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Mapping of underwater objects is usually conducted with au-

tonomous underwater vehicles (AUVs). A standard approach in mine

countermeasure (MCM) operations is to perform a two-phase recon-

naissance: in the first phase, a survey mission is carried out to detect

and classify the objects; in the second phase, objects are reacquired

to confirm the actual presence of mines. The data acquired during this

multiphasemission greatly depends on the accuracy of theAUV’s nav-

igation system. This paper proposes a graph-based mapping algorithm

that takes into account the unknown AUV position, as well as the

output of the classification process, and uses the sum–product algo-

rithm (SPA) to obtain a principled and intuitive approximation of the

Bayesian inference needed for object detection and estimation. The

SPA-basedmapping algorithm is derived in detail, and its performance

is evaluated in a simulated MCM scenario.

I. INTRODUCTION

Underwater mapping and surveying arise in a vari-
ety of applications, from environmental assessments and
inspections [1]–[3] to marine archaeology [4] and mine
countermeasure (MCM) operations [5].

These tasks are generally conducted with unmanned
underwater vehicles, such as remotely operated ve-
hicles (ROVs) and autonomous underwater vehicles
(AUVs) [6]. ROVs are connected to a support ship
or marine platform and are operated from above the
water’s surface. The cable provides power and high-
speed communications, allowing the operator to guide
the vehicle while receiving sensor data in quasi-real time.
Even though the cable can extend over several kilome-
ters, this can limit the maximum range of operations.
AUVs, instead, are untethered and preprogrammed to
perform a specific task with little or no operator interac-
tion, and they are usually designed for long-range, high-
endurance missions.

When performing mapping and surveying with
AUVs, navigation information is of paramount impor-
tance. Indeed, the quality and value of the data acquired
during a mission greatly depend on the accuracy of
the vehicle’s navigation system. The unavailability of
global positioning system (GPS) technologies in the
underwater environment, limited by the heavy atten-
uation of radio frequency signals, requires the use of
other methods for vehicle localization, e.g., acoustic or
inertial navigation [7]. Acoustic navigation is based on
the use of external references (i.e., acoustic beacons)
at known positions that provide navigation aids to the
unmanned vehicle, such as relative range and bearing;
however, the deployment of such acoustic beacons
might be inconvenient or even unfeasible in some
scenarios. Inertial navigation systems (INSs), instead,
calculate the instantaneous position and orientation of
the vehicle using high-frequency data from an inertial
measurement unit (IMU) available on board. A typical
IMU includes accelerometers and gyroscopes, and the
INS provides position and orientation information by
integrating the values measured by these devices. How-
ever, because of this integration, the inherent errors
in the accelerometers and gyroscopes accumulate over
time, resulting in position and orientation errors that
increase over time [8], [9]. A performance measure for
an INS is given by the inertial drift rate in position that,
for current high-quality commercial INSs, is of several
kilometers per hour [6]. Advanced techniques, e.g.,
aiding the INS with a Doppler velocity log, a pressure
sensor, and magnetometers, can reduce this drift to less
than 0.5% of the AUV’s traveled distance [10].

The use of AUVs is widely acknowledged as benefi-
cial in MCM scenarios since they allow to operate from
a distance in safe conditions.A classic approach tomine-
hunting is to perform a two-phase reconnaissance. Dur-
ing the first phase, a survey mission is carried out us-
ing an AUV equipped with a synthetic aperture sonar
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(SAS) capable of detecting and classifying mine-like ob-
jects (MLOs); the AUV generally follows a lawnmower
pattern so as to ensure full coverage of the designed
area, and the classification is performed by means of au-
tomatic target recognition (ATR) techniques [11], [12].
Once potential MLOs are located, the second phase is
committed to the reacquisition of the contacts with an
AUVequipped with a lower-range but higher-resolution
sensor [13]. This second phase is more effective as the
position uncertainty of the objects detected during the
first phase is limited and their classification is accurate.
Therefore, the algorithm responsible for building a com-
prehensive map of the underwater objects—bothMLOs
and non-MLOs—needs to account for the inherent un-
certainty of the AUV position, as well as process the
ATR classification output.

The mapping algorithm can exploit the position of
the detected objects to sequentially refine the estimate
of the AUV position, particularly when the same area
happens to be surveyed multiple times. This approach
is known in the robotics literature as simultaneous lo-
calization and mapping (SLAM), and has been applied
also in the underwater domain.However, due to the lack
of underwater features suitable as anchor points, under-
water robotic mapping has primarily been focused on
structured, man-made, or confined underwater environ-
ments [14], [15]. Recently, a probability hypothesis den-
sity (PHD)-based underwater mapping algorithm has
been proposed [16], [17]. The PHD filter is an exam-
ple of set-type tracking algorithm in which object states
andmeasurements are represented by random finite sets
(RFSs), a formulation that is particularly convenient for
addressing situations with a varying number of objects
to locate,object (dis)appearance and spawning, the pres-
ence of clutter and association uncertainty, false alarms,
and missed detections. However, the methods in [16],
[17] do not account for the uncertain AUV position.
Nevertheless, RFS-based approaches that jointly esti-
mate the AUV position and the (mobile) object states
have been presented for other applications, such as au-
tonomous driving [18].

This paper proposes and describes a Bayesian map-
ping algorithm based on an emerging approach to in-
formation fusion. This approach relies on a factor graph
representation of the statistical model of the underwa-
ter mapping problem—including the uncertain AUV
position—and on the sum–product algorithm (SPA) to
efficiently obtain a principled and intuitive approxima-
tion of the Bayesian inference needed for object detec-
tion and estimation [19], [20]. Parts of this work were
presented in our conference publication [21]. This paper
differs from that publication in that it extends the for-
mulation to account for the unknown AUV position; it
presents detailed derivations of the joint posterior dis-
tribution; and it presents the SPA messages in a com-
plete and detailed manner. Note that the statistical for-
mulation and the factor graph described in this paper are
similar to those presented in [22] for multipath-based in-

door SLAM and in [23] for cooperative localization and
tracking using a network of sensing agents.Themain dif-
ference between the current work and those cited papers
is in the application: specifically,when conducting under-
watermappingwith an SAS sensor,not all the objects are
observable at all times.Moreover, the statistical formula-
tion herein presented integrates the output of the ATR,
enabling discrimination among different object types.

The remainder of this article is organized as follows.
The basic notation and nomenclature are described in
the next subsection. Section II describes the problem
at hand and outlines the system model. The stochastic
formulation is given in Section III, while the proposed
method is detailed in Section IV. Results obtained in a
simulated MCM scenario are shown in Section V, and
Section VI concludes the paper.

A. Notation

Throughout this paper, column vectors are denoted
by boldface lower-case letters (e.g., a) and matrices by
boldface upper-case letters (e.g.,A). I denotes the iden-
tity matrix and 1 denotes the column vector of all ones,
with the size determined by the subscript or from the
context. The transpose of a matrix A is written as At.
We write diag(a1, . . . , an) for an n× n diagonal matrix
with diagonal entries a1, . . . , an. Moreover, given a se-
quence a1, . . . ,an, the column vector stacking all the ele-
ments of the sequence is denoted as a1:n = [at1, . . . ,a

t
n]

t.
The Euclidean norm of vector a is denoted by ‖a‖. For a
two-dimensional (2D) vector a, ∠a is the angle defined
counterclockwise and such that ∠a = 0 for a = [1, 0]t.
The symbol ∝ denotes equality up to a constant fac-
tor. Sets are denoted by calligraphic letters (e.g., A),
the Dirac delta function is denoted by δ(·), and the
Kronecker delta is denoted by δa,b, and is equal to 1 if
a = b, and 0 otherwise. Finally, we denote the proba-
bility mass function (pmf) of a discrete random variable
or vector by p(·) and the probability density function
(pdf) of a continuous random variable or vector by f (·);
the latter notation will also be used for a mixed pdf/pmf
of both continuous and discrete random variables or
vectors.

