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Maintaining and deploying a fleet of aircraft with limited re-

sources and various mission requirements is both immensely challeng-

ing and of primary importance. Traditional preventive maintenance

methods are static and inflexible and are not equipped to consider

the complex dynamics of aircraft (e.g., wear and age), which may lead

to low fleet availability and high maintenance costs. In this paper, we

propose an integrated learn-then-optimize framework for condition-

based predictive maintenance scheduling to support daily flight and

maintenance planning by fusing data from multiple onboard sensors.

The paradigm first predicts the remaining useful life for components

of aircraft by using deep learning techniques, then models the fleet-

level optimization as a constrained mixed-integer programming prob-

lem that captures different failure modes of aircraft and the available

maintenance facilities. We also propose valid inequalities to improve

the computational efficiency of the optimization model. Finally, we

conduct a series of simulated experiments to validate the performance

of the proposed predictive maintenance model. The numerical results

show that the predictive maintenance model outperforms the tradi-

tional preventive maintenance model with respect to the mission ac-

complishment rate, aircraft availability rate, and cost effectiveness.

I. INTRODUCTION AND RELATED WORK

Flight and maintenance planning (FMP) for military
aircraft aims to identify optimal scheduling for a given
fleet by (1) determining which aircraft are available to
fly and for what duration, and (2) if and when to conduct
maintenance on grounded aircraft. FMP aims to accom-
plish these mission tasks efficiently while also keeping
operational costs at aminimum.FMP plays a critical role
in guaranteeing the safety and reliability (e.g.,fleet readi-
ness rate and mission accomplishment rate) of military
or commercial airlines.

Modern surface and aviation systems are designed
with an ever-increasing level of automation and ad-
vanced machinery that include state-of-the-art sensors
that monitor vital aircraft, ship, and auxiliary system
functions.New tools and technologies are needed to aug-
ment current onboard condition monitoring and main-
tenance processes, improve system availability, increase
operational readiness, and reduce life cycle costs. Along
with the development of Industrial 4.0, which integrates
sensors, software, and intelligent control to improve in-
dustrial processes, aircraft maintenance is transitioning
from more traditional processes of corrective and pre-
ventive maintenance to a data-driven, predictive main-
tenance paradigm. While there have been significant
strides made in utilizing machine learning (ML) and
augmented intelligence (AI) for predictivemaintenance,
there is still a need to develop new tools that can produce
more efficient and accurate condition-based predictive
maintenance (CBPM) decisions [39]. Predictive mainte-
nance involves analyzing machine data collected from
various monitoring sensors, such as thermal, acoustic, vi-
bration,pressure,and temperature, to generatemeaning-
ful insights about the machine’s state, including failure
classification, remaining useful life (RUL), and time to
failure (TTF) [37]. The ultimate objective is to schedule
proactive maintenance more accurately, enhance readi-
ness, and improve efficiency in the logistics and sup-
ply chain. Such capability becomes especially crucial for
mission-critical systems, ensuring sustained combat op-
erations and readiness while minimizing costs and un-
planned downtime.

The predictive maintenance approach fuses the data
from on-board sensors to monitor the health condi-
tion of aircraft components to predict RUL prognos-
tics of system and identify anomalous behavior, and
thus turn equipment sensor data into meaningful, ac-
tionable insights for proactive maintenance in the antic-
ipation of failure [39]. There are two main challenges in
RUL-based predictive maintenance and flight schedul-
ing problems. The first challenge is how to accurately
predict the RUL prognostics for system components
by exploiting the data from multiple sensors. The sec-
ond challenge is the integration of RUL prognostics
into FMP,considering the workforce capacity (e.g., avail-
ability of workstations and technicians to repair the
components), flight mission requirements (e.g., type and
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number of aircraft required to conduct different mis-
sions), and system reliability requirements.

For RUL prediction, most existing studies fall into
three categories [33]: statistical-based models, conven-
tional MLmodels, and deep learning models. Statistical-
based models are built by fitting a probabilistic model to
data by assuming that the degradation of system com-
ponents over time can be characterized via an appropri-
ate parametric function or a specified stochastic process
model. For example, the Wiener process has been suc-
cessfully employed to capture the degradation of com-
ponents in bridge beams [31], thrust ball bearings [30],
and micro-electron mechanical systems [35]. Gaussian
process regression model is used to predict RUL prog-
nostics of battery health [23] and slow-speed bearings
[1]. The conventional ML algorithms, such as support
vector machines, tree-based methods, and neural net-
works, have been extensively used in predictive mainte-
nance in the past decades. For example, [28] developed a
support vector regressionmodel with amulti-class solver
to identify various faulty patterns in rotating machines.
Reference [17] constructed a random forest regression
model to predict the RUL of spur gears. More recently,
with the expansion of big data techniques, the popularity
of deep learning algorithms for predictive maintenance
has noticeably increased. Reference [12] developed re-
current neural networks (RNNs) for RUL prediction
of bearings. Reference [34] designed a double convo-
lutional neural network (CNN) architecture to predict
RUL using time-series vibration signals. Reference [38]
employed long short-term memory (LSTM) RNN to
learn the long-term dependencies among degraded ca-
pacities and predict theRULof lithium-ion batteries.We
refer interested readers to [2] and [4] for a comprehen-
sive survey of ML approaches, and to [27], particularly
for deep learning approaches in predictive maintenance.

Numerous efforts have also been devoted to military
aircraft fleet scheduling optimization. From the military
perspective, one major concern in this problem is oper-
ational readiness [21], [24]. Reference [24] formulated a
mixed-integer programming (MIP) model to maximize
fleet availability under skilled workforce constraints.
Themodel admits a network flow interpretation and can
be solved efficiently by the branch-and-bound method.
Reference [14] proposed a multiobjective MIP model to
maximize fleet availability. To further improve the com-
putational efficiency, [16] and [15] extended the work of
[3] and developed heuristic algorithms to solve large-
scale problem instances. Instead of directly maximizing
fleet availability, [19] and [3] minimized the maximum
number of aircraft in maintenance to be greater than
the number of available maintenance spaces over the
planning horizon. [21] introduced an MIP model for
long-term planning of military aircraft by considering
type-D heavy maintenance. Another major challenge
for the FMP problem is computational efficiency. Some
heuristic algorithms have been proposed to solve large-
scale problem instances, for example, [8], [15], [16]. To

obtain exact solutions with computational efficiency, [9]
proposed an iterative algorithm that cuts off infeasible
relaxation solutions via special valid inequalities. Ref-
erence [10] modify the classical ε-constraint method to
solve a biobjective quadratic program. More recently,
[22] used ML models to predict the characteristics of
optimal solutions, and added these characteristics to the
original formulations to shrink solution space.

