed and thus observed measurements z1:n, it can
be shown that the joint posterior PDF of x̃1:n (x̃1:n �
[x̃T1 · · · x̃Tn ]T), y1:n, a1:n, and b1:n, conditioned on z1:n for all
time steps n′ ∈ {1, . . . ,n} is given by

f (x̃1:n, y1:n,a1:n,b1:n|z1:n)

∝ f (x1) f (ψ1)

(
J∏

j′=1

K( j′ )
1∏

k′=1

f
(
y( j

′)
k′,1

))

×
n∏

n′=2

f (xn′ |xn′−1) f (ψn′ |ψn′−1)

×
J∏
j=1

( K( j)
n′−1∏
k=1

g
(
y( j)
k,n′

∣∣y( j)k,n′−1, x̃n′−1
)

×
M( j)

n′∏
m′=1

q
(
x̃n′ , y( j)

k,n′ , a
( j)
km′,n′ ; z( j)m′,n′

)
�

(
a( j)km′,n′,b

( j)
m′,n′

))

×
( M( j)

n′∏
m=1

v
(
x̃n′ , y( j)m,n′ , a

( j)
mm,n′ ; z( j)m,n′

)

×
m−1∏
h=1

u
(
x̃n′ , y( j)m,n′ , a

( j)
mh,n′ ; z( j)h,n′

)
�(a( j)mh,n′ ,b

( j)
h,n′ )

)
, (21)

where g(y( j)
k,n

|y( j)k,n−1, x̃n−1), q
(
x̃n, y( j)k,n

, a( j)km,n; z( j)m,n
)
,

�(a( j)km,n,b
( j)
m,n), u

(
x̃n, y

( j)
k,n, a

( j)
mh,n; z( j)h,n

)
and

v
(
x̃n, y( j)m,n, a

( j)
mm,n; z( j)m,n

)
are explained in what follows.

The pseudo state-transition function is given by

g
(
y( j)
k,n

∣∣y( j)k,n−1, x̃n−1
)

�

⎧⎨
⎩e

−μm

(
x̃n−1,x

( j)
k,n

)
f (x( j)k,n, 1|x( j)k,n−1, r

( j)
k,n−1), r

( j)
k,n = 1

f (x( j)k,n, 0|x( j)k,n−1, r
( j)
k,n−1), r( j)k,n = 0,

(22)

and the pseudo prior distribution as

f (y( j)k,n|x̃n)�
⎧⎨
⎩μn fn

(
x( j)k,n|x̃n

)
e−μm

(
x̃n,x

( j)
k,n

)
, r( j)k,n = 1

fd
(
x( j)k,n

)
, r( j)k,n = 0 .

(23)

The pseudo likelihood functions related to
legacy PVAs for k ∈ K( j)

n−1 q
(
x̃n, y( j)k,n

, a( j)km,n; z( j)m,n
) =

q
(
x̃n, x

( j)
k,n, r

( j)
k , a( j)km,n; z( j)m,n

)
is given by

q
(
x̃n, x

( j)
k,n, 1, a

( j)
km,n; z( j)m,n

)

�

⎧⎨
⎩

μm

(
x̃n,x

( j)
k,n

)
f (z( j)m,n|pn,ψn,x

( j)
k,n)

μfa ffa(z
( j)
m,n)

, a( j)km,n = 1

1, a( j)km,n = 0
(24)

and q
(
x̃n, x

( j)
k,n, 0, a

( j)
km,n; z( j)m,n

)
� δa( j)km,n

. The pseudo

likelihood functions related to a new PVA (with
k ∈ M( j)

n \m) is given as u
(
x̃n, y

( j)
k,n, a

( j)
km,n; z( j)m,n

) =
u
(
x̃n, x

( j)
k,n, r

( j)
k , a( j)km,n; z( j)m,n

)
is given by

u
(
x̃n, x

( j)
k,n, 1, a

( j)
km,n; z( j)m,n

)

�

⎧⎨
⎩

f (y( j)k,n|x̃n)μm

(
x̃n,x

( j)
k,n

)
f (z( j)m,n|pn,ψn,x

( j)
k,n)

μfa ffa(z
( j)
m,n)

, a( j)km,n = 1

1, a( j)km,n = 0
(25)

and u
(
x̃n, x

( j)
k,n, 0, a

( j)
km,n; z( j)m,n

)
� δa( j)km,n

, whereas for k = m

as v
(
x̃n, y( j)m , a( j)mm,n; z( j)m,n

) = v
(
x̃n, x( j)m,n, r

( j)
m,n, a

( j)
mm,n; z( j)m,n

)
is given by

v
(
x̃n, x( j)m,n, 1, a

( j)
mm,n; z( j)m,n

)

�

⎧⎨
⎩

f (y( j)m,n|x̃n)μm

(
x̃n,x( j)m,n

)
f
(
z( j)m,n|pn,ψn,x

( j)
m,n

)
μfa ffa(z

( j)
m,n)

, a( j)mm,n = 1

0, a( j)mm,n = 0
(26)

and v
(
x̃n, x( j)m,n, 0, a

( j)
mm,n; z( j)m,n

)
� δa( j)mm,n

.
Finally, the binary indicator functions that check con-

sistency for any pair (a( j)km,n,b
( j)
m,n) of PVA-oriented and

measurement-oriented association variable at time n
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are, respectively, given by

�(a( j)km,n,b
( j)
m,n)

�
{
0, a( j)km,n = 1, b( j)m,n 	= k or a( j)km,n = 0, b( j)m,n = k

1, else
(27)

for k ∈ K( j)
n−1 and

�(a( j)km,n,b
( j)
m,n)�

⎧⎪⎪⎨
⎪⎪⎩
0, a( j)km,n = 1,b( j)m,n 	= K( j)

n−1 +k

or a( j)km,n = 0,b( j)m,n = K( j)
n−1 +k

1, else .

(28)

for k ∈ M( j)
n . The factor graph representing the factor-

ization (21) is shown in Fig. 2.

F. Detection of PVAs and State Estimation

We aim to estimate all states using all available mea-
surements z1:n from all PAs up to time n. In particular,we
calculate estimates of the augmented agent state (con-
taining the dispersion parameters) x̃n by using the mini-
mum mean-square error (MMSE) estimator [48, Ch. 4],
i.e.,

x̃MMSE
n �

∫
x̃n f (x̃n|z1:n)dx̃n, (29)

where x̃MMSE
n = [xMMSE T

n ψMMSE T
n ]T. The map of the

environment is represented by reflective surfaces de-
scribed by PVAs.Therefore, the state x( j)k,n of the detected

PVAs k∈{1, . . . ,K( j)
n } must be estimated. This relies on

the marginal posterior existence probabilities p(r( j)k,n =
1|z1:n) = ∫

f (x( j)k,n, r
( j)
k,n = 1|z( j)1:n)dx

( j)
k,n and the marginal

posterior PDFs f (x( j)k,n|r( j)k,n = 1, z1:n) = f (x( j)k,n, r
( j)
k,n =

1|z1:n)/p(r( j)k,n = 1|z1:n). A PVA k is declared to exist if

p(r( j)k,n=1|z1:n) > pcf, where pcf is a confirmation thresh-
old [48, Ch. 2]. To avoid that the number of PVA states
grows indefinitely, PVA states with p(r( j)k,n = 1|z1:n) be-
low a threshold ppr are removed from the state space
(“pruned”).The number K̂( j)

n of PVA states that are con-
sidered to exist is the estimate of the total number L( j)

n

of VAs visible at time n. For existing PVAs, an estimate
of its state x( j)k,n can again be calculated by theMMSE [48,
Ch. 4]

x( j)MMSE
k,n �

∫
x( j)k,n f (x

( j)
k,n |r( j)k,n=1, z1:n) dx

( j)
k,n. (30)

The calculation of f (x̃n|z1:n), p(rk,n = 1|z), and f (x( j)k,n|
r( j)k,n = 1, z1:n) from the joint posterior f (x̃1:n, y1:n,a1:n,
b1:n|z1:n) by direct marginalization is not feasible. By
performing sequential particle-based message passing
(MP) using the SPA rules [3], [11], [46], [49]–[51] on the
factor graph in Fig. 2, approximations (“beliefs”) b

(
x̃n

)

Figure 2. Factor graph for proposed algorithm. At MP iteration p,
we use the following short hand notation: f (x̃) � f (x̃n|x̃n−1), g(·),
q(·), u(·), v(·), �(·) and �(·) corresponds to (22), (24), (25), (26),
(27) and (28), respectively. Furthermore, we define α � α(x̃n), αk �
α(x( j)k,n, r

( j)
k,n), αkl � αl (x

( j)
k,n, r

( j)
k,n), αkl � αl (x

( j)
k,n, r

( j)
k,n), εkl � ε(a( j)kl,n),

εkl � ε(a( j)kl,n),γ kl
� γl (x

( j)
k,n, r

( j)
k,n),γ kl � γl (x

( j)
k,n, r

( j)
k,n), νkl � νkl (a

( j)
kl,n),

νkl � νkl (a
( j)
kl,n), ϕkl � ϕ

kl
(bl,n) and ϕkl � ϕkl (bl,n). Due to our pro-

posed scheduling, both β̃kl and β̃ml are defined to be α(x̃n) according
to (55). Furthermore,βml � 1 and β

kl
� β

( j)
kl (x̃n) since the augmented

agent state is only updated with messages from legacy PVAs. The time
evolution of the agent state and VAs is indicated with dashed arrows.

and b
(
y( j)k,n

)
of the marginal posterior PDFs f (x̃n|z1:n),

p(r( j)k,n=1|z1:n), and f (x( j)k,n| r( j)k,n = 1, z1:n) can be obtained
in an efficient way for the agent state as well as all legacy
and new PVA states.

V. PROPOSED SPA

The factor graph in Fig. 2 has cycles, therefore we
have to decide on a specific order of message compu-
tation [49], [52]. We use MP iteration with MP iteration
p ∈ {1, . . . ,P}, where P is the maximum number of MP
iterations.We choose the order according to the follow-
ing rules: (i) messages are only sent forward in time; (ii)
for each PA,messages are updated in parallel; (iii) along
an edge connecting the augmented agent state variable
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node and a new PVA, messages are only sent from the
former to the latter; (iv) the augmented agent state vari-
able node is only updated at MP iteration P. The cor-
responding messages are shown in Fig. 2. Note that this
scheduling is suboptimal since the extrinsic messages of
the augmented agent state are neglected. This calcula-
tion order is solely chosen to reduce the computational
demand.With these rules, the MP equations of the SPA
[49] yield the following operations at each time step.

A. Prediction Step

A prediction step is performed for the augmented
agent state and all legacy VAs k ∈ K( j)

n−1. It has the form
of

α(x̃n) =
∫

f (x̃n|x̃n−1)b(x̃n−1)dx̃n−1, (31)

α(x( j)k,n, r
( j)
k,n) =

∑
r( j)k,n−1∈{0,1}

∫∫
g(x( j)k,n, r

( j)
k,n|x( j)k,n−1, r

( j)
k,n−1, x̃n−1)

× b(x( j)k,n−1, r
( j)
k,n−1)b(x̃n−1)dx

( j)
k,n−1dx̃n−1 (32)

with b(x̃n−1) and b(x
( j)
k,n−1, r

( j)
k,n−1) denoting the beliefs of

the augmented agent state and the legacy VA k calcu-
lated at the previous time step, respectively. The sum-
mation in (32), can be further written as

α(x( j)k,n, r
( j)
k,n = 1) = ps

∫∫
e−μm

(
x̃n−1,x

( j)
k,n

)
f (x( j)k,n, 1|x( j)k,n−1, 1)

× b(x( j)k,n−1, 1)b(x̃
( j)
k,n−1)dx

( j)
k,n−1dx̃

( j)
n−1 (33)

and α(x( j)k,n, r
( j)
k,n = 0) = α

n,( j)
k fd(x

( j)
k,n) with

α
n,( j)
k � b̃k,n−1 + (1 − ps)

∫
b(x( j)k,n−1, 1)dx

( j)
k,n−1

= b̃k,n−1 + (1 − ps)(1 − b̃k,n−1) (34)

where b̃k,n−1 = ∫
b(x̃( j)k,n−1, 0)dx̃

( j)
k,n−1 approximates the

probability of non-existence of legacy VA k.

B. Measurement Evaluation

The messages ε[p](a( j)kl,n) sent from factor nodes

q(x̃, y( j)
k,n

, a( j)kl,n, z
( j)
l,n ) to variable nodes a( j)kl,n at MP itera-

tion p with k ∈ {1, . . . ,K( j)
n−1} and l ∈ {1, . . . ,M( j)

n } are
defined as

ε[p](a( j)kl,n) =
∫∫

β̃
[p]
kl (x̃n)α

[p]
l (y( j)

k,n
)

× q(x̃n, y( j)k,n
, a( j)kl,n, z

( j)
l,n ) (35)

The messages from factor nodes u(x̃n, y
( j)
k,n, a

( j)
kl,n, z

( j)
l,n ) to

variable nodes a( j)kl,n where k ∈ {1, . . . ,M( j)
n } and l ∈

{1, . . . ,M( j)
n }\k, are given as

ε[p](a( j)kl,n) =
∫∫

β̃
[p]
kl (x̃n)α

[p]
l (y( j)k,n)

× u(x̃n, y
( j)
k,n, a

( j)
kl,n, z

( j)
l,n )dx̃ndy

( j)
k,n (36)

and the messages from factor nodes v(x̃n, y( j)m,n, a
( j)
mm,n,

z( j)m,n) to variable nodes a( j)mm,n, m ∈ {1, . . . ,M( j)
n }, are

given as

ε[p](a( j)mm,n) =
∫∫

β̃[p]
mm(x̃n)α

[p]
m (y( j)m,n)

× v(x̃n, y( j)m,n, a
( j)
mm,n, z

( j)
m,n)dx̃ndy

( j)
m,n. (37)

Note that α
[p=1]
l (y( j)

k,n
) � α(x( j)k,n, r

( j)
k,n) and α

[p=1]
l (y( j)k,n) �

1. For p > 1, α[p]
l (y( j)k,n) is calculated according to Section

V-E. Using (35), ε[p](a[p]( j)kl,n ) is further investigated. For
the messages containing information about legacy VAs,
it results in

ε[p](a( j)kl,n = 1) =
∫∫

β̃
[p]
kl (x̃n)α

[p]
l (x( j)k,n, r

( j)
k,n = 1)

× μm
(
x̃n, x

( j)
k,n

)
f (z( j)l,n |(x̃n, x( j)k,n)

μfa ffa(z
( j)
l,n )

dx( j)k,ndx̃n,

ε[p](a( j)kl,n = 0) =
∫∫

β̃
[p]
kl (x̃n)

(
α
[p]
l (x( j)k,n, r

( j)
k,n = 1)

+ α
[p]
l (x( j)k,n, r

( j)
k,n = 0)

)
dx( j)k,ndx̃n.

(38)

This can be further simplify by dividing both messages
by ε[p](a( j)kl,n = 0).With an abuse of notation, it results in

ε[p](a( j)kl,n = 0) = 1.

The messages ε[p](a( j)kl,n) can be obtained similarly by
using (36) and (37), yielding

ε[p](a( j)kl,n = 1) =
∫∫

β̃
[p]
kl (x̃n)α

[p]
l (x( j)k,n, r

( j)
k,n = 1)

× f (x( j)k,n|x̃n)μm(x̃n, x
( j)
k,n) f (z

( j)
l,n |x̃n, x( j)k,n)

μfa ffa(z
( j)
l,n )

dx( j)k,ndx̃n (39)

ε[p](a( j)kl,n = 0) =
∫∫

β̃
[p]
kl (x̃n)

(
α
[p]
l (x( j)k,n, r

( j)
k,n = 1)

+ α
[p]
l (x( j)k,n, r

( j)
k,n = 0)

)
dx( j)k,ndx̃n, (40)

ε[p](a( j)mm,n = 1) =
∫∫

β̃[p]
mm(x̃n)α

[p]
m (x( j)m,n, r

( j)
m,n = 1)

× f (x( j)m,n|x̃n)μm
(
x̃n, x( j)m,n

)
f (z( j)m,n|x̃n, x( j)m,n)

μfa ffa(z
( j)
m,n)

dx( j)m,ndx̃n,

(41)
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ε[p](a( j)mm,n = 0)=
∫∫

β̃ [p]
mm(x̃n)α

[p]
m (x( j)m,n, r

( j)
m,n = 0)dx( j)m,ndx̃n.

(42)

The expressions can be simplified by dividing all mes-
sages by ε(a( j)kl,n = 0).With an abuse of notation, it results

in ε(a( j)kl,n = 0) = 1 and

ε[p](a( j)mm,n = 0)

=
∫∫

β̃
[p]
mm(x̃n)α

[p]
m (x( j)m,n, 0)dx

( j)
m,ndx̃n∫∫

β̃
[p]
mm(x̃n)

(
α
[p]
m (x( j)m,n, 1) + α

[p]
m (x( j)m,n, 0)

)
dx( j)m,ndx̃n

(43)

C. Data Association

The messages ϕ
[p]
kl (b

( j)
l,n ) sent from factor node

�(a( j)kl ,b( j)l ) to variable node b( j)l,n and the messages

ν
[p]
kl (a

( j)
kl,n) sent from factor node �(a( j)kl ,b( j)l ) to variable

node a( j)kl,n are calculated using the measurement evalua-
tionmessages in (35), (36) and (37).Details can be found
in Appendix B.

D. Measurement Update for PVAs

Next, we determine the messages sent from factor
node q(x̃n, y( j)k,n

, a( j)kl , z( j)l,n ) to variable node y( j)
k,n

as

γ
[p]
l (y( j)

k,n
) =

∑
a( j)kl,n∈{0,1}

∫
q(x̃n, x

( j)
k,n, r

( j)
k,n, a

( j)
kl,n, z

( j)
l,n )

× ν
[p]
kl (a

( j)
kl,n)dx̃n, (44)

which results after marginalizing a( j)kl,n in

γ
[p]
l (x( j)k,n, r

( j)
k = 1) =

∫
q(x̃n, x

( j)
k,n, 1, 1, z

( j)
l,n )ν

[p]
kl (1)dx̃n

+ ν
[p]
kl (0), (45)

γ
[p]
l (x( j)k,n, r

( j)
k = 0) = ν

[p]
kl (0) . (46)

The messages from factor node u(x̃n, y
( j)
k,n, a

( j)
kl , z( j)l,n ) to

variable node y( j)k,n are given as

γ
[p]
l (y( j)k,n) =

∑
a( j)kl,n∈{0,1}

∫
u(x̃n, x

( j)
k,n, r

( j)
k,n, a

( j)
kl,n, z

( j)
l,n )

× ν
[p]
kl (a

( j)
kl,n)dx̃n (47)

which results after marginalizing a( j)kl,n in

γ
[p]
l (x( j)k,n, r

( j)
k = 1) =

∫
u(x̃n, x

( j)
k,n, 1, 1, z

( j)
l,n )ν

[p]
kl (1)dx̃n

+ ν
[p]
kl (0) (48)

γ
[p]
l (x( j)k,n, r

( j)
k = 0) = ν

[p]
kl (0). (49)

The message from factor node v(x̃n, y( j)m,n, a
( j)
mm, z( j)m,n) to

variable node y( j)m,n is given by

γ [p]
m (y( j)m,n) =

∑
a( j)mm,n∈{0,1}

∫
v(x̃n, y( j)m,n, a

( j)
mm,n, z

( j)
m,n)

× ν[p]
mm(a

( j)
mm,n)dx̃n, (50)

which results after marginalizing a( j)mm,n in

γ [p]
m (x( j)m,n, 1) =

∫
v(x̃n, y( j)m,n, a

( j)
mm,n, z

( j)
m,n)ν[p]

mm(1)dx̃n

(51)

γ [p]
m (x( j)m,n, 0) = ν[p]

mm(0). (52)

The messages are initialized with γ
[p=1]
� (y( j)k,n) = 1.

E. Extrinsic Information

For each legacy VA, the messages sent from variable
node y( j)

k,n
to factor nodes q(x̃n, y( j)k,n

, a( j)kl,n; z( j)l,n ) with k ∈
K( j)
n−1, l ∈ M( j)

n at MP iteration p+ 1 are defined as

α
[p+1]
l (y( j)

k,n
) = α(y( j)

k,n
)
M( j)

n∏
�=1
� 	=l

γ
[p]
� (y( j)

k,n
) . (53)

For new VAs, a similar expression can be obtained
for the messages from variable node y( j)m,n to fac-

tor nodes u(x̃n, y( j)m,n, a
( j)
ml,n; z( j)l,n ), and factor nodes

v(x̃n, y( j)m,n, a
( j)
mm,n; z( j)m,n), i.e.,

α
[p+1]
l (y( j)m,n) = α(y( j)m,n)

m∏
�=1
� 	=l

γ
[p]
� (y( j)m,n) . (54)

F. Measurement Update for Augmented Agent State

Due to the proposed scheduling, the augmented
agent state is only updated by messages of legacy PVAs
and only at the end of the iterative MP. This results in

β̃
[p]
kl (x̃n) = α(x̃n), (55)

β
[p]( j)
kl (x̃n) =

∑
a( j)kl,n∈{0,1}

∑
r( j)k,n∈{0,1}

∫
α
[p]
l (x( j)k,n, r

( j)
k,n)

× q(x̃n, x
( j)
k,n, r

( j)
k,n, a

( j)
kl,n, z

( j)
l,n )ν

[p]
kl (a

( j)
kl,n)dx

( j)
k,n, (56)

which can be further simplified to

β
[p]( j)
kl (x̃n) =

∫
α
[p]
l (x( j)k,n, 1)

(
q(x̃n, x

( j)
k,n, 1, 1, z

( j)
l,n )ν

[p]
kl (1)

+ ν
[p]
kl (0)

)
dx( j)k,n + α

n,( j)
k ν

[p]
kl (0). (57)

68 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 18, NO. 2 DECEMBER 2023



G. Belief Calculation

Once all messages are available and p = P, the be-
liefs approximating the desiredmarginal posterior PDFs
are obtained.The belief for the augmented agent state is
given, up to a normalization factor, by

b(x̃n) ∝ α(x̃n)
J∏
j=1

K( j)
n−1∏
k=1

M( j)
n∏

m=1

β
[P]( j)
km (x̃n), (58)

where we only use messages from legacy VAs. This be-
lief (after normalization) provides an approximation of
the marginal posterior PDF f (x̃n|z1:n), and it is used in-
stead of f (x̃n|z1:n) in (29).Furthermore, the beliefs of the
legacy VAs b(y( j)

k
) and new VAs b(y( j)k ) are given as

b(y( j)
k,n

) ∝ α(y( j)
k,n

)
M( j)

n∏
l=1

γ
[P]
l (y( j)

k,n
), (59)

b(y( j)m,n) ∝ α(y( j)m,n)
m∏
l=1

γ
[P]
l (y( j)m,n). (60)

A computationally feasible approximate calculation of
the various messages and beliefs can be based on the se-
quential Monte Carlo (particle-based) implementation
approach introduced in [22], [26], [50].

VI. NUMERICAL RESULTS

The performance of the proposed algorithm (PROP)
is validated and compared with the MP-SLAM algo-
rithm from [3], [11], which assumes that each VA gener-
ates at most one measurement and that a measurement
originates from at most one VA. The validation of the
algorithms is based on synthetic measurements in two
settings.

1) Experiment 1 in Section VI-B is based on mea-
surements directly generated from the measurement
model introduced in Section IV.

2) Experiment 2 in Section VI-C is based on measure-
ments provided by a CEDA applied to radio signals
that are generated with parameters according to the
measurement model introduced in Section IV.

A. Simulation Scenario and Common Simulation
Parameters

We consider an indoor scenario shown in Fig. 3. The
scenario consists of two PAs at positions p(1)pa = [0.1 6]T

and p(2)pa = [0 −0.2]T and four reflective surfaces, i.e.,
four VAs per PA. The agent moves along a track which
is observed for 300 time instances nwith observation pe-
riod T = 1 s. For simplicity, we restrict the simulations
to single-bounce reflections. The distances of the main
components are calculated based on the PA and the cor-
responding VA positions as well as agent positions (see

Figure 3. Considered scenario for performance evaluation in a rect-
angular room with two PAs, four reflective surfaces, and the corre-
sponding VAs. The estimated agent track for a single realization is
shown in blue.