II. PROBLEM DESCRIPTION AND SYSTEM MODEL

A. AUV State, Navigation Data, and ATR Detections

Let st represent the AUV state at time step t =
1, 2, . . . , whose evolution is given by the following kine-
matic model:

st = ε(st−1,ut ), (1)

where ut is a driving process noise independent across t.
The AUV is equipped with an on-board device, e.g., an
INS, that provides at time t a noisy observation of the
AUV state st ; this observation, referred to as navigation
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Figure 1. Illustration of the scenario (note that the time index t is
omitted). The global coordinate system is (ξ1, ξ2). The position of the
AUV (black dot) is sp = [s(1)p , s(2)p ]t, and its forward direction is given
by the angle ∠sv. The local coordinate system (η1, η2) is defined by

the position and heading of the AUV.

data, is modeled as

gt = γA(st,υt ), (2)

where υt is an observation process noise independent
across t. To facilitate the description that follows, we
consider the state st to be composed of the AUV’s po-
sition st,p and velocity st,v in Cartesian coordinate, i.e.,
st = [

stt,p, s
t
t,v

]t. Nevertheless, the derivation of the pro-
posed algorithm is general enough to accommodate a
different definition of st that may also include additional
kinematic parameters, e.g., the AUV turn rate. As illus-
trated in Fig. 1, the state st defines the AUV local co-
ordinate system (η1, η2), whose origin is st,p and that is
rotated of an angle ∠st,v in a counterclockwise direc-
tion with respect to the global coordinate system (ξ1, ξ2).
Note that a generic point ρξ in global coordinates can
be converted into local coordinates as ρη = θ(ρξ ; st ) �
R(∠st,v)

[
ρξ − st,p

]
, where R(·) is a clockwise rotation

matrix.
The AUV is equipped with an SAS, a high-resolution

sonar that generates acoustic images of the bottom.Such
images—or SAS tiles—come in pairs, covering both port
and starboard sides of the AUV, but having a coverage
gap beneath. Figure 2 shows the geometry of the port
side SAS tile in local coordinates (the starboard side tile
is obtained bymirroring the port side tile on the η1-axis).
The SAS images are processed by anATRalgorithm that
detects and classifies the features of interest, providing
the location within the tile (i.e., in local coordinates) of
each detection and the probabilities of such detection
of being generated by an object of class c ∈ {1, . . . ,C},
where C is the total number of classes. Specifically, the
number of detections (or measurements) extracted by
theATR algorithm from the SAS tiles at time t ismt .The
location of the mth measurement in local coordinates is
represented by the vector �m,t =

[
�
(1)
m,t , �

(2)
m,t

]t. The proba-

Figure 2. Geometry of the port side SAS tile in local coordinates:
(η(1)

1 , η
(1)
2 ) is the location of the corner of the tile closest to the origin,

i.e., the position of the AUV;�η1= η
(2)
1 − η

(1)
1 is the tile extent along

η1;�η2= η
(2)
2 − η

(1)
2 is the tile extent along η2.

bility of themth measurement of being generated by an
object of class c∈{1, . . . ,C} is referred to as π

(c)
m,t , and the

sum of these probabilities is 1, i.e.,
∑C

j=1 π
( j)
m,t = 1. Since

any one of theseC probabilities can be derived from the
other C − 1, the ATR algorithm actually provides the
vector πm,t �

[
π

(1)
m,t , . . . , π

(C−1)
m,t

]t, i.e., the vector stacking

all the probabilities but π
(C)
m,t . Indeed, π

(C)
m,t can then be

calculated from πm,t as π
(C)
m,t = 1 − 1tC−1πm,t . Concretely,

if the ATR algorithm distinguished between MLOs and
non-MLOs, then C = 2, and π

(1)
m,t and π

(2)
m,t = 1 − π

(1)
m,t

would be, respectively, the probability that themth mea-
surement is generated by an MLO, and the probabil-
ity that the mth measurement is generated by a non-
MLO.Unlike the approaches presented in [24], [25],here
the ATR algorithm does not distinguish between object-
and clutter-generated measurements. For convenience,
we define the vector of the mth measurement at time t
as zm,t � [�tm,t,π

t
m,t]

t, and the vector of all the measure-
ments extracted at time t as zt� [zt1,t, . . . , z

t
mt ,t]

t.

B. Potential Object States

As done in [23], [26], we account for a time-varying
unknown number of objects by introducing the concept
of potential object (PO). The number of POs at time t is
kt ; the existence of PO k ∈ {1, . . . ,kt} at time t is indi-
cated by the binary variable rk,t ∈ {0, 1}, i.e., rk,t = 1 if
the PO exists and rk,t = 0 otherwise. Position and class
of PO k are denoted by xk,t and τk,t , respectively, and
are formally considered also if rk,t = 0. We combine the
position, class, and existence variables of PO k into the
state vector yk,t � [xtk,t, τk,t , rk,t]

t, and define the joint
vector of all the POs at time t as yt � [yt1,t , . . . , y

t
kt ,t

]t.
We observe that the position xk,t and class τk,t of any
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nonexisting PO (i.e., for which rk,t = 0) are obviously ir-
relevant; thus, all the pdfs defined for the PO states, i.e.,
f (yk,t ) = f (xk,t, τk,t , rk,t ), are such that

f (xk,t, τk,t , rk,t = 0) = fk,t fD(xk,t, τk,t ),

where fk,t ∈ [0, 1] is a constant and fD(xk,t, τk,t ) is an
arbitrary dummy pdf.

Each PO at time t is either a new PO or a legacy PO.
New POs model those objects that are detected for the
first time by the ATR algorithm at time t. Each new PO
corresponds to a measurement zm,t ; therefore, the num-
ber of new POs at time t is mt . The state of a new PO is
denoted by ym,t � [xtm,t , τm,t, rm,t]t,m ∈ {1, . . . ,mt}, and
rm,t = 1 thus means that measurementm was generated
by an object that was never detected before, namely, a
newly detected object; we define the joint state vector of
all new POs introduced at time t as yt�

[
yt1,t , . . . , y

t
mt ,t

]t.
A legacy PO is a PO that has already been introduced
at any previous time t ′ < t. We indicate with y

k,t
�

[xtk,t, τ k,t, rk,t]
t the state of legacy PO k ∈ {1, . . . ,kt−1},

and with y
t
� [yt

1,t
, . . . , yt

kt−1,t
]t the joint legacy PO state

vector. The kt−1 legacy POs and the mt new POs form
the set of kt = kt−1 +mt POs at time t, i.e., yt � [yt

t
, ytt ],

which will then become legacy POs at time t + 1. Note
that using this mechanism, the number of POs grows in-
definitely over time. To keep a tractable number of POs,
a suboptimal pruning step is performed once all themea-
surements at time t are processed;details are provided in
Section IV-F.