Though RUL prediction and maintenance schedul-
ing optimization have received a considerable amount
of attention from their own domains, very few studies
have developed RUL prognostics and subsequently in-
tegrated the predicted RUL into maintenance schedul-
ing. Reference [20] built an LSTM neural network to
predict multiclass RUL prognostics for turbofan en-
gines of aircraft, which are used subsequently to order
and manage replacement spare parts. Reference [6] de-
veloped a particle filtering algorithm for RUL predic-
tion of aircraft cooling units, and the predicted RUL
was then passed to a linear programming optimization
model to optimally schedule a fleet of aircraft mainte-
nance considering spare parts.More recently, in thework
of [18], the authors considered the maintenance of air-
craft brakes using a threshold-basedmaintenance policy,
i.e., once the predicted RUL falls below a user-defined
threshold, the brake is replaced. They solved a multi-
objective scheduling optimization model that seeks a
trade-off between the minimization of flight delays, the
number of unscheduled maintenance tasks, and the to-
tal number of maintenance tasks. Using predicted RUL
as model coefficients, [32] proposed a multiobjective ge-
netic algorithm for maintenance scheduling for a vehi-
cle fleet by minimizing total cost, workload, and the ex-
pected number of failures and total changes in main-
tenance schedule. Most recently, [7] studied the alarm-
based maintenance planning with imperfect RUL pre-
dictions for a fleet of vehicles by considering estimation
uncertainties.

In this work, we propose an integrated learn-then-
optimize framework for flight andmaintenance schedul-
ing with RUL predictions to maximize fleet-level op-
erational availability and minimize costs. The proposed
framework first employs advanced analytics from multi-
ple onboard sensory data to draw meaningful insights to
predict machine states and proactively schedule main-
tenance and flights to minimize costs and unplanned
downtime. More specifically, we first develop a bidirec-
tional long short-term memory (biLSTM) deep learning
model to combine the time-series monitoring data for
predicting the RUL of aircraft system components, and
subsequently incorporate the RUL into an optimization
model to determine the optimal fleet-level maintenance
policies and flight scheduling by considering practical
constraints such as workforce capacity and mission re-
quirements.To the best of our knowledge, this paper rep-
resents the first study that explicitly considers three el-
ements, i.e., (1) deep learning with multisensor data for
RUL prediction, (2) predictive maintenance scheduling,
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and (3) flight mission planning into an integrated learn-
then-optimize framework. Our work differs from previ-
ous research in the sense that previous studies only fo-
cused on RUL prediction and predictive maintenance
scheduling, while our proposed framework also takes
into account the flight mission planning decision, work-
force capacity constraints (e.g., different types and num-
ber of technicians required to conduct maintenance for
different components of an aircraft system), and mission
requirements (e.g., type and number of aircraft required
to conduct specific missions), which are of particular im-
portance to military applications.

The remainder of the paper is structured as follows.
In Section II, we discuss the problem description and
learn-then-optimize framework. Section III briefly in-
troduces bidirectional LSTM and discusses the RUL
prediction using multiple commercial modular aero-
propulsion system simulation (C-MAPSS) engine sen-
sory data. Section IV presents the MIP formulation
for the FMP optimization model, followed by a set of
valid inequalities to boost the computational speed.Var-
ious numerical experiments are conducted in Section V
to demonstrate the superiority of the proposed predic-
tive maintenance model over the traditional preventive
maintenance method. In Section VI, we conclude our
work.

II. PROBLEM DESCRIPTION

Heavy equipment maintenance facilities such as air-
craft service centers face the challenge of maximizing
readiness while minimizing the costs of various main-
tenance tasks, subject to the availability constraints of
specialty technicians, workstations, spare inventory, and
mission requirements. FMP require making decisions
about which aircraft should perform amission andwhich
aircraft should enter maintenance, while optimizing effi-
ciency with limited resources, including technical work-
force and maintenance workstations. Traditional main-
tenance scheduling is done via preventive maintenance,
i.e., a fixed schedule to maintain each aircraft period-
ically to prevent failure. The proposed approach is to
replace the preventive maintenance with a predictive
maintenance strategy where the machinery conditions
(such as RUL) are considered in order to proactively
schedule themaintenance.The proposed approach is de-
signedwithin a learn-then-optimize framework, inwhich
we first apply deep learning to analyze the time-series
monitoring sensory data for predicting equipment RUL
and subsequently incorporate it into an optimization for-
mulation to determine optimal fleet-level maintenance
policies. In this section,we briefly introduce the elements
of the proposed learn-then-optimize framework, cover-
ing the description of FMP problem setting, multicom-
ponent aircraft system, and workforce capacity consid-
eration.

A. Problem Setting for FMP

We consider the problem of scheduling a set of pre-
dictive maintenance tasks with a given number of avail-
able maintenance stations and workforce capacity con-
straints. For each type of maintenance task, the skills
required and the number of technicians with the skills
needed to work on the task are assumed to be known
(similar setting used in [24]). The tasks are to be per-
formed at the available workstations by the needed
number of technicians with a specific skill or multiple
skills. All of the skilled technicians required for the set
of tasks to be performed must be available in the given
time frame.

The operational goal is to maximize the readiness
of a fleet of aircraft with a certain mission requirement
given the constraints. The key is to ensure sufficient
availability of aircraft to meet the operational demands,
which refer to all the flight activities (namely, waves or
sorties) that are planned in a given period (say, 24 h).
A mission flight of a single aircraft is called a sortie.
More than one aircraft flying together is called a wave or
mission.

Predictive planning is assumed to be executed daily
based on the estimated RUL of each component for the
aircraft. The 24-h planning horizon is assumed to begin
at 6:00 pm (see [24]). The objective is to determine the
schedule (i.e., the sequence in which the maintenance
tasks are executed) with the maximum availability-to-
cost ratio. Note that the optimal solution to this prob-
lem will yield a maintenance schedule in which (a) all
mission tasks in the set will be performed as much as
possible, (b) the available workforce and workstations
will be utilized in an efficient manner, and (c) the mini-
mum possible time to perform maintenance will be de-
termined. Hence, a solution to this problem is critical to
reducing maintenance downtime and maximizing fleet
operational readiness.

