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Recently, a method for including target-provided measurements

within a joint integrated probabilistic data association (JIPDA) fil-

ter was presented and compared with a belief propagation (BP)-

based multitarget tracking method.While the JIPDA-based approach

uses multiple kinematic models within an interacting multiple model

framework, the BP-based approach uses only a single kinematic

model.Here,we present and analyze the results of similar experiments

conducted on both simulated and real data. Our results show that

the JIPDA-based method tends to outperform the BP-based method

when the targets are well-separated and perform sharp maneuvers,

whereas the BP-basedmethod outperforms the JIPDA-basedmethod

when the targets are closely spaced.

I. INTRODUCTION

A. Background

In a recent publication [1], three methods for includ-
ing target-provided measurements in a joint integrated
probabilistic data association (JIPDA) framework were
proposed. The framework considered in [1], referred
to as VIMMJIPDA filter, combines interacting multi-
ple models (IMM) and a visibility state within the well-
established JIPDA filter [2]. The IMM concept, first in-
troduced in [3], allows the use of multiple kinematic
models for the tracking of maneuvering targets, while
the visibility state indicates whether the tracked target
is visible to the sensor or not. A target-provided mea-
surement is an observation produced by a target and
made available to the tracking method. This observa-
tion usually includes kinematic information, e.g., the tar-
get’s position and velocity, and additional information
such as a unique code identifying the target. The tar-
get obtains its own position and velocity through an
onboard device, generally a global navigation satellite
system (GNSS) transponder, and transmits this infor-
mation, as well as any other relevant information, to
neighboring targets and to a central fusion node. Ex-
amples of such systems are the automatic identifica-
tion system (AIS) for maritime surveillance and ves-
sel collision avoidance [4] and the automatic dependent
surveillance broadcast (ADS-B) system for air traffic
control [5].

These target-dependent reporting systems differ
from classical perception sensors such as radar, lidar,
and cameras in several aspects. Firstly, the measure-
ments they produce are asynchronous because they
are provided by the targets themselves, and each tar-
get can transmit its messages at any time. Secondly, a
target-provided measurement cannot be a false alarm
because it is not the result of a detection process.1 Sev-
eral attempts have been made to fuse target-provided
measurements and observations produced by percep-
tion sensors. One common approach is to consider
the reporting system and the perception sensor as
stand-alone assets, and accordingly estimate two sep-
arate sets of tracks, which are later fused to form a
single set of estimated tracks. This approach, which is
known as track-level fusion, has some performance
limitations compared to measurement-level fusion
techniques [6].

The methods proposed in [1] follow a measurement-
level fusion approach and are based on the VIM-
MJIPDA tracking method. Specifically, three different
methods for handling the target-provided measure-
ments are proposed. One of them processes the

1Nevertheless, target-dependent reporting systems like the AIS can be
subject to intentional reporting of false information. However, this is
not taken into account in [1] nor in the remainder of this paper.
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measurements as they arrive, i.e., sequentially; the
others collect the measurements and process them at
fixed times. The validity of these approaches is demon-
strated both in a simulated maritime scenario and with
real data acquired as part of the Autosea project con-
ducted by the Norwegian University of Science and
Technology [7], and the performance of the proposed
methods is compared with that of the belief propaga-
tion (BP)-based tracking method with target-provided
measurement fusion capabilities presented in [8], [9].
The setup of both the simulated scenario and the real
experiment consists of a single radar sensor and the
AIS. It is observed that the particle filter (PF) imple-
mentation of the BP-based tracking method (referred
to as the BP-PF+AIS method) performs worse than the
VIMMJIPDA-based methods and, in some cases, even
worse than a radar-only method, i.e., a method that uses
only the radar measurements.