The joint PO state yt evolves over time according to
a first-order Markov model, and each PO state vector
yk,t evolves independently [23], [26].Moreover, recalling
that for each PO at time t − 1, there is one legacy PO at
time t, the joint PO state transition pdf is

f (y
t
|yt−1) =

kt−1∏
k=1

f (y
k,t

|yk,t−1). (3)

Note that the number of POs at time t = 0 is zero, i.e.,
k0 = 0; therefore, for t = 1, the transition pdf in (3) is the
result of an empty product, that is, f (y

1
|y0) = 1. Further-

more, assuming that given the position and existence of
PO k at time t−1 (i.e., xk,t−1 and rk,t−1), the position and
existence of legacy PO k at time t (i.e., xk,t and rk,t) are
conditionally independent of the PO class at time t − 1
and the legacy PO class at time t (i.e., τk,t−1 and τ k,t); and
that given τk,t−1, the legacy PO class τ k,t is conditionally
independent of xk,t−1 and rk,t−1, we obtain

f (y
k,t

|yk,t−1) = f (xk,t, τ k,t, rk,t |xk,t−1, τk,t−1, rk,t−1)

= f (xk,t, rk,t |τ k,t, xk,t−1, τk,t−1, rk,t−1)

×p(τ k,t |xk,t−1, τk,t−1, rk,t−1)

= f (xk,t, rk,t |xk,t−1, rk,t−1) p(τ k,t |τk,t−1).

(4)

Since in the considered scenario the objects, hence the
POs, are stationary (i.e., they cannot leave the surveilled
area), the pdf f (xk,t, rk,t |xk,t−1, rk,t−1) is defined as fol-
lows: if PO k does not exist at time t−1, i.e., if rk,t−1 = 0,
then it cannot exist as legacy PO at time t; if it does exist
at time t − 1, i.e., if rk,t−1 = 1, then it exists as legacy PO
at time t and its position xk,t is distributed according to
the transition pdf f (xk,t |xk,t−1) = δ(xk,t −xk,t−1), that is,

f (xk,t, rk,t |xk,t−1, rk,t−1)

=
{
(1 − rk,t ) fD(xk,t ), rk,t−1 = 0,

rk,t f (xk,t |xk,t−1), rk,t−1 = 1,
(5)

where fD(xk,t ) = ∑C
τ k,t=1 fD(xk,t, τ k,t ). Additionally,

given that the class of an object cannot change over time,
the pmf p(τ k,t |τk,t−1) = δτ k,t ,τk,t−1 .

C. ATR Measurement Model

The probability that PO k is detected by the ATR
algorithm at time t, i.e., that PO k generates a measure-
ment zm,t , is function of the PO position xk,t and class
τk,t , as well as of the AUV state st , and is denoted by
Pd(xk,t, τk,t , st ). As an example, the probability of detec-
tion could be nonzero only inside the SAS tiles, i.e.,

Pd(xk,t, τk,t , st )

�
{
pd(τk,t ) if θ(xk,t; st ) is within the SAS tiles,

0 otherwise,

where pd(τk,t ) is a class-dependent probability of detec-
tion.Alternatively,Pd(xk,t, τk,t , st ) could also account for
some environmental characteristics, such as the bottom
type [27].

The statistical dependency of a PO-generated mea-
surement zm,t on the PO position xk,t and class τk,t , and
on the AUV state st , is described by the likelihood func-
tion f (zm,t |xk,t, τk,t , st ) = f (�m,t,πm,t |xk,t, τk,t , st ). Fol-
lowing [24] and assuming that �m,t is conditionally inde-
pendent of πm,t and τk,t given xk,t and st , and that πm,t

is conditionally independent of xk,t and st given τk,t , the
likelihood function can be factorized as

f (zm,t |xk,t, τk,t , st ) = f (�m,t,πm,t |xk,t, τk,t , st )
= f (�m,t |πm,t , xk,t, τk,t , st ) f (πm,t |xk,t, τk,t , st )
= f (�m,t |xk,t, st ) f (πm,t |τk,t ). (6)

The first factor in (6), i.e., f (�m,t |xk,t, st ), is determined
by the ATR measurement model, defined as

�m,t = γO
(
θ(xk,t; st ),ωm,t

)
,

and by the statistics of the ATR measurement noise
ωm,t , assumed independent across m and t. The second
factor in (6), i.e., f (πm,t |τk,t ), is modeled according to
a Dirichlet distribution with vector parameter ατk,t �
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[
α
(1)
τk,t , . . . , α

(C)
τk,t

]t, that is,
f (πm,t |τk,t = c) = 1

B(αc)

C−1∏
j=1

π
( j)
m,t

(
α
( j)
c −1

)

× (
1 − 1tC−1πm,t

)(α
(C)
c −1

)
, (7)

where B(·) is the multivariate beta function.
A clutter-generated measurement (i.e., a false-

alarm) is statistically described by the pdf fFA(zm,t ) =
fFA(�m,t ,πm,t ) that, assuming the independence be-
tween �m,t and πm,t , can be factorized as fFA(zm,t ) =
f0(�m,t )g0(πm,t ). The number of clutter-generated mea-
surements at each time t within both the port side and
starboard side tiles is assumed Poisson distributed with
mean μ0.

D. Data Association

The measurements zm,t , m ∈ {1, . . . ,mt}, have un-
known origins, namely, it is unknown if a given mea-
surement is generated from clutter or from a PO, and
from which PO. Here, we consider the point-object as-
sumption, stating that, at each time t, a measurement zm,t

originates either from a legacy PO, or from a new PO,
or from clutter, and it cannot originate from more than
one source (legacy POs, new POs, or clutter) simultane-
ously. Conversely, each PO (either legacy or new) can
generate at most one measurement at time t [28]. Fol-
lowing [23], [26], the association between the kt−1 legacy
POs,mt new POs, and mt measurements can be mathe-
matically described by introducing: (i) the setNt of mea-
surements generated by newly detected objects at time t,
that is,Nt �

{
m ∈ {1, . . . ,mt} : rm,t = 1

}
; (ii) the legacy

PO-oriented association vector at � [a1,t , . . . , akt−1,t]
t;

and (iii) the measurement-oriented association vector
bt � [b1,t, . . . ,bmt ,t]

t. Specifically, ak,t is defined as m ∈
{1, . . . ,mt} if legacy PO k generatesmeasurementm, and
as 0 if legacy PO k does not generate any measurement.
Similarly, bm,t is defined as k ∈ {1, . . . ,kt−1} if measure-
mentm originates from legacy PO k and as 0 if measure-
mentm does not originate from any legacy PO.Note that
bm,t = 0 implies that measurement m either is clutter-
generated or originates from a newly detected object.
Then, the point-object assumption can be expressed by
the indicator function 
(at,bt ), defined as [23]


(at,bt ) � �(at,bt )
∏
m∈Nt

�(bm,t ), (8)

where

�
(
bm,t

)
�

{
0 bm,t ∈ {1, . . . ,kt−1},
1 bm,t = 0,

(9)

and

�(at,bt ) �
kt−1∏
k=1

mt∏
m=1

ψ(ak,t,bm,t ), (10)

with

ψ(ak,t,bm,t ) �

⎧⎪⎨
⎪⎩
0 ak,t = m and bm,t �= k ,

or ak,t �= m and bm,t = k ,

1 otherwise .

Note that, since the product in (8) is over the set Nt ,
the indicator function 
(at,bt ) formally depends also
on the new PO existence variables rm,t ,m ∈ {1, . . . ,mt}.
Expression (8) can be easily explained as follows: valid
associations described by at , bt , and the new PO exis-
tence variables rm,t ,m ∈ {1, . . . ,mt}, are those for which

(at,bt ) = 1; and we note that �(at,bt ) is 0 if a mea-
surement is associated with two or more legacy POs
(and, vice versa, if a legacy PO is associated with two
or more measurements), and 1 otherwise; and that the
product over m ∈ Nt of �(bm,t ) is 0 if any measurement
generated by a new PO is also associated with a legacy
PO, and 1 otherwise.