Section III). Fig. 4 shows the distances of the main com-
ponents versus time n. The signal SNR is set to 30 dB
at an LOS distance of 1m. The amplitudes of the main
components (LOS component and the MPCs) are cal-
culated using a free-space path loss model and an ad-
ditional attenuation of 1 dB for each reflection at a flat
surface.We use 20 000 particles.The particles for the ini-
tial agent state are drawn from a four-dimensional uni-
form distribution with center x0 = [pT0 0 0]T, where p0
is the starting position of the actual agent track, and the
support of each position component about the respec-
tive center is given by [−0.1m, 0.1m] and of each ve-
locity component is given by [−0.01m/s, 0.01m/s]. At
time n = 0, the number of VAs is 0, i.e., no prior map
information is available. The prior distribution for new
PVA states fn

(
x( j)m,n|x̃n

)
is uniform on the square region

given by [−15 m, 15 m]× [−15 m, 15 m] around the cen-

Figure 4. Distances of main components (between the PA positions
as well as their corresponding VA positions and the agent positions)
versus time n.
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ter of the floor plan shown in Fig. 3, and the mean num-
ber of new PVAs at time n is μn = 0.01. The probabil-
ity of survival is ps = 0.999. The confirmation threshold
as well as the pruning threshold are given as pcf = 0.5
and ppr = 10−3, respectively. For the sake of numerical
stability, we introduce a small amount of regularization
noise to theVA state pk,va at each time step n, i.e., p( j)

k,va
=

p( j)k,va + ωk, where ωk is i.i.d. across k, zero-mean, and
Gaussian with covariance matrix σ 2

a I2 and σa = 10−3 m.
The state transition variances are set as σw = 10−3 m/s2,
qτ = qu = 104 [24], [27], and σu,k = 0.05u( j)MMSE

k,n−1 . Note
that for the normalized amplitude state we use a value
proportional to theMMSE estimate of the previous time
step n−1 as a heuristic.The dispersion parameters are set
to fixed values over time n, i.e., ψτ,n = ψτ = ψd/c and
ψu,n = ψu.5 The performance of the different methods
discussed ismeasured in terms of the root-mean-squared
error (RMSE) of the agent position and the dispersion
parameters,as well as the optimal subpattern assignment
(OSPA) error [53] of all VAs with with cutoff parame-
ter and order set to 5 m and 2, respectively. The mean
OSPA (MOSPA) errors and RMSEs of each unknown
variable are obtained by averaging over all converged
simulation runs. We declare a simulation run to be con-
verged if {∀n : ‖pn − pMMSE

n ‖ < dcv m}, where dcv is the
convergence threshold.

B. Experiment 1: Measurement Model

We investigate PROP with four different dispersion
parameter settings, given as ψd, which takes values of

5For better readability, we introduce ψd as a scaled version of ψτ .

Table I
Experiment 1: Convergence Rate and Mean Number of Estimated

VAs for Different Algorithms and Dispersion Settings

Setting Convergence K̂

MP-SLAM ψd = 0.00m 100% 4
ψd = 0.03m 82% 9
ψd = 0.15m 15% 16
ψd = 0.30m 11% 30

PROP ψd = 0.00m 100% 4
ψd = 0.03m 100% 4
ψd = 0.15m 100% 4
ψd = 0.30m 96% 5

0m, 0.03m, 0.15m, and 0.3m, and ψu, which is either
set to 0 for ψd = 0m or 0.2 otherwise. Furthermore,
we set Nny = 4. We performed 100 simulation runs. In
each simulation run, we generated noisy measurements
z( j)m,n according to the measurement model proposed in
Section IV-B using the main components calculated as
described in Section VI-A. In the case ψd = 0m, only
main-component measurements are generated, which is
equivalent to the system model in [11]. The detection
threshold is given by γ = 2.5. For numerical stability,
we reduced the root-mean-squared bandwidth βbw for
VAs by a factor of 4. The convergence threshold is set to
dcv = 0.2.

Table I summarizes the number of converged runs
(in percentage) as well as the mean number of de-
tected VAs K̂ (averaged over all simulation runs and
time steps) for all investigated dispersion parameter
settings. The results are summarized in Fig. 5. In par-
ticular, Fig. 5(a) shows the RMSE of the agent posi-
tions, Fig. 5(b) and (c) show the RMSE of the dis-
persion parameters, and Fig. 5(d)–(i) shows the MO-

Figure 5. Experiment 1: Results for converged simulation runs. (a) shows the RMSE of the agent position over the whole track. (b) and (c)
present the RMSE of the dispersion parameters. (d) and (g) present the map error in terms of the MOSPA for PA 1 and PA 2, respectively. (e)
and (h) show the RMSE of the estimated VA positions for PA 1 and PA 2, respectively. (f) and (i) show the cardinality error of the estimated
VAs for PA 1 and PA 2, respectively.
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Figure 6. Experiment 1:Cumulative frequency of the deviation of the
MMSE estimate of the agent position from the true agent position for
all simulation runs and time instances. The legend is given in Fig. 5.

SPA error and its VA position error and mean car-
dinality error contributions for PA 1 and PA 2, re-
spectively. The results in all figures are presented ver-
sus time n (and for all investigated dispersion param-
eter settings). Fig. 5(a) shows that the RMSE of the
agent position of PROP is similar for all dispersion pa-
rameter settings.While PROP significantly outperforms
MP-SLAM in terms of converged runs for dispersion pa-
rameter settings ψd > 0m, it shows slightly reduced per-
formance forψd = 0m.Additionally,Fig. 6 shows the cu-
mulative frequencies of the individual agent errors, i.e.,
‖pn − pMMSE

n ‖ for all simulation runs and time instances.
It can be observed that theMMSE positions of the agent
of PROP show almost no large deviations, while the es-
timates of MP-SLAM exhibit large errors in many simu-
lation runs. For dispersion parameter settings ψd > 0m,
measurements of the subcomponents are available.Thus,
as Fig. 5(b) and (c) show, the dispersion parameters are
well estimated, as indicated by the small RMSEs. For
the setting ψd = 0m, estimation of the dispersion pa-
rameters is not possible because there are no subcom-
ponent measurements, i.e., there is only one measure-
ment generated by eachVA.However,as Fig.5(a) shows,
this does not affect the accuracy of the agent’s position
estimation.

The MOSPA errors (and their VA positions and the
mean cardinality error contributions) of PROP, shown
in Fig. 5(d) and (g), are very similar for all dispersion
parameter settings. They slightly increase with an in-
creased dispersion parameter ψd. Only for the setting
ψd = 0.3m, PROP shows a larger cardinality error.
This can be explained by looking at the distances from
PA 1 and its corresponding VAs, as shown in Fig. 4. At
the end of the agent track, many VAs show similar dis-
tances to the agent’s position, making it difficult to re-
solve the individual components. For larger dispersion
parameterψd, this becomes evenmore challenging, lead-
ing to increased MOSPA errors. For PA 2 and the cor-
responding VAs, Fig. 4 shows that all components are
well separated by their distances at the end of the agent
track, which makes it easier for PROP to correctly es-
timate the number and positions of VAs. Unlike PROP,
MP-SLAMcompletely fails to estimate the correct num-
ber of VAs for largerψd (andψu), resulting in a large car-
dinality error.This can be explained by the fact that MP-

Table II
Experiment 2: Convergence Rate and Mean Number of Estimated

VAs for Different Algorithms

Setting Convergence K̂

MP-SLAM ψd = 0.30m 20% 7.5
PROP ψd = 0.30m 100% 3.7

SLAM does not consider additional sub-components in
themeasurement and systemmodel.We suspect that this
estimation of additional spurious VAs is the reason for
the large number of divergent simulation runs.As an ex-
ample, Fig. 7 depicts the time evolution of the estimated
distances (using the PA position, the estimated VA posi-
tions, and the estimated agent positions) with according
component SNRs as well as the respective dispersion pa-
rameters for PA 1.

C. Experiment 2: Radio Signals

In this section, we use a dispersion parameter setting
of ψd = 0.3m and ψu = 0.2. The signal spectrum of the
transmit pulse s(t) has a root-raised-cosine shape with a
roll-off factor of 0.6 and a 3 dB bandwidth ofB = 1GHz.
The signal is critically sampled, i.e., Ts = 1/(1.6B), with
a total number of Ns = 161 samples, resulting in a maxi-
mum distance dmax = 60m. For the data generation, we
use Nny = 2. We perform ten simulation runs. In each
simulation run,we generate a received signal vector (see
(6)) using the main components calculated as described
in Section VI-A and uniformly distributed subcompo-
nents (see (14)).To obtain the measurements,we use the
CEDA in [19] with a detection threshold of γ = 2, i.e.,
corresponding to 6 dB [23]. For numerical stability, we
reduced the root-mean-squared bandwidth βbw for VAs
by a factor of 4 and increased the factor 1/2 in amplitude
scale parameter in (13) to 4. The convergence threshold
is dcv = 2.

Table II again summarizes the number of converged
runs and the mean number of detected VAs. For PROP,
none of the simulation runs diverged, but 80% of
the MP-SLAMs simulation runs diverged, showing that
PROP significantly outperformsMP-SLAM.The results
shown in Fig.8 follow a similar trend as the results shown
in Fig.5.The only significant difference is observed in the
RMSE of the dispersion parameter ψu, which remains
relatively large (see Fig. 8(c)). This is because the vari-
ance of the estimated normalized amplitudes provided
by the CEDA is very large. This may be explained by
two factors: (i) the CEDA also needs to estimate the
noise variance, which is only approximately covered by
the amplitude scale parameter given in (13) and (ii) the
subcomponents are very close in the delay domain, re-
sulting in strongly correlated amplitude estimates. The
steps in Fig. 8(d) and (f) are due to crossings where the
delays from two or more VAs to the agent are equal.
Hence, one of the VAs is discarded, leading to an overall
underestimated number of VAs.
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Figure 7. Estimated distances and dispersion parameters for PA 1 for a single simulation run are represented by dot markers and boxes, re-
spectively. The true components and respective dispersion parameters are indicated in red. All measurements are indicated in gray. Estimated
components and respective dispersion parameters are indicated in black.

VII. CONCLUSIONS

We have proposed a new MP-SLAM method that
can cope with multiple measurements being generated
by a single environment feature, i.e., a single VA. It is
based on a novel statistical measurement model that
is derived from the radio signal introducing dispersion
parameters to MPCs. The resulting likelihood function
model allows to capture the measurement spread origi-
nating from nonideal effects such as rough reflective sur-
faces or noncalibrated antennas. The performance re-
sults show that the proposed method is able to cope
with multiple measurements being produced per VA
and outperforms classical MP-SLAM in terms of the
agent positioning error and the map MOSPA error. We
show that multiple measurements get correctly associ-
atedwith their correspondingVA,resulting in a correctly
estimated number of VAs. Furthermore, the results in-
dicate that the proposed algorithm generalizes to the
classical MP-SLAM for a single measurement per VA.
Possible directions for future research include the exten-
sion of individual dispersion parameters for each fea-
ture as well as incorporating multiple-measurements-to-
feature data association into theMVA-basedMP-SLAM
method [46].

APPENDIX A
RADIO SIGNAL MODEL

In this section, we derive the radio signal model de-
scribed in Section III.Usually, specular reflections of ra-
dio signals on flat surfaces are modeled by VAs that are
mirror images of the PAs [1]–[4]. We start by defining
the typical channel impulse response, given for time n
and anchor j as

h( j)c,n(τ ) =
L( j)
n∑

l=1

α
( j)
l,n δ

(
τ − τ

( j)
l,n

)
. (61)

The first summand describes the LOS component and
the sum of L( j)

n − 1 the specular MPCs with their cor-
responding complex amplitudes α

( j)
l,n and delays τ

( j)
l,n , re-

spectively. In nonideal radio channels, we observe rays
to arrive as clusters [6], [7], [54], [55]. The reason for
this observation is manifold. Typical examples are non-
calibrated antennas, the scattering from a user-body as
well as nonideal reflective surfaces.Fig. 1 visualizes these
effects, introducing generic impulse responses h( j)ant,n(τ )

and h( j)surf,n(τ ). We propose to model the overall impulse
response encompassing all considered dispersion effects

Figure 8. Experiment 2:Results for converged simulation runs based on estimates from CEDA. (a) shows the RMSE of the agent position over
the whole track. (b) and (c) present the RMSE of the dispersion parameters. (d) and (g) present the map error in terms of the MOSPA for PA 1
and PA 2, respectively. (e) and (h) show the RMSE of the estimated VA positions for PA 1 and PA 2, respectively. (f) and (i) show the cardinality
error of the estimated VAs for PA 1 and PA 2, respectively.
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as

h( j)d,n(τ ) = δ(τ ) +
S( j)l∑
i=1

β
( j)
l,i,nδ(τ −ν

( j)
l,i,n

)
, (62)

where β
( j)
l,i,n ∈ R is a relative dampening variable and

ν
( j)
l,i,n is the excess delay. The presented model denotes a
marked Possion point process [55]. Its statistical prop-
erties, i.e, the distribution of ν

( j)
l,i,n, β

( j)
l,i,n, and S( j)l , are

discussed in Sections III and IV in detail. We obtain
the complex baseband signal received at the jth anchor
given by the convolution of h( j)d,n(τ ) and h

( j)
c,n(τ ) with the

transmitted signal s(t) as

s( j)rx,n =
L( j)
n∑

l=1

α
( j)
l,n

(
s(t− τ

( j)
l,n )

+
S( j)l∑
i=1

β
( j)
l,i,ns(t− τ

( j)
l,n −ν

( j)
l,i,n)

)
+ n

( j)
n (t) . (63)

The second term n
( j)
n (t) represents an AWGN process

with double-sided power spectral density N( j)
0 /2.

APPENDIX B
DATA ASSOCIATION

This section contains the detailed derivation of
the data association-related messages ϕ

[p]
kl (b

( j)
l,n ) and

ν
[p]
kl (a

( j)
kl,n). Using the measurement evaluation messages

in (35), (36), and (37), the messages ϕ
[p]
kl (b

( j)
l,n ) and

ϕ
[p]
ml (b

( j)
l,n ) are calculated by

ϕ[p]
kl
(b( j)l,n ) =

∑
a( j)kl,n∈{0,1}

ε[p](a( j)kl,n)�(a( j)kl,n,b
( j)
l,n ), (64)

ϕ
[p]
ml (b

( j)
l,n ) =

∑
a( j)ml,n∈{0,1}

ε[p](a( j)ml,n)�(a( j)ml,n,b
( j)
l,n ) (65)

for k ∈ {1, . . . ,K} with K � K( j)
n−1 and m, l ∈

{1, . . . ,M( j)
n } and are sent from factor node�(a( j)kl,n,b

( j)
l,n )

and �(a( j)ml,n,b
( j)
l,n ) to variable node b( j)l,n , respectively. By

making use of the indicator functions given in (27) and
(28), respectively, (64) and (65) are also given as

ϕ[p]
kl
(b( j)l,n = k) = ε[p](a( j)kl,n = 1), (66)

ϕ[p]
kl
(b( j)l,n 	= k) = ε[p](a( j)kl,n = 0), (67)

ϕ
[p]
ml (b

( j)
l,n = K +m) = ε[p](a( j)ml,n = 1), (68)

ϕ
[p]
ml (b

( j)
l,n 	= K +m) = ε[p](a( j)ml,n = 0). (69)

The messages in (66)–(69) can be rewritten in the form
of

ϕ[p]
kl
(b( j)l,n ) =

⎧⎨
⎩

ε[p] (a( j)kl,n = 1)

ε[p] (a( j)kl,n = 0)
, b( j)l,n = k

1, b( j)l,n 	= k
(70)

ϕ
[p]
ml (b

( j)
l,n ) =

⎧⎨
⎩

ε[p] (a( j)ml,n = 1)

ε[p] (a( j)ml,n = 0)
, b( j)l,n = K +m

1, b( j)l,n 	= K +m.

(71)

The messages ν
[p]
kl (a

( j)
kl,n) and ν

[p]
ml (a

( j)
ml,n) represent

the messages from variable node a( j)kl,n to factor node

q(x̃n, y( j)k,n
, a( j)kl,n; z( j)l,n ) and from variable node a( j)ml,n to fac-

tor node u(x̃n, y( j)m,n, a
( j)
ml,n; z( j)l,n ), respectively. ν

[p]
mm(a

( j)
mm,n)

represents themessages from variable node a( j)mm,n to fac-

tor node v(x̃n, y( j)m,n, a
( j)
mm,n; z( j)m,n). They are defined as

ν
[p]
kl (a

( j)
kl,n) =

K( j)
n∑

b( j)l,n=0

K∏
i=1
i	=k

ϕ[p]
il
(b( j)l,n )

M( j)
n∏

m=l
ϕ
[p]
ml (b

( j)
l,n ), (72)

ν
[p]
ml (a

( j)
ml,n) =

K( j)
n∑

b( j)l,n=0

K∏
i=1

ϕ[p]
il
(b( j)l,n )

M( j)
n∏

h=l
h 	=m

ϕ
[p]
hl (b

( j)
l,n ). (73)

Using the results from (70) and (71), (72) and (73) are,
respectively, rewritten as

ν
[p]
kl (a

( j)
kl,n = 1) =

K∏
i=1
i	=k

ϕ[p]
il
(b( j)l,n = k)

M( j)
n∏

m=l
ϕ
[p]
ml (b

( j)
l,n = K + k),

(74)

ν
[p]
kl (a

( j)
kl,n = 0) =

K( j)
n∑

b( j)l,n=0

b( j)l,n /∈{k,K+k}

K∏
i=1
i	=k

ϕ[p]
il
(b( j)l,n )

M( j)
n∏

m=l
ϕ
[p]
ml (b

( j)
l,n ) (75)

and

ν
[p]
ml (a

( j)
ml,n = 1) =

K∏
i=1

ϕ[p]
il
(b( j)l,n = m)

M( j)
n∏

h=l
h	=m

ϕ
[p]
hl (b

( j)
l,n = K +m),

(76)

ν
[p]
ml (a

( j)
ml,n = 0) =

K( j)
n∑

b( j)l,n=0

b( j)l,n /∈{m,K+m}

K∏
i=1

ϕ[p]
il
(b( j)l,n )

M( j)
n∏

h=l
h 	=m

ϕ
[p]
hl (b

( j)
l,n ).

(77)

Note that ϕ
[p]
kl (b

( j)
l,n = 0) = 1. By normalizing (74) by

ν
[p]
kl (a

( j)
kl,n = 0) and (76) by ν

[p]
ml (a

( j)
ml,n = 0), equivalent
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expressions for (72) and (73) are given as

ν
[p]
kl (a

( j)
kl,n)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏K
i=1
i 	=k

ϕ
[p]
il (b( j)l,n=k)

∏M
m=l ϕ

[p]
ml (b

( j)
l,n=K+k)

∑K
( j)
n

b
( j)
l,n=0

b
( j)
l,n /∈{k,K+k}

∏K
i=1
i 	=k

ϕ
[p]
il (b( j)l,n )

∏M
( j)
n

m=l ϕ
[p]
ml (b

( j)
l,n )

, a( j)kl,n = 1

1, a( j)kl,n = 0.

(78)

ν
[p]
ml (a

( j)
ml,n)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∏K
i=1 ϕ

[p]
il (b( j)l,n=m)

∏M
( j)
n

h=l
h 	=m

ϕ
[p]
hl (b

( j)
l,n=K+m)

∑K
( j)
n

b
( j)
l,n=0

b
( j)
l,n /∈{m,K+m}

∏K
i=1 ϕ

[p]
il (b( j)l,n )

∏M
( j)
n

h=l
h 	=m

ϕ
[p]
hl (b

( j)
l,n=K+m)

, a( j)ml,n = 1

1, a( j)ml,n = 0.

(79)

Finally, by calculating the explicit summations and mul-
tiplications in (78) and (79), it results in

ν
[p]
kl (a

( j)
kl,n)

=

⎧⎪⎨
⎪⎩

1

1+∑K
i=1
i 	=k

ϕ
[p]
il (b( j)l,n=i)+

∑M
( j)
n

m=l ϕ
[p]
ml (b

( j)
l,n=K+m)

, a( j)kl,n = 1

1, a( j)kl,n = 0,
(80)

ν
[p]
ml (a

( j)
ml,n)

=

⎧⎪⎨
⎪⎩

1

1+∑K
i=1 ϕ

[p]
il (b( j)l,n=i)+

∑M
( j)
n

h=l
h 	=m

ϕ
[p]
hl (b

( j)
l,n=K+m)

, a( j)ml,n = 1

1, a( j)ml,n = 0.
(81)

REFERENCES

[1] E. Leitinger, P. Meissner, C. Rudisser, G. Dumphart, and
K.Witrisal
“Evaluation of position-related information in multipath
components for indoor positioning,”
IEEE J. Sel. Areas Commun., vol. 33, no. 11, pp. 2313–2328,
Nov. 2015.

[2] K.Witrisal et al.
“High-accuracy localization for assisted living: 5G systems
will turn multipath channels from foe to friend,”
IEEE Signal Process. Mag., vol. 33, no. 2, pp. 59–70,
Mar. 2016.

[3] E. Leitinger, F. Meyer, F. Hlawatsch, K.Witrisal, F. Tufvesson,
and M. Z.Win
“A belief propagation algorithm for multipath-based
SLAM,”
IEEE Trans. Wireless Commun., vol. 18, no. 12, pp.
5613–5629, Dec. 2019.

[4] R.Mendrzik, F.Meyer, G. Bauch, and M. Z.Win
“Enabling situational awareness in millimeter wave massive
MIMO systems,”
IEEE J. Sel. Topics Signal Process., vol. 13, no. 5, pp.
1196–1211, Sep. 2019.

[5] C. Gentner, T. Jost, W. Wang, S. Zhang, A. Dammann, and
U. C. Fiebig
“Multipath assisted positioning with simultaneous
localization and mapping,”
IEEE Trans.Wireless Commun., vol. 15, no. 9, pp. 6104–6117,
Sep. 2016.

[6] J. Kulmer, F.Wen, N. Garcia, H.Wymeersch, and K.Witrisal
“Impact of rough surface scattering on stochastic multipath
component models,”
in Proc. IEEE Annu. Int. Symp. Pers., Indoor Mobile Radio
Commun., 2018, 2018, pp. 1410–1416.

[7] F.Wen, J. Kulmer, K.Witrisal, and H.Wymeersch
“5G positioning and mapping with diffuse multipath,”
IEEE Trans.Wireless Commun., vol. 20, no. 2, pp. 1164–1174,
2021.

[8] R. Pöhlmann, S. Zhang, E. Staudinger, S. Caizzone,
A. Dammann, and P. A. Hoeher
“Bayesian in-situ calibration of multiport antennas for
DoA estimation: Theory and measurements,”
IEEE Access, vol. 10, pp. 37967–37983, 2022.

[9] H. Durrant-Whyte and T. Bailey
“Simultaneous localization and mapping: Part I,”
IEEE Robot. Autom. Mag., vol. 13, no. 2, pp. 99–110,
Jun. 2006.

[10] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and
M. Csorba
“A solution to the simultaneous localization and map
building (SLAM) problem,”
IEEE Trans. Robot. Autom., vol. 17, no. 3, pp. 229–241,
Jun. 2001.

[11] E. Leitinger, S. Grebien, and K.Witrisal
“Multipath-based SLAM exploiting AoA and amplitude
information,”
in Proc. IEEE Int. Conf. Commun.Workshops, 2019, pp. 1–7.

[12] H. Kim, K. Granström, L. Gao, G. Battistelli, S. Kim, and
H.Wymeersch
“5G mmWave cooperative positioning and mapping using
multi-model PHD filter and map fusion,”
IEEE Trans.Wireless Commun., vol. 19, no. 6, pp. 3782–3795,
Mar. 2020.

[13] H.Kim,K.Granstrom, L. Svensson, S. Kim, and H.Wymeersch
“PMBM-based SLAM filters in 5G mmWave vehicular
networks,”
IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8646–8661,
Aug. 2022.

[14] E. Leitinger and F.Meyer
“Data fusion for multipath-based SLAM,”
in Proc. 54th Asilomar Conf. Signals, Syst., Comput., 2020,
pp. 934–939.

[15] E. Leitinger, B. Teague,W. Zhang,M. Liang, and F.Meyer
“Data fusion for radio frequency SLAM with robust
sampling,”
in Proc. 25th Int. Conf. Inf. Fusion, 2022, pp. 1–6.

