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In multisensor target tracking systems, measurements from dif-

ferent sensors on the same target typically exhibit biases. These bi-

ases can be accounted for as fixed random variables by the Schmidt-

Kalman filter. Furthermore, measurements from the same target

can arrive out of sequence. Recently, a procedure for updating the

state with a multistep-lag “out-of-sequence” measurement (OOSM)

using the simpler “1-step-lag” algorithm was developed for the sit-

uation without measurement biases. The present work presents the

solution to the combined problem of handling biases from multi-

ple sensors when their measurements arrive out of sequence. The

state update with an OOSM is derived first for a KF tracker. This

technique is then extended to the case where the tracker is an IMM

estimator.
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1. INTRODUCTION

In multisensor target tracking systems, measure-

ments from different sensors on the same target typi-

cally exhibit biases. These biases can be accounted for

as fixed random variables by the Schmidt-Kalman filter.

Furthermore, measurements from the same target can

arrive out of sequence. Recently, a procedure for up-

dating the state with a multistep-lag “out-of-sequence”

measurement (OOSM) using the simpler “1-step-lag”

algorithm was developed for the situation without mea-

surement biases. The present work presents the solu-

tion to the combined problem of handling biases from

multiple sensors when their measurements arrive out of

sequence. The state update with an OOSM is derived

first for a KF tracker. This technique is then extended

to the case where the tracker is an IMM estimator.

The OOSM problem has been discussed in the liter-

ature starting with the initial work of [6] (discussed also

in [5]), which presented an approximate solution to the

problem of updating the current state of a target with an

one-step-lag OOSM, called “algorithm B” in [2]. The

optimal solution to the one-step-lag OOSM problem,

called “algorithm A,” was derived in [2]. It was also

shown in [2] that algorithm B is nearly optimal for a

one-step-lag OOSM. In [10], the comparison of algo-

rithms A and B is discussed. In the case of receiving

more that one OOSM in succession, one needs to mod-

ify algorithm A slightly (to preserve the optimality): in

addition to updating the state at the current time, one

also needs to update the state at the OOSM time using

the standard Kalman updating algorithm. Alternatively,

one can also stack multiple OOSMs in a single vector

and use (the augmented version of) algorithm A to up-

date the state with multiple OOSMs optimally in one

step (see [17] for more details). In all these works it

was assumed that the OOSM lag is less than a sam-

pling interval. This has been designated as the “one-

step-lag OOSM problem,” and thus the corresponding

algorithms can be called A1 and B1. The first solution

to the general l-step-lag OOSM problem, Bl, was pre-

sented in [11] in the framework of B1. The algorithm

Bl requires the storage of the sequence of filter gains

and measurement matrices. The approach presented in

[3] obtains the update with an l-step-lag OOSM in a

single step (a “giant leap”), i.e., it generalized the pre-

vious algorithms to an arbitrary l. Furthermore, the re-

sulting algorithms, Al1 and Bl1, have practically the

same requirements as those of A1 and B1, respectively,

for all l > 1. These algorithms have also been shown

to perform nearly optimally in [3]. A general optimal

solution to the OOSM problem was presented in [19],

but it is substantially more complicated than [3].

A particle filter (PF) approach for dealing with

OOSMs with arbitrary lags is proposed in [14], which

presented a general solution to the nonlinear/non-

Gaussian tracking problem in the presence of OOSMs.

It was observed in [12] that, accuracywise, PF has no
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advantage over KF with converted Cartesian measure-

ments or EKF, but takes much more CPU time. It was

shown in [13] that the OOSM problem can be posed

as a generalized smoothing or retrodiction problem and

the Rauch-Tung-Streibel (RTS) smoother was used to

obtain (in the linear case) an optimal algorithm for l-

step-lag OOSM. Recently, a joint probability density

approach called Accumulated State Density (ASD) is

introduced in [8] with applications to the OOSM prob-

lem. By using ASD, the standard filtering and retrodic-

tion are achieved in a unified manner. Rather than only

updating the current state, ASD evaluates the effects of

the OOSMs to all the states inside a certain window.

Section 2 presents the formulation of the OOSM

problem for biased multiple sensors. Section 3 gener-

alizes the Schmidt-Kalman filter (SKF), originally de-

veloped for tracking with a single sensor in the pres-

ence of residual biases, to the multisensor case. While

the OOSM problem with biases from multiple sensors

can be solved by augmenting the target state with all

the sensor biases, this would not be practical for real

systems. Section 4 derives the modified Joseph form

for OOSM, which considers both the cases with and

without biases. The combined problem of OOSM with

biases from multiple sensors is solved in Section 5 us-

ing the Bl1 approach combined with the SKF without

state augmentation resulting in the SKF/OOSM algo-

rithm. These techniques are also described for the case

where the tracker is an IMM estimator in Section 6.

Section 7 discusses the heuristic “covariance inflation”

approach for biases. The simulation results are given in

Section 8. Section 9 presents a discussion of the results.

2. FORMULATION OF THE PROBLEM

The state of the system, x, of dimension nx, is

assumed to evolve from time tk¡1 to time tk according
to

x(k) = F(k,k¡ 1)x(k¡ 1)+ v(k,k¡ 1) (1)

where, using only the index of the time arguments,

F(k,k¡ 1) is the state transition matrix to time tk from
time tk¡1 and v(k,k¡ 1) is the (cumulative effect of
the) process noise for this interval. The order of the

arguments in both F and v follows here the convention

for the transition matrices. Typically, the process noise

has a single argument, but here two arguments will be

needed for clarity.