III. STOCHASTIC PROBLEM FORMULATION

A. Joint Posterior pdf

The objective of the mapping of underwater ob-
jects is to determine if a PO exists and estimate
its position and class given all AUV navigation data
and all measurements extracted by the ATR algo-
rithm up to time t, i.e., given g1:t and z1:t . In the
Bayesian framework here described, this essentially con-
sists in evaluating for each PO k ∈ {1, . . . ,kt} the
posterior marginal pmf p(rk,t |g1:t, z1:t ), used for exis-
tence declaration,1 and the conditional marginal pdf
f (xk,t |rk,t = 1, g1:t, z1:t ) and pmf p(τk,t |rk,t = 1,
g1:t, z1:t ), used for position and class estimation, respec-
tively. These marginal posterior distributions can be
calculated by simple elementary operations—including
marginalization—from the joint posterior distribu-
tion f (y0:t, s0:t,a1:t,b1:t |g1:t, z1:t ) = f (x0:t, τ0:t, r0:t, s0:t,
a1:t,b1:t |g1:t, z1:t ). Here, the sequence of AUV states s0:t
is considered as nuisance parameters to be marginalized
out, where s0 is the state at time t = 0 whose prior distri-
bution f (s0) is known; y0 is introduced for mathematical
convenience, since at time t = 0 the number of POs is
zero, i.e., k0 = 0. This joint posterior pdf can be factor-
ized as (details are provided in the Appendix)

f
(
y0:t, s0:t,a1:t,b1:t

∣∣g1:t, z1:t) ∝ f
(
s0

)
f
(
y0

)
×

t∏
t ′=1

f
(
y
t ′

∣∣yt ′−1

)
f
(
st ′

∣∣st ′−1
)
f
(
gt ′

∣∣st ′)
× f

(
yt ′ ,at ′ ,bt ′ ,mt ′

∣∣y
t ′
, st ′

)
f
(
zt ′

∣∣yt ′ , st ′ ,at ′ ,mt ′
)
,

(11)

1The existence of PO k is confirmed if p(rk,t = 1|g1:t , z1:t ) is above an
existence threshold Eth [29, Ch. 2].
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where f (y
t
|yt−1) is defined in (3), f (st |st−1) derives from

the kinematic model in (1), and f (gt |st ) is the likelihood
determined by the navigation data model in (2). Follow-
ing the derivations in [26], next we provide expressions
for the prior data association pdf f (yt,at,bt,mt |yt, st )
and the measurement likelihood f (zt |yt, st,at,mt ).

B. Prior Data Association pdf

By considering the point-object assumption (cf.
Section II-D), and assuming that positions and classes
of legacy POs and new POs at time t are independent,
the pdf f (yt,at,bt,mt |yt, st ) can be expressed as

f
(
yt,at,bt,mt

∣∣y
t
, st

) ∝ �
(
at,bt

)

×
kt−1∏
k=1

q1
(
y
k,t

, ak,t , st;mt
) mt∏
m=1

h1
(
ym,t ,bm,t

)
. (12)

The derivation of this pdf closely follows the deriva-
tion of the pdf in [26, eq. (60)] and is thus omitted. The
proportionality is due to a constant factor that only de-
pends on the number of measurementsmt , the indicator
function �(at,bt ) is defined in (10), and the functions
q1(·) and h1(·)—representing the contributions to the
prior data association pdf of the legacy and new POs,
respectively—are provided in the following. The func-
tion q1(yk,t, ak,t , st;mt ) = q1(xk,t, τ k,t, rk,t, ak,t , st;mt ) is
defined for rk,t =1 as

q1
(
xk,t, τ k,t, rk,t =1, ak,t , st;mt

)

�

⎧⎪⎨
⎪⎩
Pd(xk,t, τ k,t, st )

μ0
ak,t ∈ {1, . . . ,mt},

1 − Pd(xk,t, τ k,t, st ) ak,t = 0,
(13)

and for rk,t = 0 as

q1
(
xk,t, τ k,t, rk,t =0, ak,t , st;mt

)
� δak,t ,0. (14)

The function h1(ym,t,bm,t ) = h1(xm,t, τm,t , rm,t ,bm,t ) is
defined for rm,t =1 as

h1
(
xm,t, τm,t , rm,t =1,bm,t

)
� �

(
bm,t

)μN

μ0
fN(xm,t , τm,t )

=
⎧⎨
⎩
0 bm,t ∈ {1, . . . ,kt−1},
μN

μ0
fN(xm,t, τm,t ) bm,t = 0,

(15)

and for rm,t =0 as

h1
(
xm,t , τm,t, rm,t =0,bm,t

)
� fD(xm,t, τm,t ). (16)

Here, μN is the mean number of newly detected ob-
ject at each time t (assumed Poisson distributed)
and fN(xm,t , τm,t ) is the prior distribution of position
and class of a new PO that, assuming the indepen-
dence between xm,t and τm,t , can be factorized as
fN(xm,t, τm,t ) = fn(xm,t ) fn(τm,t ). Note that the function

h1(·) incorporates the indicator function �(·) defined
in (9), and that the combined use in (12) of the functions
�(at,bt ) and h1(·) describes the point-object assump-
tion as done by the indicator function
(·) defined in (8).

C. ATR Measurements Likelihood

By considering the point-object assumption (cf.
Section II-D) and assuming that PO-generatedmeasure-
ments and clutter-generatedmeasurements are indepen-
dent, the measurement likelihood f (zt |yt, st,at,mt ) =
f (zt |yt, yt, st,at,mt ) can be expressed as

f
(
zt

∣∣yt, yt, st,at,mt
) ∝

kt−1∏
k=1

q2
(
y
k,t

, ak,t , st; zt
)

×
mt∏
m=1

h2
(
ym,t, st; zm,t

)
. (17)

The derivation of the likelihood in (17) closely fol-
lows the derivation of the likelihood in [26, eq. (64)]
and is thus omitted. The proportionality is due to a
constant factor that only depends on the measure-
ment vector zt , and the functions q2(·) and h2(·)—
embedding the measurement likelihoods related to the
legacy and new POs, respectively—are provided in the
following.The function q2(yk,t, ak,t , st; zt ) = q2(xk,t, τ k,t,
rk,t, ak,t , st; zt ) is defined for rk,t =1 as

q2
(
xk,t, τ k,t, rk,t =1, ak,t , st; zt

)

�

⎧⎪⎨
⎪⎩
f
(
zm,t

∣∣xk,t, τ k,t, st)
fFA

(
zm,t

) ak,t ∈ {1, . . . ,mt},
1 ak,t = 0,

(18)

and for rk,t = 0 as

q2
(
xk,t, τ k,t, rk,t =0, ak,t , st; zt

)
� 1 . (19)

The function h2(ym,t , st; zm,t ) = h2(xm,t, τm,t , rm,t , st;
zm,t ) is defined as

h2
(
xm,t , τm,t , rm,t , st; zm,t

)

�

⎧⎪⎨
⎪⎩
f
(
zm,t

∣∣xm,t, τm,t , st
)

fFA
(
zm,t

) rm,t = 1 ,

1 rm,t = 0 .

