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Abstract—Numerous modelling efforts have attempted to characterize the effects of different 
non-pharmaceutical interventions (NPIs) on the Covid-19 spread. Arguably the most famous is 
one published in Nature by an Imperial College group. A slight variation of it was later published 
in Science by a group of Oxford researchers. Both publications are based on hierarchical Bayesian 
modelling that aims to explain observed data by information on enacted NPIs. Due to the Bayesian 
approach, the models become quite complex and opaque, with many priors that have been assigned 
more or less ad hoc, and there are even priors on the prior parameters. We show how these 
models can be recast into the classic linear regression framework. This enables us to transparently 
analyze basic concepts such as persistency of excitation, identifiability, and model sensitivity.

THE SIR MODEL REVISITED

We will refer to the two studied non-pharmaceutical 
intervention (NPI) models as the Nature [1] and 
Science [2] model, respectively. In the presenta-

tion we focus on the former, although our methodology remains 
applicable to either and we will present results obtained using 
both models.

Within the models, NPIs are typed as school closure, crowd 
size limit, lockdown, etc. The purpose of the model is then to 
explain the epidemic trajectory based on enactment of the NPIs.

Before delving into the details of the models, let us briefly 
revisit the classic Susceptible, Infected, and Recovered (SIR) 
compartment model [3] that lies at the core of many more ad-
vanced epidemiological models, including the ones considered 
here. It is a lumped-parameter model that can be applied on 
a societal or subsocietal level and describes how a considered 
population is partitioned into susceptible S, infectious I, and re-
moved (recovered and immune ∪ deceased) R fractions.1 The 
population is normalized according to (1a), and the dynamics 
are:

1 ,S I R   	 (1a)

,dS SI
dt

  	 (1b)

,dI SI I
dt

   	 (1c)

.dR I
dt

 	 (1d)

1	 The basic SIR model does not distinguish between infected and infec-
tious, but such additional state partitioning is straightforward, as are the 
partitionings aimed at tracking different subpopulations.

The equations govern-
ing the epidemic trajectory 
are determined by an in-
fection parameter β and a 
recovery parameter γ.

The famous basic reproduction number R0 = β/γ defines 
how many secondary infections are expected from one primary 
infection2, when S >> I. The adjective basic is with respect to 
some considered action, such as an NPI or set of NPIs. In con-
trast to the growth rate3 r0 = β – γ, R0 is unit-less and decoupled 
from time (making it a less obvious choice for measuring time-
dependent growth in the first place).

Arguably the simplest way to model NPI effectiveness is to 
investigate how enacting an NPI affects the spread parameter 
β, which coincides with how it affects R0 (or r0) if γ is constant. 
Since β cannot be directly measured (either), an observation 
model involving a measurable signal related to it is needed. A 
very simple such observation model would be to assume a con-
stant infection-to-fatality ratio (IFR), and that all deaths occur a 
fixed time τID following infection.

Figure 1 shows the reported daily deaths in Sweden [4] dur-
ing the first wave of the pandemic in green. The red curve is fit-
ted using nonlinear least squares (NLS), under the assumption 
that β was constant throughout the first wave. The blue curve 
is the fit that minimizes the quadratic NLS loss using one NPI 
(change in β), with date chosen to optimize curve fit.

Although the results look convincing, the model is useless 
in all aspects other than for curve fitting.

One artefact is that the parameters generating the red curve 
explain the decline of the first wave as a consequence of herd 
immunity, with 99.9% of the population having been infected 
by October 2020, while the blue curve mainly explains the de-
cline in deaths through an effective NPI enacted on April 7, 

2	 A simple derivation is based on R0 = –dS/dR = βS/γ ≈ β/γ when S ≈ 1, so 
every removed person gives rise to R0 new infections.

3	 When S ≈ 1 the solution to (1c) is 0( )( )
0( ) ( ).t tI t e I t  

NPI Models Explained and 
Complained
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2020, with 50% of the population having undergone infection 
by October 2020.