B. Contribution

The implementation of the BP-PF+AIS method is
not publicly available, which led the authors of [1] to
use their own implementation. In this paper, we study
the performance of the original implementation of the
BP-PF+AIS method used in [8], [9] for a simulated sce-
nario similar to the one described in [1, Sec. VIII-A],
as well as on the real dataset provided by the Au-
tosea project [7].Additionally,we consider the simulated
scenario described in [9, Sec. VI-A]. The performance
obtained with the original implementation of the BP-
PF+AIS method is compared with that obtained with
the original VIMMJIPDA method using only the radar
measurements [2] and with the sequential method pro-
posed in [1] (to be referred to as VIMMJIPDA+AIS),
for which code is available in [10]. We note that the
BP-PF+AIS method described in [8], [9] does not use
multiple kinematic models. However, a BP-based track-
ing method using multiple kinematic models that con-
forms to the general IMM approach is presented in [11].
Therefore, we also evaluate and compare the perfor-
mance of the BP-PF+AIS method described in [8], [9],
properly extended to exploit multiple kinematic mod-
els as proposed in [11]; we refer to this version as BP-
PF+AIS+IMMmethod.Wewill demonstrate that while
the BP-PF+AIS and BP-PF+AIS+IMM methods have
performance advantages in the case of closely spaced
targets, the VIMMJIPDA+AIS method performs bet-
ter when the targets are well-separated and when they
perform sharp maneuvers.

The remainder of this paper is organized as fol-
lows: Section II provides a brief description of the VIM-
MJIPDA, VIMMJIPDA+AIS, BP-PF+AIS, and BP-
PF+AIS+IMMmethods.Section III presents the results
of an experimental comparison of these methods con-
ducted on two simulated scenarios, while in Section IV
the performance is compared on a real dataset.Conclud-
ing remarks are provided in Section V.

II. BRIEF DESCRIPTION OF THE COMPARED
METHODS

The VIMMJIPDA method, derived in [2] as a
special case of the Poisson multi-Bernoulli filter, is a
variation of the JIPDA filter for multitarget tracking
that includes multiple kinematic models and a visibil-
ity state, and uses hypothesis enumeration to model
the target-measurement data association. Specifically, a
single-linkage clustering strategy is used to group targets
that sharemeasurements.Then, for groups with less than
four targets or less than two measurements, brute-force
hypothesis enumeration is performed, whereas Murty’s
algorithm [12] with a maximum of eight hypotheses
is used for all other groups. The VIMMJIPDA+AIS
method proposed in [1] builds upon [2] and incorpo-
rates target-provided measurements. One important
technical detail that enables this is to model target birth
as a marked Poisson point process, where the marks
are constituted by the unique codes identifying the
targets.

The BP-based multitarget tracking methods are de-
scribed in [13] and references therein. The principle be-
hind these methods is to exploit the statistical inde-
pendence of certain random variables describing the
tracking problem, and to represent these independence
relationships by means of a factor graph. Then, us-
ing a message-passing algorithm—i.e., the sum-product
algorithm—on this factor graph enables an intuitive and
computationally efficient approximation of theBayesian
inference needed for target detection and estimation.
Fundamental for the derivation of these methods is to
properly model and formulate the target-measurement
data association. An iterative BP-based algorithm for
data association with remarkable performance in terms
of convergence and accuracy was proposed in [14]. A
common approach to implementing BP-based track-
ing algorithms for general nonlinear/non-Gaussian kine-
matic and measurement models is to resort to a PF, as
described in [15].

Building upon [13]–[15], a suite of BP-PF methods
has been developed recently. The BP-PF+AIS method
proposed in [9] extends the previous works to incor-
porate heterogeneous data. This method fuses sensor
measurements and target-provided measurements, e.g.,
AIS data, by establishing an appropriate likelihood for
target-provided measurements and a statistical model
for data association. A self-tuning BP-PF method that
continuously adapts to time-varying system models is
proposed in [11]. This method infers and adapts to an
unknown detection probability of the sensors and em-
ploys multiple kinematic models in line with the IMM
framework. Similar to a construction kit system, BP-
based algorithm parts can be combined in a modular
manner to achieve desired functionalities and prop-
erties. For example, the BP-PF+AIS+IMM method,
which is used for comparison in this paper, combines
the IMM framework proposed in [11] with the ability

94 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 18, NO. 2 DECEMBER 2023



Figure 1. A realization of the simulated scenario considered in [1,
Sec. VIII-A], with PD = 0.5. The black dots indicate the final positions
of the trajectories.

to fuse sensor measurements and target-provided
measurements as established in [9].

