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Situations and Contexts

Abstract—The semantics of context are examined, considering concepts of relevance, situations, and 
relationships. We define a situation as a set of relationships and a context as a situation that a) provides 
expectations for constituent entity states or b) is deemed relevant to the solution of an inference or 
response problem. The use of context variables in inferencing is examined. Predictive models as used 
in inferencing are construed as estimates of state distributions. The uses of context in inferencing can 
be differentiated into categories of target and information source characterization methods, appropri-
ate to different assumptions concerning the quality of available prior models and observational data.

CONTEXT

Human understanding is infused with a robust sensitiv-
ity to context. Our sense impressions are informed by 
a myriad of mitigating and extenuating circumstances 

that enrich our experience and deepen our understanding. Con-
sciously or unconsciously we search for contextual clues and 
use them to resolve ambiguous or puzzling situations.

Many shortcomings in attempts at artificial intelligence—in 
machine vision, robotics, natural language, understanding, and 
information fusion—as well as in understanding human behav-
ior artificial intelligence can be attributed to deficient apprecia-
tion of context. In this article we explore methods (a) to define 
and represent context, (b) to determine contexts as relevant to 
particular uses, and (c) to incorporate contextual information in 
reasoning and decision making.

A recent survey of context-related 
literature reveals a diversity of defi-
nitions of context [1]. In some us-
ages, a context is considered to be 
a situation of some relevance (as 
“the bombing can be understood in 
the context of the Middle East Cri-
sis”). In others, it is an element of 
such situations (as “the enhanced 
security measures make sense in the 
context of the recent bombing”). In 
yet other uses, a context is information 
about a situation or even a source of such information.

We have suggested the following definition as conducive to 
understanding and using contexts: A context is a situation that 
provides information that can be used either a) to condition ex-
pectations or b) to improve the understanding of a given infer-
ence or planning/control problem [2]. These two ways in which 
a situation can be used as context derive from a formulation by 
Gong [3], contrasting notions of context-of (C-O) and context-
for (C-F). A situation can be C-O or C-F, depending on how it is 
used in reasoning. C-O-driven reasoning starts with a perceived 

situation to derive expectations about constituent entities, re-
lationships, and activities. In contrast, C-F-driven reasoning 
starts with a particular problem—which might be an inferenc-
ing problem (what’s happening?) or a control problem (what’s 
to be done?)—and seeks to discover additional information that 
can resolve uncertainties in the problem solution [4], [5].

RELATIONS, RELATIONSHIPS, AND SITUATIONS

If contexts are situations that can be used in inferencing, we 
need to understand what situations are and how to reason about 
them. As in [6], [7], we follow Devlin [8] in defining situations 
in terms of relationships.

Let us differentiate the concepts of relation and relation-
ship. We shall use “relation” to designate an 

abstraction, such as marriage, owner-
ship, hatred, or selling. “Relation-
ship”, on the other hand, is used to 
designate an instantiation of a rela-
tion anchored within a situational 
context: Antony's marriage with 
Cleopatra, Othello’s marriage with 
Desdemona, or Cleopatra’s marriage 
with Othello. As the latter examples 
indicate, such contexts are not neces-

sarily factual either in the real world or 
in a particular assumed fictional context.

Reasoning about attributes, relations, relationships and situ-
ations is facilitated if these concepts are “reified”, i.e., treated as 
entities in the working ontology [8]. Explicitly defined, a relation 
is a mapping from n-tuples of entities (n ≥ 1) to a relational state r:

	 (1)

A relationship is an instantiation of a relation; i.e., an ordered 
(n + 1)-tuple <r(n),x1,...,xn> such that r applies to a sequence 
of arguments <x1,…,xn>. Attributes of individual entities are 

"A context is a situa-
tion that provides information that 
can be used either a) to condition 
expectations or b) to improve the 
understanding of a given inference 

or planning/control problem".
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conveniently treated as unary relations, instantiations thereof 
as unary relationships.

