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Abstract—Information and signal processing tools are crucial for interpreting coronavirus dis-
ease 2019 (COVID-19) pandemic data. These tools allow us to extract, synthesize, and interpret 
pandemic information, thus providing valuable support to the decision-making authorities. This 
paper presents an overview of recent advances in information processing methodologies to 
combat the COVID-19 pandemic. First, we describe the quickest detection procedure designed 
to detect an exponential growth of positive cases with a mean delay of only a few days and a low 
risk of erroneously declaring an outbreak. Second, we present a Bayesian approach designed to 
estimate some features of the pandemic, e.g., the infection rate, and reliably forecast the evolu-
tion of the contagion.

INTRODUCTION

Since the beginning of 2020 and up to the end of April 2021, 
the virus known as severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), responsible of the coro-

navirus disease 2019 (COVID-19) respiratory illness, has in-
fected more than 150 million individuals worldwide and caused 
the death of more than 3.2 million people. Because of its rapid 
human-to-human transmission and the presence of highly in-
fectious asymptomatic individuals, the COVID-19 disease was 
declared by the World Health Organization to be a pandemic on 
March 11, 2020. Since then, many governments, pushed by the 
lack of an effective therapy and the imperative need of contain-
ing the contagion, have decided to undertake unprecedented ex-
traordinary social measures that have changed many aspects of 
our lives. These measures, which included travel bans; closure 
of schools, universities, shops, and factories; and even national 
lockdowns, effectively slowed the spread of the virus; however, 
their early relaxation has been causing the recrudescence of the 
contagion almost everywhere. The implementation of massive 
vaccination campaigns represents the only way to definitely 
defeat the pandemic, as shown, e.g., from the evolution of the 
contagion in Israel, where 85% of individuals older than 60 
years had been fully vaccinated after only 2 months into the 
vaccination campaign [1]. Nevertheless, as researchers are still 
debating whether new variants can undercut the effectiveness 
of these first-generation COVID-19 vaccines [2], it is of para-
mount importance to remain vigilant and assist the authorities in 
evaluating the implementation of pandemic countermeasures.

Information and signal processing tools, exploiting the vast 
amount of data collected since the beginning of 2020, can sup-
port decision makers in monitoring the contagion and predict-
ing the evolution of the pandemic [3]. This article excerpts from 
[4]–[8], providing an overview of recent advances in informa-
tion processing methodologies to combat the COVID-19 pan-
demic.

QUICKEST DETECTION 
OF PANDEMIC WAVES

One aspect to monitoring 
the COVID-19 pandemic 
is to detect, as quickly as 
possible, the outbreak of 
a new exponential growth 
of positive cases, which 
would allow governments 
and authorities to react in 
a timely manner [8]. In-
deed, on the one hand, the 
early application of coun-
termeasures, such as social 
distancing and closure of 
commercial activities, can 
save lives; in this context, 
the delay of intervention 
needs to be as short as pos-
sible. On the other hand, 
an incorrect detection of 
an outbreak (i.e., a false 
alarm), and the consequent 
imposition of unnecessary 
restrictive measures, may have huge trust, societal, and eco-
nomic costs [9]. This risk, mathematically defined as the recip-
rocal of the mean time between two consecutive false alarms, 
needs thus to be extremely small.

Leveraging quickest detection theory [10], [11], we have de-
veloped in [4], [5], and [6] a variation of the celebrated Page’s 
test [12], called the mean-agnostic sequential test (MAST), de-
signed to detect the transition from a controlled regime of the 
pandemic, characterized by a limited number of daily new posi-
tive cases, to a critical regime, in which the infection spreads 
exponentially fast. MAST is based on the recursive computa-
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tion of a decision statistic that depends only on the observed 
growth rate, computed daily as the ratio between two consecu-
tive new positive counts (details in [5]). This statistic is then 
compared to a threshold—selected to trade off mean decision 
delay and risk—and, if it is crossed, an outbreak is declared.

An extensive analysis of MAST when applied to data of the 
COVID-19 second wave from several countries is presented in 
[4]. Here, we report in Figure 1 the operational curve—risk ver-
sus mean delay—for the 14 countries considered. We observe 
that for a reasonable risk, e.g., 10−4 days−1, which means that an 
erroneous decision is made, on average, once every 27 years, the 
mean delay in declaring the onset of the second wave is always 
less than 20 days. Additional analyses are available in [13].