[16] E. Leitinger, A. Venus, B. Teague, and F.Meyer
“Data fusion for multipath-based SLAM: Combining
information from multiple propagation paths,”
IEEE Trans. Signal Process., to be published. doi:
10.1109/TSP.2023.3310360.

[17] A. Richter
“Estimation of radio channel parameters: Models and
algorithms,” Ph.D. dissertation, Ilmenau University of
Technology, Ilmenau, Germany, 2005.

[18] D. Shutin,W.Wang, and T. Jost
“Incremental sparse Bayesian learning for parameter
estimation of superimposed signals,”
in Proc. Int. Conf. Sampling Theory Appl., 2013, pp. 6–9.

[19] T. L. Hansen,M. A. Badiu, B. H. Fleury, and B. D. Rao
“A sparse Bayesian learning algorithm with dictionary
parameter estimation,”

74 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 18, NO. 2 DECEMBER 2023



in Proc. IEEE 8th Sensor Array Multichannel Signal
Process. Workshop, 2014, pp. 385–388.

[20] M. A. Badiu, T. L. Hansen, and B. H. Fleury
“Variational Bayesian inference of line spectra,”
IEEE Trans. Signal Process., vol. 65, no. 9, pp. 2247–2261,
May 2017.

[21] T. L. Hansen, B. H. Fleury, and B. D. Rao
“Superfast line spectral estimation,”
IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2511–2526,
May 2018.

[22] X. Li, E. Leitinger, A. Venus, and F. Tufvesson
“Sequential detection and estimation of multipath channel
parameters using belief propagation,”
IEEE Trans. Wireless Commun., vol. 21, no. 10, pp.
8385–8402, Apr. 2022.

[23] S. Grebien, E. Leitinger, B. H. Fleury, and K.Witrisal
“Super-resolution channel estimation including the dense
multipath component — A sparse variational Bayesian
approach,” 2023, arXiv:2308.01702.

[24] F.Meyer and J. L.Williams
“Scalable detection and tracking of geometric extended
objects,”
IEEE Trans. Signal Process., vol. 69, pp. 6283–6298,
Oct. 2021.

[25] J.Williams and R. Lau
“Approximate evaluation of marginal association
probabilities with belief propagation,”
IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 4, pp.
2942–2959, Oct. 2014.

[26] F.Meyer et al.
“Message passing algorithms for scalable multitarget
tracking,”
Proc. IEEE, vol. 106, no. 2, pp. 221–259, Feb. 2018.

[27] J.W. Koch
“Bayesian approach to extended object and cluster tracking
using random matrices,”
IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3, pp.
1042–1059, Jul. 2008.

[28] K. Granström,M. Fatemi, and L. Svensson
“Poisson multi-Bernoulli mixture conjugate prior for
multiple extended target filtering,”
IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 1, pp.
208–225, Jun. 2020.

[29] F.Meyer and J. L.Williams
“Scalable detection and tracking of extended objects,”
in Proc. Int. Conf. Acoust., Speech Signal Process. 2020,
2020, pp. 8916–8920.

[30] K. Granström, C. Lundquist, and O. Orguner
“Extended target tracking using a Gaussian-mixture PHD
filter,”
IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 4, pp.
3268–3286, Oct. 2012.

[31] K. Granström and M. Baum
“Extended object tracking: Introduction, overview and
applications,”
J. Adv. Inf. Fusion, vol. 12, Dec. 2017.

[32] D. Koller and N. Friedmann
Probabilistic Graphical Models: Principles and Techniques.
Cambridge,MA,USA:MIT Press, 2009.

[33] L.Wielandner, A. Venus, T.Wilding, and E. Leitinger
“Multipath-based SLAM with multiple-measurement data
association,”
in Proc. 26th Int. Conf. Inf. Fusion, 2023, pp. 1–8.

[34] S.M. Kay
Fundamentals of Statistical Signal Processing: Detection
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.

[35] Y. Bar-Shalom, P. K.Willett, and X. Tian
Tracking and Data Fusion: A Handbook of Algorithms.
Storrs, CT, USA: Yaakov Bar-Shalom, 2011.

[36] T.Wilding, E. Leitinger, U.Mühlmann, and K.Witrisal
“Modeling human body influence on UWB channels,”
in Proc. IEEE 31st Annu. Int. Symp. Personal, Indoor
Mobile Radio Commun., 2020, pp. 1–6.

[37] T.Wilding, E. Leitinger, U.Muehlmann, and K.Witrisal
“Statistical modeling of the human body as an extended
antenna,”
in Proc. 15th Eur. Conf. Antennas Propag., 2021, pp. 1–5.

[38] F.M. Schubert, B. H. Fleury, P. Robertson, R. Prieto-Cerdeirai,
A. Steingass, and A. Lehner
“Modeling of multipath propagation components caused
by trees and forests,”
in Proc. Fourth Eur. Conf. Antennas Propag., 2010, pp. 1–5.

[39] F.M. Schubert, B. H. Fleury, R. Prieto-Cerdeira, A. Steingass,
and A. Lehner
“A rural channel model for satellite navigation
applications,”
in Proc. 6th Eur. Conf. Antennas, 2012, pp. 2431–2435.

[40] Y. Bar-Shalom, T. Kirubarajan, and X.-R. Li
Estimation with Applications to Tracking and Navigation.
New York, NY, USA:Wiley., 2002.

[41] M.Mertens, M. Ulmke, and W. Koch
“Ground target tracking with RCS estimation based on
signal strength measurements,”
IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 1, pp.
205–220, Feb. 2016.

[42] K.Witrisal, E. Leitinger, S. Hinteregger, and P.Meissner
“Bandwidth scaling and diversity gain for ranging and
positioning in dense multipath channels,” vol. 5, no. 4, pp.
396–399,May 2016.

[43] T. Wilding, S. Grebien, E. Leitinger, U. Mühlmann, and
K.Witrisal
“Single-anchor, multipath-assisted indoor positioning with
aliased antenna arrays,”
in Proc. 52nd Asilomar Conf. Signals, Syst., Comput., 2018,
pp. 525–531.

[44] A. Lepoutre, O. Rabaste, and F. Le Gland
“Exploiting amplitude spatial coherence for multi-target
particle filter in track-before-detect,”
in Proc. 16th Int. Conf. Inf. Fusion, 2013, 2013, pp. 319–326.

[45] A. Lepoutre, O. Rabaste, and F. Le Gland
“Multitarget likelihood computation for track-before-
detect applications with amplitude fluctuations of type
Swerling 0, 1, and 3”
IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 3, pp.
1089–1107, Jun. 2016.

[46] A. Venus, E. Leitinger, S. Tertinek, and K.Witrisal
“A graph-based algorithm for robust sequential localization
exploiting multipath for obstructed-los-bias mitigation,”
IEEE Trans. Wireless Commun., to be published, doi:
10.1109/TWC.2023.3285530.

[47] D. Lerro and Y. Bar-Shalom
“Automated tracking with target amplitude information,”
in Proc. Amer. Control Conf., 1990, pp. 2875–2880.

[48] H. V. Poor
An Introduction to Signal Detection and Estimation, 2nd ed.
New York, NY, USA: Springer, 1994.

[49] F. Kschischang, B. Frey, and H.-A Loeliger
“Factor graphs and the sum-product algorithm,”
IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519,
Feb. 2001.

[50] F. Meyer, O. Hlinka, H. Wymeersch, E. Riegler, and
F. Hlawatsch
“Distributed localization and tracking of mobile networks
including noncooperative objects,”
IEEE Trans. Signal Inf. Process. Netw., vol. 2, no. 1, pp.
57–71,Mar. 2016.

[51] F.Meyer, P. Braca, P.Willett, and F. Hlawatsch

MP-SLAM FOR NON-IDEAL REFLECTIVE SURFACES EXPLOITINGMULTIPLE-MEASUREMENT DATA ASSOCIATION 75



“A scalable algorithm for tracking an unknown number of
targets using multiple sensors,”
IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3478–3493,
Jul. 2017.

[52] H.-A. Loeliger
“An introduction to factor graphs,”
IEEE Signal Process. Mag., vol. 21, no. 1, pp. 28–41,
Feb. 2004.

[53] D. Schuhmacher, B.-T Vo, and B.-N. Vo
“A consistent metric for performance evaluation of
multi-object filters,”
IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3447–3457,

Aug. 2008.
[54] A. Saleh and R. Valenzuela

“A statistical model for indoor multipath propagation,”
IEEE J. Sel. Areas Commun., vol. 5, no. 2, pp. 128–137,
Feb. 1987.

[55] T. Pedersen
“Modeling of path arrival rate for in-room radio channels
with directive antennas,”
IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4791–4805,
2018.

Lukas Wielandner (S’20) received the Dipl.-Ing. (M.Sc.) degree in technical physics
from Graz University of Technology, Graz, Austria, in 2018. He received the Ph.D.
degree in electrical engineering at the Signal Processing and Speech Communica-
tion Laboratory (SPSC), Graz University of Technology, Graz, Austria, in 2022. His
research interests include localization and navigation, estimation/detection theory,
inference on graphs, and iterative message passing algorithms.

AlexanderVenus (S’20) received theB.Sc.andDipl.-Ing. (M.Sc.) degrees (with high-
est honors) in biomedical engineering and information and communication engi-
neering from the Graz University of Technology, Austria, in 2012 and 2015, respec-
tively. He was a Research and Development Engineer at Anton Paar GmbH, Graz,
from 2014 to 2019.He is currently a Project Assistant at the Graz University of Tech-
nology, where he is pursuing his Ph.D. degree.

His research interests include radio-based localization and navigation, statistical
signal processing, estimation/detection theory, machine learning, and error bounds.

Thomas Wilding (S’17) received the B.Sc. and Dipl.-Ing. (M.Sc.) degrees in audio
and electrical engineering from the University of Music and Performing Arts Graz,
Graz, Austria, in 2013 and 2016, respectively, and the Ph.D. from Graz University
of Technology, Graz, Austria, in 2022. He is currently a Post-doctoral Researcher
at the Graz University of Technology, Graz, working on positioning, sensing, and
environment learning in wireless systems.

His research interests include radio localization and navigation,graphical models,
and data fusion.

76 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 18, NO. 2 DECEMBER 2023



Erik Leitinger (Member) received the M.Sc. and Ph.D. degrees (with highest hon-
ors) in electrical engineering from the Graz University of Technology,Graz,Austria,
in 2012 and 2016, respectively. From 2016 to 2018, he was a Postdoctoral Researcher
at theDepartment of Electrical and Information Technology,LundUniversity,Lund,
Sweden.He is currently a University Assistant at the Graz University of Technology,
Graz, Austria. He served as Cochair of the special session “Synergistic Radar Sig-
nal Processing and Tracking” at the IEEE Radar Conference in 2021. He is Coorga-
nizer of the special issue “Graph-Based Localization and Tracking” in the Journal of
Advances in Information Fusion (JAIF). Dr. Leitinger received an Award of Excel-
lence from the Federal Ministry of Science, Research and Economy (BMWFW) for
his Ph.D. Thesis. He is an Erwin Schrödinger Fellow. His research interests include
inference on graphs, localization and navigation, machine learning, multiagent sys-
tems, stochastic modeling and estimation of radio channels, and estimation/detection
theory.

MP-SLAM FOR NON-IDEAL REFLECTIVE SURFACES EXPLOITINGMULTIPLE-MEASUREMENT DATA ASSOCIATION 77



Manuscript received March 1, 2023; revised June 27, 2023; released for
publication April 4, 2024

Refereeing of this contribution was handled by Erik Leitinger.

This work was supported by the NATOAllied Command Transforma-
tion (ACT) under the DKOE project.

This paper was previously presented in part at Global Oceans 2020,
Singapore–US Gulf Coast, October 2020.

D. Gaglione, G. Soldi, and P. Braca are with the NATO Centre for
Maritime Research and Experimentation (CMRE), 19126 La Spezia,
Italy (e-mail: domenico.gaglione@cmre.nato.int, giovanni.soldi@cmre.
nato.int, paolo.braca@cmre.nato.int).

1557-6418/2023/$17.00 © 2023 JAIF

Autonomous Mapping of
Underwater Objects With the
Sum–Product Algorithm

DOMENICO GAGLIONE
GIOVANNI SOLDI
PAOLO BRACA

Mapping of underwater objects is usually conducted with au-

tonomous underwater vehicles (AUVs). A standard approach in mine

countermeasure (MCM) operations is to perform a two-phase recon-

naissance: in the first phase, a survey mission is carried out to detect

and classify the objects; in the second phase, objects are reacquired

to confirm the actual presence of mines. The data acquired during this

multiphasemission greatly depends on the accuracy of theAUV’s nav-

igation system. This paper proposes a graph-based mapping algorithm

that takes into account the unknown AUV position, as well as the

output of the classification process, and uses the sum–product algo-

rithm (SPA) to obtain a principled and intuitive approximation of the

Bayesian inference needed for object detection and estimation. The

SPA-basedmapping algorithm is derived in detail, and its performance

is evaluated in a simulated MCM scenario.

I. INTRODUCTION

Underwater mapping and surveying arise in a vari-
ety of applications, from environmental assessments and
inspections [1]–[3] to marine archaeology [4] and mine
countermeasure (MCM) operations [5].

These tasks are generally conducted with unmanned
underwater vehicles, such as remotely operated ve-
hicles (ROVs) and autonomous underwater vehicles
(AUVs) [6]. ROVs are connected to a support ship
or marine platform and are operated from above the
water’s surface. The cable provides power and high-
speed communications, allowing the operator to guide
the vehicle while receiving sensor data in quasi-real time.
Even though the cable can extend over several kilome-
ters, this can limit the maximum range of operations.
AUVs, instead, are untethered and preprogrammed to
perform a specific task with little or no operator interac-
tion, and they are usually designed for long-range, high-
endurance missions.

When performing mapping and surveying with
AUVs, navigation information is of paramount impor-
tance. Indeed, the quality and value of the data acquired
during a mission greatly depend on the accuracy of
the vehicle’s navigation system. The unavailability of
global positioning system (GPS) technologies in the
underwater environment, limited by the heavy atten-
uation of radio frequency signals, requires the use of
other methods for vehicle localization, e.g., acoustic or
inertial navigation [7]. Acoustic navigation is based on
the use of external references (i.e., acoustic beacons)
at known positions that provide navigation aids to the
unmanned vehicle, such as relative range and bearing;
however, the deployment of such acoustic beacons
might be inconvenient or even unfeasible in some
scenarios. Inertial navigation systems (INSs), instead,
calculate the instantaneous position and orientation of
the vehicle using high-frequency data from an inertial
measurement unit (IMU) available on board. A typical
IMU includes accelerometers and gyroscopes, and the
INS provides position and orientation information by
integrating the values measured by these devices. How-
ever, because of this integration, the inherent errors
in the accelerometers and gyroscopes accumulate over
time, resulting in position and orientation errors that
increase over time [8], [9]. A performance measure for
an INS is given by the inertial drift rate in position that,
for current high-quality commercial INSs, is of several
kilometers per hour [6]. Advanced techniques, e.g.,
aiding the INS with a Doppler velocity log, a pressure
sensor, and magnetometers, can reduce this drift to less
than 0.5% of the AUV’s traveled distance [10].

The use of AUVs is widely acknowledged as benefi-
cial in MCM scenarios since they allow to operate from
a distance in safe conditions.A classic approach tomine-
hunting is to perform a two-phase reconnaissance. Dur-
ing the first phase, a survey mission is carried out us-
ing an AUV equipped with a synthetic aperture sonar
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(SAS) capable of detecting and classifying mine-like ob-
jects (MLOs); the AUV generally follows a lawnmower
pattern so as to ensure full coverage of the designed
area, and the classification is performed by means of au-
tomatic target recognition (ATR) techniques [11], [12].
Once potential MLOs are located, the second phase is
committed to the reacquisition of the contacts with an
AUVequipped with a lower-range but higher-resolution
sensor [13]. This second phase is more effective as the
position uncertainty of the objects detected during the
first phase is limited and their classification is accurate.
Therefore, the algorithm responsible for building a com-
prehensive map of the underwater objects—bothMLOs
and non-MLOs—needs to account for the inherent un-
certainty of the AUV position, as well as process the
ATR classification output.

The mapping algorithm can exploit the position of
the detected objects to sequentially refine the estimate
of the AUV position, particularly when the same area
happens to be surveyed multiple times. This approach
is known in the robotics literature as simultaneous lo-
calization and mapping (SLAM), and has been applied
also in the underwater domain.However, due to the lack
of underwater features suitable as anchor points, under-
water robotic mapping has primarily been focused on
structured, man-made, or confined underwater environ-
ments [14], [15]. Recently, a probability hypothesis den-
sity (PHD)-based underwater mapping algorithm has
been proposed [16], [17]. The PHD filter is an exam-
ple of set-type tracking algorithm in which object states
andmeasurements are represented by random finite sets
(RFSs), a formulation that is particularly convenient for
addressing situations with a varying number of objects
to locate,object (dis)appearance and spawning, the pres-
ence of clutter and association uncertainty, false alarms,
and missed detections. However, the methods in [16],
[17] do not account for the uncertain AUV position.
Nevertheless, RFS-based approaches that jointly esti-
mate the AUV position and the (mobile) object states
have been presented for other applications, such as au-
tonomous driving [18].

This paper proposes and describes a Bayesian map-
ping algorithm based on an emerging approach to in-
formation fusion. This approach relies on a factor graph
representation of the statistical model of the underwa-
ter mapping problem—including the uncertain AUV
position—and on the sum–product algorithm (SPA) to
efficiently obtain a principled and intuitive approxima-
tion of the Bayesian inference needed for object detec-
tion and estimation [19], [20]. Parts of this work were
presented in our conference publication [21]. This paper
differs from that publication in that it extends the for-
mulation to account for the unknown AUV position; it
presents detailed derivations of the joint posterior dis-
tribution; and it presents the SPA messages in a com-
plete and detailed manner. Note that the statistical for-
mulation and the factor graph described in this paper are
similar to those presented in [22] for multipath-based in-

door SLAM and in [23] for cooperative localization and
tracking using a network of sensing agents.Themain dif-
ference between the current work and those cited papers
is in the application: specifically,when conducting under-
watermappingwith an SAS sensor,not all the objects are
observable at all times.Moreover, the statistical formula-
tion herein presented integrates the output of the ATR,
enabling discrimination among different object types.

The remainder of this article is organized as follows.
The basic notation and nomenclature are described in
the next subsection. Section II describes the problem
at hand and outlines the system model. The stochastic
formulation is given in Section III, while the proposed
method is detailed in Section IV. Results obtained in a
simulated MCM scenario are shown in Section V, and
Section VI concludes the paper.

A. Notation

Throughout this paper, column vectors are denoted
by boldface lower-case letters (e.g., a) and matrices by
boldface upper-case letters (e.g.,A). I denotes the iden-
tity matrix and 1 denotes the column vector of all ones,
with the size determined by the subscript or from the
context. The transpose of a matrix A is written as At.
We write diag(a1, . . . , an) for an n× n diagonal matrix
with diagonal entries a1, . . . , an. Moreover, given a se-
quence a1, . . . ,an, the column vector stacking all the ele-
ments of the sequence is denoted as a1:n = [at1, . . . ,a

t
n]

t.
The Euclidean norm of vector a is denoted by ‖a‖. For a
two-dimensional (2D) vector a, ∠a is the angle defined
counterclockwise and such that ∠a = 0 for a = [1, 0]t.
The symbol ∝ denotes equality up to a constant fac-
tor. Sets are denoted by calligraphic letters (e.g., A),
the Dirac delta function is denoted by δ(·), and the
Kronecker delta is denoted by δa,b, and is equal to 1 if
a = b, and 0 otherwise. Finally, we denote the proba-
bility mass function (pmf) of a discrete random variable
or vector by p(·) and the probability density function
(pdf) of a continuous random variable or vector by f (·);
the latter notation will also be used for a mixed pdf/pmf
of both continuous and discrete random variables or
vectors.

II. PROBLEM DESCRIPTION AND SYSTEM MODEL

A. AUV State, Navigation Data, and ATR Detections

Let st represent the AUV state at time step t =
1, 2, . . . , whose evolution is given by the following kine-
matic model:

st = ε(st−1,ut ), (1)

where ut is a driving process noise independent across t.
The AUV is equipped with an on-board device, e.g., an
INS, that provides at time t a noisy observation of the
AUV state st ; this observation, referred to as navigation
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Figure 1. Illustration of the scenario (note that the time index t is
omitted). The global coordinate system is (ξ1, ξ2). The position of the
AUV (black dot) is sp = [s(1)p , s(2)p ]t, and its forward direction is given
by the angle ∠sv. The local coordinate system (η1, η2) is defined by

the position and heading of the AUV.

data, is modeled as

gt = γA(st,υt ), (2)

where υt is an observation process noise independent
across t. To facilitate the description that follows, we
consider the state st to be composed of the AUV’s po-
sition st,p and velocity st,v in Cartesian coordinate, i.e.,
st = [

stt,p, s
t
t,v

]t. Nevertheless, the derivation of the pro-
posed algorithm is general enough to accommodate a
different definition of st that may also include additional
kinematic parameters, e.g., the AUV turn rate. As illus-
trated in Fig. 1, the state st defines the AUV local co-
ordinate system (η1, η2), whose origin is st,p and that is
rotated of an angle ∠st,v in a counterclockwise direc-
tion with respect to the global coordinate system (ξ1, ξ2).
Note that a generic point ρξ in global coordinates can
be converted into local coordinates as ρη = θ(ρξ ; st ) �
R(∠st,v)

[
ρξ − st,p

]
, where R(·) is a clockwise rotation

matrix.
The AUV is equipped with an SAS, a high-resolution

sonar that generates acoustic images of the bottom.Such
images—or SAS tiles—come in pairs, covering both port
and starboard sides of the AUV, but having a coverage
gap beneath. Figure 2 shows the geometry of the port
side SAS tile in local coordinates (the starboard side tile
is obtained bymirroring the port side tile on the η1-axis).
The SAS images are processed by anATRalgorithm that
detects and classifies the features of interest, providing
the location within the tile (i.e., in local coordinates) of
each detection and the probabilities of such detection
of being generated by an object of class c ∈ {1, . . . ,C},
where C is the total number of classes. Specifically, the
number of detections (or measurements) extracted by
theATR algorithm from the SAS tiles at time t ismt .The
location of the mth measurement in local coordinates is
represented by the vector �m,t =

[
�
(1)
m,t , �

(2)
m,t

]t. The proba-

Figure 2. Geometry of the port side SAS tile in local coordinates:
(η(1)

1 , η
(1)
2 ) is the location of the corner of the tile closest to the origin,

i.e., the position of the AUV;�η1= η
(2)
1 − η

(1)
1 is the tile extent along

η1;�η2= η
(2)
2 − η

(1)
2 is the tile extent along η2.

bility of themth measurement of being generated by an
object of class c∈{1, . . . ,C} is referred to as π

(c)
m,t , and the

sum of these probabilities is 1, i.e.,
∑C

j=1 π
( j)
m,t = 1. Since

any one of theseC probabilities can be derived from the
other C − 1, the ATR algorithm actually provides the
vector πm,t �

[
π

(1)
m,t , . . . , π

(C−1)
m,t

]t, i.e., the vector stacking

all the probabilities but π
(C)
m,t . Indeed, π

(C)
m,t can then be

calculated from πm,t as π
(C)
m,t = 1 − 1tC−1πm,t . Concretely,

if the ATR algorithm distinguished between MLOs and
non-MLOs, then C = 2, and π

(1)
m,t and π

(2)
m,t = 1 − π

(1)
m,t

would be, respectively, the probability that themth mea-
surement is generated by an MLO, and the probabil-
ity that the mth measurement is generated by a non-
MLO.Unlike the approaches presented in [24], [25],here
the ATR algorithm does not distinguish between object-
and clutter-generated measurements. For convenience,
we define the vector of the mth measurement at time t
as zm,t � [�tm,t,π

t
m,t]

t, and the vector of all the measure-
ments extracted at time t as zt� [zt1,t, . . . , z

t
mt ,t]

t.