The mapping from n + 1-tuples to relationships can be 
many-one, because the same entities <x1,…,xn> may be re-
lated multiply by the same relation: Two companies may si-
multaneously have two contracts with one another. The type 
of relationship may be the same, at some level of abstraction, 
e.g., land-use contract—but the relationships—the individual 
contracts—are distinct. Therefore, we will want to differentiate 
variables and their values from instantiations thereof [9].

By reifying relations and relationships, we allow higher-or-
der variables: those that range over predicates of other variables. 
These can be employed using the cross-order predicate of applica-
tion, which we represent by parentheses. 
Thus, an expression in the familiar 
form “x(i)” is read as “attribute x ap-
plies to the individual i”, e.g., Isaac 
is blind. Similarly, “x(i,j)” says that 
relation x applies to the individuals 
i,j, e.g., that Isaac is the father of 
Jacob. We can also distinguish be-
tween predicative variables X and 
particular values x thereof: as in 
“Isaac’s height is 180 cm”: “H(i) = 
h, h = 180 cm”. This allows us such 
expressions as “g(H)”, as in “height 
is a unary relation (i.e., an attribute)” 
or “taller than is a binary, transitive, 
nonreflexive relation”.

We define a situation as a set of relationships. A concrete 
situation s is a set of fully anchored relationships {r | r obtains 
(i.e., holds true) in s}. We should allow for imprecisely defined 
situations: The relationships that comprise a given situation may 
constitute a fuzzy set [6]. It will be convenient to conflate unit 
set and member to say that relationships are situations. What is 
more, because single-place relations are allowed, a single event 
(as in “the enhanced security measures are appropriate in the 
context of the recent bombing”) is also a situation, consistent 
with our suggested definition of context.

Like relationships, a situation s may be real, or it might be 
conditional, hypothetical, fictitious, or otherwise counterfactu-
al in some encompassing situation t  s (t may be the universe 
at large). For example, the killing of Polonius is a situation 
that occurs in the context of Shakespeare’s Hamlet but not in 
the world at large. The play Hamlet and various performances 
thereof, its plot, script, and various copies exist in the world 
at large. Its characters, situations, and events do not. The par-
ticular concerns of some agent (e.g., a person or an automated 
inference system) determine which situations are under consid-
eration as contexts for those concerns.1

	 1	This we take to be the intent of Devlin’s informal definition for situation 
as “a structured part of reality that is discriminated by some agent” [8, p. 
31, paraphrased]. However, the agent should not be part of the definition: 
much like the noise of a tree falling in the forest, a situation can exist 
without being noticed or cared about. It is on this basis that we distin-
guish contexts from other situations.

 We can abbreviate r  s, where r is a relationship and s is 
a situation as the conditional relationship (r | s) read “r obtains 
in situation s”. This is related to Devlin’s use of the implicature 
notation s|= σ for an infon σ [8].

THE USE OF CONTEXT IN INFERENCE

An inference problem q can be stated in terms of a utility func-
tion on the values of a problem-specific set of variables: ωq : 
X → Ω*, where X is either a problem variable or a vector of 
problem variables. A context for an inference problem is a situ-
ation that is selected (by some agent) for use in understanding 
or solving the problem. We take this usage of context for an 

inference problem as an application 
of C-F, as used by Gong [3] and by 

us in [1], [2], [4], [5]: s is a con-
text for resolving X, where X is a 
set of random variables. This can 
be contrasted with cases of C-O 
as in “in the context of today’s 
economic news, it is likely that 
the Euro will strengthen”. Such 
constructions have the form “in 
the context of S, f(x)”, where P is 
a proposition (say, “the Euro will 
strengthen”) and f(.) is a modal 

expression, such as P is true or the 
probability that P = p or it is likely 

that P or is impossible that P.
The relevance of contextual information can be stated in 

terms of the contribution of such information in resolving val-
ues of problem variables. We discuss this in the following. Let 
us consider how contexts can be used in evaluating problem 
variables to meet objectives. A general distinction can be drawn 
between refinement and inference of values of variables. In 
many data fusion problems, multiple measurements of a given 
variable are averaged or filtered to refine the estimate of that 
variable, exploiting independence in the measurement-to-mea-
surement noise. Bayesian and Dempster-Shafer classifiers are 
examples of refinement (filtering) processes.