B. Multicomponent Aircraft System and Workforce
Capacity

In this study, we consider the FMP problem with a
fleet of aircraft,where each aircraft has a systemofmulti-
ple repairable or replaceable components. Each aircraft
is assumed to be of a specific type that can perform des-
ignated mission tasks. Each component of aircraft is as-
sumed to fail independently of other components. Re-
pair or replacement maintenance is scheduled based not
only on the estimated RUL of this component in an-
ticipation of a failure but also on the task’s durational
requirements. For example, suppose that the threshold
value for triggering the replacement is when RUL re-
duces to 3 h. If a component has 4 h of RUL, then typ-
ically it will not be scheduled for maintenance and will
be allowed to take on a task. However, if a mission task
requires the flying duration to be 5 h, then this aircraft
cannot fulfill this requirement and must either undergo
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maintenance to replace the component or be assigned
to fly other missions. In this study, we assume each air-
craft has a multicomponent system, each component is
independent from the others, and each component re-
quires different technician specialties for repair or re-
placement.Generally, while flying is underway (and also
immediately before and after), technicians are divided
into three groups/specialties to perform the following
activities:

� Trade 1:Weapons and armament electrical (WP)
� Trade 2:Airframe mechanical, airframe electrical and
propulsion (AF)

� Trade 3: Avionics/electronics (AV)

During actual operations, each type of failure/
maintenance requires several types/trades of technicians
for service. For example, engine failure may require two
AF technicians and three AV technicians to perform the
repair, and radar failure may require one WP technician
and one AV technician for repair. The explicit incorpo-
ration of mission requirements (e.g., type of aircraft and
flying duration) as well as the workforce capacity (e.g.,
number and types of specialty technicians) increases the
practicability and complexity of the FMP problem sig-
nificantly.

III. DEEP LEARNING FOR RUL PREDICTION

The accurate prediction of RUL prognostics pro-
vides important input to the scheduling optimization
model. In this section,wewill showcase our study on how
to use LSTM deep learning approaches to predict RUL
using a C-MAPSS engine degradation dataset [25].

A. LSTM RNN

LSTM is one of the most widely used RNN archi-
tecture in time sequence ML modeling. It uses gates to
control information flow in the recurrent computations
and is excellent at holding long-term memories. Its gat-
ingmechanisms are ideally suitable formodeling thema-
chinery degradation process [37]. The original version of
LSTM was proposed in [13]. The popular Vanilla LSTM
was introduced in [11], where forget gate was added to
the LSTM architecture to improve the model. Figure 1
shows the vanilla LSTM cell [29]. LSTM memory cells
consist of different neural networks, which are called
gates. Gates are used to track the interactions between
thememory units, and to decide which data should be re-
membered or forgotten during the training process. The
input gate and output gate determine if the state mem-
ory cells can be modified by the input signal. The forget
gate controls whether or not to forget the previous status
of the signal.

Figure 1. A vanilla LSTM cell [29].

In the cell, the functional relationships for each com-
ponent are given as follows:

ft = σ
(
Wf · xt + Rf · ht−1 + b f

)
it = σ (Wi · xt + Ri · ht−1 + bi)

ot = σ (Wo · xt + Ro · ht−1 + bo)

C̃t = ϕ (Wc · xt + Rc · ht−1 + bc)

Ct = ft ·Ct−1 + it · C̃t
ht = ot · φ (Ct ) ,

(1)

where ft , it , and ot stand for forget gate, input gate, and
output gate, respectively. Forget gate removes historical
information fromCt−1; input and output gates control to
update and output which part of information. σ , ϕ, and
φ are nonlinear activation functions.

In order to obtain smooth states estimation of LSTM
networks, bidirectional LSTM was proposed in [26],
where a backward path is added to smooth out the pre-
diction. Bidirectional LSTM thus can utilize the infor-
mation in both forward and backward directions, which
makes it suitable for intermediate prediction. Figure 2
describes the architecture of bidirectional LSTM.

Formulas for each component in backward path are
almost identical to the forward LSTM model, which are

Figure 2. Bidirectional LSTM architecture.
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Figure 3. Turbofan engine model [37].

given below:

f ′
t = σ

(
W ′

f · x′
t + R′

f · h′
t−1 + b′

f

)
i′t = σ

(
W ′

i · x′
t + R′

i · h′
t−1 + b′

i

)
o′
t = σ (W ′

o · x′
t + R′

o · ht−1 + b′
o)

C̃′
t = ϕ

(
W ′

c · x′
t + R′

c · h′
t−1 + b′

c

)
C′
t = f ′

t ·C′
t−1 + i′t · C̃′

t

h′
t = o′

t · φ (C′
t ) ,

(2)

where f ′
t , i

′
t , and o′

t denote forget gate, input gate, and
output gate, respectively (analogous to ft , it and ot as in
LSTM model).

Table I
C-MAPSS Monitoring Sensor Data

Symbol Description Units

T2 Total temperature at fan inlet R
T24 Total temperature at LPC outlet R
T30 Total temperature at HPC outlet R
T50 Total temperature at LPT outlet R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Ne Physical core speed rpm
epr Engine pressure ratio (P50/P2) –
Ps30 Static pressure at HPC outlet psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRe Corrected core speed rpm
BPR Bypass ratio –
farB Burner fuel-air ratio –
htBleed Bleed Enthalpy –
Nf-dmd Demanded fan speed rpm
PCNfR-dmd Demanded corrected fan speed rpm
W31 HPT coolant bleed lbm/s
W32 LPT coolant bleed lbm/s

B. RUL Prognostics Prediction for Aircraft Engines

C-MAPSS is a tool to simulate performance of the
turbofan engine, which is built under MATLAB and
Simulink environment (see [25] for details). As shown

Figure 4. Run-to-failure sensor data examples.
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in Fig. 3 (adapted from [37]), a turbofan engine typically
consists of fivemodules: fan, low-pressure turbine (LPT),
high-pressure turbine (HPT), low-pressure compressor
(LPC) and high-pressure compressor (HPC).

The C-MAPSS dataset [25] includes hundreds of en-
gine profiles with 21 onboard sensors monitoring the en-
gine’s health status (see Table I for descriptions of the
sensors).