III. SIMULATION RESULTS

In this section, we present simulation results for the
scenarios considered in [1, Sec. VIII-A] and [9, Sec.
VI-A].

A. Scenario Considered in [1]

The simulated scenario considered in [1,Sec.VIII-A]
employs a single radar sensor located at [0, 0]t that sur-
veys a circular area of radius 500mwith a time scan dura-
tion of 2.5 s. Five targets appear at the edge of that area,
three at time t = 0 s and two at time t = 10 s, initially
moving with a velocity of 3.75m/s.The trajectories of the
targets are generated according to a nearly constant ve-
locity (NCV) kinematic model [16, Sec. 6.2.2] with driv-
ing noise variance set to 0.12 m2 s−3, and with occasional
maneuvers according to a coordinated turn (CT) kine-
matic model [16, Sec. 4.2.2]. The radar detects a target
with probability PD and generates range-bearing mea-
surements; the measurement noise is a two-dimensional
(2D) zero-mean Gaussian random vector with covari-
ance diag(82 m2, 12 deg2). The number of false alarms
is Poisson distributed with mean 2. All targets provide
AIS measurements containing their unique identifying
code as well as their 2D Cartesian position and ve-
locity. The number of AIS measurements provided by
a target during each time scan is Poisson distributed
with mean 0.5. The AIS measurement noise for posi-
tion and velocity is a 4D zero-mean Gaussian random
vector with covariance diag(32 m2, 32 m2, 0.12 m2/s2,
0.12 m2/s2). Figure 1 shows a realization of the scenario

Figure 2. Time-averaged mean GOSPA error versus detection prob-
ability PD of the radar sensor for the simulated scenario considered
in [1, Sec. VIII-A].

with the trajectories of the five targets, the 2D posi-
tion component of the AISmeasurements, and the radar
measurements generated with PD = 0.5.

In Figures 2 and 3, we demonstrate and com-
pare the performance of the radar-only method (i.e.,
VIMMJIPDA [2]), the sequential method proposed
in [1] (i.e., VIMMJIPDA+AIS), the original imple-
mentation of the BP-PF+AIS method [8], [9], and the
BP-PF+AIS+IMM method. The performance of these
methods is measured by the mean generalized optimal
sub-pattern assignment (GOSPA) error [17] of order 2
with a cutoff parameter 200 m, averaged over 100 sim-
ulation runs. The mean GOSPA error accounts for lo-
calization errors for correctly confirmed targets as well
as for errors due to missed and false targets. For the
VIMMJIPDA and VIMMJIPDA+AIS methods, we use
the parameters reported in [1, Tab. III]. Where appli-
cable, the same parameters are also used for the BP-
PF+AIS and BP-PF+AIS+IMMmethods (e.g., the sur-
vival probability), while parameters specifically related
to the BP-based methods (e.g., the number of poten-
tial targets) are set as in [9]. The VIMMJIPDA and
VIMMJIPDA+AIS methods use three models to char-
acterize the kinematics of the targets, namely, two NCV
models with different driving noise variances and one
CT model. The BP-PF+AIS method uses a single NCV
model; therefore, to account for potential maneuvers,
the driving noise variance of the NCV model for the
BP-PF+AIS method is set to 0.82 m2 s−3. Finally, the
BP-PF+AIS+IMMmethod uses two NCV models with
driving noise variance 0.052 m2 s−3 and 0.82 m2 s−3. Dif-
ferently from the NCV model, the CT model does not
allow a simple closed-form calculation of the likelihood
for the target-provided measurements specified in the
supplementary material of [9]. Developing a tractable
implementation of this likelihood is outside the scope of
this paper, and for this reason, the BP-PF+AIS+IMM
method does not employ a CT model.