Often, however, the problem variables to be estimated are 
not themselves measured or are not measured with sufficient 
accuracy or confidence to meet users’ needs. In such cases, the 
values of problem variables may be inferred totally or partially 
on the basis of other variables. Such inference assumes a model 
of the dependencies between measured variables and problem 
variables. Inference methods include, for example, structural 
equations, Bayesian belief networks, and neural networks.2

We may distinguish, then, between explicit problem vari-
ables and ancillary variables used in inference. We call the latter 
	 2	 Kalman filters and related tracking filters are typically hybrid refinement 

or inference processes such that problem variables are those constituting 
a target’s physical state (e.g., its kinematic state), but filtering occurs not 
in state space but in measurement space: received and predicted mea-
surements are filtered to infer target states (by means of motion and mea-
surement models), from which additional (e.g., future) measurements are 
predicted.

"The relevance of con-
textual information can be stated in 

terms of the contribution of such infor-
mation in resolving values of problem 
variables…A context variable is a vari-
able that an agent selects to evaluate 
or refine an estimate of one or more 

problem variables".
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context variables. A context variable is a variable that an agent 
selects to evaluate or refine an estimate of one or more prob-
lem variables. Accordingly, we can define a problem context 
as a situation, comprising a set of entities and their relation-
ships involving context variables 
and problem variables. Situa-
tions are selected as problem 
contexts for their presumed 
usefulness in solving the 
particular problem.

When a situation is used 
as a C-O, context variables 
are situational variables 
(ranging over relationships 
and sets of relationships); 
when used as a C-F, context 
variables are variables that 
are other than a given set 
of problem variables. By 
this definition, one problem 
variable can serve as a con-
text variable for evaluating 
another problem variable. For 
example, an aircraft’s observed 
speed may be used as a context for resolving its type, and, con-
versely, its estimated type can be used for resolving its speed 
(e.g., in bearings-only target tracking) [10].

One way of defining relevance is statistical relevance as in-
troduced by Salmon [11], whereby that the relevance of a value 
y of candidate context variable Y in determining a specific value 
x of problem variable X is

	 (2)

Statistical relevance in a context s is, of course, given as

	 (3)

The utility to a given inference problem q of evaluating a vari-
able Y for the purpose of evaluating a problem variable X in the 
context of a situation s is

	 (4)

For discrete-valued variables, integration can be replaced by 
summation. X or Y in this formulation can be an individual vari-
able or a vector of variables. For example, the set of variables 
Y = {day of week, weather conditions, location} can provide a 
useful context for resolving joint states of interest in the set of 
problem variables X = {traffic conditions, location}.

CONTEXT-SENSITIVE STATE ESTIMATION

State estimation functions differ broadly according to the types 
of state variables to be estimated. It can be convenient to distin-

guish entity states of interest according to the “levels” described 
in various versions of the Joint Directors of Laboratories data 
fusion model. Levels of data fusion and resource management 
processes map into a categorization of entity state variables 

that a data fusion system is tasked 
to estimate or that a resource 

management system is tasked 
to control. Examples of such 
problem variables are given in 
Table 1. The third and fourth 
columns distinguish contin-
uous-valued and discrete-
valued variables at each level. 
The fifth and sixth columns, 
respectively, relate these to 
our particular rendition of data 
fusion and resource manage-
ment levels [6], [7], [12].

As we argue in [2], [7], it 
is preferable to distinguish in-
ference problems on the basis 
of type of entity state variables 

rather than by type of entity. De-
pending on one’s interests, many an 

entity can be considered alternatively as an individual (charac-
terized in terms of level 1 variables) or as a relational structure 
(level 2 variables) or as a dynamic process (level 3). If it is a 
resource of the inference system itself, the same entity could be 
evaluated in terms of level 4 variables.

Both C-O and C-F can play essential roles at any fusion 
level, but they are especially important in higher level fusion, 
in which variables of interest include relation, relationship, and 
situation variables that are not directly observable but must be 
inferred. Although a C-F is useful in evaluating specific at-
tributive and relational states, a C-O provides a means for un-
derstanding expectations for and implications of such states. 
Generally, the larger context in which a problem is considered, 
the more fully will it be understood by being conditioned on a 
larger number of mutually independent context variables.