An important conclusion from this example is that the mod-
el fit cannot alone be used to validate a model—not even for the 
very simple model considered above. The lack of informative 
data for model validation is a fundamental problem, in particu-
lar during the early stage of an (infectious disease) epidemic.

MODELLING FRAMEWORK

The basic dynamics of how NPIs are modeled to affect reported 
death (or case) data in the Nature and Science models are illus-
trated in Figure 2. Both models share the same basic equations 
as will be outlined in this section. The differences are in the 
details of NPI types, time span, and the strategies to estimate 
parameters to fit the data.

SOCIETAL MODEL
NPI k enacted on day t in country c is modeled to induce an 
undelayed step change of magnitude (αk,c) in the reproduction 
number within the country:

0, , ,
1

( ) ·exp ( ) ,
N

c c k c k c
k

R t R t


 


 
  

 
 	 (2)

where σ is the binary indicator function, and Nσ is the number of 
NPI types. The country-specific basic reproduction number R0,c 
is treated as an unknown parameter to be identified from data 
together with the effectiveness parameters αk,c.

If αk,c = αk is the same for all countries c = 1, …, Nc, the 
model for each NPI k = 1, …, N… is referred to as fully pooled. 
If the effectiveness parameters are allowed full international 
flexibility, the model is said to be unpooled. Models between 
these extremes are referred to as partially pooled. The main dif-
ferences between the Nature and Science models reside with 
the definition of the NPI types, and the pooling assumptions on 
individual NPIs.

EPIDEMIC MODEL
Two time-distributions play a central role in the NPI effective-
ness modelling. They model the duration τ between

	C primary and secondary infection following the serial (or 
generation) interval distribution pII(τ);

	C infection and death following the distribution pID(τ).

These distributions are assumed to be time-invariant, and prior 
assumptions on their shape within the Nature model are re-
viewed further below in the section “Priors”.

The number of individuals ( )cI t  that become infectious on 
day t in country c can now be expressed as

,

1
1

0
0,

0

( )

( )
( ) ( ) ( ).

e c

t
t

c c
c c c II

c

R t

N I
I t R I p t

N





 

  
 




  


	 (3)

Here, the effective reproduction number Re,c accounts for both 
NPI and herd immunity effects. Equation (3) constitutes a non-
linear auto-regressive model since previous values of cI

 are 
combined in a nonlinear fashion to determine ( )cI t .

To get some intuition for (3), consider the special case where 
pII(τ) = δ(τ – k) is a Dirac distribution. That is, each infectious 
individual spreads the disease to (on average) ( ) ( ) /c c cR t I t N

susceptible individuals, k days after becoming infected. If Rc is 
constant, the spread can be locally approximated with

0( ) /
0( ) ( ) / ,t t k

c c c cI t R I t N  	 (4)

where the exponential growth rate rc = log(Rc)/k clearly shows 
the strong influence of the delay k.

OBSERVATION MODEL
Finally, we have an observation model for reported daily deaths 

( )cD t  in country c on day t, based on an assumed distribution 
pID(τ) of the time between infection and death:

1

0
( ) ( ) ( ), IFR

t

c c IDD t I p t


 


 



  	 (5)

If case data is incorporated into the model, the infection-to-case 
ratio plays an analogous role to the IFR. More generally, each 
of the distributions of the epidemic model in the section “Epi-
demic Model” is associated with a normalization factor of this 
kind, since not all primary infections result in secondary infec-
tions, not all infected individuals die, etc.

Figure 1 
NLS fit of the SIR model (1) to officially reported daily deaths 
in Sweden during the first pandemic wave. Deaths are shown 
in green, the SIR model fit in red, and the best NLS fit of an SIR 
model, where β is allowed to change twice, is shown in blue. The 
marker indicates the instance of the parameter change.

Figure 2 
Block diagram of the considered NPI models showing their 
three principal components and intermediate signals: Enactment 
indicator of NPI k, σ

k
, reproduction number R, daily infections I+, 

reported daily deaths D+. Subscript c denotes country.
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MODEL ESTIMATION

The model is defined through (2)–(5). How can it be used to 
estimate the parameters R0,c and αk,c for c = 1, …, Nc and k = 1, 
…, Nα from cD

 time series data?