B. Potential Object States

As done in [23], [26], we account for a time-varying
unknown number of objects by introducing the concept
of potential object (PO). The number of POs at time t is
kt ; the existence of PO k ∈ {1, . . . ,kt} at time t is indi-
cated by the binary variable rk,t ∈ {0, 1}, i.e., rk,t = 1 if
the PO exists and rk,t = 0 otherwise. Position and class
of PO k are denoted by xk,t and τk,t , respectively, and
are formally considered also if rk,t = 0. We combine the
position, class, and existence variables of PO k into the
state vector yk,t � [xtk,t, τk,t , rk,t]

t, and define the joint
vector of all the POs at time t as yt � [yt1,t , . . . , y

t
kt ,t

]t.
We observe that the position xk,t and class τk,t of any
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nonexisting PO (i.e., for which rk,t = 0) are obviously ir-
relevant; thus, all the pdfs defined for the PO states, i.e.,
f (yk,t ) = f (xk,t, τk,t , rk,t ), are such that

f (xk,t, τk,t , rk,t = 0) = fk,t fD(xk,t, τk,t ),

where fk,t ∈ [0, 1] is a constant and fD(xk,t, τk,t ) is an
arbitrary dummy pdf.

Each PO at time t is either a new PO or a legacy PO.
New POs model those objects that are detected for the
first time by the ATR algorithm at time t. Each new PO
corresponds to a measurement zm,t ; therefore, the num-
ber of new POs at time t is mt . The state of a new PO is
denoted by ym,t � [xtm,t , τm,t, rm,t]t,m ∈ {1, . . . ,mt}, and
rm,t = 1 thus means that measurementm was generated
by an object that was never detected before, namely, a
newly detected object; we define the joint state vector of
all new POs introduced at time t as yt�

[
yt1,t , . . . , y

t
mt ,t

]t.
A legacy PO is a PO that has already been introduced
at any previous time t ′ < t. We indicate with y

k,t
�

[xtk,t, τ k,t, rk,t]
t the state of legacy PO k ∈ {1, . . . ,kt−1},

and with y
t
� [yt

1,t
, . . . , yt

kt−1,t
]t the joint legacy PO state

vector. The kt−1 legacy POs and the mt new POs form
the set of kt = kt−1 +mt POs at time t, i.e., yt � [yt

t
, ytt ],

which will then become legacy POs at time t + 1. Note
that using this mechanism, the number of POs grows in-
definitely over time. To keep a tractable number of POs,
a suboptimal pruning step is performed once all themea-
surements at time t are processed;details are provided in
Section IV-F.

The joint PO state yt evolves over time according to
a first-order Markov model, and each PO state vector
yk,t evolves independently [23], [26].Moreover, recalling
that for each PO at time t − 1, there is one legacy PO at
time t, the joint PO state transition pdf is

f (y
t
|yt−1) =

kt−1∏
k=1

f (y
k,t

|yk,t−1). (3)

Note that the number of POs at time t = 0 is zero, i.e.,
k0 = 0; therefore, for t = 1, the transition pdf in (3) is the
result of an empty product, that is, f (y

1
|y0) = 1. Further-

more, assuming that given the position and existence of
PO k at time t−1 (i.e., xk,t−1 and rk,t−1), the position and
existence of legacy PO k at time t (i.e., xk,t and rk,t) are
conditionally independent of the PO class at time t − 1
and the legacy PO class at time t (i.e., τk,t−1 and τ k,t); and
that given τk,t−1, the legacy PO class τ k,t is conditionally
independent of xk,t−1 and rk,t−1, we obtain

f (y
k,t

|yk,t−1) = f (xk,t, τ k,t, rk,t |xk,t−1, τk,t−1, rk,t−1)

= f (xk,t, rk,t |τ k,t, xk,t−1, τk,t−1, rk,t−1)

×p(τ k,t |xk,t−1, τk,t−1, rk,t−1)

= f (xk,t, rk,t |xk,t−1, rk,t−1) p(τ k,t |τk,t−1).

(4)

Since in the considered scenario the objects, hence the
POs, are stationary (i.e., they cannot leave the surveilled
area), the pdf f (xk,t, rk,t |xk,t−1, rk,t−1) is defined as fol-
lows: if PO k does not exist at time t−1, i.e., if rk,t−1 = 0,
then it cannot exist as legacy PO at time t; if it does exist
at time t − 1, i.e., if rk,t−1 = 1, then it exists as legacy PO
at time t and its position xk,t is distributed according to
the transition pdf f (xk,t |xk,t−1) = δ(xk,t −xk,t−1), that is,

f (xk,t, rk,t |xk,t−1, rk,t−1)

=
{
(1 − rk,t ) fD(xk,t ), rk,t−1 = 0,

rk,t f (xk,t |xk,t−1), rk,t−1 = 1,
(5)

where fD(xk,t ) = ∑C
τ k,t=1 fD(xk,t, τ k,t ). Additionally,

given that the class of an object cannot change over time,
the pmf p(τ k,t |τk,t−1) = δτ k,t ,τk,t−1 .

C. ATR Measurement Model

The probability that PO k is detected by the ATR
algorithm at time t, i.e., that PO k generates a measure-
ment zm,t , is function of the PO position xk,t and class
τk,t , as well as of the AUV state st , and is denoted by
Pd(xk,t, τk,t , st ). As an example, the probability of detec-
tion could be nonzero only inside the SAS tiles, i.e.,

Pd(xk,t, τk,t , st )

�
{
pd(τk,t ) if θ(xk,t; st ) is within the SAS tiles,

0 otherwise,

where pd(τk,t ) is a class-dependent probability of detec-
tion.Alternatively,Pd(xk,t, τk,t , st ) could also account for
some environmental characteristics, such as the bottom
type [27].

The statistical dependency of a PO-generated mea-
surement zm,t on the PO position xk,t and class τk,t , and
on the AUV state st , is described by the likelihood func-
tion f (zm,t |xk,t, τk,t , st ) = f (�m,t,πm,t |xk,t, τk,t , st ). Fol-
lowing [24] and assuming that �m,t is conditionally inde-
pendent of πm,t and τk,t given xk,t and st , and that πm,t

is conditionally independent of xk,t and st given τk,t , the
likelihood function can be factorized as

f (zm,t |xk,t, τk,t , st ) = f (�m,t,πm,t |xk,t, τk,t , st )
= f (�m,t |πm,t , xk,t, τk,t , st ) f (πm,t |xk,t, τk,t , st )
= f (�m,t |xk,t, st ) f (πm,t |τk,t ). (6)

The first factor in (6), i.e., f (�m,t |xk,t, st ), is determined
by the ATR measurement model, defined as

�m,t = γO
(
θ(xk,t; st ),ωm,t

)
,

and by the statistics of the ATR measurement noise
ωm,t , assumed independent across m and t. The second
factor in (6), i.e., f (πm,t |τk,t ), is modeled according to
a Dirichlet distribution with vector parameter ατk,t �
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[
α
(1)
τk,t , . . . , α

(C)
τk,t

]t, that is,
f (πm,t |τk,t = c) = 1

B(αc)

C−1∏
j=1

π
( j)
m,t

(
α
( j)
c −1

)

× (
1 − 1tC−1πm,t

)(α
(C)
c −1

)
, (7)

where B(·) is the multivariate beta function.
A clutter-generated measurement (i.e., a false-

alarm) is statistically described by the pdf fFA(zm,t ) =
fFA(�m,t ,πm,t ) that, assuming the independence be-
tween �m,t and πm,t , can be factorized as fFA(zm,t ) =
f0(�m,t )g0(πm,t ). The number of clutter-generated mea-
surements at each time t within both the port side and
starboard side tiles is assumed Poisson distributed with
mean μ0.

D. Data Association

The measurements zm,t , m ∈ {1, . . . ,mt}, have un-
known origins, namely, it is unknown if a given mea-
surement is generated from clutter or from a PO, and
from which PO. Here, we consider the point-object as-
sumption, stating that, at each time t, a measurement zm,t

originates either from a legacy PO, or from a new PO,
or from clutter, and it cannot originate from more than
one source (legacy POs, new POs, or clutter) simultane-
ously. Conversely, each PO (either legacy or new) can
generate at most one measurement at time t [28]. Fol-
lowing [23], [26], the association between the kt−1 legacy
POs,mt new POs, and mt measurements can be mathe-
matically described by introducing: (i) the setNt of mea-
surements generated by newly detected objects at time t,
that is,Nt �

{
m ∈ {1, . . . ,mt} : rm,t = 1

}
; (ii) the legacy

PO-oriented association vector at � [a1,t , . . . , akt−1,t]
t;

and (iii) the measurement-oriented association vector
bt � [b1,t, . . . ,bmt ,t]

t. Specifically, ak,t is defined as m ∈
{1, . . . ,mt} if legacy PO k generatesmeasurementm, and
as 0 if legacy PO k does not generate any measurement.
Similarly, bm,t is defined as k ∈ {1, . . . ,kt−1} if measure-
mentm originates from legacy PO k and as 0 if measure-
mentm does not originate from any legacy PO.Note that
bm,t = 0 implies that measurement m either is clutter-
generated or originates from a newly detected object.
Then, the point-object assumption can be expressed by
the indicator function 
(at,bt ), defined as [23]


(at,bt ) � �(at,bt )
∏
m∈Nt

�(bm,t ), (8)

where

�
(
bm,t

)
�

{
0 bm,t ∈ {1, . . . ,kt−1},
1 bm,t = 0,

(9)

and

�(at,bt ) �
kt−1∏
k=1

mt∏
m=1

ψ(ak,t,bm,t ), (10)

with

ψ(ak,t,bm,t ) �

⎧⎪⎨
⎪⎩
0 ak,t = m and bm,t �= k ,

or ak,t �= m and bm,t = k ,

1 otherwise .

Note that, since the product in (8) is over the set Nt ,
the indicator function 
(at,bt ) formally depends also
on the new PO existence variables rm,t ,m ∈ {1, . . . ,mt}.
Expression (8) can be easily explained as follows: valid
associations described by at , bt , and the new PO exis-
tence variables rm,t ,m ∈ {1, . . . ,mt}, are those for which

(at,bt ) = 1; and we note that �(at,bt ) is 0 if a mea-
surement is associated with two or more legacy POs
(and, vice versa, if a legacy PO is associated with two
or more measurements), and 1 otherwise; and that the
product over m ∈ Nt of �(bm,t ) is 0 if any measurement
generated by a new PO is also associated with a legacy
PO, and 1 otherwise.

III. STOCHASTIC PROBLEM FORMULATION

A. Joint Posterior pdf

The objective of the mapping of underwater ob-
jects is to determine if a PO exists and estimate
its position and class given all AUV navigation data
and all measurements extracted by the ATR algo-
rithm up to time t, i.e., given g1:t and z1:t . In the
Bayesian framework here described, this essentially con-
sists in evaluating for each PO k ∈ {1, . . . ,kt} the
posterior marginal pmf p(rk,t |g1:t, z1:t ), used for exis-
tence declaration,1 and the conditional marginal pdf
f (xk,t |rk,t = 1, g1:t, z1:t ) and pmf p(τk,t |rk,t = 1,
g1:t, z1:t ), used for position and class estimation, respec-
tively. These marginal posterior distributions can be
calculated by simple elementary operations—including
marginalization—from the joint posterior distribu-
tion f (y0:t, s0:t,a1:t,b1:t |g1:t, z1:t ) = f (x0:t, τ0:t, r0:t, s0:t,
a1:t,b1:t |g1:t, z1:t ). Here, the sequence of AUV states s0:t
is considered as nuisance parameters to be marginalized
out, where s0 is the state at time t = 0 whose prior distri-
bution f (s0) is known; y0 is introduced for mathematical
convenience, since at time t = 0 the number of POs is
zero, i.e., k0 = 0. This joint posterior pdf can be factor-
ized as (details are provided in the Appendix)

f
(
y0:t, s0:t,a1:t,b1:t

∣∣g1:t, z1:t) ∝ f
(
s0

)
f
(
y0

)
×

t∏
t ′=1

f
(
y
t ′

∣∣yt ′−1

)
f
(
st ′

∣∣st ′−1
)
f
(
gt ′

∣∣st ′)
× f

(
yt ′ ,at ′ ,bt ′ ,mt ′

∣∣y
t ′
, st ′

)
f
(
zt ′

∣∣yt ′ , st ′ ,at ′ ,mt ′
)
,

(11)

1The existence of PO k is confirmed if p(rk,t = 1|g1:t , z1:t ) is above an
existence threshold Eth [29, Ch. 2].
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where f (y
t
|yt−1) is defined in (3), f (st |st−1) derives from

the kinematic model in (1), and f (gt |st ) is the likelihood
determined by the navigation data model in (2). Follow-
ing the derivations in [26], next we provide expressions
for the prior data association pdf f (yt,at,bt,mt |yt, st )
and the measurement likelihood f (zt |yt, st,at,mt ).

B. Prior Data Association pdf

By considering the point-object assumption (cf.
Section II-D), and assuming that positions and classes
of legacy POs and new POs at time t are independent,
the pdf f (yt,at,bt,mt |yt, st ) can be expressed as

f
(
yt,at,bt,mt

∣∣y
t
, st

) ∝ �
(
at,bt

)

×
kt−1∏
k=1

q1
(
y
k,t

, ak,t , st;mt
) mt∏
m=1

h1
(
ym,t ,bm,t

)
. (12)

The derivation of this pdf closely follows the deriva-
tion of the pdf in [26, eq. (60)] and is thus omitted. The
proportionality is due to a constant factor that only de-
pends on the number of measurementsmt , the indicator
function �(at,bt ) is defined in (10), and the functions
q1(·) and h1(·)—representing the contributions to the
prior data association pdf of the legacy and new POs,
respectively—are provided in the following. The func-
tion q1(yk,t, ak,t , st;mt ) = q1(xk,t, τ k,t, rk,t, ak,t , st;mt ) is
defined for rk,t =1 as

q1
(
xk,t, τ k,t, rk,t =1, ak,t , st;mt

)

�

⎧⎪⎨
⎪⎩
Pd(xk,t, τ k,t, st )

μ0
ak,t ∈ {1, . . . ,mt},

1 − Pd(xk,t, τ k,t, st ) ak,t = 0,
(13)

and for rk,t = 0 as

q1
(
xk,t, τ k,t, rk,t =0, ak,t , st;mt

)
� δak,t ,0. (14)

The function h1(ym,t,bm,t ) = h1(xm,t, τm,t , rm,t ,bm,t ) is
defined for rm,t =1 as

h1
(
xm,t, τm,t , rm,t =1,bm,t

)
� �

(
bm,t

)μN

μ0
fN(xm,t , τm,t )

=
⎧⎨
⎩
0 bm,t ∈ {1, . . . ,kt−1},
μN

μ0
fN(xm,t, τm,t ) bm,t = 0,

(15)

and for rm,t =0 as

h1
(
xm,t , τm,t, rm,t =0,bm,t

)
� fD(xm,t, τm,t ). (16)

Here, μN is the mean number of newly detected ob-
ject at each time t (assumed Poisson distributed)
and fN(xm,t , τm,t ) is the prior distribution of position
and class of a new PO that, assuming the indepen-
dence between xm,t and τm,t , can be factorized as
fN(xm,t, τm,t ) = fn(xm,t ) fn(τm,t ). Note that the function

h1(·) incorporates the indicator function �(·) defined
in (9), and that the combined use in (12) of the functions
�(at,bt ) and h1(·) describes the point-object assump-
tion as done by the indicator function
(·) defined in (8).

C. ATR Measurements Likelihood

By considering the point-object assumption (cf.
Section II-D) and assuming that PO-generatedmeasure-
ments and clutter-generatedmeasurements are indepen-
dent, the measurement likelihood f (zt |yt, st,at,mt ) =
f (zt |yt, yt, st,at,mt ) can be expressed as

f
(
zt

∣∣yt, yt, st,at,mt
) ∝

kt−1∏
k=1

q2
(
y
k,t

, ak,t , st; zt
)

×
mt∏
m=1

h2
(
ym,t, st; zm,t

)
. (17)

The derivation of the likelihood in (17) closely fol-
lows the derivation of the likelihood in [26, eq. (64)]
and is thus omitted. The proportionality is due to a
constant factor that only depends on the measure-
ment vector zt , and the functions q2(·) and h2(·)—
embedding the measurement likelihoods related to the
legacy and new POs, respectively—are provided in the
following.The function q2(yk,t, ak,t , st; zt ) = q2(xk,t, τ k,t,
rk,t, ak,t , st; zt ) is defined for rk,t =1 as

q2
(
xk,t, τ k,t, rk,t =1, ak,t , st; zt

)

�

⎧⎪⎨
⎪⎩
f
(
zm,t

∣∣xk,t, τ k,t, st)
fFA

(
zm,t

) ak,t ∈ {1, . . . ,mt},
1 ak,t = 0,

(18)

and for rk,t = 0 as

q2
(
xk,t, τ k,t, rk,t =0, ak,t , st; zt

)
� 1 . (19)

The function h2(ym,t , st; zm,t ) = h2(xm,t, τm,t , rm,t , st;
zm,t ) is defined as

h2
(
xm,t , τm,t , rm,t , st; zm,t

)

�

⎧⎪⎨
⎪⎩
f
(
zm,t

∣∣xm,t, τm,t , st
)

fFA
(
zm,t

) rm,t = 1 ,

1 rm,t = 0 .

(20)

IV. PROPOSED METHOD

A. Factor Graph and Message Scheduling

The final factorization of the joint posterior pdf
f (y0:t, s0:t,a1:t,b1:t |g1:t, z1:t )—obtained by inserting (10)

AUTONOMOUS MAPPING OF UNDERWATER OBJECTS WITH THE SUM–PRODUCT ALGORITHM 83



Figure 3. Factor graph representing the factorization in (21) of the
joint posterior pdf f (y0:t , s0:t , a1:t , b1:t |g1:t , z1:t ) for a single time step.
Solid circles and squares represent variable nodes and factor nodes,
respectively. The following short notations are used: s– � st−1; s � st ;

y–k � yk,t−1; k
– � kt−1; yk � y

k,t
; ym � ym,t ; fA � f (st |st−1);

fk � f (y
k,t

|yk,t−1); g� f (gt |st ); ak � ak,t ; bm � bm,t ;

qk � q(y
k,t

, ak,t , st ; zt ); hm � h(ym,t ,bm,t , st ; zm,t );

ψk,m � ψ(ak,t ,bm,t ).

into (12), and (3), (12), and (17) into (11)—is

f
(
y0:t, s0:t,a1:t,b1:t

∣∣g1:t, z1:t)
∝ f

(
s0

)
f
(
y0

) t∏
t ′=1

f
(
st ′

∣∣st ′−1
)
f
(
gt ′

∣∣st ′)

×
[ kt′−1∏

k=1

f
(
y
k,t ′

∣∣yk,t ′−1

)
q
(
y
k,t ′

, ak,t ′ , st ′ ; zt ′
)

×
mt′∏
m=1

ψ
(
ak,t ′ ,bm,t ′ )

] mt′∏
m′=1

h
(
ym′,t ′ ,bm′,t ′ , st ′ ; zm′,t ′

)
,

(21)

where q(·) � q1(·)q2(·) and h(·) � h1(·)h2(·). Direct
marginalization of this joint posterior pdf for the com-
putation of the marginal posterior pdfs/pmfs mentioned
in Section III-A is generally unfeasible in reasonable
time, as it requires high-dimensional integration and
summation. Approximations at time t of these marginal
pdfs/pmfs—called beliefs and referred to as f̃t (·)—can
be efficiently obtained by applying the SPA on a factor
graph [19], [20], carefully devised from the factorization
in (21).

Such factor graph, illustrated for a single time step in
Fig. 3, contains loops: an inner loop involving the data
association variables ak,t and bm,t , and an outer loop in-
volving the AUV state st and factor nodes q(·) and h(·).
Therefore, a scheduling of the messages is defined based
on the following rules: (i) messages are not sent back-
ward in time; (ii) iterative message passing is only per-
formed for the data association, i.e., for the inner loop.
More specifically,at each time t, the inboundmessages—
from outside to inside the blue dashed rectangle—are

computed first. These messages represent the prediction
of the legacy PO states and AUV states, and are com-
puted assuming that all the outbound messages—from
inside to outside the blue dashed rectangle—are equal
to one. The inbound messages are then employed within
the inner loop for data association. When all the itera-
tions of the inner loop are performed, the outboundmes-
sages are calculated and eventually used to compute the
beliefs of the PO states. Next, we provide expressions
of the messages combining the scheduling rules stated
above and the generic SPA rules provided in [19]. The
messages are all denoted by ζα→β (·), where α and β are,
respectively, the origin and destination nodes of themes-
sage. Moreover, we assume that the beliefs are normal-
ized, i.e.,

∫
f̃t (α)dα = 1.

B. Inbound Messages

The inbound messages from variable node “s” to fac-
tor node “qk”, i.e., ζs→qk (st ), and from variable node “s”
to factor node “hm”, i.e., ζs→hm (st ), represent the predic-
tion of the AUV state and its refinement with naviga-
tion data. Recalling that the inbound messages are com-
puted assuming that the outboundmessages are all equal
to one, the expressions of the messages ζs→qk (st ) and
ζs→hm (st ) coincide; for them, we use the common nota-
tion ζs(st ), that is,

ζs(st ) � ζs→qk (st ) = ζs→hm (st )

= f (gt |st )
∫

f̃t−1(st−1) f (st |st−1) dst−1, (22)

where f̃t−1(·) is the belief computed at previous
time t − 1, whose expression is later provided in Sec-
tion IV-E. For convenience, we also introduce the fol-
lowing constant:

ζ 0
s =

∫
ζs

(
st
)
dst . (23)

The inboundmessage from variable node “y
k
” to fac-

tor node “qk”, representing the prediction of the legacy
PO k, is computed as follows:

ζy
k
→qk

(
y
k,t

) = ζy
k
→qk

(
xk,t, τ k,t, rk,t

)

=
1∑

rk,t−1=0

C∑
τk,t−1=1

∫
f̃t−1

(
xk,t−1, τk,t−1, rk,t−1

)

× f
(
xk,t, τ k,t, rk,t

∣∣xk,t−1, τk,t−1, rk,t−1
)
dxk,t−1.

Note that, since the belief f̃t−1(·) is normalized, the mes-
sage ζy

k
→qk (xk,t, τ k,t, rk,t ) is also normalized, i.e.,

1∑
rk,t=0

C∑
τ k,t=1

∫
ζy

k
→qk (xk,t, τ k,t, rk,t )dxk,t = 1. (24)

Furthermore, according to the definitions (4)–(5),
and recalling that the POs are stationary and that
their class does not change over time, the message
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ζy
k
→qk (xk,t, τ k,t, rk,t ) for rk,t =1 becomes

ζy
k
→qk

(
xk,t, τ k,t, rk,t =1

) = f̃t−1
(
xk,t, τ k,t, rk,t =1

)
. (25)

Finally, the inbound message from variable node “ym” to
factor node “hm” is equal to one, i.e.,

ζym→hm (ym,t ) = ζym→hm (xm,t, τm,t , rm,t ) = 1, (26)

since “ym” is a leaf variable node of the factor graph.

C. SPA-Based Data Association

The SPA-based data association is an iterative pro-
cedure that allows to compute accurate approxima-
tions of the marginal posterior data association pmfs,
i.e., p(ak,t |g1:t, z1:t ) and p(bm,t |g1:t, z1:t ) [30]. Practically,
the SPA-based data association step converts the mes-
sages ζqk→ak (ak,t ) and ζhm→bm (bm,t ), into the messages
ζak→qk (ak,t ) and ζbm→hm (bm,t ). Expressions of the latter
messages are provided in [26, Sec. IX-A3], whereas de-
tails of the messages ζqk→ak (ak,t ) and ζhm→bm (bm,t ) are
given below.

The message from factor node “qk” to variable node
“ak” is computed as

ζqk→ak

(
ak,t

) =
1∑

rk,t=0

C∑
τ k,t=1

∫∫
ζy

k
→qk

(
xk,t, τ k,t, rk,t

)

×ζs
(
st
)
q
(
xk,t, τ k,t, rk,t, ak,t , st; zt

)
dxk,tdst .

Using definitions (13)–(14) and (18)–(19), constant (23),
condition (24), and message (25), we obtain for ak,t = 0

ζqk→ak

(
ak,t = 0

)
= ζ 0

s −
∫∫

ζs
(
st
)[ C∑

τ k,t=1

Pd
(
xk,t, τ k,t, st

)

× f̃t−1
(
xk,t, τ k,t, 1

)]
dxk,tdst,

and for ak,t ∈ {1, . . . ,mt}
ζqk→ak

(
ak,t = m

)
= 1

μ0 fFA
(
zm,t

) ∫∫
ζs

(
st
)[ C∑

τ k,t=1

Pd
(
xk,t, τ k,t, st

)

× f̃t−1
(
xk,t, τ k,t, 1

)
f
(
zm,t

∣∣xk,t, τ k,t, st)
]
dxk,tdst .