MAST was shown in [6] to also be effective when used on 
data from a smaller community (e.g., a region or a province) 
and, after minor modifications, for detecting the termination of 
a pandemic wave [14]; this information may be crucial, e.g., to 
safely relax the restrictive measures. As an example, we report 
in Figure 2 the growth rate computed for the Lombardia region 
of Italy from February 24, 2020, to February 26, 2021, and in 
Figure 3 the MAST statistics used to detect, in the same time in-
terval, the onset of the second and third pandemic waves and the 
termination of the second wave. Here, the value of the threshold 
corresponds to a risk of 10−5 days−1, which means that a false 
change of regime is declared, on average, once every 270 years. 
We observe that the onset of the second wave is declared on Au-
gust 20, 2020, with its termination on December 3, 2020. A third 
wave is detected on February 25, 2021. Exact dates on which the 
second and third waves began are clearly not available. Never-
theless, we can argue that the detection delay is reasonably small 
for the third wave [15], whereas the second wave is  largely an-
ticipated by MAST, with the restrictive measures implemented 
only more than 2 months after August 20, 2020 [16].

ADAPTIVE FORECAST OF THE INFECTION

Once an exponential growth of positive cases is detected, to un-
derstand how the pandemic will evolve is essential information 
for policymakers to plan their future actions, e.g., increase hos-
pital bed capacity and relocate health care personnel. Equally 
important is the forecast of the infection in a controlled regime 
that can support planning for the gradual reopening of commer-
cial, industrial, and social activities.

In the introduction to the third volume of ISIF Perspectives on 
Information Fusion in May 2020 [17], Dr. Streit rightly foresaw 
that “two areas of research will naturally beckon for our attention 
in the coming days and months. One area is the mathematical 
modeling of the spread of infectious diseases” that “began in the 
1920s with differential equation compartmental models of the 
numbers of Susceptible/Infectious/Recovered (SIR) individuals. 
[…] The other area concerns spatial-temporal data modeling”. 
Compartmental epidemiological models are—still today—com-
monly used to study the spread of infectious diseases. They as-
sume that a given population is partitioned into a predefined 
number of compartments (population subgroups), in which each 
compartment represents a pandemic state that an individual can 

Figure 1 
From [4], operational curve—risk versus mean delay for 
decision—for 14 countries.

Figure 2 
From [6], growth rate of the pandemic in the Lombardia region 
of Italy, computed from the averaged daily new positive cases 
(orange solid line) from February 24, 2020, to February 26, 
2021; for easier visualization, we also show its smoothed version 
obtained through a noncausal moving average filter with uniform 
weights of a length of 21 days (black dashed line).

Figure 3 
From [6], MAST statistics computed for the Lombardia region 
of Italy, starting from April 4, 2020, for the onset detection 
of the second wave (green dashed line) and the third wave 
(blue dashed line) and for the termination detection of the 
second wave (magenta solid line). The threshold (black dashed 
line) corresponds to the risk of 10−5 days−1. The onset and 
termination of the second wave are declared on August 20 and 
December 3, 2020, respectively. The onset of the third wave is 
declared on February 25, 2021.
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occupy, and the flow dynamics from one compartment to another 
are modeled as a set of differential equations [18]. The pioneering 
study on mathematical theory of epidemics mentioned by Streit 
dates back to 1927 and proposes an epidemiological model in 
which the entire population of, e.g., a city, a region, or a nation 
is constant and divided into three mutually exclusive compart-
ments, namely, susceptible (S), infected (I), and recovered (R) 
individuals, and known as the SIR model [19], [20]. An infected 
individual infects a susceptible one at a given infection rate β. 
Once infected, the individual is removed from the compartment 
of susceptible individuals and enters the infected compartment. 
Each infected person runs through the course of the disease and 
eventually is removed from the number of those who are still 
infected, either by recovery or death, thus exiting the system at 
recovery rate γ; the recovered people are considered permanently 
immune. More complex extensions of the SIR model have been 
developed over the years, and the COVID-19 pandemic has moti-
vated researchers to further investigate the topic [21]–[24].

The parameters that rule the dynamics from one compartment 
to another, e.g., infection rate β and recovery rate γ in the SIR 
model, are usually time invariant, and several approaches have 
been proposed for tuning or estimating them [25], [26], [27]. 
We have developed in [7] a Bayesian approach that sequentially 
estimates the compartmental model’s parameters by exploiting 
data made publicly available daily by national authorities, such 
as the number of new positive cases, the number of recovered 
people, and the number of fatalities. The approach is based on 
discretization of the continuous stochastic differential equations 
that describe the compartmental epidemiological model [28] and 
on basic principles of Bayesian sequential estimation that involve 
a prediction step and an update step. The estimated model’s pa-
rameters are then used to forecast the evolution of the COVID-19 
pandemic via ensemble forecasting, i.e., a Monte Carlo approach 
that produces a set (or ensemble) of forecasts. This forecasting 
approach also requires hypothesizing about the future—i.e., not 
observed yet—evolution of the infection rate (see details in [7]). 
The effectiveness of the proposed method has been evaluated in 
[7] through its application on data from the first pandemic wave 
in the Lombardia region of Italy and in United States. Here, we 
report in Figure 4 the estimated infection rate in Lombardia from 
February 24 to June 30, 2020; the decrease in the infection rate, 
which represents the slowdown of the pandemic, clearly reflects 
the restrictive measures established by the Italian government on 
March 8, 2020. Figure 5 instead shows the forecast of the pan-
demic evolution performed on April 13, 2020; we observe that 
accurate estimation of the time-varying infection and recovery 
rates facilitates reliable prediction of the evolution of the infec-
tion, with a forecasted number of infected individuals that closely 
follows future observations.