BAYESIAN APPROACH
Both the Nature and Science estimation methods are so-called 
hierarchical Bayesian models that are fitted using massive 
Monte Carlo sampling [5]. Our contribution is to recast them 
into the linear regression framework rather than to analyze the 
estimation method they originally rely on. However, we believe 
it is adequate to summarize the main design parameters of the 
Bayesian approach.

PRIORS
Prior assumptions on distributions are needed, and in the final 
published version, the Nature model assumes the following pri-
ors4 for the time distributions of the epidemic model reviewed 
in the section “Epidemic Model”:

( ) ~ (6.5,0.62), IIp   	 (6a)

( ) ~ (5.1,0.86) (17.8,0.45).IDp     	 (6b)

Here, Γ(a, b) denotes the Gamma distribution with mean a, co-
efficient of variation b, and standard deviation ab.

The effectiveness prior for NPI type k in the Nature model is

log(1.05) ~ (1 / 6,1), 1, ,6,
6k k     	 (7)

with the motivation that

6

1
~ (0,1.05).k

k
U


 	 (8)

That is, there is a possibility that the interventions will increase 
the reproduction number by a factor 1.05, but most of the prior 
is assigned to a significant decrease.

Finally, the prior for the basic reproduction numbers were 
chosen  0, ~ 2.4,cR  , c = 1, …, Nc where ~ (0,0.5)  .

REGULARIZING EFFECT OF THE GAMMA PRIOR
As was illustrated by Nic Lewis in his blog [6], the Gamma 
prior has a regularization effect. Suppose that a pooled model 
(αk,c = αk) is used and that the data is consistent with a pos-
terior where 1 1.75N

   . This corresponds to a factor 
1 – e1.75 = 0.83 decrease of the reproduction number should 
all NPIs be simultaneously enacted, and it happens to coin-
cide with the median between Markov chain Monte Carlo 
(MCMC) samples reported in [1]. Then, the prior for the sum 
becomes orders of magnitude larger if one αk dominates (e.g., 
α1 = 1.70), compared to when they all are of similar size (e.g., 
4	 The reason that pID is the sum of two Gamma-distributed variables is that 

the Nature model breaks it down into the infection-to-symptom-onset 
distribution pIO (first term), that is convoluted with the symptom-onset-
to-death distribution pOD (second term).

αk = 1.75/Nα, k = 1, …, Nα). This makes the Gamma prior 
strongly biased towards one (or a few) NPIs explaining the 
data, and in the case of [1] the lockdown NPI was singled out 
as the by far dominating explanation of the decrease in viral 
reproduction. Figure 3 illustrates the effect for the visualiz-
able case of Nα = 2.

MCMC SAMPLING PRINCIPLE
To compute the (posterior distributions of the) parameters, the 
Nature and Science models rely on sampling from the param-
eter priors, evolving (3) and (2), and then evaluating the likeli-
hood for each sample in a Bayesian MCMC framework, as very 
sketchily summarized by the following basic steps:

1.	Draw a candidate for the parameters from the prior dis-
tributions. This is the most important step and there are 
many different sampling strategies that could be consid-
ered.

2.	Simulate the model with the parameter candidate.

3.	Compute the likelihood for the observed mortality data.

4.	Generate a random number u ∼ U(0, 1).

5.	If the log-likelihood ratio has increased more than u, the 
parameter candidate is accepted, otherwise it is rejected.

6.	Continue until a predefined number of parameter candi-
dates have been accepted, excluding the burn-in phase 
before the MCMC has converged to stationarity.

LINEAR REGRESSION NPI MODEL

SOCIETAL MODEL AS A LINEAR REGRESSION
We note that (2) can be cast as a linear regression in the log 
domain:

0, , ,
1

log ( ) log ( ). 
N

c c k c k c
k

R t R t


 


  	 (9)

Taking the logarithm of (3) and using it to eliminate Rc(t) yields

Figure 3 
Probability for α

1
 + α

2
 for different splits between priors α

1
 and 

α
2
 = 1.75 – α

1
, individually distributed according to (7).