Similarly, the message from factor node “hm” to vari-
able node “bm” is computed as

ζhm→bm

(
bm,t

)
=

1∑
rm,t=0

C∑
τm,t=1

∫∫
ζym→hm

(
xm,t , τm,t, rm,t

)

× ζs
(
st
)
h
(
xm,t , τm,t , rm,t,bm,t , st; zm,t

)
dxm,tdst .

Using definitions (15)–(16) and (20), constant (23), and
message (26), we obtain for bm,t =0

ζhm→bm

(
bm,t = 0

)
= ζ 0

s + μN

μ0 fFA
(
zm,t

) ∫∫
ζs

(
st
)[ C∑

τm,t=1

fN
(
xm,t, τm,t

)

× f
(
zm,t

∣∣xm,t, τm,t , st
)]

dxm,tdst,

and ζhm→bm (bm,t ) = ζ 0
s for bm,t ∈ {1, . . . ,kt−1}.

D. Outbound Messages

Once the iterations of the inner loop for data associ-
ation are performed, and the messages ζak→qk (ak,t ) and
ζbm→hm (bm,t ) are available, the outbound messages are
computed and eventually used to obtain the updated be-
liefs. The outbound message from factor node “qk” to
variable node “s”, representing the contribution of the
legacy PO k to the inference of the AUV state st , is com-
puted as follows:

ζqk→s
(
st
) =

1∑
rk,t=0

C∑
τ k,t=1

mt∑
ak,t=0

∫
ζy

k
→qk

(
xk,t, τ k,t, rk,t

)

× ζak→qk

(
ak,t

)
q
(
xk,t, τ k,t, rk,t, ak,t , st; zt

)
dxk,t .

As before,using definitions (13)–(14) and (18)–(19), con-
dition (24), and message (25), the message ζqk→s(st ) can
be rewritten as

ζqk→s
(
st
) = ζak→qk

(
ak,t =0

) −
C∑

τ k,t=1

∫
Pd

(
xk,t, τ k,t, st

)

× f̃t−1
(
xk,t, τ k,t, 1

)
f
(
xk,t, τ k,t, st; zt

)
dxk,t,

where

f
(
xk,t, τ k,t, st; zt

)
� ζak→qk

(
ak,t = 0

)
− 1

μ0

mt∑
m=1

ζak→qk

(
ak,t = m

) f (zm,t
∣∣xk,t, τ k,t, st)
fFA

(
zm,t

) .

Similarly, the outbound message from factor node “hm”
to variable node “s”, representing the contribution of the
new PO m to the inference of the AUV state st , is com-
puted as follows:

ζhm→s
(
st
)

=
1∑

rm,t=0

C∑
τm,t=1

kt−1∑
bm,t=0

∫
ζym→hm

(
xm,t, τm,t , rm,t

)

× ζbm→hm

(
bm,t

)
h
(
xm,t, τm,t , rm,t ,bm,t , st; zm,t

)
dxm,t .
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Using definitions (15)–(16) and (20), and message (26),
the message ζhm→s(st ) can be rewritten as

ζhm→s
(
st
) =

kt−1∑
k=1

ζbm→hm

(
bm,t = k

)

+ ζbm→hm

(
bm,t = 0

)[
1 + μN

μ0 fFA
(
zm,t

)

×
C∑

τm,t=1

∫
fN

(
xm,t, τm,t

)
f
(
zm,t

∣∣xm,t, τm,t, st
)
dxm,t

]
.

Finally, the outbound messages from factor node
“qk” to variable node “y

k
”, and from factor node “hm”

to variable node “ym”, are computed as, respectively,

ζqk→y
k

(
y
k,t

)=
∫

ζs
(
st
) kt−1∏
k′=1
k′ �=k

ζqk′→s
(
st
) mt∏
m=1

ζhm→s
(
st
)

×
[

mt∑
ak,t=0

ζak→qk

(
ak,t

)
q
(
y
k,t

, ak,t , st; zt
)]

dst

and

ζhm→ym

(
ym,t

)=
∫

ζs
(
st
) kt−1∏
k=1

ζqk→s
(
st
) mt∏
m′=1
m′ �=m

ζhm′→s
(
st
)

×
[ kt−1∑
bm,t=0

ζbm→hm

(
bm,t

)
h
(
ym,t ,bm,t , st; zm,t

)]
dst .

E. Beliefs Computation

The final step of the proposed algorithm regards the
computation of the beliefs at current time t of the legacy
PO states, i.e., f̃t (yk,t ), k ∈ {1, . . . ,kt−1}, and the new PO

states, i.e., f̃t (ym,t ), m ∈ {1, . . . ,mt}. The belief f̃t (yk,t )
is computed—up to a constant factor—as the product
of the messages that are passed (in opposite directions)
over the edge connecting variable node “y

k
” and factor

node “qk” [19], that is,

f̃t
(
y
k,t

) ∝ ζqk→y
k

(
y
k,t

)
ζy

k
→qk

(
y
k,t

)
.

The constant factor (not reported) ensures that the be-
lief normalizes to 1. Similarly, the belief f̃t (ym,t ) is com-
puted as the product of the messages that are passed (in
opposite directions) over the edge connecting variable
node “ym” and factor node “hm”, that is,

f̃t
(
ym,t

) ∝ ζhm→ym

(
ym,t

)
ζym→hm

(
ym,t

)
= ζhm→ym

(
ym,t

)
.

Eventually, the belief of theAUV state f̃t (st ) is also com-
puted as it is needed for the computation of the mes-
sage (22) at the next step t+1; this belief is calculated as

the product of all the messages directed toward variable
node “s” [19], that is,

f̃t
(
st
) ∝ ζs

(
st
) kt−1∏
k=1

ζqk→s
(
st
) mt∏
m=1

ζhm→s
(
st
)
.

F. Implementation Details

The proposed SPA-based algorithm for autonomous
mapping of underwater objects is implemented follow-
ing a particle-based approach [31] that scales quadrat-
ically with the number of particles and the number of
legacy POs, and scales linearly with the number of mea-
surements and the number of iterations of the data as-
sociation loop. As mentioned in Section II-B, in order
to keep a tractable number of POs over time, a pruning
step is performed. Specifically, any PO k ∈ {1, . . . ,kt}
whose posterior probability of existence, i.e., p(rk,t = 1|
g1:t, z1:t ), is below a given thresholdPth, is removed and is
not carried over to the next time step t+1.Moreover, to
avoid PO particle impoverishment, especially due to the
stationarity of the considered objects, a simple roughen-
ing strategy is employed [32].

V. SIMULATION RESULTS

A. Scenario Description

Performance of the proposed SPA-based algorithm
for autonomousmapping of underwater objects is evalu-
ated in a typical MCMmission.AnAUV is programmed
to survey an area of 0.25 km2 with 5 MLOs and 45 non-
MLOs by following a lawnmower pattern. The scenario
is illustrated in Fig. 4, with the AUV trajectory shown as
an orange solid line, and MLOs and non-MLOs as, re-
spectively, red diamonds and green dots. The AUV state
includes position and velocity in Cartesian coordinate,
as well as the turn rate νt , i.e., st = [

stt,p, s
t
t,v, νt

]t. The
AUV kinematic model employed in the proposed algo-
rithm and used to evaluate the pdf f (st |st−1) is the nearly
constant turn model, that is (cf. eq. (1)),

st = ε(st−1,ut ) = F (st−1) +G(st−1)ut, (27)

whereF (·) andG(·) are defined in [33, eqs. (6) and (7a)],
and ut is a 2D zero-mean Gaussian process noise whose
covariance is diag(σ 2

lin, σ
2
ang).

The AUV moves at 1.5 m/s, produces an SAS image
every T = 33 s, and completes the survey in approxi-
mately 2.8 h, i.e., in 305 time steps. The dimensions of
the SAS tile along and across the direction of travel are,
respectively, �η1 = 50 m and �η2 = 110 m, and its po-
sition with respect to the AUV is defined by η

(1)
1 = 0

and η
(1)
2 = 20 m (see Fig. 2). The ATR algorithm de-

tects objects within SAS tiles with probability pd(τk,t ) =
pd = 0.9, and distinguishes among C = 2 classes, i.e.,
MLOs (c = 1) and non-MLOs (c = 2); the vector pa-
rameters α1 and α2 used for simulating the probabilities
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Figure 4. Illustration of the simulated scenario. The orange solid
line represents the trajectory of the AUV, with the arrows indicating
the beginning and the end of the trajectory.MLOs and non-MLOs

are depicted as, respectively, red diamonds and green dots.

π
(1)
m,t as well as for the evaluation of the pdf f (π (1)

m,t |τk,t ) in
(7) are set to α1 = [6, 2]t and α2 = [2, 6]t, respectively.
The object-generated measurements are simulated ac-
cording to the following model, that is,

�m,t = γO
(
θ(xk,t; st ),ωm,t

)
= R(∠st,v)

[
xk,t − st,p

] + ωm,t ,

where ωm,t is a 2D zero-mean Gaussian process noise
with covariance σ 2

ωI with σω = 1 m. The same model is
used to evaluate the likelihood f (�m,t |xk,t, st ). The mean
number of clutter-generated measurements within both
the port side and starboard side tiles is μ0 = 0.1.

The AUV’s INS provides navigation data gt ∈ R
3—

that includes 2D position and heading—generated ac-
cording to the following model:

gt = [
stt,p,∠st,v

]t + d t, (28)

where d t is a 3D component that emulates the INS drift.
For this analysis, the INS error model described in [34] is
employed. Specifically, the position error has mean and
variance that accumulate, respectively, quadratically and
cubically over time [34, Table III]; for the heading er-
ror, instead,bothmean and variance accumulate linearly
over time [34, Table II]. Therefore,d t is modeled as a 3D
Gaussian process with time-varying mean

1
2

⎡
⎢⎢⎣

εpcos(∠st,v + λ0)
(
tT

)2
εpsin(∠st,v + λ0)

(
tT

)2
(−1)ι2εh

(
tT

)
⎤
⎥⎥⎦ , (29)

Figure 5. Illustration of the simulated scenario. The orange solid
line represents the trajectory of the AUV, and the blue dotted line

represents the trajectory estimated by the INS following the model in
(28)–(30) with λ0 = π/4 and εp = 7.5 m/h2. The arrows indicate the

beginning and the end of the trajectory.

and time-varying covariance

1
3
diag

(
ς2
p

(
tT

)3 cos2(∠st,v + λ0), . . .

ς2
p

(
tT

)3 sin2(∠st,v + λ0), . . .

3ς2
h

(
tT

))
, (30)

where λ0 ∈ (0, 2π ) and ι ∈ {0, 1}. Parameters εp
and εh drive, respectively, the quadratic growth of the
position drift, and the linear growth of the heading
drift, whereas ς2

p and ς2
h control, respectively, the cubic

growth of the position error variance—for each Carte-
sian coordinate—and the linear growth of the heading
error variance. Note that the INS drift is related to the
AUV local reference system, which explains the use of
∠st,v in (29)–(30); finally, ι is used to select a positive or
negative heading drift, and λ0 is used to balance the po-
sition drift over the two Cartesian coordinates.As an ex-
ample, with λ0 = 0 the AUV’s position estimated by the
INS is advancedwith respect to the trueAUV’s position;
with λ0 = π , instead, the AUV’s position estimated by
the INS is delayed with respect to the true AUV’s po-
sition. Figure 5 shows an example with λ0 = π/4 and
εp = 7.5 m/h2: as time goes by, the INS provides AUV
position estimates that are quadratically farther from the
actual trajectory.

The INS error model defined by (29)–(30) is as-
sumed partly unknown when running the proposed al-
gorithm. Specifically, we consider unknown the mean
(29) as well as the angle λ0,wheres we assume known the
cubic growth law of the position error variance and the
linear growth law of the heading error variance. There-
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fore, the navigation datamodel used to evaluate the like-
lihood f (gt |st ) is set to (cf. eq. (2)),

gt = γA(st,υt ) = [
stt,p,∠st,v

]t + υt,

where υt is a 3D zero-mean Gaussian process noise with
time-varying covariance diag(σ 2

p,t, σ
2
p,t, σ

2
h,t ), where

σ 2
p,t = 1

3
σ 2
p

(
tT

)3 and σ 2
h,t = σ 2

h

(
tT

)
with σp = 3 ςp and σh = 3 ςh.

Remark The INS usually provides its output much
faster than T = 33 s. For this analysis, we assume that
navigation data are available every second; this means
that between any two time steps t − 1 and t, the INS
provides 32 navigation outputs. Therefore, between any
two time steps, prediction and update of the AUV state
are performed every second by only using the INS out-
put; this is equivalent to run the SPA-based algorithm
on a factor graph only composed by the variable nodes
“s−” and “s”, and the factor nodes “fA” and “g” (see
Fig. 3). Then, when both the SAS image and naviga-
tion data are available at time t, the full SPA-based al-
gorithm described in Section IV is run. Finally, since the
AUV state prediction is performed every second, the pa-
rameters σlin and σang defining the process noise ut in
(27) and used to evaluate the pdf f (st |st−1) are set to
σlin = 0.5 m/s2 and σang = 20 deg/s2.

B. Results

The results obtained with the proposed SPA-based
algorithm for autonomous mapping of underwater ob-
jects are compared with three alternative SPA-based al-
gorithms; these alternative algorithms all assume that
the AUV state at time t is known. The first one is clair-
voyant in that it knows the “true” AUV state at time t;
this is clearly used as a benchmark,since this information
is not available in practice. The second alternative algo-
rithm, referred to as INS-plain, considers the navigation
data gt as AUV state at current time t, with no further
processing. The third alternative algorithm exploits the
navigation data provided by the INS every second to se-
quentially infer the AUV state at time t by means of a
particle filter, thus called INS-filter. This differs from the
proposed algorithm in that it does not exploit the infor-
mation readily available on the detected objects to refine
the AUV state estimate, and, on the other hand, it uses
only the estimated AUV position—and not its belief—
to make inference about the existence and location of
the objects. The results shown hereafter are averaged
over 100 Monte Carlo runs; each run differs for the po-
sitions of the non-MLOs that are uniformly located in
the area of interest, and for the values of λ0 ∈ (0, 2π )
and ι ∈ {0, 1} used in (29)–(30) for the generation of the
INS drifts.Moreover, 1000 particles are used to describe
the SPA beliefs andmessages, and the prior distributions
fn(xm,t ) and fn(τm,t ) related to the position and class of a
new PO are, respectively, uniform over the SAS tile, and

Figure 6. GOSPA errors obtained with the proposed algorithm and
with three alternative algorithms, namely, clairvoyant, INS-plain, and

INS-filter.

equal to fn(τm,t ) = 0.5 for τm,t ∈ {1, 2}. The remain-
ing parameters are set to εp = 7.5 m/h2, εh = 1 deg/h,
ςp = 7.5 m/h

3
2 , ςh = 0.6 deg/h

1
2 , μN = 10−3, Pth = 10−4,

and, unless otherwise stated,Eth = 0.8.
The performance of the different algorithms is com-

pared in Fig. 6 in terms of the Euclidean distance-based
generalized optimal sub-pattern assignment (GOSPA)
error [35], with cut-off parameter 50 m and order 1. The
GOSPA metric accounts for localization errors for cor-
rectly confirmed objects, errors for missed objects, and
false objects (i.e., confirmed POs not corresponding to
any actual object). As expected, the clairvoyant algo-
rithm presents the lowest GOSPA error, since it assumes
a perfect knowledge of the AUV state at each time t;
the error is decreasing because more objects are ob-
served and detected as the AUV surveys the area of in-
terest. The proposed algorithm, the INS-plain, and the
INS-filter approaches have GOSPA errors very similar
to those obtained with the clairvoyant algorithm at the
beginning of the mission; indeed, up to time step 50, the
impact of the drift is limited. As the mission proceeds,
we observe that the proposed algorithm clearly outper-
forms the INS-plain and INS-filter approaches, demon-
strating the benefit of including the inference of the
AUV state within the objects detection/estimation pro-
cedure. These results are confirmed by those reported
in Fig. 7, which shows the number of correctly detected
objects—those for which the distance between the esti-
mated and true position is lower than 20 m—versus the
number of false objects at the end of the mission. These
curves are obtained by varying the existence threshold2

Eth, and demonstrate the capability of the proposed al-
gorithm to account for the uncertain AUV state and cor-
rectly detect a higher number of objects compared to the
INS-plain and INS-filter approaches.Finally,Fig. 8 shows
the cardinality—i.e., the number of detected objects, in-
cluding potential false objects—obtained with the pro-
posed algorithm and the three alternative approaches

2For the generation of the curves in Fig. 7, 20 values of the existence
threshold Eth are selected evenly distributed on a log scale between a
minimum value of 0.02 and a maximum value of 0.99.
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Figure 7. Number of correctly detected objects versus the number of
false objects at the end of the mission obtained with the proposed

algorithm and with three alternative algorithms, namely, clairvoyant,
INS-plain, and INS-filter.

over time, and compares them with the true cardinal-
ity,3 demonstrating the effectiveness of the proposed al-
gorithm. The capability of the clairvoyant and proposed
algorithms to correctly detect a higher number of ob-
jects clearly reflects into their ability to correctly classify
them. Indeed, the clairvoyant and proposed algorithms
reach an overall classification accuracy of 99%, com-
pared to 47% and 45% obtained with, respectively, the
INS-plain approach and the INS-filter approach. Lastly,
as concerns the AUV position estimate, the proposed
algorithm provides a time-averaged root-mean-square
error (RMSE) of 10.9 m, while the INS-filter approach
provides a time-averaged RMSE of 11.5 m. This moder-
ate improvement of the proposed algorithm compared
to the INS-filter approach is likely due to the fact that
not all the objects are observable at all times; there-
fore, at each time t, the proposed algorithm only relies
on a small set of detected objects to estimate the AUV
position.

3The true cardinality is time-varying since more objects are observed
as the AUV surveys the area of interest.

Figure 8. Cardinality over time obtained with the proposed
algorithm and with three alternative algorithms, namely, clairvoyant,

INS-plain, and INS-filter.

VI. CONCLUSIONS

Mapping of underwater objects is usually conducted
with AUVs. A classic example is MCM operations, in
which AUVs allow to operate from a distance in safe
conditions. Independently of the type of application, the
quality and value of the data acquired by an AUV are
significantly influenced by the accuracy of its position.
Because of the unavailability of GPS technologies be-
low the sea surface, an AUV generally relies on an INS
that calculates the position and heading of the vehicle by
integrating values measured by accelerometers and gy-
roscopes available on-board. However, because of this
integration, the inherent errors of these devices accu-
mulate over time, resulting in position and orientation
errors that increase over time.

This paper has proposed and described a Bayesian
graph-basedmapping algorithm that accounts for the in-
herent uncertainty of the AUV position. Exploiting the
SPA,the proposed technique obtains a principled and in-
tuitive approximation of the Bayesian inference needed
for underwater object detection and estimation. The ef-
fectiveness of the proposed algorithm has been demon-
strated in a simulated MCM scenario, which has shown
the benefit of including the inference of the AUV posi-
tion within the object detection/estimation procedure.

APPENDIX

Here, we derive the factorization in (11) of the
joint posterior pdf f (y0:t, s0:t,a1:t,b1:t |g1:t, z1:t ). Since
the measurements z1:t are observed, hence known,
the joint vector of numbers of measurements m1:t

is also known, that is, f (y0:t, s0:t,a1:t,b1:t |g1:t, z1:t ) =
f (y0:t, s0:t,a1:t,b1:t |g1:t, z1:t,m1:t ). Then, assuming that all
the variables—joint PO state, AUV state, data associa-
tion variables, navigation data, and measurements—at
time t are conditionally independent of the past vari-
ables given the joint PO state andAUV state at previous
time t − 1, we obtain the factorization in (32). Recalling
from Section II-B that yt is the vector stacking the kt−1

legacy PO states and themt new PO states at time t, that
is, yt = [yt

t
, ytt ]

t, each factor f (yt, st,at,bt, gt, zt,mt |yt−1,

st−1) of the product in (32) can be further expressed as

f
(
yt, st,at,bt, gt, zt,mt

∣∣yt−1, st−1
)

= f
(
yt,at,bt, gt, zt,mt

∣∣y
t
, st, yt−1, st−1

)
× f

(
y
t
, st

∣∣yt−1, st−1
)

= f (yt,at,bt, gt, zt,mt |yt, st ) f (yt |yt−1) f (st |st−1)

= f (yt,at,bt, zt,mt |yt, st ) f (gt |st )
× f (y

t
|yt−1) f (st |st−1), (31)

wherewe assumed that PO states andAUVstates evolve
independently, and that navigation data and measure-
ments are conditionally independent given the AUV
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f
(
y0:t, s0:t,a1:t,b1:t

∣∣g1:t, z1:t,m1:t
)

∝ f
(
y0:t, s0:t,a1:t,b1:t, g1:t, z1:t,m1:t

)
= f

(
yt, st,at,bt, gt, zt,mt

∣∣y0:t−1, s0:t−1,a1:t−1,b1:t−1, g1:t−1, z1:t−1,m1:t−1
)

× f
(
y0:t−1, s0:t−1,a1:t−1,b1:t−1, g1:t−1, z1:t−1,m1:t−1

)
= f

(
yt, st,at,bt, gt, zt,mt

∣∣yt−1, st−1
) × f

(
y0:t−1, s0:t−1,a1:t−1,b1:t−1, g1:t−1, z1:t−1,m1:t−1

)
= f

(
s0

)
f
(
y0

) t∏
t ′=1

f
(
yt ′ , st ′ ,at ′ ,bt ′ , gt ′ , zt ′ ,mt ′

∣∣yt ′−1, st ′−1
)

(32)

state st . Then, observing that the description of the
data association given by at and bt is redundant once
mt is observed—indeed, at can be derived from bt ,
and vice versa, when mt is known [26] —, each factor
f (yt,at,bt, zt,mt |yt, st ) can be further expressed as

f
(
yt,at,bt, zt,mt

∣∣y
t
, st

)
= f

(
zt

∣∣yt,at,bt,mt, st
)
f
(
yt,at,bt,mt

∣∣y
t
, st

)
= f

(
zt

∣∣yt,at,mt, st
)
f
(
yt,at,bt,mt

∣∣y
t
, st

)
. (33)

Eventually, by inserting (33) into (31) and (31) into (32),
we obtain the factorization in (11).
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Recently, a method for including target-provided measurements

within a joint integrated probabilistic data association (JIPDA) fil-

ter was presented and compared with a belief propagation (BP)-

based multitarget tracking method.While the JIPDA-based approach

uses multiple kinematic models within an interacting multiple model

framework, the BP-based approach uses only a single kinematic

model.Here,we present and analyze the results of similar experiments

conducted on both simulated and real data. Our results show that

the JIPDA-based method tends to outperform the BP-based method

when the targets are well-separated and perform sharp maneuvers,

whereas the BP-basedmethod outperforms the JIPDA-basedmethod

when the targets are closely spaced.

I. INTRODUCTION

A. Background

In a recent publication [1], three methods for includ-
ing target-provided measurements in a joint integrated
probabilistic data association (JIPDA) framework were
proposed. The framework considered in [1], referred
to as VIMMJIPDA filter, combines interacting multi-
ple models (IMM) and a visibility state within the well-
established JIPDA filter [2]. The IMM concept, first in-
troduced in [3], allows the use of multiple kinematic
models for the tracking of maneuvering targets, while
the visibility state indicates whether the tracked target
is visible to the sensor or not. A target-provided mea-
surement is an observation produced by a target and
made available to the tracking method. This observa-
tion usually includes kinematic information, e.g., the tar-
get’s position and velocity, and additional information
such as a unique code identifying the target. The tar-
get obtains its own position and velocity through an
onboard device, generally a global navigation satellite
system (GNSS) transponder, and transmits this infor-
mation, as well as any other relevant information, to
neighboring targets and to a central fusion node. Ex-
amples of such systems are the automatic identifica-
tion system (AIS) for maritime surveillance and ves-
sel collision avoidance [4] and the automatic dependent
surveillance broadcast (ADS-B) system for air traffic
control [5].