As mentioned above, the proposed forecasting approach re-
quires hypothesizing about the future evolution of the infection 
rate. The infection rate models the interaction between people; 
therefore, its future evolution depends on how authorities react to 
the progress of the contagion and how people respond to the im-
posed restrictions. Thus, modeling its future evolution is still an 
open issue. In [8], we proposed a solution that employs MAST, 

hence providing a comprehensive, decision-directed estimation-
detection-forecasting tool. Specifically, when an outbreak is de-
clared through MAST, the hypothesized infection rate slope (i.e., 
the derivative of the infection rate) is positive (or zero), whereas 
when the termination of a pandemic wave is declared, the hy-
pothesized infection rate slope is negative (or zero).

Detection and forecast of the second and third waves in 
United States are analyzed in [8]. Here, we report in Figure 
6 the mean absolute percentage error (MAPE) of the forecast 
computed on different days from June 22, 2020 (day of detec-
tion of the second wave in the United States), and for two time 
horizons, i.e., 2 and 4 weeks. The results are compared with 
an alternative approach that employs a nonlinear least squares 
fitting algorithm that, using the number of infected and recov-
ered individuals, computes the parameters of an epidemiologi-

Figure 4 
From [7], estimated infection rate β for the Lombardia region of 
Italy from February 24 to June 30, 2020. The vertical dashed line 
indicates March 8, 2020, the beginning of the lockdown imposed 
by the Italian government during the first pandemic wave. The 
shaded areas represent the 90% confidence interval.

Figure 5 
From [7], estimation and forecasting in solid and dashed 
lines, respectively, of the number of infected individuals in the 
Lombardia region of Italy. The date corresponding to the end of 
the estimation and the beginning of the forecast, that is, April 13, 
2020, is marked by a vertical dotted line. The leftmost vertical 
dashed line marks March 8, 2020, the beginning of the lockdown 
imposed by the Italian government during the first pandemic 
wave. The shaded area represents the 90% confidence interval. 
The large step in the number of infected individuals observed on 
May 6, 2020, is due to inaccurate reporting of the data by local 
authorities.
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cal model, known as generalized SEIR (GSEIR) [29], with four 
more compartments than SIR that account for insusceptible 
people, exposed (but not infectious) people (E), quarantined 
people, and deaths. We observe that the proposed forecast al-
gorithm outperforms the GSEIR-based fit approach for both 
forecast horizons of 2 and 4 weeks, and that, apart from the 
time interval of roughly between July 19 and August 13, the 
proposed approach presents a MAPE that is always below 10%.

An additional comparison is reported in Table 1. The SIR- 
and SIR-X-based fits represent approaches similar to the one 
described for GSEIR that use, respectively, the classical SIR 
model and the SIR-X model [30]; the latter directly accounts for 
restrictive measures by removing susceptible individuals from 
the disease-spreading process. The results show significant per-
formance improvements by the proposed forecast algorithm in 
terms of time-averaged MAPE.

CONCLUSION

Leveraging known concepts from related fields, we provided 
an overview of the recent advances on information processing 
methodologies to combat the COVID-19 pandemic. First, we 
described a quickest detection procedure, known as MAST, de-
signed to detect an exponential growth of positive cases with a 
mean delay of few days and, at the same time, with a low risk 
of erroneously declaring an outbreak. In addition, MAST was 
shown to be suitable—with proper adjustments—for the detec-

tion of the termination of a pandemic wave. The effectiveness 
of MAST has been demonstrated through extensive analysis of 
COVID-19 data of second and third waves from different coun-
tries, as well as from smaller communities.

Second, we reported a Bayesian approach that estimates the 
features of the pandemic, e.g., the infection rate, and reliably fore-
casts the evolution of the contagion. This estimation-forecasting 
approach has been demonstrated on COVID-19 data of first and 
second waves, achieving low MAPEs for forecasts of up to 4 
weeks and favorable comparison with alternative approaches.
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