10	 ISIF Perspectives On Information Fusion	 November 2021

ipif-04-01-10  PAGE 10  PDF Created: 2021-10-18: 10:24:AM

NPI Models Explained and Complained

0, , ,
1

1
1

0

0

log ( ) log ( )

( )
log 1 log ( ) ( ) .

N

c c k c k c
k

t
t

c
c II

c

I t R t

I
I p t

N













 





  




 

            



 
	 (10)

This fits the classical linear regression framework

( ) ( ) ( ).c cz t h t w t  	 (11a)

The left-hand-side is the auto-regressive process

1

0
( ) log ( ) log ( ) ( )

t

c c c IIz t I t I p t


 


 



 
   

 
 	 (11b)

1

0
( )

log 1 .
t

c

c

I
N







 
    
 

 	 (11c)

The right-hand side of (11a) comprises of the regression matrix 
and parameter vector,

1, , ,  ( ) ( ) ( )c c N c ch t t t e


    
 	 (11d)

1 0,1 0,log( ) log( ) ,
cN NR R


      


	 (11e)

where ec is the cth unit vector. Equation (11e) corresponds to the 
fully pooled model, and partially pooled or unpooled formula-
tions only differ structurally in that they have a larger number 
of parameters.

Vectorizing the data for the Nc countries, we obtain the more 
compact form

( ) ( ) ( ),Z t H t W t  	 (12)

where 1( ) ( ) ( )
cNZ t z t z t   


 is a function of mortality data and 

1( ) ( ) ( )
cN

H t h t h t   
   depends on the NPIs only. The model 

error 1( ) ( ) ( )
cN

W t w t w t   

 is the realization of an observation 

noise process, and its variance λ can be interpreted as the best 
model fit for this particular model structure.

LEAST SQUARES SOLUTION
Assuming that W in (12) consists of independent and identically 
distributed samples from a Gaussian process, the maximum-
likelihood (ML) estimate ̂  of θ is obtained by minimizing the 
quadratic ordinary least-squares (OLS) loss, with closed-form 
solution

( ) ( )
t

J H t H t  	 (13a)

1ˆ ( ) ( ),
t

J H t Z t    	 (13b)

  1.C ˆov J   	 (13c)

Here,  ,Var t cz   denotes the variance of the transformed 
data, assuming it to be the same for all times and countries, and 
J is the Fisher information matrix (FIM). Structural identifi-
ability is determined by the rank of the FIM, and persistency of 
excitation is measured by its condition number.

In the Nature and Science models, observation noise was 
not introduced as in (12), but instead implicitly generated 
through the random variables assigned with priors according to 
the section “Priors”. To understand how the observation noise 
(or LS residual) W relates to the stochastics of the original mod-
el, assume we have access to the posteriors that maximize the 
likelihood within the Bayesian formulation. Then (in theory) cI

 
can be computed through deconvolution of (5) and used to con-
struct the X and Z of (12). Having access also to the posteriors 
of θ, W(t) = Z(t) – H(t) θ can be evaluated. It is thus important to 
note that we cannot (at least directly) use the linear regression 
formulation for identifying θ. However, and importantly, we 
can use it to analyze sensitivity of the identified system to small 
perturbations, that could arise from uncertainty or error in NPI 
actuation date (σ) or death (D+) reporting.

IDENTIFIABILITY OF THE NATURE MODEL
The Nature model defined the following Nα = 5 NPI types5:

1.	Social distancing encouraged;

2.	Self isolation;

3.	School closure;

4.	Public events (banned);

5.	Lockdown.

Figure 4 (top) shows the dates that the different NPIs were 
enacted within the published version [1] of the Nature model. 
Countries are labeled by their ISO 3166-1 alpha-2 codes. Note 
in particular that all NPIs were enacted within a short time win-
dow. The corresponding reported daily death time series D+ are 
also shown in the same figure.