(20)

IV. PROPOSED METHOD

A. Factor Graph and Message Scheduling

The final factorization of the joint posterior pdf
f (y0:t, s0:t,a1:t,b1:t |g1:t, z1:t )—obtained by inserting (10)
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Figure 3. Factor graph representing the factorization in (21) of the
joint posterior pdf f (y0:t , s0:t , a1:t , b1:t |g1:t , z1:t ) for a single time step.
Solid circles and squares represent variable nodes and factor nodes,
respectively. The following short notations are used: s– � st−1; s � st ;

y–k � yk,t−1; k
– � kt−1; yk � y

k,t
; ym � ym,t ; fA � f (st |st−1);

fk � f (y
k,t

|yk,t−1); g� f (gt |st ); ak � ak,t ; bm � bm,t ;

qk � q(y
k,t

, ak,t , st ; zt ); hm � h(ym,t ,bm,t , st ; zm,t );

ψk,m � ψ(ak,t ,bm,t ).

into (12), and (3), (12), and (17) into (11)—is

f
(
y0:t, s0:t,a1:t,b1:t

∣∣g1:t, z1:t)
∝ f

(
s0

)
f
(
y0

) t∏
t ′=1

f
(
st ′

∣∣st ′−1
)
f
(
gt ′

∣∣st ′)

×
[ kt′−1∏

k=1

f
(
y
k,t ′

∣∣yk,t ′−1

)
q
(
y
k,t ′

, ak,t ′ , st ′ ; zt ′
)

×
mt′∏
m=1

ψ
(
ak,t ′ ,bm,t ′ )

] mt′∏
m′=1

h
(
ym′,t ′ ,bm′,t ′ , st ′ ; zm′,t ′

)
,

(21)

where q(·) � q1(·)q2(·) and h(·) � h1(·)h2(·). Direct
marginalization of this joint posterior pdf for the com-
putation of the marginal posterior pdfs/pmfs mentioned
in Section III-A is generally unfeasible in reasonable
time, as it requires high-dimensional integration and
summation. Approximations at time t of these marginal
pdfs/pmfs—called beliefs and referred to as f̃t (·)—can
be efficiently obtained by applying the SPA on a factor
graph [19], [20], carefully devised from the factorization
in (21).

Such factor graph, illustrated for a single time step in
Fig. 3, contains loops: an inner loop involving the data
association variables ak,t and bm,t , and an outer loop in-
volving the AUV state st and factor nodes q(·) and h(·).
Therefore, a scheduling of the messages is defined based
on the following rules: (i) messages are not sent back-
ward in time; (ii) iterative message passing is only per-
formed for the data association, i.e., for the inner loop.
More specifically,at each time t, the inboundmessages—
from outside to inside the blue dashed rectangle—are

computed first. These messages represent the prediction
of the legacy PO states and AUV states, and are com-
puted assuming that all the outbound messages—from
inside to outside the blue dashed rectangle—are equal
to one. The inbound messages are then employed within
the inner loop for data association. When all the itera-
tions of the inner loop are performed, the outboundmes-
sages are calculated and eventually used to compute the
beliefs of the PO states. Next, we provide expressions
of the messages combining the scheduling rules stated
above and the generic SPA rules provided in [19]. The
messages are all denoted by ζα→β (·), where α and β are,
respectively, the origin and destination nodes of themes-
sage. Moreover, we assume that the beliefs are normal-
ized, i.e.,

∫
f̃t (α)dα = 1.

B. Inbound Messages

The inbound messages from variable node “s” to fac-
tor node “qk”, i.e., ζs→qk (st ), and from variable node “s”
to factor node “hm”, i.e., ζs→hm (st ), represent the predic-
tion of the AUV state and its refinement with naviga-
tion data. Recalling that the inbound messages are com-
puted assuming that the outboundmessages are all equal
to one, the expressions of the messages ζs→qk (st ) and
ζs→hm (st ) coincide; for them, we use the common nota-
tion ζs(st ), that is,

ζs(st ) � ζs→qk (st ) = ζs→hm (st )

= f (gt |st )
∫

f̃t−1(st−1) f (st |st−1) dst−1, (22)

where f̃t−1(·) is the belief computed at previous
time t − 1, whose expression is later provided in Sec-
tion IV-E. For convenience, we also introduce the fol-
lowing constant:

ζ 0
s =

∫
ζs

(
st
)
dst . (23)

The inboundmessage from variable node “y
k
” to fac-

tor node “qk”, representing the prediction of the legacy
PO k, is computed as follows:

ζy
k
→qk

(
y
k,t

) = ζy
k
→qk

(
xk,t, τ k,t, rk,t

)

=
1∑

rk,t−1=0

C∑
τk,t−1=1

∫
f̃t−1

(
xk,t−1, τk,t−1, rk,t−1

)

× f
(
xk,t, τ k,t, rk,t

∣∣xk,t−1, τk,t−1, rk,t−1
)
dxk,t−1.

Note that, since the belief f̃t−1(·) is normalized, the mes-
sage ζy

k
→qk (xk,t, τ k,t, rk,t ) is also normalized, i.e.,

1∑
rk,t=0

C∑
τ k,t=1

∫
ζy

k
→qk (xk,t, τ k,t, rk,t )dxk,t = 1. (24)

Furthermore, according to the definitions (4)–(5),
and recalling that the POs are stationary and that
their class does not change over time, the message
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ζy
k
→qk (xk,t, τ k,t, rk,t ) for rk,t =1 becomes

ζy
k
→qk

(
xk,t, τ k,t, rk,t =1

) = f̃t−1
(
xk,t, τ k,t, rk,t =1

)
. (25)

Finally, the inbound message from variable node “ym” to
factor node “hm” is equal to one, i.e.,

ζym→hm (ym,t ) = ζym→hm (xm,t, τm,t , rm,t ) = 1, (26)

since “ym” is a leaf variable node of the factor graph.

C. SPA-Based Data Association

The SPA-based data association is an iterative pro-
cedure that allows to compute accurate approxima-
tions of the marginal posterior data association pmfs,
i.e., p(ak,t |g1:t, z1:t ) and p(bm,t |g1:t, z1:t ) [30]. Practically,
the SPA-based data association step converts the mes-
sages ζqk→ak (ak,t ) and ζhm→bm (bm,t ), into the messages
ζak→qk (ak,t ) and ζbm→hm (bm,t ). Expressions of the latter
messages are provided in [26, Sec. IX-A3], whereas de-
tails of the messages ζqk→ak (ak,t ) and ζhm→bm (bm,t ) are
given below.

The message from factor node “qk” to variable node
“ak” is computed as

ζqk→ak

(
ak,t

) =
1∑

rk,t=0

C∑
τ k,t=1

∫∫
ζy

k
→qk

(
xk,t, τ k,t, rk,t

)

×ζs
(
st
)
q
(
xk,t, τ k,t, rk,t, ak,t , st; zt

)
dxk,tdst .

Using definitions (13)–(14) and (18)–(19), constant (23),
condition (24), and message (25), we obtain for ak,t = 0

ζqk→ak

(
ak,t = 0

)
= ζ 0

s −
∫∫

ζs
(
st
)[ C∑

τ k,t=1

Pd
(
xk,t, τ k,t, st

)

× f̃t−1
(
xk,t, τ k,t, 1

)]
dxk,tdst,

and for ak,t ∈ {1, . . . ,mt}
ζqk→ak

(
ak,t = m

)
= 1

μ0 fFA
(
zm,t

) ∫∫
ζs

(
st
)[ C∑

τ k,t=1

Pd
(
xk,t, τ k,t, st

)

× f̃t−1
(
xk,t, τ k,t, 1

)
f
(
zm,t

∣∣xk,t, τ k,t, st)
]
dxk,tdst .