Level 1 fusion is concerned with attributive states; that is, 
with values of 1-place state variables, such as target location, 
type, or attributive parameters. In level 2 fusion, both attribu-
tive and relational states are pertinent, i.e., values of n-place 
state variables, n ≥ 1. Belief networks can be used to propagate 
information among entities, relations, and the relationships in 
which they participate. Given our reification of relation and re-
lationships, we can depict a level 2 hypothesis after the pattern 
of Figure 1. This figure is in the form of a factor graph, in which 
variables are represented as circles and functions on these vari-
ables are represented as squares [13]. Examples of such func-
tions are causal conditions or conditional probabilities, but they 
can represent any relationship among variables. In our applica-
tion, the functions are instantiations: individual entities, rela-
tionships, and situations, etc.

Likelihoods and state estimates can be propagated among 
the nodes of a level 2 hypothesis. Each node combines the ef-

"…it is preferable to distinguish 
inference problems on the basis of type of 

entity state variables rather than by type of 
entity. Depending on one’s interests, many an 
entity can be considered alternatively as an 
individual (characterized in terms of level 1 

variables) or as a relational structure (level 2 
variables) or as a dynamic process (level 3). If 
it is a resource of the inference system itself, 

the same entity could be evaluated in terms of 
level 4 variables".
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fects of evidence from its immediate neighbors and distributes 
its own evidence to them, ensuring, however, that information 
is not circulated back to an originating node. That is to say, a 
level 2 fusion process creates and updates nodes i in a level 2 
hypothesis H, on the basis of data either

a)	 from an update to i based on associating one or more source 
reports with that node or

b)	 from an update to a node j that is an immediately neighbor 
to i in H.

In the former case, updating is attributive, analogous to up-
dating a level 1 hypothesis. In the latter case, updating is re-
lational, involving estimation of the relationships that occur 
between j and i in H and thereby refining the estimate of the 
state of i, xi.

In the example shown in Figure 1, nodes a, b, and c pos-
tulate individual entities that participate in a relationship f = 
<xf ,a,b,c> in which xf is a relation. This relationship in turn, 
participates in another relationship h = <xh,f,g>, in which g is 
yet another relationship. For example, x, y, and z could be the 
people Ahasuerus, Belshazzar, and Chushanrishathaim, and the 
relation xf might be living together so that f is, roughly, a house-
hold or some subset thereof. Note that living together is an ex-
ample of a relation of indefinite order, i.e., . The relation 
xh could be next door to; xg the attribute (1-place relation) city 
dump; and xd might be is offended by, applied to Chushanrisha-
thaim in the relationship d. Additionally, xe is a second-order 
attribute—perhaps subjective reaction—operating on the first-
order relation xd in the instantiation e.

The situation s1 = {c, d, f, g, h} might be the context for 
(C-F) evaluating Chushanrishathaim’s attitude toward his pres-
ent living situation. A different context could include his two 
housemates: s2 = s1  {a, b}. Another might be the broader 
situation represented in the figure: s3 = s2  {h, e}.

A belief propagation algorithm will determine the belief 
concerning the state of an entity (or, more precisely, of the vec-
tor of state variables associated with that entity) in terms of

Table 1

Entity State, Data Fusion, and Resource Management Levelsa

Level Entity Class

Example
Data Fusion 
(Inference) 

Level

Resource 
Management 

LevelContinuous State 
Variables

Discrete State Variables

0 Patterns, e.g., 
features or 
signals

Temporal/spatial/spectral 
extent, amplitude, and 
shape/modulations

Signal/feature class, type, 
attributes

Signal/feature 
assessment

Signal/feature 
management

1 Individuals, 
e.g., physical 
objects or 
events

Location, velocity, size, 
weight, event time

Object class, type, identity, 
activity, or attributes

Individual entity 
assessment

Individual resource 
management

2 Structures, e.g., 
relationships 
and situations

Distance, force/energy/
information transfer

Class, type, identity, or 
attributes of relations, slots, 
arguments, situations

Situation 
assessment

Resource 
relationship 
management 
(coordination)

3 Processes, 
e.g., courses 
of action, 
scenarios, and 
outcomes

State utility, duration, 
transition conditions

State transitions; class, 
type, identity, attributes of 
processes, scenarios, or 
impacts

Scenario/
outcome 
assessment

Mission objective 
management

4 System 
resources

All of the above, applied to 
system resources

All of the above, applied to 
system resources

System 
assessment

System management

a [2], [7].