These target-dependent reporting systems differ
from classical perception sensors such as radar, lidar,
and cameras in several aspects. Firstly, the measure-
ments they produce are asynchronous because they
are provided by the targets themselves, and each tar-
get can transmit its messages at any time. Secondly, a
target-provided measurement cannot be a false alarm
because it is not the result of a detection process.1 Sev-
eral attempts have been made to fuse target-provided
measurements and observations produced by percep-
tion sensors. One common approach is to consider
the reporting system and the perception sensor as
stand-alone assets, and accordingly estimate two sep-
arate sets of tracks, which are later fused to form a
single set of estimated tracks. This approach, which is
known as track-level fusion, has some performance
limitations compared to measurement-level fusion
techniques [6].

The methods proposed in [1] follow a measurement-
level fusion approach and are based on the VIM-
MJIPDA tracking method. Specifically, three different
methods for handling the target-provided measure-
ments are proposed. One of them processes the

1Nevertheless, target-dependent reporting systems like the AIS can be
subject to intentional reporting of false information. However, this is
not taken into account in [1] nor in the remainder of this paper.
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measurements as they arrive, i.e., sequentially; the
others collect the measurements and process them at
fixed times. The validity of these approaches is demon-
strated both in a simulated maritime scenario and with
real data acquired as part of the Autosea project con-
ducted by the Norwegian University of Science and
Technology [7], and the performance of the proposed
methods is compared with that of the belief propaga-
tion (BP)-based tracking method with target-provided
measurement fusion capabilities presented in [8], [9].
The setup of both the simulated scenario and the real
experiment consists of a single radar sensor and the
AIS. It is observed that the particle filter (PF) imple-
mentation of the BP-based tracking method (referred
to as the BP-PF+AIS method) performs worse than the
VIMMJIPDA-based methods and, in some cases, even
worse than a radar-only method, i.e., a method that uses
only the radar measurements.

B. Contribution

The implementation of the BP-PF+AIS method is
not publicly available, which led the authors of [1] to
use their own implementation. In this paper, we study
the performance of the original implementation of the
BP-PF+AIS method used in [8], [9] for a simulated sce-
nario similar to the one described in [1, Sec. VIII-A],
as well as on the real dataset provided by the Au-
tosea project [7].Additionally,we consider the simulated
scenario described in [9, Sec. VI-A]. The performance
obtained with the original implementation of the BP-
PF+AIS method is compared with that obtained with
the original VIMMJIPDA method using only the radar
measurements [2] and with the sequential method pro-
posed in [1] (to be referred to as VIMMJIPDA+AIS),
for which code is available in [10]. We note that the
BP-PF+AIS method described in [8], [9] does not use
multiple kinematic models. However, a BP-based track-
ing method using multiple kinematic models that con-
forms to the general IMM approach is presented in [11].
Therefore, we also evaluate and compare the perfor-
mance of the BP-PF+AIS method described in [8], [9],
properly extended to exploit multiple kinematic mod-
els as proposed in [11]; we refer to this version as BP-
PF+AIS+IMMmethod.Wewill demonstrate that while
the BP-PF+AIS and BP-PF+AIS+IMM methods have
performance advantages in the case of closely spaced
targets, the VIMMJIPDA+AIS method performs bet-
ter when the targets are well-separated and when they
perform sharp maneuvers.

The remainder of this paper is organized as fol-
lows: Section II provides a brief description of the VIM-
MJIPDA, VIMMJIPDA+AIS, BP-PF+AIS, and BP-
PF+AIS+IMMmethods.Section III presents the results
of an experimental comparison of these methods con-
ducted on two simulated scenarios, while in Section IV
the performance is compared on a real dataset.Conclud-
ing remarks are provided in Section V.

II. BRIEF DESCRIPTION OF THE COMPARED
METHODS

The VIMMJIPDA method, derived in [2] as a
special case of the Poisson multi-Bernoulli filter, is a
variation of the JIPDA filter for multitarget tracking
that includes multiple kinematic models and a visibil-
ity state, and uses hypothesis enumeration to model
the target-measurement data association. Specifically, a
single-linkage clustering strategy is used to group targets
that sharemeasurements.Then, for groups with less than
four targets or less than two measurements, brute-force
hypothesis enumeration is performed, whereas Murty’s
algorithm [12] with a maximum of eight hypotheses
is used for all other groups. The VIMMJIPDA+AIS
method proposed in [1] builds upon [2] and incorpo-
rates target-provided measurements. One important
technical detail that enables this is to model target birth
as a marked Poisson point process, where the marks
are constituted by the unique codes identifying the
targets.

The BP-based multitarget tracking methods are de-
scribed in [13] and references therein. The principle be-
hind these methods is to exploit the statistical inde-
pendence of certain random variables describing the
tracking problem, and to represent these independence
relationships by means of a factor graph. Then, us-
ing a message-passing algorithm—i.e., the sum-product
algorithm—on this factor graph enables an intuitive and
computationally efficient approximation of theBayesian
inference needed for target detection and estimation.
Fundamental for the derivation of these methods is to
properly model and formulate the target-measurement
data association. An iterative BP-based algorithm for
data association with remarkable performance in terms
of convergence and accuracy was proposed in [14]. A
common approach to implementing BP-based track-
ing algorithms for general nonlinear/non-Gaussian kine-
matic and measurement models is to resort to a PF, as
described in [15].

Building upon [13]–[15], a suite of BP-PF methods
has been developed recently. The BP-PF+AIS method
proposed in [9] extends the previous works to incor-
porate heterogeneous data. This method fuses sensor
measurements and target-provided measurements, e.g.,
AIS data, by establishing an appropriate likelihood for
target-provided measurements and a statistical model
for data association. A self-tuning BP-PF method that
continuously adapts to time-varying system models is
proposed in [11]. This method infers and adapts to an
unknown detection probability of the sensors and em-
ploys multiple kinematic models in line with the IMM
framework. Similar to a construction kit system, BP-
based algorithm parts can be combined in a modular
manner to achieve desired functionalities and prop-
erties. For example, the BP-PF+AIS+IMM method,
which is used for comparison in this paper, combines
the IMM framework proposed in [11] with the ability
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Figure 1. A realization of the simulated scenario considered in [1,
Sec. VIII-A], with PD = 0.5. The black dots indicate the final positions
of the trajectories.

to fuse sensor measurements and target-provided
measurements as established in [9].

III. SIMULATION RESULTS

In this section, we present simulation results for the
scenarios considered in [1, Sec. VIII-A] and [9, Sec.
VI-A].

A. Scenario Considered in [1]

The simulated scenario considered in [1,Sec.VIII-A]
employs a single radar sensor located at [0, 0]t that sur-
veys a circular area of radius 500mwith a time scan dura-
tion of 2.5 s. Five targets appear at the edge of that area,
three at time t = 0 s and two at time t = 10 s, initially
moving with a velocity of 3.75m/s.The trajectories of the
targets are generated according to a nearly constant ve-
locity (NCV) kinematic model [16, Sec. 6.2.2] with driv-
ing noise variance set to 0.12 m2 s−3, and with occasional
maneuvers according to a coordinated turn (CT) kine-
matic model [16, Sec. 4.2.2]. The radar detects a target
with probability PD and generates range-bearing mea-
surements; the measurement noise is a two-dimensional
(2D) zero-mean Gaussian random vector with covari-
ance diag(82 m2, 12 deg2). The number of false alarms
is Poisson distributed with mean 2. All targets provide
AIS measurements containing their unique identifying
code as well as their 2D Cartesian position and ve-
locity. The number of AIS measurements provided by
a target during each time scan is Poisson distributed
with mean 0.5. The AIS measurement noise for posi-
tion and velocity is a 4D zero-mean Gaussian random
vector with covariance diag(32 m2, 32 m2, 0.12 m2/s2,
0.12 m2/s2). Figure 1 shows a realization of the scenario

Figure 2. Time-averaged mean GOSPA error versus detection prob-
ability PD of the radar sensor for the simulated scenario considered
in [1, Sec. VIII-A].

with the trajectories of the five targets, the 2D posi-
tion component of the AISmeasurements, and the radar
measurements generated with PD = 0.5.

In Figures 2 and 3, we demonstrate and com-
pare the performance of the radar-only method (i.e.,
VIMMJIPDA [2]), the sequential method proposed
in [1] (i.e., VIMMJIPDA+AIS), the original imple-
mentation of the BP-PF+AIS method [8], [9], and the
BP-PF+AIS+IMM method. The performance of these
methods is measured by the mean generalized optimal
sub-pattern assignment (GOSPA) error [17] of order 2
with a cutoff parameter 200 m, averaged over 100 sim-
ulation runs. The mean GOSPA error accounts for lo-
calization errors for correctly confirmed targets as well
as for errors due to missed and false targets. For the
VIMMJIPDA and VIMMJIPDA+AIS methods, we use
the parameters reported in [1, Tab. III]. Where appli-
cable, the same parameters are also used for the BP-
PF+AIS and BP-PF+AIS+IMMmethods (e.g., the sur-
vival probability), while parameters specifically related
to the BP-based methods (e.g., the number of poten-
tial targets) are set as in [9]. The VIMMJIPDA and
VIMMJIPDA+AIS methods use three models to char-
acterize the kinematics of the targets, namely, two NCV
models with different driving noise variances and one
CT model. The BP-PF+AIS method uses a single NCV
model; therefore, to account for potential maneuvers,
the driving noise variance of the NCV model for the
BP-PF+AIS method is set to 0.82 m2 s−3. Finally, the
BP-PF+AIS+IMMmethod uses two NCV models with
driving noise variance 0.052 m2 s−3 and 0.82 m2 s−3. Dif-
ferently from the NCV model, the CT model does not
allow a simple closed-form calculation of the likelihood
for the target-provided measurements specified in the
supplementary material of [9]. Developing a tractable
implementation of this likelihood is outside the scope of
this paper, and for this reason, the BP-PF+AIS+IMM
method does not employ a CT model.

Figure 2 shows the time-averaged mean GOSPA er-
ror when the detection probability PD of the radar sen-
sor is varied from 0.50 to 0.99. It can be seen that
the VIMMJIPDA+AIS method performs better than
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Figure 3. Mean GOSPA error versus time for the simulated scenario
considered in [1, Sec. VIII-A] with PD = 0.9.

both the BP-PF+AIS and BP-PF+AIS+IMMmethods.
Furthermore, the use of multiple NCV models within
the BP-PF+AIS method offers only a marginal im-
provement. The difference in performance between the
VIMMJIPDA+AIS method and the BP-PF+AIS and
BP-PF+AIS+IMM methods can be explained by the
fact that the VIMMJIPDA+AIS method uses also a CT
model to better track maneuvering targets, and also by
the fact that the BP-PF+AIS and BP-PF+AIS+IMM
methods create a larger number of false tracks. How-
ever, differently from the results reported in [1], the
time-averaged mean GOSPA error of the BP-PF+AIS
method is lower than that of the VIMMJIPDA method.

Figure 3 shows the mean GOSPA error versus time
for PD = 0.9. Again differently from the results re-
ported in [1], both the VIMMJIPDA+AIS method
and the BP-PF+AIS and BP-PF+AIS+IMM methods
correctly initialize the targets, as is demonstrated by
their similar mean GOSPA errors at times t = 0 s
and t = 10 s, i.e., when the targets appear. The
slightly lower mean GOSPA error of the VIMMJIPDA
+AIS method relative to the BP-PF+AIS and BP-
PF+AIS+IMM methods can again be explained by
the fact that the VIMMJIPDA+AIS method uses an
additional CT model that allows it to maintain track
continuity when targets maneuver and by the larger
number of false tracks created by the BP-PF+AIS
and BP-PF+AIS+IMM methods. This is confirmed by
Table I, which reports the individual costs constitut-
ing the mean GOSPA error (averaged over time), i.e.,
the localization cost for correctly confirmed targets and

Table I
Time-Averaged Individual Costs Constituting the Mean GOSPA

Error (in Meter) for the Simulated Scenario Considered in
[1, Sec. VIII-A] with PD = 0.9.

Localization False Missed

VIMMJIPDA+AIS 12.3 0.3 12.7
BP-PF+AIS 12.6 0.8 16.9
BP-PF+AIS+IMM 11.2 1.6 17.5

Bold font highlights the lowest value in each column.

Table II
Average Computation Times (in Second) per Time Scan for the

Simulated Scenario Considered in [1, Sec. VIII-A].

PD
0.50 0.60 0.70 0.80 0.90 0.99

VIMMJIPDA 0.32 0.31 0.28 0.28 0.25 0.26
VIMMJIPDA+AIS 0.79 0.70 0.58 0.57 0.45 0.46
BP-PF+AIS 0.20 0.19 0.20 0.21 0.21 0.21
BP-PF+AIS+IMM 0.55 0.53 0.56 0.56 0.56 0.56

Bold font highlights the lowest value in each column.

the costs for missed and false targets. The larger num-
ber of false tracks created by the BP-PF+AIS and BP-
PF+AIS+IMM methods is mainly due to the use of
the heuristic described in [15] to model the generation
of new targets, which was later superseded by the fully
Bayesian BP-based tracking method proposed in [13].

Finally, Table II presents a comparison between the
average computation times per time scan for all the
methods. This comparison shows that the BP-PF+AIS
method is the fastest method, even faster than the orig-
inal VIMMJIPDA method that does not process the
target-provided measurements. However, definite con-
clusions cannot be drawn from this analysis, given the
different implementations, the different number of kine-
matic models used, and the different programming lan-
guages employed.

B. Scenario Considered in [9]

Next,we present results for a simulated scenario that
is similar to the one considered in [9, Sec. VI-A]. Our
scenario consists of nine targets that are moving with a
constant velocity of 4 m/s. The starting points of the tar-
get trajectories are equally spaced on a circle with cen-
ter [0, 0]t and a radius of 4 km. The target trajectories
and the radar sensor are depicted in Figure 4.Unlike the
scenario considered in the previous subsection, here the
trajectories are deterministic—thus, they are equal for
all simulation runs—and approximately cross each other

Figure 4. Simulated scenario considered in [9, Sec. VI-A]. The star
marks the position of the radar sensor, and the dot indicates the final
position of the highlighted trajectory.The other trajectories are rotated
(by multiples of 40◦) versions of the highlighted one.
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Figure 5. Mean GOSPA-T error versus time for the simulated sce-
nario considered in [9, Sec. VI-A].

in [0, 0]t. Five targets appear at t = 0 s and do not dis-
appear, and the other four targets appear at t = 40 s
and disappear at about t = 32 min. Six randomly se-
lected targets provide AIS measurements between t =
1.5 min and t = 31.5 min. The number of AIS mea-
surements provided by a target during each time scan
is Poisson distributed with mean 0.5 for three of the six
targets and mean 1 for the other three targets. The time
scan duration is set to 10 s. The AIS measurement noise
is modeled as before. The radar detects a target with
probability PD = 0.5, and it generates range-bearing
measurements with a 2D zero-mean Gaussian measure-
ment noise with covariance diag(2502 m2, 2.562 deg2).
The number of false alarms is Poisson distributed with
mean 2.

For this scenario, both the BP-PF+AIS and
VIMMJIPDA+AIS methods use a single NCV model
with driving noise variance set to 0.152 m2 s−3. The
parameters for the BP-PF+AIS method are set as
in [9]. For the VIMMJIPDA+AIS method, we use the
parameters reported in [1, Tab. III] with the exception
of the clutter density set to 1.7 × 10−9 m−2, the unknown
target rate set to 10−10 m−2, and the parameters re-
lated to the radar measurement noise, that is, the range
measurement variance set to 2502 m2 and the bearing
measurement variance set to 2.562 deg2.

As previously done in [9], we compare the
VIMMJIPDA+AIS and BP-PF+AIS methods in terms
of the mean GOSPA error for trajectories (GOSPA-
T) [18] of order 2 and with a cutoff parameter of 500 m,
averaged over 100 simulation runs. Compared to the
GOSPAerror, theGOSPA-T error additionally accounts
for track switches by adding a switching penalty of 125m.
One can see in Figure 5 that the VIMMJIPDA+AIS
method outperforms the BP-PF+AIS method during
approximately the first half of the simulation, that is,
where the targets are well-separated. As the targets get
closer, the difference between the GOSPA-T errors of
the two methods becomes less significant. From minute
24, after the targets crossed their paths, the BP-PF+AIS
method outperforms the VIMMJIPDA+AIS method.
This is due to the inability of the VIMMJIPDA+AIS
method to continue tracking some of the targets after

Table III
Time-Averaged Individual Costs Constituting the Mean GOSPA-T
Error (in Meter) for the Simulated Scenario Considered in [9].

Localization False Missed Switch

VIMMJIPDA+AIS 249.9 138.3 532.3 9.5
BP-PF+AIS 325.0 271.7 394.8 10.5

Bold font highlights the lowest value in each column.

they crossed their paths, as demonstrated by the higher
time-averaged missed cost component of the mean
GOSPA-T error shown in Table III. On the other hand,
the time-averaged localization and false costs of the
VIMMJIPDA+AIS method are lower than those of
the BP-PF+AIS method. In terms of average compu-
tation time, the BP-PF+AIS method is faster than the
VIMMJIPDA+AIS method: it requires 0.61 s to pro-
cess each time scan, whereas the VIMMJIPDA+AIS
method requires 0.81 s.

IV. RESULTS FOR REAL DATA

Finally, we assess and compare the performance
of the VIMMJIPDA, VIMMJIPDA+AIS, and BP-
PF+AIS methods for a real dataset that was acquired
as part of the Autosea project [7]. The scenario now
consists of a radar sensor mounted onboard a semi-
autonomous surface craft and four unknown targets:
a 30-m-long slow-moving vessel consistently provid-
ing AIS measurements and three fast-moving rigid-
hull inflatable boats (RHIBs), one of which provides
a single AIS measurement. The VIMMJIPDA and
VIMMJIPDA+AIS methods employ three kinematic
models as in [1]—twoNCVmodels and oneCTmodel—
and use the parameters reported in [1, Tab. III]. The BP-
PF+AIS method uses a single NCV model with driving
noise variance set to 1.72 m2 s−3, which is higher than
the driving noise variances used for the VIMMJIPDA
and VIMMJIPDA+AIS methods, and also noticeably
higher than the driving noise variance used for the BP-
PF+AIS method in [1]. Results obtained with the BP-
PF+AIS+IMM method using two NCV models are not
reported because they are equivalent to those obtained
with the BP-PF+AIS method.

Figure 6 shows the trajectories estimated by the three
methods as colored solid lines.The semiautonomous sur-
face craft is sailing from north to south, and its tra-
jectory, depicted as a gray solid line, is known. The
unknown targets are traveling from south to north.
The ground-truth trajectory of the slow-moving ves-
sel, obtained by connecting its AIS measurements, is
also depicted as a red dashed line; the ground-truth
trajectories of the three fast-moving RHIBs are not
available. Differently from the results reported in [1],
Figure 6 shows that the BP-PF+AIS method performs
better than the VIMMJIPDAmethod, which loses track
of one of the three RHIBs when their paths cross, and
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Figure 6. Trajectories estimated by (a) the VIMMJIPDA method, (b) the VIMMJIPDA+AIS method, and (c) the BP-PF+AIS method using
a real dataset acquired as part of the Autosea project [7]. The estimated trajectories are depicted in orange, yellow, purple, and green, with their
final positions indicated by large dots. The transparency of the tracks is related to their existence probability: lighter (darker) colors correspond
to lower (higher) existence probabilities. The red dashed line indicates the ground-truth trajectory of the slow-moving vessel. The gray line
represents the known trajectory of the radar sensor. The gray/black dots and crosses indicate the radar and AIS measurements, respectively;
the measurements become darker as time passes by. The blue line in the top-right corner of the rightmost panel is a false track created by the
BP-PF+AIS method.

performs almost identically to the VIMMJIPDA+AIS
method. Despite using only a single NCV model, the
BP-PF+AIS method is able to estimate the trajecto-
ries of all the targets with high accuracy. The draw-
backs of using a higher driving noise variance than the
driving noise variances used for the VIMMJIPDA and
VIMMJIPDA+AIS methods and for the BP-PF+AIS
method in [1] are manifested by the fact that the es-
timated trajectory for the slow-moving vessel exhibits
abrupt changes of direction, and that a false track
is created in the top-right corner of the considered
area.

V. CONCLUSION

Recently, an extension of the VIMMJIPDA method
that is able to include target-provided measurements
was proposed in [1]. The effectiveness of this approach
was validated in [1] through a comparison with the
BP-PF+AIS method presented in [8], [9], whose code
is not publicly available. In this paper, we presented
the results of an experimental comparison using the
implementation of the BP-PF+AIS method originally
used in [8], [9], as well as the BP-PF+AIS+IMM
method from [11]. Simulation results showed that
the VIMMJIPDA+AIS method outperforms the BP-
PF+AIS and BP-PF+AIS+IMMmethods when the tar-
gets are well-separated, whereas the BP-PF+AIS and
BP-PF+AIS+IMM methods have performance advan-
tages in the case of closely spaced targets. The reason
why the VIMMJIPDA+AIS method performs worse in

the latter case is likely the limited performance of the
data association scheme based on Murty’s algorithm,
which struggles when targets are closely spaced. Im-
provements to the VIMMJIPDA+AIS method can be
obtained by resorting to the variational approximation
method presented in [19].However,due to its use of aCT
kinematic model, the VIMMJIPDA+AIS method gen-
erally providesmore accurate estimates when the targets
perform sharp maneuvers. On the other hand, the BP-
based data association algorithm used within the BP-
PF+AIS and BP-PF+AIS+IMMmethods tends to pro-
duce better results in challenging tracking environments
with tighter target spacings [14]. Finally, results obtained
with a real dataset showed that the BP-PF+AISmethod
using a singleNCVkinematicmodel whose driving noise
parameter is sufficiently high can track the agile RHIBs
with performance comparable to that obtained with the
VIMMJIPDA +AIS method.
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Data Fusion for Optimal
Condition-Based Aircraft Fleet
Maintenance With Predictive
Analytics

ZHENGYANG FAN
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Maintaining and deploying a fleet of aircraft with limited re-

sources and various mission requirements is both immensely challeng-

ing and of primary importance. Traditional preventive maintenance

methods are static and inflexible and are not equipped to consider

the complex dynamics of aircraft (e.g., wear and age), which may lead

to low fleet availability and high maintenance costs. In this paper, we

propose an integrated learn-then-optimize framework for condition-

based predictive maintenance scheduling to support daily flight and

maintenance planning by fusing data from multiple onboard sensors.

The paradigm first predicts the remaining useful life for components

of aircraft by using deep learning techniques, then models the fleet-

level optimization as a constrained mixed-integer programming prob-

lem that captures different failure modes of aircraft and the available

maintenance facilities. We also propose valid inequalities to improve

the computational efficiency of the optimization model. Finally, we

conduct a series of simulated experiments to validate the performance

of the proposed predictive maintenance model. The numerical results

show that the predictive maintenance model outperforms the tradi-

tional preventive maintenance model with respect to the mission ac-

complishment rate, aircraft availability rate, and cost effectiveness.

I. INTRODUCTION AND RELATED WORK

Flight and maintenance planning (FMP) for military
aircraft aims to identify optimal scheduling for a given
fleet by (1) determining which aircraft are available to
fly and for what duration, and (2) if and when to conduct
maintenance on grounded aircraft. FMP aims to accom-
plish these mission tasks efficiently while also keeping
operational costs at aminimum.FMP plays a critical role
in guaranteeing the safety and reliability (e.g.,fleet readi-
ness rate and mission accomplishment rate) of military
or commercial airlines.

Modern surface and aviation systems are designed
with an ever-increasing level of automation and ad-
vanced machinery that include state-of-the-art sensors
that monitor vital aircraft, ship, and auxiliary system
functions.New tools and technologies are needed to aug-
ment current onboard condition monitoring and main-
tenance processes, improve system availability, increase
operational readiness, and reduce life cycle costs. Along
with the development of Industrial 4.0, which integrates
sensors, software, and intelligent control to improve in-
dustrial processes, aircraft maintenance is transitioning
from more traditional processes of corrective and pre-
ventive maintenance to a data-driven, predictive main-
tenance paradigm. While there have been significant
strides made in utilizing machine learning (ML) and
augmented intelligence (AI) for predictivemaintenance,
there is still a need to develop new tools that can produce
more efficient and accurate condition-based predictive
maintenance (CBPM) decisions [39]. Predictive mainte-
nance involves analyzing machine data collected from
various monitoring sensors, such as thermal, acoustic, vi-
bration,pressure,and temperature, to generatemeaning-
ful insights about the machine’s state, including failure
classification, remaining useful life (RUL), and time to
failure (TTF) [37]. The ultimate objective is to schedule
proactive maintenance more accurately, enhance readi-
ness, and improve efficiency in the logistics and sup-
ply chain. Such capability becomes especially crucial for
mission-critical systems, ensuring sustained combat op-
erations and readiness while minimizing costs and un-
planned downtime.