Three operation condition indicators (altitude,Mach
numbers, and throttle resolver angle) are included as
part of the observations as well. As an example, the
C-MAPSS FD001 data set includes 200 engine profiles,
100 of which constitute a training set, where the his-
torical run-to-failure measurement records are included.
Figure 4 shows a run-to-failure data trajectories exam-
ple from the 21 sensors under a specific operating condi-
tion. In the remaining testing set, sensor measurements
are only recorded up to an early stage, and the goal is to
predict the remaining engine life.

C. LSTM Training and Testing

In order to train the LSTM model and predict RUL
given the temporal degradation process in time-series
data, we reshape input sensors’ readings into blocks of
size (30, 24), that is, a series of 30 consecutive sensor
measurements (21 sensors) together with the operating
condition indicator (3 indicators). For each input data
block, the output is the corresponding remaining life at
the last cycle in the time-series. To train a bidirectional
LSTMmodel, the objective function is defined as the em-
pirical mean squared error. Here, we select a two layer
bidirectional LSTM with 145 neurons for each forward
and backward layer in the network architecture. In the
learning process, we apply the stochastic gradient de-
scent (SGD) method with batch size 50 and learning
rate of 0.0015.We test the RUL prediction performance
with the C-MAPSS data. For example, Fig. 5 shows the
comparison of true RUL and predicted RUL for testing

dataset FD001. The root mean squared error (RMSE)
obtained after testing 100 engines was found to be 15.16
operational cycles. This signifies that the average pre-
diction error for the RUL of the engines is 15.16 op-
erational cycles. Given that these results align with the
best state-of-the-art algorithms’ performance [36], this
RMSE value is deemed a positive indicator of the pre-
dictive accuracy of our model. By fusing the 21 sensory
time-series data with the bidirectional LSTM, the re-
sulting RUL predictions are good indications of engine
health condition and will be used to determine the opti-
mal maintenance schedule.

IV. PREDICTIVE MAINTENANCE AND MISSION
SCHEDULING OPTIMIZATION

In this section, we first present our MIP formulation
for FMP optimization model in Section IV-A, then in
Section IV-B, we present two sets of valid inequalities
to further improve the computational efficiency.

A. Model Formulation

We introduce the notations used in the optimization
model in Table II.

With these notations, the objective of the optimiza-
tion model as defined in (3) is to maximize the normal-
ized availability.We define normalized availability as the
ratio of the weighted sum of available aircraft over the
total maintenance cost over the planning horizon,

max

∑T
t=1

∑K
k=1M

k
t ·

(∑Ak
i=1

(
1 − zkit

))
∑T

t=1

∑K
k=1

∑Ak
i=1

∑F
f=1 c

k
f x

k
it f

. (3)

The weight values indicate the relative importance of
mission in a particular operational cycle; thus, higher
weights are assigned to more critical missions. The de-
nominator represents the total maintenance cost in the
planning horizon. The optimal maintenance schedules

Figure 5. RUL prediction results on FD001 dataset.
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Table II
Notation

Sets:
T Planning horizon (t = 1, 2, ...,T )
K Type of aircraft (k = 1, 2, ...,K)
F Type of failure mode/component ( f = 1, 2, ...,F )
R Type of technicians (r = 1, 2, ...,R)
Parameters:
S Number of the maintenance station
Ak Number of type-k aircraft
Mk

t Number of required aircraft of type k conducting missions at time t
Dk
t Mission duration of aircraft type k at time t

Ikf r Number of technicians of trade r required to rectify the failure mode f for aircraft type k
Ek
fr Maintenance time of trade r required to rectify the failure mode f for aircraft type k

λr Number of technicians of trade r available at the initial period of the planning horizon
rki f Initial RUL for component f of aircraft i of type k
lkt f Duration of mission for component f of type k aircraft at time t
ckf Fixed charge cost for repairing component/failure mode f for one aircraft of type k
Ek
i0 f r Remaining maintenance time for trade r to repair aircraft i of type k

rkmax, f RUL for component f of aircraft type k after maintenance (i.e., the maximum RUL)
Decision Variables:

xkit f =
{
1 if aircraft i of type k enters maintenance station in time t to rectify failure mode f
0 otherwise

zkit f r =
{
1 if aircraft i of type k is in maintenance in time t to rectify failure mode f by trade r
0 otherwise

zkit f =
{
1 if aircraft i of type k is in maintenance in time t to rectify failure mode f
0 otherwise

zkit =
{
1 if aircraft i of type k is in maintenance in time t
0 otherwise

ykit =
{
1 if aircraft i of type k conducts mission in time t
0 otherwise

rkit f RUL of component/failure mode f for aircraft i of type k in time t

are to be obtained subject to a number of constraints,
as shown below.

Mission Requirement Constraint

Ak∑
i=1

ykit = Mk
t t ∈ T,k ∈ K. (4)

Constraint (4) enforces the demands of mission require-
ments to be satisfied for aircraft type k in each period t.
That is, the sum of all assigned missions needs to satisfy
the mission requirement.

RUL Dynamic Constraints

rki1 f = rki f ∀i ∈ I,k ∈ K, f ∈ F, (5)

rki,t+1, f ≤ rkit f − ykit · lkt f + rkmax,f · xkit f t = 1, ...,T − 1,

k ∈ K, i ∈ I, f ∈ F,

(6)

rki,t+1, f ≥ rkit f − ykit · lkt f t = 1, ...,T,k ∈ K, i ∈ I, f ∈ F,

(7)

rki,t+1, f ≤ rkmax,f t = 1, ...,T − 1,k ∈ K, i ∈ I, f ∈ F,

(8)

rki,t+1, f ≥ rkmax,f · xkit f t = 1, ...,T − 1, k ∈ K, i ∈ I, f ∈ F,

(9)