Figure 1
Factor graph representation of a level 2 hypothesis.
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CC “local” evidence φi (xi), i.e., information about a particu-
lar state variable and

CC evidence ψi,j (xi,xj) concerning the entity from other situa-
tion elements used as context.

If beliefs are expressed as probabilities, the joint probability 
distribution of the set of state variables {x1,…,xN} correspond-
ing to the N nodes in such a graph is

	 (5)

The function ψi,j (xi,xj) is an undirected compatibility function—
say, Pearson product moment correlation—as a generalization 
from the directed conditional probability p(xi | xj) [14].

Evidence is propagated as “messages” passed to node i from 
nodes j in its immediate neighborhood N(i) in the graph of rela-
tionships in the relevant situation:

	 (6)

Messages are updated recursively through the graph as

	 (7)

The evaluation over k  N(i)   j in the last term of (7) indicates 
that data is to be passed from all immediate neighbors of i other 
than j itself. It is shown in [14] that such restriction on message 
passing maintains consistency and convergence in any singly 
connected (i.e., nonlooping) graph.

We can expand (7) by marginalizing over instantiated rela-
tion variables:

	

	 (8)

This marginalization, of course, assumes discrete-valued relations. 
It is often practicable to partition continuous-valued attributes and 
relations into discrete bins for belief network propagation.

Because relations, attributes, and entities that are arguments 
of these can participate in multiple situations and relationships, 
the graph of a situation hypothesis can be multiply connected. 
Methods have been developed that provide exact or approximate 
joint probability distributions in a wide variety of graph topolo-
gies. These include Pearl’s clustering algorithm [15], junction 
tree algorithms [16], the Shafer-Shenoy separator algorithm [17], 
and the generalized belief propagation formulation of Yedida et 
al. [14].

REASONING ACROSS FUSION LEVELS

As seen in Table 1, reasoning about relationships and situations 
has been considered the province of level 2 data fusion. Level 

1 data fusion is concerned with estimation of states of entities 
considered as individuals. In contrast, fusion levels 2 and 3 are 
concerned with estimation of entities considered as aggregates: 
as relationships or situations and courses of action or scenarios, 
respectively [2], [7], [12], [18].

Situation assessment (level 2 data fusion)—whether imple-
mented by people, automatic processes, or some combination 
thereof—involves inferences of the following types:

CC inferring the presence and the states of entities on the ba-
sis of relationships in which they participate;

CC inferring relationships on the basis of entity states and/or 
other relationships;

CC recognizing and characterizing observed situations.

Whereas level 2 fusion concerns the estimation of observed 
states, level 3 fusion (concerns states that are projected; e.g., 
predicted future states [2], [7]. The temporal evolution of a situ-
ation, involving courses of action, interactions, and outcomes, 
constitutes a scenario [2], [18].

Level 2 and 3 inferences have direct analogy to those at 
level 1. Situation recognition is a problem akin to target recog-
nition. Situation/scenario tracking is akin to target tracking [6], 
[18]. Characterizing situations is generally a matter of assessing 
the states of situation constituents and their interrelationships. 
The familiar Bayesian pattern for context-sensitive inferencing 
within fusion level 1 (L1 → L1) is given by

	 (9)

e.g., estimation of the probability of a single target state F(x) 
from associated measurements G(x) or prediction of state F(x) 
from prior state G(x) in situation s.

This can be generalized as

	
(10)

with application to various inference patterns within and be-
tween fusion levels by selection of relation orders m and n 
(Table 2).