The inverse FIM for the model of the section “Linear Re-
gression NPI Model” has the block structure

0

0 0 0

1 1
1

1 1
.

[2 ]
R

R R R

J J
J

pt J J
 



 


 

 
  
  

	 (14)

Let us here focus on the block 1 ) o (C vJ    that defines the 
covariance of the NPI effectiveness parameters.

For the data used in [1] and shown in Figure 4, it evaluates to

1

0.044 0.019 0.015 0.007 0.005
0.019 0.034 0.003 0.004 0.002
0.015 .0.003 0.045 0.009 0.013
0.007 0.004 0.009 0.027 0.006
0.005 0.002 0.013 0.006 0. 5   02

J 

   
   

  



 
 
 
  



 
 
  

  
 

	 (15)

5	 The careful reader might have noticed that (7)–(8) correspond to Nα = 6. 
This is related to how (a particular version of) the Nature model pools 
data, with a “bonus” NPI for the last intervention introduced in each 
country, and further explained in [7].
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The condition number of this matrix is 36, but more severe 
for the model is that the condition number for the full J matrix 
is 600. This ill-conditioning6 can be hard to detect directly from 
(15), where according to (13c), log αk can be estimated with 
a variance less then 0.04 times that of the observation noise λ 
(e.g., model fit).

The SVD of the inverse FIM (covariance matrix) block de-
fined by 1J U U

    is given by

diag 0.0018 0.0649 0.0498 0.0263 0.0331 ,        	 (16a)

0.046 0.430 0.552 0.703 0.118
0.390 0.402 0.465 0.635 0.259
0.467 0.021 0.231 0.097 0 ..848
0.482 0.108 0.351 0.663 0.440
0.461 0.722 0.337 0.365 0.138

U 

 





 





 
 






 



 

 

	 (16b)

The first column of U, that corresponds to the smallest sin-
gular value, points less than 5° from the direction kk

 , indi-

6	 The Stan code [8] used in the Nature model [1] throws a large number of 
warnings for numerical ill-conditioning; that might be a consequence of 
this.

cating that the summed effect of all NPI types constitutes the 
linear combination that can be identified with highest certainty. 
This should not be surprising, since all NPIs were enacted with-
in a short time window in all but one country, as seen in Figure 
4. Similarly, the last column of U reveals the linear combination 
of NPIs that is associated with the highest uncertainty (vari-
ance).

Returning to the unfactored covariance matrix (15) we note 
that the variance of the normalized sum

  1

1
,V 1a

ˆ 1 0.002
5 5

r
5

r Va
N

k

k
J




   



 
   

 
 1 1 1  	 (17)

is an order of magnitude smaller than the smallest diagonal ele-
ment of the unfactored matrix (15). This further indicates that 
the summed effect is much easier to identify than the effect of 
individual NPIs.

IDENTIFIABILITY OVER TIME

It can be argued that the illustrated identifiability issues re-
sult from a lack of data early in the pandemic, and that bet-
ter estimates could have been obtained if the models were 
executed at a later time when more data was available. Let 
us therefore investigate how identifiability of the Nature and 
Science models—and a third related model that we are yet to 
introduce—has evolved throughout (the first pandemic year) 
2020. We use exactly the same linear regression framework 
for all three models; only the NPI definitions and time frames 
differ.

THE NATURE MODEL
Figure 5 shows the day-by-day evolution of the singular values 
of the covariance matrix (15), as more data from the originally 
used data source [8] became available.7

Uncertainty in the principal directions of J–1 decreases dur-
ing the spring of 2020, but then levels out, indicating that iden-
7	 We have blinded out data to emulate past dates. This is very similar, but 

not exactly identical, to using data causally available on those past dates, 
since most sources of Covid-19-related time series apply retrospective 
adjustments.

Figure 4 
NPI enactment dates (top) and reported daily deaths (bottom) 
used in the published version [1] of the Nature model.