Constraints (5)–(9) model the behavior of RUL in fail-
ure mode f for aircraft i of type k at time t. In other
words, these constraints model the dynamics of com-
ponents’ RUL when a mission assignment or mainte-
nance activity is conducted. Note that our assumption
is that different components of an aircraft may exhibit
different rates of degradation when a mission is con-
ducted, resulting in varying reductions in the remain-
ing operational cycles for each component, thus leading
to different durations of missions for different compo-
nents. For instance, when an aircraft undertakes a mis-
sion with a duration of 2 h, its weapon-related compo-
nents may reduce their RUL by one operational cycle,
while electrical and propulsion components may reduce
their RUL by two operational cycles. However, in our
numerical experiment section, we’ve simplified this by
assuming a global reduction of RUL for all components,
implying that all components experience the same RUL
reduction.
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Maintenance State Dynamic Constraints

xkit f ≤ zki,t+y, f,r t = Ek
i0 f r + 1, ...,T − Ek

fr,

y = 1, ...,Ek
fr, i ∈ I,k ∈ K, r ∈ R, (10)

m · xkit f ≥ zki,t+y, f,r t = Ek
i0 f r + 1, ...,T − Ek

fr,

y = 1, ...,Ek
fr, i ∈ I,k ∈ K, r ∈ R,

(11)

xkit f + xki,t+y, f ≤ 1 t = Ek
i0 f r + 1, ...,T − Ek

fr,

y = 1, ...,Ek
fr, i ∈ I,k ∈ K, r ∈ R,

(12)

xkit f + xki,t+y, f ≤ 1 t = T − Ek
fr + 1, ...,T,

y = 1, ...,T − t, i ∈ I,k ∈ K, r ∈ R,

(13)

m · xkit f ≥ zki,t+y, f r t = T − Ek
fr + 1, ...,T,

y = 1, ...,T − t, i ∈ I,k ∈ K, r ∈ R,

(14)

xkit f + xki,t+y, f ≤ 1 t = T − Ek
fr + 1, ...,T,

y = 1, ...,T − t, i ∈ I,k ∈ K, r ∈ R,

(15)

zkit f r = 1 t = 1, ...,Ek
i0 f r, i ∈ I,

k ∈ K, r ∈ R, f ∈ F, (16)

xkit f + zkit f r ≤ 1 t = 1, ...,Ek
i0 f r, i ∈ I,

k ∈ K, r ∈ R, f ∈ F, (17)

zkit f ≥ zkit f r t = 1, ...,Ek
i0 f r, i ∈ I,k ∈ K, r ∈ R, f ∈ F,

(18)

zkit f ≤
R∑
r=1

zkit f r t ∈ T,k ∈ K, i ∈ I, f ∈ F, (19)

zkit ≥ zkit f t ∈ T,k ∈ K, i ∈ I, f ∈ F, (20)

zkit ≤
F∑
f=1

zkit f t ∈ T,k ∈ K, i ∈ I, (21)

zkit + ykit ≤ 1 t ∈ T,k ∈ K, i ∈ I. (22)

The maintenance state dynamic constraints are a set of
logic constraints: When an aircraft performs its mainte-
nance activity, it will remain in the maintenance state
and cannot participate in other activities, such as flight
missions. Constraints (10)–(17) model relationship be-
tween xkit f and z

k
it f r for different time segments. Specif-

ically, constraints (16) and (17) enforce that for aircraft
that do not complete maintenance during the previous
planning horizon (the previous day), they will stay in

maintenance and will not be available until maxr Ek
i0 f r.

Notice that constraints (10)–(17) consist of two parts:
The first part includes constraints (16) and (17), which
are meaningful when there are unfinished maintenance
left from the previous day, e.g., Ek

i0 f r > 0. These con-
straintsmodel the dynamics for the periods until the left-
over maintenance is completed. The second part, con-
straints (10)–(15),models the maintenance state dynam-
ics after the completion of unfinished maintenance from
the previous day. Constraints (18)–(21) impose relation-
ships among zkit f r, z

k
it f , z

k
it . For example, if, for some r,

zkit f r = 1, then, constraint (18) will ensure zkit f = 1, and
constraint (20) will force zkit = 1. That means, if some
trade r is working on an aircraft, then this aircraft is in
maintenance at time t. Constraint (22) states that if an
aircraft is in maintenance, it is not available for any mis-
sions at that time.

Resource and Mission Conflict Constraints

K∑
k=1

Ak∑
i=1

zkit ≤ S t ∈ T, (23)

K∑
k=1

Ak∑
i=1

F∑
f=1

zkit f r · Ikf r ≤ λr t ∈ T, r ∈ R, (24)

yki,t+y + ykit ≤ 1 t ∈ T,k ∈ K, i ∈ I, y = 1, ...,Dk
t , (25)

ykit + xki,t+y, f ≤ 1 t ∈ T,k ∈ K, i ∈ I, y = 1, ...,Dk
t . (26)

Constraints (23) and (24) are resource constraints: Con-
straint (23) requires that one can at most maintain S
(the number of maintenance stations we have) aircraft
simultaneously. Constraint (24) describes that the re-
quired number of maintenance technicians cannot ex-
ceed the number of available technicians. Constraint
(25) enforces that an aircraft can only conduct one mis-
sion at a time.Constraint (26) prevents an aircraft that is
in maintenance from conducting a mission.

B. Reformulation and Valid Inequality

1) Reformulation of Objective Function: Notice that
the objective function (3) is highly non-linear. We con-
vert it to a linear objective function via epigraphic refor-
mulation, namely,

max λ (27)

with a new constraint involving bilinear terms

λ

T∑
t=1

K∑
k=1

Ak∑
i=1

F∑
f=1

ckf · xkit f ≤
T∑
t=1

K∑
k=1

Mk
t ·

(
Ak∑
i=1

(
1 − zkit

))
.

Since bilinear programming problems are notoriously
difficult to solve in practice, by introducing several
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auxiliary variables and a number of constraints, we
further linearize the above bilinear constraint via
McCormick inequalities:

wk
i f t ≤ λ t = 1, ...,T,k ∈ K, i ∈ I, f ∈ F, (28)

wk
i f t ≤ m · xki f t t = 1, ...,T,k ∈ K, i ∈ I, f ∈ F, (29)

wk
i f t ≥ −m ·

(
1 − xki f t

)
+ λ t = 1, ...,T,k ∈ K,

i ∈ I, f ∈ F, (30)

T∑
t=1

K∑
k=1

Mk
t ·

(
Ak∑
i=1

(
1 − zkit

)) ≥
T∑
t=1

K∑
k=1

Ak∑
i=1

F∑
f=1

ckfw
k
it f .