The reification of relations and relationships allows us to 
relate one to another in or out of context. In this way, attri-
butes of relations and relationships can be inherited; e.g., in 
an L2 → L2 inference (with some uncertainty) from x is pro-
viding information to y to x is cooperating with y. A situation 
state cannot only imply but can be implied by the states and 
relationships of constituent entities so that situational infer-
ences can be given in the form of Boolean combinations of 
expressions, such as
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(11)

CONTEXT IN MODEL ASSESSMENT AND 

MANAGEMENT

Data fusion relies, in one way or another, on predictive mod-
els of information sources and of entities of interest (targets 
at all appropriate state estimation levels). In military applica-
tions, target models are generally expected to be provided by 
intelligence processes. Operational intelligence, in a process 
called intelligence preparation of the battlefield, provides val-
ues for context-sensitive prior probabilities p(x | s). Technical 
intelligence provides target characterizations that combined 
with source characterizations allow evaluation of measurement 
likelihoods p (Z | x, g) and probabilities of detection pD (x | s) 
for target states x, information 
source state g, and mea-
surement sets Z. Fusion 
systems use informa-
tion source measurement 
models that combine with 
target descriptions to pro-
vide values for p (Z | x, 
g) and pD (x | g) and with 
contextual information, 
e.g., target densities, and 
background clutter levels, to 
provide values for false alarm 
rates pFA (g, s) for given contexts s.

In many, perhaps most, current information exploitation 
systems, source models are the responsibility of source devel-
opers. However, there are many applications where valuable 
information is available from sources whose design and operat-
ing characteristics are unknown to the information exploitation 
system or its developers [19]. The wealth of information avail-
able online and from traditional open-source media provides 
enormous opportunities for diverse information exploitation 
applications, as do novel sensors and sensor platforms (drones, 
crowdsourcing, etc.) but require some means for quality con-
trol, as discussed in [1], [19].

We have reported on the development of a prototype in-
formation exploitation system that assesses and modifies the 
target and source models it uses at various fusion and manage-
ment levels as a means of exploiting nontraditional information 
sources [20].

Model assessment is a level 4 data fusion process, perform-
ing all the classical data fusion functions:

CC data preparation: aligning in feature space, structure, and 
confidence the data used in inferring models;

CC data association: establishing the range of phenomena to 
be used in determining and validating the model; and

CC state estimation: estimating the distribution and depen-
dencies of characteristics and behavior of modeled enti-
ties or entity classes.

Model assessment differs in one major respect from level 0–3 
data fusion processes and, indeed, from other level 4 fusion pro-
cesses. The business of these other data fusion processes is the 

estimation of states of particu-
lar entities in the world; i.e., 

of instantiations of entity 
classes. In contrast, model 
assessment is concerned 
with the inference of possi-
ble states or, more precise-
ly, the inference of the dis-
tribution of states possible 
for a given entity or class 
of entities. Model assess-

ment performs estimation 
and prediction just as in other 

types of level 0–4 data fusion but with the difference that now the 
estimation and prediction are of the characteristics and behaviors 
of distributions of level 0–4 entities or of classes of such entities.

Model assessment processing can take the form of induction 
from instantiated states to the distribution of possible states. It 
also can involve explanation of observed phenomena by sub-
sumption to higher-level models. As an example, a radar perfor-
mance model will gain in predictive and explanatory power to 
the extent that it is subsumed to electromagnetic physics and to 
which the latter is subsumed to unified quantum and relativistic 
physics. Source model management can involve setting param-
eters to compensate for estimated sensor biases (sensor regis-

Table 2

Relation Orders for Intra- and Interlevel Inferencing

Inference Type m n Application

L1 → L1 1 1 Inferring states of an individual from states of the same or another individual

L1 → L2/3 1 >1 Inferring relationships from individual states

L2/3 → L1 >1 1 Inferring individual states from relationships

L2/3 → L2/3 >1 >1 Inferring relationships from other relationships

"Model assessment performs estimation 
and prediction just as in other types of level 0–4 
data fusion but with the difference that now the 

estimation and prediction are of the characteristics 
and behaviors of distributions of level 0–4 entities 

or of classes of such entities".
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tration and calibration) and adjusting sensor accuracy models 
to reflect estimated error statistics. Target model management 
can involve modifying predictive models of target and situation 
classes in response to updated estimates of the characteristics 
and behaviors of such entities.