Figure 2 shows the time-averaged mean GOSPA er-
ror when the detection probability PD of the radar sen-
sor is varied from 0.50 to 0.99. It can be seen that
the VIMMJIPDA+AIS method performs better than
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Figure 3. Mean GOSPA error versus time for the simulated scenario
considered in [1, Sec. VIII-A] with PD = 0.9.

both the BP-PF+AIS and BP-PF+AIS+IMMmethods.
Furthermore, the use of multiple NCV models within
the BP-PF+AIS method offers only a marginal im-
provement. The difference in performance between the
VIMMJIPDA+AIS method and the BP-PF+AIS and
BP-PF+AIS+IMM methods can be explained by the
fact that the VIMMJIPDA+AIS method uses also a CT
model to better track maneuvering targets, and also by
the fact that the BP-PF+AIS and BP-PF+AIS+IMM
methods create a larger number of false tracks. How-
ever, differently from the results reported in [1], the
time-averaged mean GOSPA error of the BP-PF+AIS
method is lower than that of the VIMMJIPDA method.

Figure 3 shows the mean GOSPA error versus time
for PD = 0.9. Again differently from the results re-
ported in [1], both the VIMMJIPDA+AIS method
and the BP-PF+AIS and BP-PF+AIS+IMM methods
correctly initialize the targets, as is demonstrated by
their similar mean GOSPA errors at times t = 0 s
and t = 10 s, i.e., when the targets appear. The
slightly lower mean GOSPA error of the VIMMJIPDA
+AIS method relative to the BP-PF+AIS and BP-
PF+AIS+IMM methods can again be explained by
the fact that the VIMMJIPDA+AIS method uses an
additional CT model that allows it to maintain track
continuity when targets maneuver and by the larger
number of false tracks created by the BP-PF+AIS
and BP-PF+AIS+IMM methods. This is confirmed by
Table I, which reports the individual costs constitut-
ing the mean GOSPA error (averaged over time), i.e.,
the localization cost for correctly confirmed targets and

Table I
Time-Averaged Individual Costs Constituting the Mean GOSPA

Error (in Meter) for the Simulated Scenario Considered in
[1, Sec. VIII-A] with PD = 0.9.

Localization False Missed

VIMMJIPDA+AIS 12.3 0.3 12.7
BP-PF+AIS 12.6 0.8 16.9
BP-PF+AIS+IMM 11.2 1.6 17.5

Bold font highlights the lowest value in each column.

Table II
Average Computation Times (in Second) per Time Scan for the

Simulated Scenario Considered in [1, Sec. VIII-A].

PD
0.50 0.60 0.70 0.80 0.90 0.99

VIMMJIPDA 0.32 0.31 0.28 0.28 0.25 0.26
VIMMJIPDA+AIS 0.79 0.70 0.58 0.57 0.45 0.46
BP-PF+AIS 0.20 0.19 0.20 0.21 0.21 0.21
BP-PF+AIS+IMM 0.55 0.53 0.56 0.56 0.56 0.56

Bold font highlights the lowest value in each column.

the costs for missed and false targets. The larger num-
ber of false tracks created by the BP-PF+AIS and BP-
PF+AIS+IMM methods is mainly due to the use of
the heuristic described in [15] to model the generation
of new targets, which was later superseded by the fully
Bayesian BP-based tracking method proposed in [13].

Finally, Table II presents a comparison between the
average computation times per time scan for all the
methods. This comparison shows that the BP-PF+AIS
method is the fastest method, even faster than the orig-
inal VIMMJIPDA method that does not process the
target-provided measurements. However, definite con-
clusions cannot be drawn from this analysis, given the
different implementations, the different number of kine-
matic models used, and the different programming lan-
guages employed.

B. Scenario Considered in [9]

Next,we present results for a simulated scenario that
is similar to the one considered in [9, Sec. VI-A]. Our
scenario consists of nine targets that are moving with a
constant velocity of 4 m/s. The starting points of the tar-
get trajectories are equally spaced on a circle with cen-
ter [0, 0]t and a radius of 4 km. The target trajectories
and the radar sensor are depicted in Figure 4.Unlike the
scenario considered in the previous subsection, here the
trajectories are deterministic—thus, they are equal for
all simulation runs—and approximately cross each other