Similarly, the message from factor node “hm” to vari-
able node “bm” is computed as

ζhm→bm

(
bm,t

)
=

1∑
rm,t=0

C∑
τm,t=1

∫∫
ζym→hm

(
xm,t , τm,t, rm,t

)

× ζs
(
st
)
h
(
xm,t , τm,t , rm,t,bm,t , st; zm,t

)
dxm,tdst .

Using definitions (15)–(16) and (20), constant (23), and
message (26), we obtain for bm,t =0

ζhm→bm

(
bm,t = 0

)
= ζ 0

s + μN

μ0 fFA
(
zm,t

) ∫∫
ζs

(
st
)[ C∑

τm,t=1

fN
(
xm,t, τm,t

)

× f
(
zm,t

∣∣xm,t, τm,t , st
)]

dxm,tdst,

and ζhm→bm (bm,t ) = ζ 0
s for bm,t ∈ {1, . . . ,kt−1}.

D. Outbound Messages

Once the iterations of the inner loop for data associ-
ation are performed, and the messages ζak→qk (ak,t ) and
ζbm→hm (bm,t ) are available, the outbound messages are
computed and eventually used to obtain the updated be-
liefs. The outbound message from factor node “qk” to
variable node “s”, representing the contribution of the
legacy PO k to the inference of the AUV state st , is com-
puted as follows:

ζqk→s
(
st
) =

1∑
rk,t=0

C∑
τ k,t=1

mt∑
ak,t=0

∫
ζy

k
→qk

(
xk,t, τ k,t, rk,t

)

× ζak→qk

(
ak,t

)
q
(
xk,t, τ k,t, rk,t, ak,t , st; zt

)
dxk,t .

As before,using definitions (13)–(14) and (18)–(19), con-
dition (24), and message (25), the message ζqk→s(st ) can
be rewritten as

ζqk→s
(
st
) = ζak→qk

(
ak,t =0

) −
C∑

τ k,t=1

∫
Pd

(
xk,t, τ k,t, st

)

× f̃t−1
(
xk,t, τ k,t, 1

)
f
(
xk,t, τ k,t, st; zt

)
dxk,t,

where

f
(
xk,t, τ k,t, st; zt

)
� ζak→qk

(
ak,t = 0

)
− 1

μ0

mt∑
m=1

ζak→qk

(
ak,t = m

) f (zm,t
∣∣xk,t, τ k,t, st)
fFA

(
zm,t

) .

Similarly, the outbound message from factor node “hm”
to variable node “s”, representing the contribution of the
new PO m to the inference of the AUV state st , is com-
puted as follows:

ζhm→s
(
st
)

=
1∑

rm,t=0

C∑
τm,t=1

kt−1∑
bm,t=0

∫
ζym→hm

(
xm,t, τm,t , rm,t

)

× ζbm→hm

(
bm,t

)
h
(
xm,t, τm,t , rm,t ,bm,t , st; zm,t

)
dxm,t .
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Using definitions (15)–(16) and (20), and message (26),
the message ζhm→s(st ) can be rewritten as

ζhm→s
(
st
) =

kt−1∑
k=1

ζbm→hm

(
bm,t = k

)

+ ζbm→hm

(
bm,t = 0

)[
1 + μN

μ0 fFA
(
zm,t

)

×
C∑

τm,t=1

∫
fN

(
xm,t, τm,t

)
f
(
zm,t

∣∣xm,t, τm,t, st
)
dxm,t

]
.

Finally, the outbound messages from factor node
“qk” to variable node “y

k
”, and from factor node “hm”

to variable node “ym”, are computed as, respectively,

ζqk→y
k

(
y
k,t

)=
∫

ζs
(
st
) kt−1∏
k′=1
k′ �=k

ζqk′→s
(
st
) mt∏
m=1

ζhm→s
(
st
)

×
[

mt∑
ak,t=0

ζak→qk

(
ak,t

)
q
(
y
k,t

, ak,t , st; zt
)]

dst

and

ζhm→ym

(
ym,t

)=
∫

ζs
(
st
) kt−1∏
k=1

ζqk→s
(
st
) mt∏
m′=1
m′ �=m

ζhm′→s
(
st
)

×
[ kt−1∑
bm,t=0

ζbm→hm

(
bm,t

)
h
(
ym,t ,bm,t , st; zm,t

)]
dst .

E. Beliefs Computation

The final step of the proposed algorithm regards the
computation of the beliefs at current time t of the legacy
PO states, i.e., f̃t (yk,t ), k ∈ {1, . . . ,kt−1}, and the new PO

states, i.e., f̃t (ym,t ), m ∈ {1, . . . ,mt}. The belief f̃t (yk,t )
is computed—up to a constant factor—as the product
of the messages that are passed (in opposite directions)
over the edge connecting variable node “y

k
” and factor

node “qk” [19], that is,

f̃t
(
y
k,t

) ∝ ζqk→y
k

(
y
k,t

)
ζy

k
→qk

(
y
k,t

)
.

The constant factor (not reported) ensures that the be-
lief normalizes to 1. Similarly, the belief f̃t (ym,t ) is com-
puted as the product of the messages that are passed (in
opposite directions) over the edge connecting variable
node “ym” and factor node “hm”, that is,

f̃t
(
ym,t

) ∝ ζhm→ym

(
ym,t

)
ζym→hm

(
ym,t

)
= ζhm→ym

(
ym,t

)
.

Eventually, the belief of theAUV state f̃t (st ) is also com-
puted as it is needed for the computation of the mes-
sage (22) at the next step t+1; this belief is calculated as

the product of all the messages directed toward variable
node “s” [19], that is,

f̃t
(
st
) ∝ ζs

(
st
) kt−1∏
k=1

ζqk→s
(
st
) mt∏
m=1

ζhm→s
(
st
)
.

F. Implementation Details

The proposed SPA-based algorithm for autonomous
mapping of underwater objects is implemented follow-
ing a particle-based approach [31] that scales quadrat-
ically with the number of particles and the number of
legacy POs, and scales linearly with the number of mea-
surements and the number of iterations of the data as-
sociation loop. As mentioned in Section II-B, in order
to keep a tractable number of POs over time, a pruning
step is performed. Specifically, any PO k ∈ {1, . . . ,kt}
whose posterior probability of existence, i.e., p(rk,t = 1|
g1:t, z1:t ), is below a given thresholdPth, is removed and is
not carried over to the next time step t+1.Moreover, to
avoid PO particle impoverishment, especially due to the
stationarity of the considered objects, a simple roughen-
ing strategy is employed [32].

V. SIMULATION RESULTS

A. Scenario Description

Performance of the proposed SPA-based algorithm
for autonomousmapping of underwater objects is evalu-
ated in a typical MCMmission.AnAUV is programmed
to survey an area of 0.25 km2 with 5 MLOs and 45 non-
MLOs by following a lawnmower pattern. The scenario
is illustrated in Fig. 4, with the AUV trajectory shown as
an orange solid line, and MLOs and non-MLOs as, re-
spectively, red diamonds and green dots. The AUV state
includes position and velocity in Cartesian coordinate,
as well as the turn rate νt , i.e., st = [

stt,p, s
t
t,v, νt

]t. The
AUV kinematic model employed in the proposed algo-
rithm and used to evaluate the pdf f (st |st−1) is the nearly
constant turn model, that is (cf. eq. (1)),

st = ε(st−1,ut ) = F (st−1) +G(st−1)ut, (27)

whereF (·) andG(·) are defined in [33, eqs. (6) and (7a)],
and ut is a 2D zero-mean Gaussian process noise whose
covariance is diag(σ 2

lin, σ
2
ang).