(31)

Finally, with the transformed objective function (27)
and the constraints (4)–(26) and (28)–(31), we obtain a
mixed-integer linear programming formulation for our
CBPM scheduling problem, which can be solved effi-
ciently by using commercial optimization solvers like
CPLEX or GUROBI. Note that in reality, some of the
desired missions may not be fulfilled even when all air-
craft are in good condition. We therefore convert the
mission requirement constraint (4) into an inequality
constraint by allowing part of themissions to not be com-
pleted.

2) Valid Inequalities: Although the MIP formulation
proposed in Section III-A can be directly solved by using
commercial solvers such asGUROBI andCPLEX,it can
be time-consuming for some parameter instances.Based
on some preliminary computational experiments,we no-
ticed that solvers may not obtain optimal integer solu-
tions within a reasonable amount of time when mission
durations are small and mission requirements are dense
(always have mission during the day shift). We there-
fore developed two classes of valid inequalities to im-
prove computational efficiency. In order to derive valid
inequalities, we further assume that each component of
each aircraft only needs to bemaintained atmost once in
the planning horizon and that it is available for mission
assignment after the maintenance. This assumption is
not restrictive sincewe are planning over a daily horizon,
and we mainly focus on maintenance types such as line
maintenance or line-replaceable units (LRUs) replace-
ment. Before we formally describe the valid inequalities
for solving the proposedMIPmodel,we first review 0−1
knapsack set and cover inequality from integer program-
ming.

Given b > 0 and a j > 0 for j ∈ N := {1, 2, . . . ,n},
the 0 − 1 knapsack set is defined as

K :=
⎧⎨
⎩x ∈ {0, 1}n :

n∑
j=1

a jx j ≤ b

⎫⎬
⎭ .

A setC ⊆ N is called a cover if
∑

j∈C aj > b, and a cover
inequality corresponding to the coverC is given by∑

j∈C
xj ≤ |C| − 1, (32)

where |C| denotes the cardinality of set C. The cover
inequality (32) is a valid inequality for set K. Read-
ers are refereed to [5] for more details about knapsack
inequality.

Proposition 1. For each component of each aircraft of
each aircraft type, the inequality

∑
t∈C

ykit ≤ |C| − 1 +
c0−1∑
t=1

xkit f (33)

is valid for original MIP formulation described by con-
straints (4)–(26), where C is the cover of the following
knapsack constraint:

24∑
t=1

Dk
t y

k
it ≤ rki f , (34)

and c0 denotes the smallest element of cover C.

Proof.We will consider two cases:
Case-1.

∑c0−1
t=1 xkit f = 0: In this case, ith aircraft of

type k aircraft will not be maintained during time t = 1
to time t = c0 − 1. The inequality is reduced to cover
inequality ∑

t∈C
ykit ≤ |C| − 1,

which is valid since we cannot let the aircraft conduct all
missions at time t ∈ C without maintaining the aircraft
to increase its RUL rki f .

Case-2.
∑c0−1

t=1 xkit f = 1: In this case, the aircraft is
maintained at some time point between time t = 1 and
time t = c0 − 1. Then the inequality reduces to∑

t∈C
ykit ≤ |C|,

which is redundant since, by our assumption, the aircraft
can conduct any mission after the maintenance. �

Notice that we cannot identify all possible cover
inequalities in general, and a separation algorithm is
needed to find violated cover inequalities. In our case,
however, we can directly identify all cover inequalities
by enumeration since we only have 24 variables in knap-
sack constraint

24∑
t=1

Dk
t y

k
it ≤ rki f .

Also, the aircraft are usually scheduled during the day
shift (starts at 6:00 am and ends at 6:00 pm) [24];we thus
only need to identify all possible cover C of knapsack
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constraint
24∑
t=13

Dk
t y

k
it ≤ rki f .

This is because on the night shift, the mission dura-
tion parameter Dk

t will be 0. Therefore, for each com-
ponent of each aircraft (i.e., for each i,k, and f ), we only
need to enumerate 212 = 4096 cover inequalities. How-
ever, when the planning horizon is longer (e.g., more
than 24 h), enumerating all cover inequalities can be ex-
tremely time-consuming since the number of required
inequalities is exponential in the length of the planning
horizon. In our case, according to our numerical exper-
iment, it will take less than 30 s to find all covers when
we have a fleet of 12 aircraft with a planning horizon of
1 day.

The valid inequalities presented in Proposition 1
are usually not strong, hence insufficient to solve large-
scale practical problems. Our next result shows a way to
strengthen the valid inequalities in Proposition 1.

Proposition 2. For each component of each aircraft of
each aircraft type, the inequality

∑
t∈C

ykit +
∑
t∈C1

ykit ≤ |C| − 1 + (1 + |C1|)
c0−1∑
t=1

xkit f

is valid for original MIP formulation described by con-
straints (4)–(26), where C is the cover of the following
knapsack constraint

24∑
t=1

Dk
t y

k
it ≤ rki f ,

and c0 denotes the smallest element of cover C. C1 is de-
fined as

C1 := {t ′ : c1 + 1 ≤ t ′ ≤ 24,Dk
t ≥ max

t∈C
Dk
t },

where c1 denotes the largest element of cover C.

Proof. Similar to the proof of Proposition 1, we will con-
sider two cases:

Case-1.
∑c0−1

t=1 xkit f = 0: In this case, ith aircraft of
type k aircraft will not be maintained during time t = 1
to time t = c0 − 1. The inequality is reduced to cover
inequality ∑

t∈C
ykit +

∑
t∈C1

ykit ≤ |C| − 1,

which is an extended cover inequality of cover inequal-
ity ∑

t∈C
ykit ≤ |C| − 1,

hence valid for original formulations.
Case-2.

∑c0−1
t=1 xkit f = 1: In this case, the aircraft is

maintained at some time point between time t = 1 and

time t = c0 − 1. Then the inequality reduces to∑
t∈C

ykit +
∑
t∈C1

ykit ≤ |C| + |C1|,

which is redundant, hence valid for original formula-
tions. �

V. NUMERICAL EXPERIMENT

To validate the proposed model and solution
method,we conduct a series of numerical experiments to
illustrate the model performance and computational ef-
ficiency. In SectionV-A,we explain the experimental de-
signs and parameter settings for the computational tests.
SectionV-B shows the performance of the proposed pre-
dictive maintenance model compared to the traditional
preventive maintenance model. Section V-C evaluates
the impact of two classes of valid inequalities (intro-
duced in Section IV-B) on computational efficiency. The
experiments are conducted on a computer with an Intel
Core i7 4-core 2.7 GHz processor and 16 GB of RAM.
All mathematical programs are coded in Python 3 lan-
guage,and all problem instances are solved byGUROBI
9.1 under Python API.