CATEGORIES OF TARGET CHARACTERIZATION PROBLEMS
There are numerous applications in which we cannot count on 
having high-fidelity models of target attributes or behaviors. 
For example, an adept, agile adversary, such as encountered in 
nonconventional warfare will not provide us with large samples 
of regular patterns of behavior for use in training statistical 
models. Such a problem is very different than conventional tar-
get recognition or tracking problems that can be addressed by 
model-based methods.

Waltz [21] has proposed a categorization of inference prob-
lems. We adapt this scheme in [2], [7] to distinguish inference 
methods by the way they use observational data and predictive 
models, as summarized in Table 3:

CATEGORY 0 (MODEL-BASED RECOGNITION) 
This category encompasses methods 
used in traditional target recognition 
systems, relying on high-confidence 
models of target characteristics and 
behaviors. Prediction can involve 
deductive and inductive methods, 
whereby target entities and activities 
are recognized by matching observa-
tions to those predicted by models, 
possibly conditioned by the context of 
such factors as information source character-
istics, viewing geometry, observation media, and background.

CATEGORY 1 (ANOMALY-BASED DETECTION)
It can happen that background (or normal) activities are bet-
ter characterized than target activity. By matching observations 
with prior models of background activities, anomalous phe-
nomena are detected as an indication of possible activities of 
interest.

Both categories 0 and 1 assume the availability of obser-
vational data and of prior models that have been validated in 
one way or another: In category 0, these are models of target 

entities or activities; in category 1 these are models of normal 
or background activities. Recognition and prediction (deductive 
and inductive) methods can be used in processing model data to 
derive expected observations for use in the matching process.

In contrast, category 2 and 3 methods are used to overcome 
deficiencies in prior models or in observable data, respectively. 
In category 2, new models are composed adaptively to explain 
observed data. In category 3, activities of interest might not be 
observable, rather their prior feasibility is determined on the 
basis of contextual information.

CATEGORY 2 (HYPOTHESIS-BASED EXPLANATION)
The process in this category is one of abductive reasoning: 
building and testing models to best explain available data. Such 
a process is applicable to situations in which there is insufficient 
prior analytic understanding or training data to develop predic-
tive models. An analyst or an automated process constructs a 
situation or scenario hypothesis in an attempt to account for 

observed data. As in the clas-
sical scientific method, the 

hypothesis is evaluated to 
predict further observables 
that could either confirm 
or refute the hypothesis. 
By acquiring such data as 
available, explanatory, pre-
dictive models of the ob-
served situation or scenario 
are selected, refined, or re-

jected.

CATEGORY 3 (CONTEXT-BASED 

FEASIBILITY)
These methods do not rely on direct observational data, rather, 
contextual cues are used to determine the feasibility of broad 
classes of activities: domain constraints on adversary capabil-
ity developments, strategic planning, etc. Such methods are the 
only ones available when activities of interest are unlikely to be 
detectable or discriminable at all.3

	 3	It might be useful to add yet another category (category -1?) to encom-
pass estimation refinement via filtering or smoothing in the absence of a 
model; e.g., without model-driven filter gains.

"The uses of context in infer-
encing can be differentiated into cat-

egories of target and information source 
characterization methods, appropriate 
to different assumptions concerning the 

quality of available prior models and 
observational data". 

Table 3 

Categories of Inference Problems and Methods

Category Approach Assumed Prior Models
Observational 

Data
Inference Method

0 Model-based recognition Targets Yes Deduction and induction

1 Anomaly-based detection Backgrounds Yes Deduction and induction

2 Hypothesis-based explanation Situation context and components Yes Abduction

3 Context-based feasibility Targets and backgrounds No Deduction and induction
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We can further subdivide category 0 to distinguish cases 
in which target models are “given” from those in which target 
models are derived by statistical learning:

CC 0a in which the actual target state (at whatever state esti-
mation level) is known absolutely, e.g., under controlled 
test conditions;

CC 0b in which predictive models of targets and their behav-
iors are obtained explicitly from design documentation or 
are derivable analytically from first principles;

CC 0c in which predictive models are estimated from training 
data. In this problem category, distinct from category 0b, 
models are estimated inductively, for which all the appa-
ratus of data fusion is applicable.