The predictive maintenance approach fuses the data
from on-board sensors to monitor the health condi-
tion of aircraft components to predict RUL prognos-
tics of system and identify anomalous behavior, and
thus turn equipment sensor data into meaningful, ac-
tionable insights for proactive maintenance in the antic-
ipation of failure [39]. There are two main challenges in
RUL-based predictive maintenance and flight schedul-
ing problems. The first challenge is how to accurately
predict the RUL prognostics for system components
by exploiting the data from multiple sensors. The sec-
ond challenge is the integration of RUL prognostics
into FMP,considering the workforce capacity (e.g., avail-
ability of workstations and technicians to repair the
components), flight mission requirements (e.g., type and
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number of aircraft required to conduct different mis-
sions), and system reliability requirements.

For RUL prediction, most existing studies fall into
three categories [33]: statistical-based models, conven-
tional MLmodels, and deep learning models. Statistical-
based models are built by fitting a probabilistic model to
data by assuming that the degradation of system com-
ponents over time can be characterized via an appropri-
ate parametric function or a specified stochastic process
model. For example, the Wiener process has been suc-
cessfully employed to capture the degradation of com-
ponents in bridge beams [31], thrust ball bearings [30],
and micro-electron mechanical systems [35]. Gaussian
process regression model is used to predict RUL prog-
nostics of battery health [23] and slow-speed bearings
[1]. The conventional ML algorithms, such as support
vector machines, tree-based methods, and neural net-
works, have been extensively used in predictive mainte-
nance in the past decades. For example, [28] developed a
support vector regressionmodel with amulti-class solver
to identify various faulty patterns in rotating machines.
Reference [17] constructed a random forest regression
model to predict the RUL of spur gears. More recently,
with the expansion of big data techniques, the popularity
of deep learning algorithms for predictive maintenance
has noticeably increased. Reference [12] developed re-
current neural networks (RNNs) for RUL prediction
of bearings. Reference [34] designed a double convo-
lutional neural network (CNN) architecture to predict
RUL using time-series vibration signals. Reference [38]
employed long short-term memory (LSTM) RNN to
learn the long-term dependencies among degraded ca-
pacities and predict theRULof lithium-ion batteries.We
refer interested readers to [2] and [4] for a comprehen-
sive survey of ML approaches, and to [27], particularly
for deep learning approaches in predictive maintenance.

Numerous efforts have also been devoted to military
aircraft fleet scheduling optimization. From the military
perspective, one major concern in this problem is oper-
ational readiness [21], [24]. Reference [24] formulated a
mixed-integer programming (MIP) model to maximize
fleet availability under skilled workforce constraints.
Themodel admits a network flow interpretation and can
be solved efficiently by the branch-and-bound method.
Reference [14] proposed a multiobjective MIP model to
maximize fleet availability. To further improve the com-
putational efficiency, [16] and [15] extended the work of
[3] and developed heuristic algorithms to solve large-
scale problem instances. Instead of directly maximizing
fleet availability, [19] and [3] minimized the maximum
number of aircraft in maintenance to be greater than
the number of available maintenance spaces over the
planning horizon. [21] introduced an MIP model for
long-term planning of military aircraft by considering
type-D heavy maintenance. Another major challenge
for the FMP problem is computational efficiency. Some
heuristic algorithms have been proposed to solve large-
scale problem instances, for example, [8], [15], [16]. To

obtain exact solutions with computational efficiency, [9]
proposed an iterative algorithm that cuts off infeasible
relaxation solutions via special valid inequalities. Ref-
erence [10] modify the classical ε-constraint method to
solve a biobjective quadratic program. More recently,
[22] used ML models to predict the characteristics of
optimal solutions, and added these characteristics to the
original formulations to shrink solution space.

Though RUL prediction and maintenance schedul-
ing optimization have received a considerable amount
of attention from their own domains, very few studies
have developed RUL prognostics and subsequently in-
tegrated the predicted RUL into maintenance schedul-
ing. Reference [20] built an LSTM neural network to
predict multiclass RUL prognostics for turbofan en-
gines of aircraft, which are used subsequently to order
and manage replacement spare parts. Reference [6] de-
veloped a particle filtering algorithm for RUL predic-
tion of aircraft cooling units, and the predicted RUL
was then passed to a linear programming optimization
model to optimally schedule a fleet of aircraft mainte-
nance considering spare parts.More recently, in thework
of [18], the authors considered the maintenance of air-
craft brakes using a threshold-basedmaintenance policy,
i.e., once the predicted RUL falls below a user-defined
threshold, the brake is replaced. They solved a multi-
objective scheduling optimization model that seeks a
trade-off between the minimization of flight delays, the
number of unscheduled maintenance tasks, and the to-
tal number of maintenance tasks. Using predicted RUL
as model coefficients, [32] proposed a multiobjective ge-
netic algorithm for maintenance scheduling for a vehi-
cle fleet by minimizing total cost, workload, and the ex-
pected number of failures and total changes in main-
tenance schedule. Most recently, [7] studied the alarm-
based maintenance planning with imperfect RUL pre-
dictions for a fleet of vehicles by considering estimation
uncertainties.

In this work, we propose an integrated learn-then-
optimize framework for flight andmaintenance schedul-
ing with RUL predictions to maximize fleet-level op-
erational availability and minimize costs. The proposed
framework first employs advanced analytics from multi-
ple onboard sensory data to draw meaningful insights to
predict machine states and proactively schedule main-
tenance and flights to minimize costs and unplanned
downtime. More specifically, we first develop a bidirec-
tional long short-term memory (biLSTM) deep learning
model to combine the time-series monitoring data for
predicting the RUL of aircraft system components, and
subsequently incorporate the RUL into an optimization
model to determine the optimal fleet-level maintenance
policies and flight scheduling by considering practical
constraints such as workforce capacity and mission re-
quirements.To the best of our knowledge, this paper rep-
resents the first study that explicitly considers three el-
ements, i.e., (1) deep learning with multisensor data for
RUL prediction, (2) predictive maintenance scheduling,
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and (3) flight mission planning into an integrated learn-
then-optimize framework. Our work differs from previ-
ous research in the sense that previous studies only fo-
cused on RUL prediction and predictive maintenance
scheduling, while our proposed framework also takes
into account the flight mission planning decision, work-
force capacity constraints (e.g., different types and num-
ber of technicians required to conduct maintenance for
different components of an aircraft system), and mission
requirements (e.g., type and number of aircraft required
to conduct specific missions), which are of particular im-
portance to military applications.

The remainder of the paper is structured as follows.
In Section II, we discuss the problem description and
learn-then-optimize framework. Section III briefly in-
troduces bidirectional LSTM and discusses the RUL
prediction using multiple commercial modular aero-
propulsion system simulation (C-MAPSS) engine sen-
sory data. Section IV presents the MIP formulation
for the FMP optimization model, followed by a set of
valid inequalities to boost the computational speed.Var-
ious numerical experiments are conducted in Section V
to demonstrate the superiority of the proposed predic-
tive maintenance model over the traditional preventive
maintenance method. In Section VI, we conclude our
work.

II. PROBLEM DESCRIPTION

Heavy equipment maintenance facilities such as air-
craft service centers face the challenge of maximizing
readiness while minimizing the costs of various main-
tenance tasks, subject to the availability constraints of
specialty technicians, workstations, spare inventory, and
mission requirements. FMP require making decisions
about which aircraft should perform amission andwhich
aircraft should enter maintenance, while optimizing effi-
ciency with limited resources, including technical work-
force and maintenance workstations. Traditional main-
tenance scheduling is done via preventive maintenance,
i.e., a fixed schedule to maintain each aircraft period-
ically to prevent failure. The proposed approach is to
replace the preventive maintenance with a predictive
maintenance strategy where the machinery conditions
(such as RUL) are considered in order to proactively
schedule themaintenance.The proposed approach is de-
signedwithin a learn-then-optimize framework, inwhich
we first apply deep learning to analyze the time-series
monitoring sensory data for predicting equipment RUL
and subsequently incorporate it into an optimization for-
mulation to determine optimal fleet-level maintenance
policies. In this section,we briefly introduce the elements
of the proposed learn-then-optimize framework, cover-
ing the description of FMP problem setting, multicom-
ponent aircraft system, and workforce capacity consid-
eration.

A. Problem Setting for FMP

We consider the problem of scheduling a set of pre-
dictive maintenance tasks with a given number of avail-
able maintenance stations and workforce capacity con-
straints. For each type of maintenance task, the skills
required and the number of technicians with the skills
needed to work on the task are assumed to be known
(similar setting used in [24]). The tasks are to be per-
formed at the available workstations by the needed
number of technicians with a specific skill or multiple
skills. All of the skilled technicians required for the set
of tasks to be performed must be available in the given
time frame.

The operational goal is to maximize the readiness
of a fleet of aircraft with a certain mission requirement
given the constraints. The key is to ensure sufficient
availability of aircraft to meet the operational demands,
which refer to all the flight activities (namely, waves or
sorties) that are planned in a given period (say, 24 h).
A mission flight of a single aircraft is called a sortie.
More than one aircraft flying together is called a wave or
mission.

Predictive planning is assumed to be executed daily
based on the estimated RUL of each component for the
aircraft. The 24-h planning horizon is assumed to begin
at 6:00 pm (see [24]). The objective is to determine the
schedule (i.e., the sequence in which the maintenance
tasks are executed) with the maximum availability-to-
cost ratio. Note that the optimal solution to this prob-
lem will yield a maintenance schedule in which (a) all
mission tasks in the set will be performed as much as
possible, (b) the available workforce and workstations
will be utilized in an efficient manner, and (c) the mini-
mum possible time to perform maintenance will be de-
termined. Hence, a solution to this problem is critical to
reducing maintenance downtime and maximizing fleet
operational readiness.

B. Multicomponent Aircraft System and Workforce
Capacity

In this study, we consider the FMP problem with a
fleet of aircraft,where each aircraft has a systemofmulti-
ple repairable or replaceable components. Each aircraft
is assumed to be of a specific type that can perform des-
ignated mission tasks. Each component of aircraft is as-
sumed to fail independently of other components. Re-
pair or replacement maintenance is scheduled based not
only on the estimated RUL of this component in an-
ticipation of a failure but also on the task’s durational
requirements. For example, suppose that the threshold
value for triggering the replacement is when RUL re-
duces to 3 h. If a component has 4 h of RUL, then typ-
ically it will not be scheduled for maintenance and will
be allowed to take on a task. However, if a mission task
requires the flying duration to be 5 h, then this aircraft
cannot fulfill this requirement and must either undergo
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maintenance to replace the component or be assigned
to fly other missions. In this study, we assume each air-
craft has a multicomponent system, each component is
independent from the others, and each component re-
quires different technician specialties for repair or re-
placement.Generally, while flying is underway (and also
immediately before and after), technicians are divided
into three groups/specialties to perform the following
activities:

� Trade 1:Weapons and armament electrical (WP)
� Trade 2:Airframe mechanical, airframe electrical and
propulsion (AF)

� Trade 3: Avionics/electronics (AV)

During actual operations, each type of failure/
maintenance requires several types/trades of technicians
for service. For example, engine failure may require two
AF technicians and three AV technicians to perform the
repair, and radar failure may require one WP technician
and one AV technician for repair. The explicit incorpo-
ration of mission requirements (e.g., type of aircraft and
flying duration) as well as the workforce capacity (e.g.,
number and types of specialty technicians) increases the
practicability and complexity of the FMP problem sig-
nificantly.

III. DEEP LEARNING FOR RUL PREDICTION

The accurate prediction of RUL prognostics pro-
vides important input to the scheduling optimization
model. In this section,wewill showcase our study on how
to use LSTM deep learning approaches to predict RUL
using a C-MAPSS engine degradation dataset [25].

A. LSTM RNN

LSTM is one of the most widely used RNN archi-
tecture in time sequence ML modeling. It uses gates to
control information flow in the recurrent computations
and is excellent at holding long-term memories. Its gat-
ingmechanisms are ideally suitable formodeling thema-
chinery degradation process [37]. The original version of
LSTM was proposed in [13]. The popular Vanilla LSTM
was introduced in [11], where forget gate was added to
the LSTM architecture to improve the model. Figure 1
shows the vanilla LSTM cell [29]. LSTM memory cells
consist of different neural networks, which are called
gates. Gates are used to track the interactions between
thememory units, and to decide which data should be re-
membered or forgotten during the training process. The
input gate and output gate determine if the state mem-
ory cells can be modified by the input signal. The forget
gate controls whether or not to forget the previous status
of the signal.

Figure 1. A vanilla LSTM cell [29].

In the cell, the functional relationships for each com-
ponent are given as follows:

ft = σ
(
Wf · xt + Rf · ht−1 + b f

)
it = σ (Wi · xt + Ri · ht−1 + bi)

ot = σ (Wo · xt + Ro · ht−1 + bo)

C̃t = ϕ (Wc · xt + Rc · ht−1 + bc)

Ct = ft ·Ct−1 + it · C̃t
ht = ot · φ (Ct ) ,

(1)

where ft , it , and ot stand for forget gate, input gate, and
output gate, respectively. Forget gate removes historical
information fromCt−1; input and output gates control to
update and output which part of information. σ , ϕ, and
φ are nonlinear activation functions.

In order to obtain smooth states estimation of LSTM
networks, bidirectional LSTM was proposed in [26],
where a backward path is added to smooth out the pre-
diction. Bidirectional LSTM thus can utilize the infor-
mation in both forward and backward directions, which
makes it suitable for intermediate prediction. Figure 2
describes the architecture of bidirectional LSTM.

Formulas for each component in backward path are
almost identical to the forward LSTM model, which are

Figure 2. Bidirectional LSTM architecture.
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Figure 3. Turbofan engine model [37].

given below:

f ′
t = σ

(
W ′

f · x′
t + R′

f · h′
t−1 + b′

f

)
i′t = σ

(
W ′

i · x′
t + R′

i · h′
t−1 + b′

i

)
o′
t = σ (W ′

o · x′
t + R′

o · ht−1 + b′
o)

C̃′
t = ϕ

(
W ′

c · x′
t + R′

c · h′
t−1 + b′

c

)
C′
t = f ′

t ·C′
t−1 + i′t · C̃′

t

h′
t = o′

t · φ (C′
t ) ,

(2)

where f ′
t , i

′
t , and o′

t denote forget gate, input gate, and
output gate, respectively (analogous to ft , it and ot as in
LSTM model).

Table I
C-MAPSS Monitoring Sensor Data

Symbol Description Units

T2 Total temperature at fan inlet R
T24 Total temperature at LPC outlet R
T30 Total temperature at HPC outlet R
T50 Total temperature at LPT outlet R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Ne Physical core speed rpm
epr Engine pressure ratio (P50/P2) –
Ps30 Static pressure at HPC outlet psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRe Corrected core speed rpm
BPR Bypass ratio –
farB Burner fuel-air ratio –
htBleed Bleed Enthalpy –
Nf-dmd Demanded fan speed rpm
PCNfR-dmd Demanded corrected fan speed rpm
W31 HPT coolant bleed lbm/s
W32 LPT coolant bleed lbm/s

B. RUL Prognostics Prediction for Aircraft Engines

C-MAPSS is a tool to simulate performance of the
turbofan engine, which is built under MATLAB and
Simulink environment (see [25] for details). As shown

Figure 4. Run-to-failure sensor data examples.
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in Fig. 3 (adapted from [37]), a turbofan engine typically
consists of fivemodules: fan, low-pressure turbine (LPT),
high-pressure turbine (HPT), low-pressure compressor
(LPC) and high-pressure compressor (HPC).

The C-MAPSS dataset [25] includes hundreds of en-
gine profiles with 21 onboard sensors monitoring the en-
gine’s health status (see Table I for descriptions of the
sensors).

Three operation condition indicators (altitude,Mach
numbers, and throttle resolver angle) are included as
part of the observations as well. As an example, the
C-MAPSS FD001 data set includes 200 engine profiles,
100 of which constitute a training set, where the his-
torical run-to-failure measurement records are included.
Figure 4 shows a run-to-failure data trajectories exam-
ple from the 21 sensors under a specific operating condi-
tion. In the remaining testing set, sensor measurements
are only recorded up to an early stage, and the goal is to
predict the remaining engine life.

C. LSTM Training and Testing

In order to train the LSTM model and predict RUL
given the temporal degradation process in time-series
data, we reshape input sensors’ readings into blocks of
size (30, 24), that is, a series of 30 consecutive sensor
measurements (21 sensors) together with the operating
condition indicator (3 indicators). For each input data
block, the output is the corresponding remaining life at
the last cycle in the time-series. To train a bidirectional
LSTMmodel, the objective function is defined as the em-
pirical mean squared error. Here, we select a two layer
bidirectional LSTM with 145 neurons for each forward
and backward layer in the network architecture. In the
learning process, we apply the stochastic gradient de-
scent (SGD) method with batch size 50 and learning
rate of 0.0015.We test the RUL prediction performance
with the C-MAPSS data. For example, Fig. 5 shows the
comparison of true RUL and predicted RUL for testing

dataset FD001. The root mean squared error (RMSE)
obtained after testing 100 engines was found to be 15.16
operational cycles. This signifies that the average pre-
diction error for the RUL of the engines is 15.16 op-
erational cycles. Given that these results align with the
best state-of-the-art algorithms’ performance [36], this
RMSE value is deemed a positive indicator of the pre-
dictive accuracy of our model. By fusing the 21 sensory
time-series data with the bidirectional LSTM, the re-
sulting RUL predictions are good indications of engine
health condition and will be used to determine the opti-
mal maintenance schedule.

IV. PREDICTIVE MAINTENANCE AND MISSION
SCHEDULING OPTIMIZATION

In this section, we first present our MIP formulation
for FMP optimization model in Section IV-A, then in
Section IV-B, we present two sets of valid inequalities
to further improve the computational efficiency.

A. Model Formulation

We introduce the notations used in the optimization
model in Table II.

With these notations, the objective of the optimiza-
tion model as defined in (3) is to maximize the normal-
ized availability.We define normalized availability as the
ratio of the weighted sum of available aircraft over the
total maintenance cost over the planning horizon,

max

∑T
t=1

∑K
k=1M

k
t ·

(∑Ak
i=1

(
1 − zkit

))
∑T

t=1

∑K
k=1

∑Ak
i=1

∑F
f=1 c

k
f x

k
it f

. (3)

The weight values indicate the relative importance of
mission in a particular operational cycle; thus, higher
weights are assigned to more critical missions. The de-
nominator represents the total maintenance cost in the
planning horizon. The optimal maintenance schedules

Figure 5. RUL prediction results on FD001 dataset.
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Table II
Notation

Sets:
T Planning horizon (t = 1, 2, ...,T )
K Type of aircraft (k = 1, 2, ...,K)
F Type of failure mode/component ( f = 1, 2, ...,F )
R Type of technicians (r = 1, 2, ...,R)
Parameters:
S Number of the maintenance station
Ak Number of type-k aircraft
Mk

t Number of required aircraft of type k conducting missions at time t
Dk
t Mission duration of aircraft type k at time t

Ikf r Number of technicians of trade r required to rectify the failure mode f for aircraft type k
Ek
fr Maintenance time of trade r required to rectify the failure mode f for aircraft type k

λr Number of technicians of trade r available at the initial period of the planning horizon
rki f Initial RUL for component f of aircraft i of type k
lkt f Duration of mission for component f of type k aircraft at time t
ckf Fixed charge cost for repairing component/failure mode f for one aircraft of type k
Ek
i0 f r Remaining maintenance time for trade r to repair aircraft i of type k

rkmax, f RUL for component f of aircraft type k after maintenance (i.e., the maximum RUL)
Decision Variables:

xkit f =
{
1 if aircraft i of type k enters maintenance station in time t to rectify failure mode f
0 otherwise

zkit f r =
{
1 if aircraft i of type k is in maintenance in time t to rectify failure mode f by trade r
0 otherwise

zkit f =
{
1 if aircraft i of type k is in maintenance in time t to rectify failure mode f
0 otherwise

zkit =
{
1 if aircraft i of type k is in maintenance in time t
0 otherwise

ykit =
{
1 if aircraft i of type k conducts mission in time t
0 otherwise

rkit f RUL of component/failure mode f for aircraft i of type k in time t

are to be obtained subject to a number of constraints,
as shown below.

Mission Requirement Constraint

Ak∑
i=1

ykit = Mk
t t ∈ T,k ∈ K. (4)

Constraint (4) enforces the demands of mission require-
ments to be satisfied for aircraft type k in each period t.
That is, the sum of all assigned missions needs to satisfy
the mission requirement.

RUL Dynamic Constraints

rki1 f = rki f ∀i ∈ I,k ∈ K, f ∈ F, (5)

rki,t+1, f ≤ rkit f − ykit · lkt f + rkmax,f · xkit f t = 1, ...,T − 1,

k ∈ K, i ∈ I, f ∈ F,

(6)

rki,t+1, f ≥ rkit f − ykit · lkt f t = 1, ...,T,k ∈ K, i ∈ I, f ∈ F,

(7)

rki,t+1, f ≤ rkmax,f t = 1, ...,T − 1,k ∈ K, i ∈ I, f ∈ F,

(8)

rki,t+1, f ≥ rkmax,f · xkit f t = 1, ...,T − 1, k ∈ K, i ∈ I, f ∈ F,

(9)

Constraints (5)–(9) model the behavior of RUL in fail-
ure mode f for aircraft i of type k at time t. In other
words, these constraints model the dynamics of com-
ponents’ RUL when a mission assignment or mainte-
nance activity is conducted. Note that our assumption
is that different components of an aircraft may exhibit
different rates of degradation when a mission is con-
ducted, resulting in varying reductions in the remain-
ing operational cycles for each component, thus leading
to different durations of missions for different compo-
nents. For instance, when an aircraft undertakes a mis-
sion with a duration of 2 h, its weapon-related compo-
nents may reduce their RUL by one operational cycle,
while electrical and propulsion components may reduce
their RUL by two operational cycles. However, in our
numerical experiment section, we’ve simplified this by
assuming a global reduction of RUL for all components,
implying that all components experience the same RUL
reduction.
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Maintenance State Dynamic Constraints

xkit f ≤ zki,t+y, f,r t = Ek
i0 f r + 1, ...,T − Ek

fr,

y = 1, ...,Ek
fr, i ∈ I,k ∈ K, r ∈ R, (10)

m · xkit f ≥ zki,t+y, f,r t = Ek
i0 f r + 1, ...,T − Ek

fr,

y = 1, ...,Ek
fr, i ∈ I,k ∈ K, r ∈ R,

(11)

xkit f + xki,t+y, f ≤ 1 t = Ek
i0 f r + 1, ...,T − Ek

fr,

y = 1, ...,Ek
fr, i ∈ I,k ∈ K, r ∈ R,

(12)

xkit f + xki,t+y, f ≤ 1 t = T − Ek
fr + 1, ...,T,

y = 1, ...,T − t, i ∈ I,k ∈ K, r ∈ R,

(13)

m · xkit f ≥ zki,t+y, f r t = T − Ek
fr + 1, ...,T,

y = 1, ...,T − t, i ∈ I,k ∈ K, r ∈ R,

(14)

xkit f + xki,t+y, f ≤ 1 t = T − Ek
fr + 1, ...,T,

y = 1, ...,T − t, i ∈ I,k ∈ K, r ∈ R,

(15)

zkit f r = 1 t = 1, ...,Ek
i0 f r, i ∈ I,

k ∈ K, r ∈ R, f ∈ F, (16)

xkit f + zkit f r ≤ 1 t = 1, ...,Ek
i0 f r, i ∈ I,

k ∈ K, r ∈ R, f ∈ F, (17)

zkit f ≥ zkit f r t = 1, ...,Ek
i0 f r, i ∈ I,k ∈ K, r ∈ R, f ∈ F,

(18)

zkit f ≤
R∑
r=1

zkit f r t ∈ T,k ∈ K, i ∈ I, f ∈ F, (19)

zkit ≥ zkit f t ∈ T,k ∈ K, i ∈ I, f ∈ F, (20)

zkit ≤
F∑
f=1

zkit f t ∈ T,k ∈ K, i ∈ I, (21)

zkit + ykit ≤ 1 t ∈ T,k ∈ K, i ∈ I. (22)

The maintenance state dynamic constraints are a set of
logic constraints: When an aircraft performs its mainte-
nance activity, it will remain in the maintenance state
and cannot participate in other activities, such as flight
missions. Constraints (10)–(17) model relationship be-
tween xkit f and z

k
it f r for different time segments. Specif-

ically, constraints (16) and (17) enforce that for aircraft
that do not complete maintenance during the previous
planning horizon (the previous day), they will stay in

maintenance and will not be available until maxr Ek
i0 f r.