A. Experimental Design and Parameters Setting

Before we provide a formal presentation and inter-
pretation of our numerical results, we will first introduce
the workflow of the learn-then-optimize framework that
we used to generate the results. Given a set of onboard
sensor readings, we first predict RUL for different com-
ponents of an aircraft by fusing the data with the bidi-
rectional LSTM neural network model (introduced in
Section III). The values of the initial estimated RUL in
Table V are obtained based on these predictions. The
predicted RUL is then used as input parameters for the
optimization model (proposed in Section IV). Together
with other parameters such as mission and maintenance
requirements,we run our optimizationmodel and finally
obtain the scheduling decisions.

The parameter settings for our experiment are given
as follows: Planning horizon T = 24 h (since we are
planning daily operations), types of aircraft K = 2, with
6 aircraft for each type, i.e., a total of 12 aircraft. For
each type of aircraft, there are three different failure
modes to be considered, e.g.,WP,AF, and AV. Each fail-
ure mode requires several technicians to repair it. The
number of maintenance stations is set to be three, so no
more than three aircraft can be maintained at the same
time.The number of available technicians for each trade
(i.e., trades 1, 2, and 3) at the beginning of the planning
horizon is set to be 10.

For the experiment scenario, Table III summarizes
the mission type (i.e., the number and type of aircraft
Mk

t and mission during time Dk
t ) for a 24-h horizon. In

this example, all mission types in the first 12 h (6:00 pm
to 6:00 am) are the same, during which there are no
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Table III
Mission Requirements for Number and Type of AircraftMk

t and
During TimeDk

t

t 1–12 13 14 15 16 17 18 19 20 21 22 23 24

M1
t 0 1 1 1 2 2 2 1 1 1 2 2 2

M2
t 0 1 1 1 2 2 2 1 1 1 2 2 2

D1
t 0 1 2 1 3 1 2 1 2 1 1 2 1

D2
t 0 2 1 2 1 2 2 2 1 2 2 2 1

missions to be conducted. The mission types can be, for
example, (1) surveillance or (2) escort for various time
periods. Different mission types require different num-
bers of aircraft and duration.

Table IV shows themaintenance time and number of
technicians of trade r required to rectify failure mode f
for aircraft type k. To initiate the experiment, we specify
the initial health conditions, which are represented by
the estimated RUL from deep learning models, for all
aircraft. Table V displays the estimated RUL (in num-
ber of operational cycles) for component f of type k
aircraft i at the beginning of the planning horizon. To
take into account the maintenance time, Table VI spec-
ifies the required maintenance time for component f of
type k aircraft at time t. In this example, every type of
mission consumes five units of time (i.e., five operational
cycles) for each component of each type of aircraft.
TableVI displays themaintenance cost of repairing com-
ponent/failuremode f of aircraft type k and the restored
RUL after completing the maintenance/repair.

B. Assessment of Model Performance

We next evaluate the scheduling performance of
our proposed predictive maintenance model, compared
to the traditional preventive maintenance model as a
benchmark. To validate the model’s performance, we
conduct the tests over a 72-h horizon by assuming that
the mission requirements are the same for these three
days.We also assume that the RUL inputs for the second
and third days are calculated based on aircraft usage and
maintenance during the previous day.For example,with-
out any maintenance, the initial RUL for the second day

Table IV
Maintenance Duration Ek

r f and Number of Technicians Ikr f of Trade r
Required to Rectify Failure Mode f for Aircraft Type k

f = 1 f = 2 f = 3
Ikr f r = 1 r = 2 r = 3 r = 1 r = 2 r = 3 r = 1 r = 2 r = 3
k = 1 1 1 0 1 0 1 0 1 1
k = 2 1 2 1 1 0 1 0 1 1

f = 1 f = 2 f = 3
Ek
r f r = 1 r = 2 r = 3 r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

k = 1 2 2 2 2 2 2 2 2 2
k = 2 2 2 2 2 2 2 2 2 2

Table V
Initial Estimated RUL rki f of Component f for ith Aircraft of Type k

i = 1 i = 2 i = 3
rki f f = 1 f = 2 f = 3 f = 1 f = 2 f = 3 f = 1 f = 2 f = 3
k = 1 12 12 25 12 12 25 13 25 7
k = 2 12 25 25 22 20 3 25 25 5

i = 4 i = 5 i = 6
rki f f = 1 f = 2 f = 3 f = 1 f = 2 f = 3 f = 1 f = 2 f = 3
k = 1 4 8 15 3 25 20 3 10 12
k = 2 4 5 25 3 25 20 3 25 25

is the initial RUL for the first dayminus the total mission
duration of the first day.

Figure 6 shows the resulting optimal maintenance
schedule and flight planning decisions obtained based on
the mission requirements in the example scenario over
a three-day planning period. In the figure, the red and
green bar represent maintenance activity and mission
assignment activity, respectively. The length of the bars
stands for the maintenance/mission duration. The loca-
tions for maintenance activity (red bar) indicate which
component is maintained. For example, for the fifth type
2 aircraft, it will maintain the first component (bottom
of row 5-2) on the second day, while for the third type
1 aircraft, it will maintain the third component (top of
row 3-1) on the third day. The numbers under rows
MissionReq-1 and MissionReq-2 represent the number
of required aircraft for each type of aircraft at a specific
time slot. We can observe that all mission requirements
are satisfied at all times, and there is no time conflict be-
tween maintenance and flight decisions. For example, at
t = 16, the commander requires two type 1 and two type
2 aircraft to conduct a mission.We can see that the opti-
mal scheduler assigns numbers 5 and 6 type 1 aircraft and
numbers 5 and 6 type 2 aircraft to conduct the mission.
We can interpret the decisions in terms of aircraft num-
ber 5 of type 1 as an example. It is assigned to conduct
missions at time t = 16, and 24 in the first day. Then it is
scheduled tomaintain/repair component 1 at t = 8 in the
second day, which takes 2 h to complete. After complet-
ing the repair, this aircraft is available again and can be
assigned to conduct new missions. As shown in the fig-
ure, the aircraft is assigned to conduct missions at time
t = 14, 16, 19, 20, 22, and 23.