Figure 5 
Evolution of the 16 (N

c
 = 11 R

0
 values, Nα = 5 NPIs) singular 

values of the full inverse FIM J–1 in (13a) for the Nature model.
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tifiability issues, as pointed out in e.g., [7] and [6], have not 
improved markedly due to data available since the acceptance 
date of [1].

THE SCIENCE MODEL
A rule of thumb in system identification, when the regressors 
can be designed, is that they should resemble white noise. Such 
a design can be excluded for NPIs in pandemics, but the Sci-
ence model features an input that is more persistently exciting 

than that of the Nature model, since the former was secured 
at a later point in time and has a regressor that keeps track not 
only of enactment, but also revoking of individual NPIs. The 
corresponding dates are shown in Figure 6, where it can also 
be seen that the number of NPI types is larger, compared to the 
Nature model.

The evolution of the singular values of the corresponding J–1 
is shown in Figure 7. It shows that variance in the least certain 
principal direction has decreased roughly a factor of three.

THE INDEX MODEL
A third model [9], here referred to as the “Index” model, differs 
from the Nature and Science models in that its individual NPI 
effectiveness parameters are set by the modellers rather than 
estimated from data. The sum of these parameters over enacted 
NPIs at any given time forms the scalar “stringency index”, tak-
ing values between 0 and 100.

Data to compute the index is taken from an impressive da-
tabase, further described in [9], that keeps track of over 100 
NPI (sub)types. The index is shown in Figure 8 (top). To reduce 
complexity of the graphics, we picked out the same 11 countries 
as used in the Nature model.

We apply our linear regression framework for the Science 
model (with the selected 11 countries) using this index as the 
sole NPI. This model thus has one α-parameter (the index) and 
11 country-specific R0 parameters. The singular values of the 
inverse FIM are shown in Figure 8 (bottom). Only three dis-
tinguishable lines are seen, since 10 of the 12 singular values 
are identical for this model structure. The careful reader may 
already have observed that the number of lines in Figures 5 and 
7 are fewer than Nc + Nα for similar reasons.

The largest singular value remains steady at a similar level 
to where the corresponding value of the Science model levels 
out, and roughly 10 times lower than the corresponding level 
for the Nature model. This corresponds to a one-dimensional 
subspace, within which parameter values can move without af-
fecting the model output much.

Figure 6 
Dates when individual NPIs were enacted (top) and revoked 
(bottom) within the Science model. The NPI enumeration is 
consistent with [2].

Figure 7 
Evolution of the 56 (N

c
 = 41 R

0
 parameters, Nα = 15 NPIs) 

singular values of the full inverse FIM J–1 in (13a) for the Science 
model.
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DISCUSSION

WHAT HAVE WE LEARNT?
The modelling of NPIs as instantaneously changing the repro-
duction number received much attention early in the Covid-19 
pandemic, starting with the Imperial College COVID-19 Re-
sponse Team (ICCRT) report [10] and subsequent publication 
[1], that categorized interventions into five NPI types. Identifi-
ability issues due to high sensitivity of the model with the data 
available at the time (spring of 2020) were apparent and was 
addressed early in a technical blog post by Nic Lewis [6], and in 
a response by us [7] published alongside the original work [1]. 
The focus of that response was on how the partial pooling of 
national data within the model had incrementally changed in its 
official code base (8) between publication of the ICCRT report 
[10] and the Nature paper [1], and how these changes resulted 
in masking an apparent identifiability issue.

Here we have intentionally stayed away from the intricacies 
of how different models—or versions of the same model—have 
chosen to pool national data or define the NPI types to include, 
alongside the criteria associated with enactment of these NPI 
types within the models. Instead, we have taken one step back 
and regarded the model structure, and particularly that it is 
very closely related to a linear regression. Applying standard 
information theoretic analysis, we have then illustrated that the 
information in the data available in the spring of 2020—and 
presumably early during possible future epidemics of novel 
pathogens—is insufficient to uniquely distinguish the effects of 
(linear combinations of) NPIs.