Notice that constraints (10)–(17) consist of two parts:
The first part includes constraints (16) and (17), which
are meaningful when there are unfinished maintenance
left from the previous day, e.g., Ek

i0 f r > 0. These con-
straintsmodel the dynamics for the periods until the left-
over maintenance is completed. The second part, con-
straints (10)–(15),models the maintenance state dynam-
ics after the completion of unfinished maintenance from
the previous day. Constraints (18)–(21) impose relation-
ships among zkit f r, z

k
it f , z

k
it . For example, if, for some r,

zkit f r = 1, then, constraint (18) will ensure zkit f = 1, and
constraint (20) will force zkit = 1. That means, if some
trade r is working on an aircraft, then this aircraft is in
maintenance at time t. Constraint (22) states that if an
aircraft is in maintenance, it is not available for any mis-
sions at that time.

Resource and Mission Conflict Constraints

K∑
k=1

Ak∑
i=1

zkit ≤ S t ∈ T, (23)

K∑
k=1

Ak∑
i=1

F∑
f=1

zkit f r · Ikf r ≤ λr t ∈ T, r ∈ R, (24)

yki,t+y + ykit ≤ 1 t ∈ T,k ∈ K, i ∈ I, y = 1, ...,Dk
t , (25)

ykit + xki,t+y, f ≤ 1 t ∈ T,k ∈ K, i ∈ I, y = 1, ...,Dk
t . (26)

Constraints (23) and (24) are resource constraints: Con-
straint (23) requires that one can at most maintain S
(the number of maintenance stations we have) aircraft
simultaneously. Constraint (24) describes that the re-
quired number of maintenance technicians cannot ex-
ceed the number of available technicians. Constraint
(25) enforces that an aircraft can only conduct one mis-
sion at a time.Constraint (26) prevents an aircraft that is
in maintenance from conducting a mission.

B. Reformulation and Valid Inequality

1) Reformulation of Objective Function: Notice that
the objective function (3) is highly non-linear. We con-
vert it to a linear objective function via epigraphic refor-
mulation, namely,

max λ (27)

with a new constraint involving bilinear terms

λ

T∑
t=1

K∑
k=1

Ak∑
i=1

F∑
f=1

ckf · xkit f ≤
T∑
t=1

K∑
k=1

Mk
t ·

(
Ak∑
i=1

(
1 − zkit

))
.

Since bilinear programming problems are notoriously
difficult to solve in practice, by introducing several
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auxiliary variables and a number of constraints, we
further linearize the above bilinear constraint via
McCormick inequalities:

wk
i f t ≤ λ t = 1, ...,T,k ∈ K, i ∈ I, f ∈ F, (28)

wk
i f t ≤ m · xki f t t = 1, ...,T,k ∈ K, i ∈ I, f ∈ F, (29)

wk
i f t ≥ −m ·

(
1 − xki f t

)
+ λ t = 1, ...,T,k ∈ K,

i ∈ I, f ∈ F, (30)

T∑
t=1

K∑
k=1

Mk
t ·

(
Ak∑
i=1

(
1 − zkit

)) ≥
T∑
t=1

K∑
k=1

Ak∑
i=1

F∑
f=1

ckfw
k
it f .

(31)

Finally, with the transformed objective function (27)
and the constraints (4)–(26) and (28)–(31), we obtain a
mixed-integer linear programming formulation for our
CBPM scheduling problem, which can be solved effi-
ciently by using commercial optimization solvers like
CPLEX or GUROBI. Note that in reality, some of the
desired missions may not be fulfilled even when all air-
craft are in good condition. We therefore convert the
mission requirement constraint (4) into an inequality
constraint by allowing part of themissions to not be com-
pleted.

2) Valid Inequalities: Although the MIP formulation
proposed in Section III-A can be directly solved by using
commercial solvers such asGUROBI andCPLEX,it can
be time-consuming for some parameter instances.Based
on some preliminary computational experiments,we no-
ticed that solvers may not obtain optimal integer solu-
tions within a reasonable amount of time when mission
durations are small and mission requirements are dense
(always have mission during the day shift). We there-
fore developed two classes of valid inequalities to im-
prove computational efficiency. In order to derive valid
inequalities, we further assume that each component of
each aircraft only needs to bemaintained atmost once in
the planning horizon and that it is available for mission
assignment after the maintenance. This assumption is
not restrictive sincewe are planning over a daily horizon,
and we mainly focus on maintenance types such as line
maintenance or line-replaceable units (LRUs) replace-
ment. Before we formally describe the valid inequalities
for solving the proposedMIPmodel,we first review 0−1
knapsack set and cover inequality from integer program-
ming.

Given b > 0 and a j > 0 for j ∈ N := {1, 2, . . . ,n},
the 0 − 1 knapsack set is defined as

K :=
⎧⎨
⎩x ∈ {0, 1}n :

n∑
j=1

a jx j ≤ b

⎫⎬
⎭ .

A setC ⊆ N is called a cover if
∑

j∈C aj > b, and a cover
inequality corresponding to the coverC is given by∑

j∈C
xj ≤ |C| − 1, (32)

where |C| denotes the cardinality of set C. The cover
inequality (32) is a valid inequality for set K. Read-
ers are refereed to [5] for more details about knapsack
inequality.

Proposition 1. For each component of each aircraft of
each aircraft type, the inequality

∑
t∈C

ykit ≤ |C| − 1 +
c0−1∑
t=1

xkit f (33)

is valid for original MIP formulation described by con-
straints (4)–(26), where C is the cover of the following
knapsack constraint:

24∑
t=1

Dk
t y

k
it ≤ rki f , (34)

and c0 denotes the smallest element of cover C.

Proof.We will consider two cases:
Case-1.

∑c0−1
t=1 xkit f = 0: In this case, ith aircraft of

type k aircraft will not be maintained during time t = 1
to time t = c0 − 1. The inequality is reduced to cover
inequality ∑

t∈C
ykit ≤ |C| − 1,

which is valid since we cannot let the aircraft conduct all
missions at time t ∈ C without maintaining the aircraft
to increase its RUL rki f .

Case-2.
∑c0−1

t=1 xkit f = 1: In this case, the aircraft is
maintained at some time point between time t = 1 and
time t = c0 − 1. Then the inequality reduces to∑

t∈C
ykit ≤ |C|,

which is redundant since, by our assumption, the aircraft
can conduct any mission after the maintenance. �

Notice that we cannot identify all possible cover
inequalities in general, and a separation algorithm is
needed to find violated cover inequalities. In our case,
however, we can directly identify all cover inequalities
by enumeration since we only have 24 variables in knap-
sack constraint

24∑
t=1

Dk
t y

k
it ≤ rki f .

Also, the aircraft are usually scheduled during the day
shift (starts at 6:00 am and ends at 6:00 pm) [24];we thus
only need to identify all possible cover C of knapsack
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constraint
24∑
t=13

Dk
t y

k
it ≤ rki f .

This is because on the night shift, the mission dura-
tion parameter Dk

t will be 0. Therefore, for each com-
ponent of each aircraft (i.e., for each i,k, and f ), we only
need to enumerate 212 = 4096 cover inequalities. How-
ever, when the planning horizon is longer (e.g., more
than 24 h), enumerating all cover inequalities can be ex-
tremely time-consuming since the number of required
inequalities is exponential in the length of the planning
horizon. In our case, according to our numerical exper-
iment, it will take less than 30 s to find all covers when
we have a fleet of 12 aircraft with a planning horizon of
1 day.

The valid inequalities presented in Proposition 1
are usually not strong, hence insufficient to solve large-
scale practical problems. Our next result shows a way to
strengthen the valid inequalities in Proposition 1.

Proposition 2. For each component of each aircraft of
each aircraft type, the inequality

∑
t∈C

ykit +
∑
t∈C1

ykit ≤ |C| − 1 + (1 + |C1|)
c0−1∑
t=1

xkit f

is valid for original MIP formulation described by con-
straints (4)–(26), where C is the cover of the following
knapsack constraint

24∑
t=1

Dk
t y

k
it ≤ rki f ,

and c0 denotes the smallest element of cover C. C1 is de-
fined as

C1 := {t ′ : c1 + 1 ≤ t ′ ≤ 24,Dk
t ≥ max

t∈C
Dk
t },

where c1 denotes the largest element of cover C.

Proof. Similar to the proof of Proposition 1, we will con-
sider two cases:

Case-1.
∑c0−1

t=1 xkit f = 0: In this case, ith aircraft of
type k aircraft will not be maintained during time t = 1
to time t = c0 − 1. The inequality is reduced to cover
inequality ∑

t∈C
ykit +

∑
t∈C1

ykit ≤ |C| − 1,

which is an extended cover inequality of cover inequal-
ity ∑

t∈C
ykit ≤ |C| − 1,

hence valid for original formulations.
Case-2.

∑c0−1
t=1 xkit f = 1: In this case, the aircraft is

maintained at some time point between time t = 1 and

time t = c0 − 1. Then the inequality reduces to∑
t∈C

ykit +
∑
t∈C1

ykit ≤ |C| + |C1|,

which is redundant, hence valid for original formula-
tions. �

V. NUMERICAL EXPERIMENT

To validate the proposed model and solution
method,we conduct a series of numerical experiments to
illustrate the model performance and computational ef-
ficiency. In SectionV-A,we explain the experimental de-
signs and parameter settings for the computational tests.
SectionV-B shows the performance of the proposed pre-
dictive maintenance model compared to the traditional
preventive maintenance model. Section V-C evaluates
the impact of two classes of valid inequalities (intro-
duced in Section IV-B) on computational efficiency. The
experiments are conducted on a computer with an Intel
Core i7 4-core 2.7 GHz processor and 16 GB of RAM.
All mathematical programs are coded in Python 3 lan-
guage,and all problem instances are solved byGUROBI
9.1 under Python API.

A. Experimental Design and Parameters Setting

Before we provide a formal presentation and inter-
pretation of our numerical results, we will first introduce
the workflow of the learn-then-optimize framework that
we used to generate the results. Given a set of onboard
sensor readings, we first predict RUL for different com-
ponents of an aircraft by fusing the data with the bidi-
rectional LSTM neural network model (introduced in
Section III). The values of the initial estimated RUL in
Table V are obtained based on these predictions. The
predicted RUL is then used as input parameters for the
optimization model (proposed in Section IV). Together
with other parameters such as mission and maintenance
requirements,we run our optimizationmodel and finally
obtain the scheduling decisions.

The parameter settings for our experiment are given
as follows: Planning horizon T = 24 h (since we are
planning daily operations), types of aircraft K = 2, with
6 aircraft for each type, i.e., a total of 12 aircraft. For
each type of aircraft, there are three different failure
modes to be considered, e.g.,WP,AF, and AV. Each fail-
ure mode requires several technicians to repair it. The
number of maintenance stations is set to be three, so no
more than three aircraft can be maintained at the same
time.The number of available technicians for each trade
(i.e., trades 1, 2, and 3) at the beginning of the planning
horizon is set to be 10.

For the experiment scenario, Table III summarizes
the mission type (i.e., the number and type of aircraft
Mk

t and mission during time Dk
t ) for a 24-h horizon. In

this example, all mission types in the first 12 h (6:00 pm
to 6:00 am) are the same, during which there are no
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Table III
Mission Requirements for Number and Type of AircraftMk

t and
During TimeDk

t

t 1–12 13 14 15 16 17 18 19 20 21 22 23 24

M1
t 0 1 1 1 2 2 2 1 1 1 2 2 2

M2
t 0 1 1 1 2 2 2 1 1 1 2 2 2

D1
t 0 1 2 1 3 1 2 1 2 1 1 2 1

D2
t 0 2 1 2 1 2 2 2 1 2 2 2 1

missions to be conducted. The mission types can be, for
example, (1) surveillance or (2) escort for various time
periods. Different mission types require different num-
bers of aircraft and duration.

Table IV shows themaintenance time and number of
technicians of trade r required to rectify failure mode f
for aircraft type k. To initiate the experiment, we specify
the initial health conditions, which are represented by
the estimated RUL from deep learning models, for all
aircraft. Table V displays the estimated RUL (in num-
ber of operational cycles) for component f of type k
aircraft i at the beginning of the planning horizon. To
take into account the maintenance time, Table VI spec-
ifies the required maintenance time for component f of
type k aircraft at time t. In this example, every type of
mission consumes five units of time (i.e., five operational
cycles) for each component of each type of aircraft.
TableVI displays themaintenance cost of repairing com-
ponent/failuremode f of aircraft type k and the restored
RUL after completing the maintenance/repair.

B. Assessment of Model Performance

We next evaluate the scheduling performance of
our proposed predictive maintenance model, compared
to the traditional preventive maintenance model as a
benchmark. To validate the model’s performance, we
conduct the tests over a 72-h horizon by assuming that
the mission requirements are the same for these three
days.We also assume that the RUL inputs for the second
and third days are calculated based on aircraft usage and
maintenance during the previous day.For example,with-
out any maintenance, the initial RUL for the second day

Table IV
Maintenance Duration Ek

r f and Number of Technicians Ikr f of Trade r
Required to Rectify Failure Mode f for Aircraft Type k

f = 1 f = 2 f = 3
Ikr f r = 1 r = 2 r = 3 r = 1 r = 2 r = 3 r = 1 r = 2 r = 3
k = 1 1 1 0 1 0 1 0 1 1
k = 2 1 2 1 1 0 1 0 1 1

f = 1 f = 2 f = 3
Ek
r f r = 1 r = 2 r = 3 r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

k = 1 2 2 2 2 2 2 2 2 2
k = 2 2 2 2 2 2 2 2 2 2

Table V
Initial Estimated RUL rki f of Component f for ith Aircraft of Type k

i = 1 i = 2 i = 3
rki f f = 1 f = 2 f = 3 f = 1 f = 2 f = 3 f = 1 f = 2 f = 3
k = 1 12 12 25 12 12 25 13 25 7
k = 2 12 25 25 22 20 3 25 25 5

i = 4 i = 5 i = 6
rki f f = 1 f = 2 f = 3 f = 1 f = 2 f = 3 f = 1 f = 2 f = 3
k = 1 4 8 15 3 25 20 3 10 12
k = 2 4 5 25 3 25 20 3 25 25

is the initial RUL for the first dayminus the total mission
duration of the first day.

Figure 6 shows the resulting optimal maintenance
schedule and flight planning decisions obtained based on
the mission requirements in the example scenario over
a three-day planning period. In the figure, the red and
green bar represent maintenance activity and mission
assignment activity, respectively. The length of the bars
stands for the maintenance/mission duration. The loca-
tions for maintenance activity (red bar) indicate which
component is maintained. For example, for the fifth type
2 aircraft, it will maintain the first component (bottom
of row 5-2) on the second day, while for the third type
1 aircraft, it will maintain the third component (top of
row 3-1) on the third day. The numbers under rows
MissionReq-1 and MissionReq-2 represent the number
of required aircraft for each type of aircraft at a specific
time slot. We can observe that all mission requirements
are satisfied at all times, and there is no time conflict be-
tween maintenance and flight decisions. For example, at
t = 16, the commander requires two type 1 and two type
2 aircraft to conduct a mission.We can see that the opti-
mal scheduler assigns numbers 5 and 6 type 1 aircraft and
numbers 5 and 6 type 2 aircraft to conduct the mission.
We can interpret the decisions in terms of aircraft num-
ber 5 of type 1 as an example. It is assigned to conduct
missions at time t = 16, and 24 in the first day. Then it is
scheduled tomaintain/repair component 1 at t = 8 in the
second day, which takes 2 h to complete. After complet-
ing the repair, this aircraft is available again and can be
assigned to conduct new missions. As shown in the fig-
ure, the aircraft is assigned to conduct missions at time
t = 14, 16, 19, 20, 22, and 23.

Table VI
Maintenance Cost ckf for Component f of Type kAircraft and

Restored RUL rkmax,f for Component f of Type k.

ckf f = 1 f = 2 f = 3
k = 1 100 90 85
k = 2 80 120 110
rkmax,f f = 1 f = 2 f = 3
k = 1 50 70 90
k = 2 50 80 100
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Figure 6. Flight and maintenance scheduling results.

To further demonstrate the benefits of the proposed
methodology, we compare the performance of our pre-
dictive maintenance approach with that of traditional
preventive maintenance methods. In preventive mainte-
nance, an aircraft is maintained after a fixed number of
operation cycles. Predictive maintenance, on the other
hand, schedules the maintenance only when needed
based on the predicted RUL, as described previously. In
addition, in practical operations, some random failures
may occur even when an aircraft is in good condition.
We thus use a Bernoulli random variable, whose success
probability is proportional to the cumulative usage of a
component, to model these random failures. A success
of the Bernoulli random variable indicates the failure
of a component in our experiments. The Bernoulli ran-
dom variable is realized during the preflight and post-
flight checks.Thus, an aircraft cannot conduct missions if
a random failure occurs (or is detected) during the pre-
flight check, and the mission is tagged as incomplete. If
a random failure occurs, the aircraft needs to undergo
unscheduled maintenance when maintenance resources
are available; otherwise, the aircraft will be put into a
waiting queue and will be unavailable to conduct any
missions.

We compare the performance of predictive and pre-
ventive maintenance models over a 240-day horizon in
terms of mission accomplishment rate and aircraft avail-
ability rate. The mission accomplishment rate is defined
as the percentage of desired missions that are completed
on time, while the aircraft availability rate is defined as
the percentage of aircraft that are ready and available for
mission assignments.We also evaluate the impact of the
number of maintenance stations (S) and the duration of

Figure 7. Mission completion rate with S = 1.

maintenance time (Ek
fr) on the scheduling decisions and

model performance.Please note that the testing scenario
involved maintenance durations ranging from 6 to 15,
which differs from the specific parameters used to gener-
ate Fig. 6. This intentional difference was introduced to
assess the robustness of the scheduling decisions when
confronted with varying maintenance durations.

With one maintenance station (S = 1), Figs. 7 and 8
show the comparisons between predictive maintenance
and preventive maintenance models across different
maintenance durations in terms of mission accomplish-
ment rate and aircraft availability rate, respectively.
Figs. 9 and 10 illustrate the comparisons with two avail-
able maintenance stations (S = 2). Two important
insights can be derived from the figures. First, the pro-
posed predictive maintenance model dominates the
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Figure 8. Aircraft availability with S = 1.

classical preventive maintenance model by obtaining
significantly higher values in both mission accomplish-
ment rate and aircraft availability rate. For example,
when S = 1, the mission accomplishment rate of the
predictive model ranges from 70% to 75%, while the
highest value of the preventive model is only 59% and
decreases dramatically as maintenance time increases.
Similarly, the predictive model leads to an aircraft avail-
ability rate consistently over 90%, while the preventive
model can only maintain 60% when maintenance time
is short. The availability rate of the preventive model
drops rapidly when maintenance duration increases.
This observation leads to the second insight that the
predictive maintenance model performs consistently
well across different maintenance times, while the pre-
ventive model is very sensitive to required maintenance
time and its performance drops significantly when
maintenance time increases.

C. Impact of Valid Inequality on Computational
Efficiency

In our proposed framework and numerical experi-
ments, the scheduling optimization problem is supposed

Figure 9. Mission completion rate with S = 2.

Figure 10. Aircraft availability with S = 2.

to be implemented every 24 h. Computational efficiency
thus plays an important role in the effective implemen-
tation of real-world applications. In this section, we will
demonstrate the computational efficiency of the pro-
posed solution approaches and the impact of two classes
of valid inequalities.

We adopt one problem instance using the same
parameter settings specified in Section V-A. We also
randomly generated four other problem instances to
demonstrate the performance of the proposed valid in-
equalities, in which the parametersMk

t andD
k
t are gener-

ated according to discrete uniform distributionsU (1, 3)
andU (1, 3), respectively, to emulate small mission dura-
tions and dense mission requirements. For each problem
instance,we solve it five times, aiming to avoid the possi-
bility that the improvement is due to some random pro-
cedure within the GUROBI optimizer. We set the run-
ning time limit to 10 h (36, 000 CPU seconds).We report
the average solution time over the five implementations
in Table VII.The first column in Table VII stands for the
problem instance index. The second and third columns
represent the solution time without any valid inequali-
ties and solution time with valid inequalities proposed
in Propositions 1 and 2. The results clearly indicate that
the proposed valid inequalities can improve the compu-
tational speed by several orders of magnitude. For cases
1 and 5, the original formulation cannot solve the prob-
lem to exactness within 10 h.However, by incorporating
the valid inequalities, the average solution time reduces
to 30.0 and 39.0 s, leading to an efficiency improvement
of several orders of magnitude.

Table VII
Solution Time of Formulation Without and With Valid Inequalities

Instance Original formulation With valid inequalities

1 36,000 30.0
2 282.2 17.0
3 850.8 16.8
4 36,000 426.4
5 36,000 39.0
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For case 4, the solution time with valid inequalities is
426.4 s, which is still approximately 80 times faster than
the original formulation. For cases 2 and 3, which can be
solved quickly by the original formulation within 282.2
and 850.8 s, the valid inequalities can still improve the
computational speed significantly and obtain the solu-
tions within 17.0 and 16.8 s. In sum, the two classes of
valid inequalities proposed can efficiently improve the
computational speed and make the proposed predictive
maintenancemodels more easily applied in practical set-
tings in a timely manner.

VI. CONCLUSION

In this study, we propose an integrated learn-then-
optimize framework for CBPM scheduling and flight
mission planning. The bidirectional LSTM deep learn-
ing techniques are used to combine data from multiple
sensors to predict the RUL values of a multicomponent
aircraft. With the predicted RUL values, a MIP formu-
lation is then proposed to maximize the fleet availability
rate subject to different mission requirements and trade
types. Two classes of valid inequalities are proposed
to further improve the computational efficiency of the
model. The proposed predictive maintenance method
significantly outperforms the traditional preventive
maintenance method in a hypothetical but somewhat
realistic scenario.
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The International Society of Information Fusion (ISIF) is the premier professional society and global infor-
mation resource for multidisciplinary approaches for theoretical and applied information fusion technologies.
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 To advance the profession of fusion technologies, propose approaches for solving real-world problems, 
recognize emerging technologies, and foster the transfer of information.

Serve
To serve its members and engineering, business, and scientifi c communities by providing high-quality 
information, educational products, and services.

Communicate
To create international communication forums and hold international conferences in countries that pro-
vide for interaction of members of fusion communities with each other, with those in other disciplines, 
and with those in industry and academia.

Educate
To promote undergraduate and graduate education related to information fusion technologies at univer-
sities around the world. Sponsor educational courses and tutorials at conferences.

Integrate
Integrate ideas from various approaches for information fusion, and look for common threads and 
themes– look for overall principles, rather than a multitude of point solutions. Serve as the central fo-
cus for coordinating the activities of world-wide information fusion related societies or organizations. 
Serve as a professional liaison to industry, academia, and government.

Disseminate
To propagate the ideas for integrated approaches to information fusion so that others can build on them 
in both industry and academia.
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The Journal of Advances in Information Fusion (JAIF) seeks original 
contributions in the technical areas of research related to information 
fusion. Authors are encouraged to submit their manuscripts for peer 
review http://isif.org/journal.

Call for Reviewers

The success of JAIF and its value to the research community is 
strongly dependent on the quality of its peer review process. 
Researchers in the technical areas related to information fusion are 
encouraged to register as a reviewer for JAIF at http://jaif.msubmit.
net. Potential reviewers should notify via email the appropriate 
editors of their offer to serve as a reviewer.
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