The AUV moves at 1.5 m/s, produces an SAS image
every T = 33 s, and completes the survey in approxi-
mately 2.8 h, i.e., in 305 time steps. The dimensions of
the SAS tile along and across the direction of travel are,
respectively, �η1 = 50 m and �η2 = 110 m, and its po-
sition with respect to the AUV is defined by η

(1)
1 = 0

and η
(1)
2 = 20 m (see Fig. 2). The ATR algorithm de-

tects objects within SAS tiles with probability pd(τk,t ) =
pd = 0.9, and distinguishes among C = 2 classes, i.e.,
MLOs (c = 1) and non-MLOs (c = 2); the vector pa-
rameters α1 and α2 used for simulating the probabilities
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Figure 4. Illustration of the simulated scenario. The orange solid
line represents the trajectory of the AUV, with the arrows indicating
the beginning and the end of the trajectory.MLOs and non-MLOs

are depicted as, respectively, red diamonds and green dots.

π
(1)
m,t as well as for the evaluation of the pdf f (π (1)

m,t |τk,t ) in
(7) are set to α1 = [6, 2]t and α2 = [2, 6]t, respectively.
The object-generated measurements are simulated ac-
cording to the following model, that is,

�m,t = γO
(
θ(xk,t; st ),ωm,t

)
= R(∠st,v)

[
xk,t − st,p

] + ωm,t ,

where ωm,t is a 2D zero-mean Gaussian process noise
with covariance σ 2

ωI with σω = 1 m. The same model is
used to evaluate the likelihood f (�m,t |xk,t, st ). The mean
number of clutter-generated measurements within both
the port side and starboard side tiles is μ0 = 0.1.

The AUV’s INS provides navigation data gt ∈ R
3—

that includes 2D position and heading—generated ac-
cording to the following model:

gt = [
stt,p,∠st,v

]t + d t, (28)

where d t is a 3D component that emulates the INS drift.
For this analysis, the INS error model described in [34] is
employed. Specifically, the position error has mean and
variance that accumulate, respectively, quadratically and
cubically over time [34, Table III]; for the heading er-
ror, instead,bothmean and variance accumulate linearly
over time [34, Table II]. Therefore,d t is modeled as a 3D
Gaussian process with time-varying mean

1
2

⎡
⎢⎢⎣

εpcos(∠st,v + λ0)
(
tT

)2
εpsin(∠st,v + λ0)

(
tT

)2
(−1)ι2εh

(
tT

)
⎤
⎥⎥⎦ , (29)

Figure 5. Illustration of the simulated scenario. The orange solid
line represents the trajectory of the AUV, and the blue dotted line

represents the trajectory estimated by the INS following the model in
(28)–(30) with λ0 = π/4 and εp = 7.5 m/h2. The arrows indicate the

beginning and the end of the trajectory.

and time-varying covariance

1
3
diag

(
ς2
p

(
tT

)3 cos2(∠st,v + λ0), . . .

ς2
p

(
tT

)3 sin2(∠st,v + λ0), . . .

3ς2
h

(
tT

))
, (30)

where λ0 ∈ (0, 2π ) and ι ∈ {0, 1}. Parameters εp
and εh drive, respectively, the quadratic growth of the
position drift, and the linear growth of the heading
drift, whereas ς2

p and ς2
h control, respectively, the cubic

growth of the position error variance—for each Carte-
sian coordinate—and the linear growth of the heading
error variance. Note that the INS drift is related to the
AUV local reference system, which explains the use of
∠st,v in (29)–(30); finally, ι is used to select a positive or
negative heading drift, and λ0 is used to balance the po-
sition drift over the two Cartesian coordinates.As an ex-
ample, with λ0 = 0 the AUV’s position estimated by the
INS is advancedwith respect to the trueAUV’s position;
with λ0 = π , instead, the AUV’s position estimated by
the INS is delayed with respect to the true AUV’s po-
sition. Figure 5 shows an example with λ0 = π/4 and
εp = 7.5 m/h2: as time goes by, the INS provides AUV
position estimates that are quadratically farther from the
actual trajectory.

The INS error model defined by (29)–(30) is as-
sumed partly unknown when running the proposed al-
gorithm. Specifically, we consider unknown the mean
(29) as well as the angle λ0,wheres we assume known the
cubic growth law of the position error variance and the
linear growth law of the heading error variance. There-
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fore, the navigation datamodel used to evaluate the like-
lihood f (gt |st ) is set to (cf. eq. (2)),

gt = γA(st,υt ) = [
stt,p,∠st,v

]t + υt,

where υt is a 3D zero-mean Gaussian process noise with
time-varying covariance diag(σ 2

p,t, σ
2
p,t, σ

2
h,t ), where

σ 2
p,t = 1

3
σ 2
p

(
tT

)3 and σ 2
h,t = σ 2

h

(
tT

)
with σp = 3 ςp and σh = 3 ςh.

Remark The INS usually provides its output much
faster than T = 33 s. For this analysis, we assume that
navigation data are available every second; this means
that between any two time steps t − 1 and t, the INS
provides 32 navigation outputs. Therefore, between any
two time steps, prediction and update of the AUV state
are performed every second by only using the INS out-
put; this is equivalent to run the SPA-based algorithm
on a factor graph only composed by the variable nodes
“s−” and “s”, and the factor nodes “fA” and “g” (see
Fig. 3). Then, when both the SAS image and naviga-
tion data are available at time t, the full SPA-based al-
gorithm described in Section IV is run. Finally, since the
AUV state prediction is performed every second, the pa-
rameters σlin and σang defining the process noise ut in
(27) and used to evaluate the pdf f (st |st−1) are set to
σlin = 0.5 m/s2 and σang = 20 deg/s2.

B. Results

The results obtained with the proposed SPA-based
algorithm for autonomous mapping of underwater ob-
jects are compared with three alternative SPA-based al-
gorithms; these alternative algorithms all assume that
the AUV state at time t is known. The first one is clair-
voyant in that it knows the “true” AUV state at time t;
this is clearly used as a benchmark,since this information
is not available in practice. The second alternative algo-
rithm, referred to as INS-plain, considers the navigation
data gt as AUV state at current time t, with no further
processing. The third alternative algorithm exploits the
navigation data provided by the INS every second to se-
quentially infer the AUV state at time t by means of a
particle filter, thus called INS-filter. This differs from the
proposed algorithm in that it does not exploit the infor-
mation readily available on the detected objects to refine
the AUV state estimate, and, on the other hand, it uses
only the estimated AUV position—and not its belief—
to make inference about the existence and location of
the objects. The results shown hereafter are averaged
over 100 Monte Carlo runs; each run differs for the po-
sitions of the non-MLOs that are uniformly located in
the area of interest, and for the values of λ0 ∈ (0, 2π )
and ι ∈ {0, 1} used in (29)–(30) for the generation of the
INS drifts.Moreover, 1000 particles are used to describe
the SPA beliefs andmessages, and the prior distributions
fn(xm,t ) and fn(τm,t ) related to the position and class of a
new PO are, respectively, uniform over the SAS tile, and

Figure 6. GOSPA errors obtained with the proposed algorithm and
with three alternative algorithms, namely, clairvoyant, INS-plain, and

INS-filter.

equal to fn(τm,t ) = 0.5 for τm,t ∈ {1, 2}. The remain-
ing parameters are set to εp = 7.5 m/h2, εh = 1 deg/h,
ςp = 7.5 m/h