Table VI
Maintenance Cost ckf for Component f of Type kAircraft and

Restored RUL rkmax,f for Component f of Type k.

ckf f = 1 f = 2 f = 3
k = 1 100 90 85
k = 2 80 120 110
rkmax,f f = 1 f = 2 f = 3
k = 1 50 70 90
k = 2 50 80 100
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Figure 6. Flight and maintenance scheduling results.

To further demonstrate the benefits of the proposed
methodology, we compare the performance of our pre-
dictive maintenance approach with that of traditional
preventive maintenance methods. In preventive mainte-
nance, an aircraft is maintained after a fixed number of
operation cycles. Predictive maintenance, on the other
hand, schedules the maintenance only when needed
based on the predicted RUL, as described previously. In
addition, in practical operations, some random failures
may occur even when an aircraft is in good condition.
We thus use a Bernoulli random variable, whose success
probability is proportional to the cumulative usage of a
component, to model these random failures. A success
of the Bernoulli random variable indicates the failure
of a component in our experiments. The Bernoulli ran-
dom variable is realized during the preflight and post-
flight checks.Thus, an aircraft cannot conduct missions if
a random failure occurs (or is detected) during the pre-
flight check, and the mission is tagged as incomplete. If
a random failure occurs, the aircraft needs to undergo
unscheduled maintenance when maintenance resources
are available; otherwise, the aircraft will be put into a
waiting queue and will be unavailable to conduct any
missions.

We compare the performance of predictive and pre-
ventive maintenance models over a 240-day horizon in
terms of mission accomplishment rate and aircraft avail-
ability rate. The mission accomplishment rate is defined
as the percentage of desired missions that are completed
on time, while the aircraft availability rate is defined as
the percentage of aircraft that are ready and available for
mission assignments.We also evaluate the impact of the
number of maintenance stations (S) and the duration of

Figure 7. Mission completion rate with S = 1.

maintenance time (Ek
fr) on the scheduling decisions and

model performance.Please note that the testing scenario
involved maintenance durations ranging from 6 to 15,
which differs from the specific parameters used to gener-
ate Fig. 6. This intentional difference was introduced to
assess the robustness of the scheduling decisions when
confronted with varying maintenance durations.

With one maintenance station (S = 1), Figs. 7 and 8
show the comparisons between predictive maintenance
and preventive maintenance models across different
maintenance durations in terms of mission accomplish-
ment rate and aircraft availability rate, respectively.
Figs. 9 and 10 illustrate the comparisons with two avail-
able maintenance stations (S = 2). Two important
insights can be derived from the figures. First, the pro-
posed predictive maintenance model dominates the
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Figure 8. Aircraft availability with S = 1.

classical preventive maintenance model by obtaining
significantly higher values in both mission accomplish-
ment rate and aircraft availability rate. For example,
when S = 1, the mission accomplishment rate of the
predictive model ranges from 70% to 75%, while the
highest value of the preventive model is only 59% and
decreases dramatically as maintenance time increases.
Similarly, the predictive model leads to an aircraft avail-
ability rate consistently over 90%, while the preventive
model can only maintain 60% when maintenance time
is short. The availability rate of the preventive model
drops rapidly when maintenance duration increases.
This observation leads to the second insight that the
predictive maintenance model performs consistently
well across different maintenance times, while the pre-
ventive model is very sensitive to required maintenance
time and its performance drops significantly when
maintenance time increases.

C. Impact of Valid Inequality on Computational
Efficiency

In our proposed framework and numerical experi-
ments, the scheduling optimization problem is supposed

Figure 9. Mission completion rate with S = 2.

Figure 10. Aircraft availability with S = 2.

to be implemented every 24 h. Computational efficiency
thus plays an important role in the effective implemen-
tation of real-world applications. In this section, we will
demonstrate the computational efficiency of the pro-
posed solution approaches and the impact of two classes
of valid inequalities.

We adopt one problem instance using the same
parameter settings specified in Section V-A. We also
randomly generated four other problem instances to
demonstrate the performance of the proposed valid in-
equalities, in which the parametersMk

t andD
k
t are gener-

ated according to discrete uniform distributionsU (1, 3)
andU (1, 3), respectively, to emulate small mission dura-
tions and dense mission requirements. For each problem
instance,we solve it five times, aiming to avoid the possi-
bility that the improvement is due to some random pro-
cedure within the GUROBI optimizer. We set the run-
ning time limit to 10 h (36, 000 CPU seconds).We report
the average solution time over the five implementations
in Table VII.The first column in Table VII stands for the
problem instance index. The second and third columns
represent the solution time without any valid inequali-
ties and solution time with valid inequalities proposed
in Propositions 1 and 2. The results clearly indicate that
the proposed valid inequalities can improve the compu-
tational speed by several orders of magnitude. For cases
1 and 5, the original formulation cannot solve the prob-
lem to exactness within 10 h.However, by incorporating
the valid inequalities, the average solution time reduces
to 30.0 and 39.0 s, leading to an efficiency improvement
of several orders of magnitude.

Table VII
Solution Time of Formulation Without and With Valid Inequalities

Instance Original formulation With valid inequalities

1 36,000 30.0
2 282.2 17.0
3 850.8 16.8
4 36,000 426.4
5 36,000 39.0
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For case 4, the solution time with valid inequalities is
426.4 s, which is still approximately 80 times faster than
the original formulation. For cases 2 and 3, which can be
solved quickly by the original formulation within 282.2
and 850.8 s, the valid inequalities can still improve the
computational speed significantly and obtain the solu-
tions within 17.0 and 16.8 s. In sum, the two classes of
valid inequalities proposed can efficiently improve the
computational speed and make the proposed predictive
maintenancemodels more easily applied in practical set-
tings in a timely manner.

VI. CONCLUSION

In this study, we propose an integrated learn-then-
optimize framework for CBPM scheduling and flight
mission planning. The bidirectional LSTM deep learn-
ing techniques are used to combine data from multiple
sensors to predict the RUL values of a multicomponent
aircraft. With the predicted RUL values, a MIP formu-
lation is then proposed to maximize the fleet availability
rate subject to different mission requirements and trade
types. Two classes of valid inequalities are proposed
to further improve the computational efficiency of the
model. The proposed predictive maintenance method
significantly outperforms the traditional preventive
maintenance method in a hypothetical but somewhat
realistic scenario.
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