Figure 4. Simulated scenario considered in [9, Sec. VI-A]. The star
marks the position of the radar sensor, and the dot indicates the final
position of the highlighted trajectory.The other trajectories are rotated
(by multiples of 40◦) versions of the highlighted one.
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Figure 5. Mean GOSPA-T error versus time for the simulated sce-
nario considered in [9, Sec. VI-A].

in [0, 0]t. Five targets appear at t = 0 s and do not dis-
appear, and the other four targets appear at t = 40 s
and disappear at about t = 32 min. Six randomly se-
lected targets provide AIS measurements between t =
1.5 min and t = 31.5 min. The number of AIS mea-
surements provided by a target during each time scan
is Poisson distributed with mean 0.5 for three of the six
targets and mean 1 for the other three targets. The time
scan duration is set to 10 s. The AIS measurement noise
is modeled as before. The radar detects a target with
probability PD = 0.5, and it generates range-bearing
measurements with a 2D zero-mean Gaussian measure-
ment noise with covariance diag(2502 m2, 2.562 deg2).
The number of false alarms is Poisson distributed with
mean 2.

For this scenario, both the BP-PF+AIS and
VIMMJIPDA+AIS methods use a single NCV model
with driving noise variance set to 0.152 m2 s−3. The
parameters for the BP-PF+AIS method are set as
in [9]. For the VIMMJIPDA+AIS method, we use the
parameters reported in [1, Tab. III] with the exception
of the clutter density set to 1.7 × 10−9 m−2, the unknown
target rate set to 10−10 m−2, and the parameters re-
lated to the radar measurement noise, that is, the range
measurement variance set to 2502 m2 and the bearing
measurement variance set to 2.562 deg2.

As previously done in [9], we compare the
VIMMJIPDA+AIS and BP-PF+AIS methods in terms
of the mean GOSPA error for trajectories (GOSPA-
T) [18] of order 2 and with a cutoff parameter of 500 m,
averaged over 100 simulation runs. Compared to the
GOSPAerror, theGOSPA-T error additionally accounts
for track switches by adding a switching penalty of 125m.
One can see in Figure 5 that the VIMMJIPDA+AIS
method outperforms the BP-PF+AIS method during
approximately the first half of the simulation, that is,
where the targets are well-separated. As the targets get
closer, the difference between the GOSPA-T errors of
the two methods becomes less significant. From minute
24, after the targets crossed their paths, the BP-PF+AIS
method outperforms the VIMMJIPDA+AIS method.
This is due to the inability of the VIMMJIPDA+AIS
method to continue tracking some of the targets after

Table III
Time-Averaged Individual Costs Constituting the Mean GOSPA-T
Error (in Meter) for the Simulated Scenario Considered in [9].

Localization False Missed Switch

VIMMJIPDA+AIS 249.9 138.3 532.3 9.5
BP-PF+AIS 325.0 271.7 394.8 10.5

Bold font highlights the lowest value in each column.

they crossed their paths, as demonstrated by the higher
time-averaged missed cost component of the mean
GOSPA-T error shown in Table III. On the other hand,
the time-averaged localization and false costs of the
VIMMJIPDA+AIS method are lower than those of
the BP-PF+AIS method. In terms of average compu-
tation time, the BP-PF+AIS method is faster than the
VIMMJIPDA+AIS method: it requires 0.61 s to pro-
cess each time scan, whereas the VIMMJIPDA+AIS
method requires 0.81 s.

IV. RESULTS FOR REAL DATA

Finally, we assess and compare the performance
of the VIMMJIPDA, VIMMJIPDA+AIS, and BP-
PF+AIS methods for a real dataset that was acquired
as part of the Autosea project [7]. The scenario now
consists of a radar sensor mounted onboard a semi-
autonomous surface craft and four unknown targets:
a 30-m-long slow-moving vessel consistently provid-
ing AIS measurements and three fast-moving rigid-
hull inflatable boats (RHIBs), one of which provides
a single AIS measurement. The VIMMJIPDA and
VIMMJIPDA+AIS methods employ three kinematic
models as in [1]—twoNCVmodels and oneCTmodel—
and use the parameters reported in [1, Tab. III]. The BP-
PF+AIS method uses a single NCV model with driving
noise variance set to 1.72 m2 s−3, which is higher than
the driving noise variances used for the VIMMJIPDA
and VIMMJIPDA+AIS methods, and also noticeably
higher than the driving noise variance used for the BP-
PF+AIS method in [1]. Results obtained with the BP-
PF+AIS+IMM method using two NCV models are not
reported because they are equivalent to those obtained
with the BP-PF+AIS method.