3
2 , ςh = 0.6 deg/h

1
2 , μN = 10−3, Pth = 10−4,

and, unless otherwise stated,Eth = 0.8.
The performance of the different algorithms is com-

pared in Fig. 6 in terms of the Euclidean distance-based
generalized optimal sub-pattern assignment (GOSPA)
error [35], with cut-off parameter 50 m and order 1. The
GOSPA metric accounts for localization errors for cor-
rectly confirmed objects, errors for missed objects, and
false objects (i.e., confirmed POs not corresponding to
any actual object). As expected, the clairvoyant algo-
rithm presents the lowest GOSPA error, since it assumes
a perfect knowledge of the AUV state at each time t;
the error is decreasing because more objects are ob-
served and detected as the AUV surveys the area of in-
terest. The proposed algorithm, the INS-plain, and the
INS-filter approaches have GOSPA errors very similar
to those obtained with the clairvoyant algorithm at the
beginning of the mission; indeed, up to time step 50, the
impact of the drift is limited. As the mission proceeds,
we observe that the proposed algorithm clearly outper-
forms the INS-plain and INS-filter approaches, demon-
strating the benefit of including the inference of the
AUV state within the objects detection/estimation pro-
cedure. These results are confirmed by those reported
in Fig. 7, which shows the number of correctly detected
objects—those for which the distance between the esti-
mated and true position is lower than 20 m—versus the
number of false objects at the end of the mission. These
curves are obtained by varying the existence threshold2

Eth, and demonstrate the capability of the proposed al-
gorithm to account for the uncertain AUV state and cor-
rectly detect a higher number of objects compared to the
INS-plain and INS-filter approaches.Finally,Fig. 8 shows
the cardinality—i.e., the number of detected objects, in-
cluding potential false objects—obtained with the pro-
posed algorithm and the three alternative approaches

2For the generation of the curves in Fig. 7, 20 values of the existence
threshold Eth are selected evenly distributed on a log scale between a
minimum value of 0.02 and a maximum value of 0.99.
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Figure 7. Number of correctly detected objects versus the number of
false objects at the end of the mission obtained with the proposed

algorithm and with three alternative algorithms, namely, clairvoyant,
INS-plain, and INS-filter.

over time, and compares them with the true cardinal-
ity,3 demonstrating the effectiveness of the proposed al-
gorithm. The capability of the clairvoyant and proposed
algorithms to correctly detect a higher number of ob-
jects clearly reflects into their ability to correctly classify
them. Indeed, the clairvoyant and proposed algorithms
reach an overall classification accuracy of 99%, com-
pared to 47% and 45% obtained with, respectively, the
INS-plain approach and the INS-filter approach. Lastly,
as concerns the AUV position estimate, the proposed
algorithm provides a time-averaged root-mean-square
error (RMSE) of 10.9 m, while the INS-filter approach
provides a time-averaged RMSE of 11.5 m. This moder-
ate improvement of the proposed algorithm compared
to the INS-filter approach is likely due to the fact that
not all the objects are observable at all times; there-
fore, at each time t, the proposed algorithm only relies
on a small set of detected objects to estimate the AUV
position.

3The true cardinality is time-varying since more objects are observed
as the AUV surveys the area of interest.

Figure 8. Cardinality over time obtained with the proposed
algorithm and with three alternative algorithms, namely, clairvoyant,

INS-plain, and INS-filter.

VI. CONCLUSIONS

Mapping of underwater objects is usually conducted
with AUVs. A classic example is MCM operations, in
which AUVs allow to operate from a distance in safe
conditions. Independently of the type of application, the
quality and value of the data acquired by an AUV are
significantly influenced by the accuracy of its position.
Because of the unavailability of GPS technologies be-
low the sea surface, an AUV generally relies on an INS
that calculates the position and heading of the vehicle by
integrating values measured by accelerometers and gy-
roscopes available on-board. However, because of this
integration, the inherent errors of these devices accu-
mulate over time, resulting in position and orientation
errors that increase over time.

This paper has proposed and described a Bayesian
graph-basedmapping algorithm that accounts for the in-
herent uncertainty of the AUV position. Exploiting the
SPA,the proposed technique obtains a principled and in-
tuitive approximation of the Bayesian inference needed
for underwater object detection and estimation. The ef-
fectiveness of the proposed algorithm has been demon-
strated in a simulated MCM scenario, which has shown
the benefit of including the inference of the AUV posi-
tion within the object detection/estimation procedure.

APPENDIX

Here, we derive the factorization in (11) of the
joint posterior pdf f (y0:t, s0:t,a1:t,b1:t |g1:t, z1:t ). Since
the measurements z1:t are observed, hence known,
the joint vector of numbers of measurements m1:t

is also known, that is, f (y0:t, s0:t,a1:t,b1:t |g1:t, z1:t ) =
f (y0:t, s0:t,a1:t,b1:t |g1:t, z1:t,m1:t ). Then, assuming that all
the variables—joint PO state, AUV state, data associa-
tion variables, navigation data, and measurements—at
time t are conditionally independent of the past vari-
ables given the joint PO state andAUV state at previous
time t − 1, we obtain the factorization in (32). Recalling
from Section II-B that yt is the vector stacking the kt−1

legacy PO states and themt new PO states at time t, that
is, yt = [yt

t
, ytt ]

t, each factor f (yt, st,at,bt, gt, zt,mt |yt−1,

st−1) of the product in (32) can be further expressed as

f
(
yt, st,at,bt, gt, zt,mt

∣∣yt−1, st−1
)

= f
(
yt,at,bt, gt, zt,mt

∣∣y
t
, st, yt−1, st−1

)
× f

(
y
t
, st

∣∣yt−1, st−1
)

= f (yt,at,bt, gt, zt,mt |yt, st ) f (yt |yt−1) f (st |st−1)

= f (yt,at,bt, zt,mt |yt, st ) f (gt |st )
× f (y

t
|yt−1) f (st |st−1), (31)

wherewe assumed that PO states andAUVstates evolve
independently, and that navigation data and measure-
ments are conditionally independent given the AUV
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f
(
y0:t, s0:t,a1:t,b1:t

∣∣g1:t, z1:t,m1:t
)

∝ f
(
y0:t, s0:t,a1:t,b1:t, g1:t, z1:t,m1:t

)
= f

(
yt, st,at,bt, gt, zt,mt

∣∣y0:t−1, s0:t−1,a1:t−1,b1:t−1, g1:t−1, z1:t−1,m1:t−1
)

× f
(
y0:t−1, s0:t−1,a1:t−1,b1:t−1, g1:t−1, z1:t−1,m1:t−1

)
= f

(
yt, st,at,bt, gt, zt,mt

∣∣yt−1, st−1
) × f

(
y0:t−1, s0:t−1,a1:t−1,b1:t−1, g1:t−1, z1:t−1,m1:t−1

)
= f

(
s0

)
f
(
y0

) t∏
t ′=1

f
(
yt ′ , st ′ ,at ′ ,bt ′ , gt ′ , zt ′ ,mt ′

∣∣yt ′−1, st ′−1
)

(32)

state st . Then, observing that the description of the
data association given by at and bt is redundant once
mt is observed—indeed, at can be derived from bt ,
and vice versa, when mt is known [26] —, each factor
f (yt,at,bt, zt,mt |yt, st ) can be further expressed as

f
(
yt,at,bt, zt,mt

∣∣y
t
, st

)
= f

(
zt

∣∣yt,at,bt,mt, st
)
f
(
yt,at,bt,mt

∣∣y
t
, st

)
= f

(
zt

∣∣yt,at,mt, st
)
f
(
yt,at,bt,mt

∣∣y
t
, st

)
. (33)

Eventually, by inserting (33) into (31) and (31) into (32),
we obtain the factorization in (11).
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