CATEGORIES OF SOURCE CHARACTERIZATION PROBLEMS
Inferencing problems involve the exploitation of information 
from sources whose performance may be well or poorly char-
acterized. Categories of source characterization problems can 
be defined in terms of the availability of predictive models of 
source performance. This categorization is analogous to that for 
target state inferencing, as both reflect methods for acquiring 
knowledge concerning problem variables: level 4 variables in 
the source characterization case; level 0–3 variables in the tar-
get characterization case. As with the categories of target char-
acterization problems, the categories of source characterization 
problems differ in their dependence on contextual information:

CC S0a: in which the actual source performance is known 
absolutely, e.g., undercontrolled test conditions;

CC S0b: in which predictive models of source performance 
are obtained explicitly from design documentation or are 
derived analytically from available information concern-
ing the source’s feature space and inference methods. 
Pertinent information of this sort may be reported by the 
source in real time, or it might be obtainable from source 
design documentation or from more general models of 
the source class (e.g., an analytic receiver model);

CC S0c: in which predictive models are developed from 
training data, using estimates of source, target and situ-
ation states, together with historical performance data 
referenced to ground truth, i.e., historical measures of re-
porting errors in known conditions. We can further distin-
guish subcategories of S0c, based on the quality of avail-
able ground truth, as defined in terms of the above target 
characterization categories:

S0c/0a: source performance is estimated on the basis 
of observed entity states that are known absolutely, as 
in ideal test conditions;

S0c/0b: source performance is estimated on the basis 
of observed entity states that are well modeled;

S0c/0b: source performance is estimated on the basis 
of observed entity states that are inferred statistically;

S0c/1: source performance is estimated on the basis of 
observed entity states that are inferred from contextual 
anomalies;

S0c/2: source performance is estimated on the basis of 
observed entity states that are inferred by explanation 
of observable data;

S0c/3: source performance is estimated on the basis of 
observed entity states that are inferred by explanation 
of contextual data.

CC S1: in which the performance of the given source is de-
rived by comparison of its product with that from other 
sources. This category may be further refined by distin-
guishing these other sources according to their source 
characterization categories and by distinguishing degrees 
of independence among the sources (e.g., whether they 
measure or report commensurate variables);

CC S2: in which predictive models of source performance are 
constructed abductively to explain the observed behavior 
of the source. Such a method is used when no reliable 
information is available concerning the source, but source 
performance must be inferred from target state estimates 
as reported by the source and compared with available 
ground truth (e.g., in in a test environment). Examples of 
reported state estimates include expectation and covari-
ance matrices for continuous state variables (such as loca-
tion or kinematics) and probability vectors across discrete 
state variables (e.g., target class within an exhaustive dis-
joint taxonomy);

CC S3: in which performance of an information source must 
be inferred on the basis of context, i.e., from circumstan-
tial evidence. Such methods can be necessary when re-
porting from the given source is so sparse and variable 
that it is not feasible to develop a predictive model of the 
given source. This can occur with obscure Websites, graf-
fiti, and such “unsourced” information. Useful contextual 
information might include features of the source report-
ing medium and style, the known or assumed reporting 
conditions, and correlated reporting from other available 
sources. In some cases, it might be feasible to stimu-
late the source to observe its differential behavior under 
known conditions.

SUMMARY

We have attempted a careful definition of terms pertinent to 
discussion of situations and contexts. A context is treated as a 
situation that provides expectations for constituent entity states 
(C-O) or that is deemed relevant to the solution of an inference 
or response problem (C-F). Context exploitation involves a) pre-
dicting the value of contextual information to meet information 
needs; b) selecting information types and sources expected to 
provide information useful in meeting those needs; c) determin-
ing the relevance and quality of acquired information; and d) 
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applying selected information to a given problem. Predictive 
models as used in inferencing are construed as estimates of state 
distributions. The uses of context in inferencing can be differen-
tiated into categories of target and information source character-
ization methods, appropriate to different assumptions concern-
ing the quality of available prior models and observational data.
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