Figure 6 shows the trajectories estimated by the three
methods as colored solid lines.The semiautonomous sur-
face craft is sailing from north to south, and its tra-
jectory, depicted as a gray solid line, is known. The
unknown targets are traveling from south to north.
The ground-truth trajectory of the slow-moving ves-
sel, obtained by connecting its AIS measurements, is
also depicted as a red dashed line; the ground-truth
trajectories of the three fast-moving RHIBs are not
available. Differently from the results reported in [1],
Figure 6 shows that the BP-PF+AIS method performs
better than the VIMMJIPDAmethod, which loses track
of one of the three RHIBs when their paths cross, and
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Figure 6. Trajectories estimated by (a) the VIMMJIPDA method, (b) the VIMMJIPDA+AIS method, and (c) the BP-PF+AIS method using
a real dataset acquired as part of the Autosea project [7]. The estimated trajectories are depicted in orange, yellow, purple, and green, with their
final positions indicated by large dots. The transparency of the tracks is related to their existence probability: lighter (darker) colors correspond
to lower (higher) existence probabilities. The red dashed line indicates the ground-truth trajectory of the slow-moving vessel. The gray line
represents the known trajectory of the radar sensor. The gray/black dots and crosses indicate the radar and AIS measurements, respectively;
the measurements become darker as time passes by. The blue line in the top-right corner of the rightmost panel is a false track created by the
BP-PF+AIS method.

performs almost identically to the VIMMJIPDA+AIS
method. Despite using only a single NCV model, the
BP-PF+AIS method is able to estimate the trajecto-
ries of all the targets with high accuracy. The draw-
backs of using a higher driving noise variance than the
driving noise variances used for the VIMMJIPDA and
VIMMJIPDA+AIS methods and for the BP-PF+AIS
method in [1] are manifested by the fact that the es-
timated trajectory for the slow-moving vessel exhibits
abrupt changes of direction, and that a false track
is created in the top-right corner of the considered
area.

V. CONCLUSION

Recently, an extension of the VIMMJIPDA method
that is able to include target-provided measurements
was proposed in [1]. The effectiveness of this approach
was validated in [1] through a comparison with the
BP-PF+AIS method presented in [8], [9], whose code
is not publicly available. In this paper, we presented
the results of an experimental comparison using the
implementation of the BP-PF+AIS method originally
used in [8], [9], as well as the BP-PF+AIS+IMM
method from [11]. Simulation results showed that
the VIMMJIPDA+AIS method outperforms the BP-
PF+AIS and BP-PF+AIS+IMMmethods when the tar-
gets are well-separated, whereas the BP-PF+AIS and
BP-PF+AIS+IMM methods have performance advan-
tages in the case of closely spaced targets. The reason
why the VIMMJIPDA+AIS method performs worse in

the latter case is likely the limited performance of the
data association scheme based on Murty’s algorithm,
which struggles when targets are closely spaced. Im-
provements to the VIMMJIPDA+AIS method can be
obtained by resorting to the variational approximation
method presented in [19].However,due to its use of aCT
kinematic model, the VIMMJIPDA+AIS method gen-
erally providesmore accurate estimates when the targets
perform sharp maneuvers. On the other hand, the BP-
based data association algorithm used within the BP-
PF+AIS and BP-PF+AIS+IMMmethods tends to pro-
duce better results in challenging tracking environments
with tighter target spacings [14]. Finally, results obtained
with a real dataset showed that the BP-PF+AISmethod
using a singleNCVkinematicmodel whose driving noise
parameter is sufficiently high can track the agile RHIBs
with performance comparable to that obtained with the
VIMMJIPDA +AIS method.
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