While both the Nature and Science models attempt to iden-
tify the effects of NPIs on the reproduction number, the Index 
model instead provides an index based on a carefully curated 
NPI dataset. Within the herein considered framework, this in-
dex corresponds to preassigning the effectiveness parameters 
rather than identifying them from data. This obviously resolves 
the identifiability issue, but results in a signal (the index) that 
correlated very poorly with observed case or death data. This 
bias is visually apparent when comparing Figure 8 (top) to Fig-
ure 4 (bottom).

HAS IDENTIFIABILITY IMPROVED OVER TIME?
A natural question to ask is if more careful definition of the 
NPIs and choice of national data pooling could alleviate the 
aforementioned problem, and whether poor identifiability of 
NPI effects was merely a consequence of the models being ap-
plied too early, when only insufficient data was available. In 
relation to these questions, it is interesting to note that a model 
[1] similar to [2] was later published in Science. Without ad-
ditional background, its diametrically differing conclusions 
regarding the effectiveness of lockdowns in particular (highly 
effective versus at best mediocre) could be interpreted as the 
sequel having addressed the above issues. To this end, we have 
plotted how the singular values of the effectiveness parameter 
covariance has evolved within the linear regression interpre-
tation of the two models, with more data becoming available. 
These plots tell us how confidently identifiable the correspond-

ing principal parameter space directions are with respect to the 
observation noise. Particularly, the condition number, being 
the ratio between the largest and smallest of them, tells us the 
identifiability ratio between the least and most certain principal 
direction. For both models we see that the information remains 
poorly conditioned, albeit much improved as compared to the 
spring of 2020. Looking at the corresponding principal direc-
tions, we could also see that the most certain principal direction 
corresponds to the sum of all NPIs within the Nature model.

CONCERNS BEYOND THE DATA
So far our analysis has pointed out severe issues with the mod-
els while tacitly assuming them to be structurally sound. This is 
a very generous assumption.

For starters, all three models come with a linearity assump-
tion, in that the combined effect of two NPIs equals the sum of 
the effects they would inflict if enacted individually. For exam-
ple, the Index model defines the NPIs “close public transport” 
and “stay at home requirements”. An educated guess is that the 
impact on virus spread of the former is decreased should the 
latter be enacted.

To continue, there is a time-invariance assumption leav-
ing no room for saturation effects or improvements over time 
within the healthcare sector, mutations resulting in more or less 
transmissible or harmful pathogen variants, etc.

Figure 8 
Stringency index according to the Index model for the same 
11 countries that were included in the Nature model (top). 
Evolution of the 12 (N

c
 = 11 R

0
 values, Nα = 1 NPI) singular 

values of the full inverse FIM J–1 in (13a) for the Science model 
(bottom). Note that 10 of the 12 singular values are identical for 
this special structure.
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However, the most pushing point is that of causality. Since 
neither of the models leave room for any extrinsic variable but 
the NPIs to explain virus spread, they are bound to explain the 
decline of the first pandemic wave with the NPIs (and provided 
that the data is uninformative are most certain about the com-
bined NPI effect). To what extent have changes in behavior, 
other than those enforced by legislation, affected the pandemic 
trajectory? What has the role of the change in season been on 
viral transmission? These are hard questions, and ones that re-
main unanswerable within the considered models.

CONCLUSION

In the end, it all comes down to fundamental properties of the 
true dynamics, the model, and the data:

	C Good curve fitting does not validate a model. Cross valida-
tion on fresh data is the preferred procedure, and when not 
possible (for example early in an epidemic), identifiability 
and sensitivity analyses need to be carefully conducted.

	C Good curve fitting does not imply identifiability, only that 
the model is complex (i.e., flexible) enough to describe 
observed data.

	C Identifiability does not imply good curve fitting, only that 
the model is not too complex compared to what is measured.

	C Uninformative data, resulting from a lack in persistence 
of excitation, implies that no conclusions whatsoever can 
be drawn on the model.

	C Modelling assumptions directly impact the usefulness of 
the resulting model. This holds true also for models that 
can be reliably identifiable from data.

We have demonstrated that several NPI models, including ones 
published in Nature and Science, fall short in all these aspects.
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