The measurement equation is

zi(k)(k) =Hi(k)x (k)x(k)+wi(k)(k) +Hi(k)b (k)bi(k),

i 2 f1, : : : ,NSg (2)

where i(k) is the index of the sensor which provided the

measurement1 from time tk (the “time stamp”), w
i(k)(k)

is the corresponding measurement noise, modelled to be

1The superscript i(k) will be shortened to i wherever this does not

cause confusion.

zero-mean, and bi(k) is the residual bias for this sensor.

The dimension of the above measurement is nzi and the

dimension of the bias in this measurement is denoted

as ni. The matrix Hb multiplying the bias has been

discussed in [15] for various nonlinear measurements.

It is assumed that bias correction has been done sep-

arately (externally to the OOSM problem) following a

sensor registration procedure. Consequently, the resid-

ual bias, assumed to be a time-invariant random variable,

is zero-mean

E[bi] = 0, i 2 f1, : : : ,NSg (3)

and

cov[bi,bj] = E[bi(bj)0] = Pbibj ±ij , i,j 2 f1, : : : ,NSg
(4)

where the shorter superscripts are used.

The noises are assumed zero-mean, white with co-

variances

E[v(k,j)v(k,j)0] =Q(k,j)

E[wi(k)(k)wi(k)(k)0] = Ri(k)(k)
(5)

and, together with initial state error and the residual

biases, mutually uncorrelated.

The time ¿ , at which the OOSM was made, is

assumed to be such that

tk¡l < ¿ < tk¡l+1: (6)

This will require the evaluation of the effect of the

process noise over an arbitrary noninteger number of

sampling intervals. Note that l = 1 corresponds to the

case where the lag is a fraction of a sampling inter-

val; for simplicity this is called the “1-step-lag” prob-

lem, even though the lag is really a fraction of a time

step.

The relationship between the current state x(k) and

the state observed by the OOSM is as follows. Similarly

to (1), one has

x(k) = F(k,·)x(·)+ v(k,·) (7)

where · is the discrete time notation for ¿ . The above

can be rewritten backward as

x(·) = F(·,k)[x(k)¡ v(k,·)]: (8)

where F(·,k) = F(k,·)¡1 is the backward transition ma-
trix.

The problem is as follows: At time t= tk one has

x̂(k j k) ¢=E[x(k) j Zk]

P(k j k) ¢=cov[x(k) j Zk]
(9)

based on the (multisensor) cumulative set of measure-

ments at tk

Zk
¢
=fzi(`)(`)gk`=1: (10)
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Subsequently, the earlier measurement from time ¿ ,

denoted from now on with discrete time notation as ·,

zi(·)(·)
¢
=zi(·)(·) =Hi(·)

x (·)x(·) +wi(·)(·) +Hi(·)
b (·)bi(·)

(11)

arrives after the state estimate (9) has been calculated.

We want to update this estimate with the earlier mea-

surement (11), namely, to calculate

x̂(k j ·) = E[x(k) j Z·]
P(k j ·) = cov[x(k) j Z·]

(12)

where

Z·
¢
=fZk,zi(·)(·)g: (13)

This update should be done without reordering and

reprocessing the measurements according to their time

stamps.

3. THE MULTISENSOR SCHMIDT-KALMAN FILTER

This section presents the multisensor Schmidt-

Kalman Filter (SKF) for the case of state estimation

in the presence of residual biases but without OOSMs.

The SKF procedure [16, 7] consists of augmenting the

target state vector with the measurement bias vector,

calculating the KF gain for this augmented state but

then updating only the target state. While the bias is not

updated, its covariance stays constant, but the crossco-

variance between the bias and the state does change

when the state is updated.

In the multisensor case there are, however, as many

bias vectors as the number of sensors from which mea-

surements are obtained. Consequently, the straightfor-

ward approach would be to augment the target state

with all the biases and, while only the target state is

updated, the entire updated covariance matrix of such

an augmented state has to be calculated, yielding all the

updated state-bias crosscovariances. This approach can

be, however, very costly because of the possibly high

dimension of the augmented state–typically 6 for the

target state and with a minimum of 3 bias components

from possibly as many as 10 sensors (not an unlikely

scenario), one has at least a 36£ 36-dimensional covari-
ance matrix to be updated. The major problem with this

high-dimensional matrix occurs in the update with the

OOSM, which requires the inversion of the augmented

state covariance matrix (which is a full matrix), and this

can be computationally expensive for real time imple-

mentation.

In the development below it is shown that one can

augment the target state only with the bias of the sensor

which provided the measurement to be used for the

update and a “generic” other sensor. This allows to

obtain the updated crosscovariances of the state with

all the biases, block by block, rather than having to

update the covariance matrix of the state augmented

with all the biases. A similar procedure will be used in

the update with the OOSM to avoid the need to invert

a very large matrix. Furthermore, in the OOSM case,

the inversion will have to be done only for the (nx£ nx)
state covariance matrix, without any augmentation.

Let the augmented state, of dimension nx+ ni+nj ,

be

x
¢
=

264 xbi
¯j

375 (14)

where i is the index of the sensor that provided the mea-

surement to be used for the update at time k (the time ar-

gument of this index is now dropped for simplicity) and

j is the index of a “generic” other sensor. The “generic”

sensor bias ¯j includes all the sensor biases except that

from the current measurement, e.g.,

¯j =

·
b2

b3

¸
, bi = b1 (15)

for the case NS = 3 and the current measurement is from

sensor 1. The use of a single notation ¯j is just for

simplicity. The state equation for this augmented state

is

x(k) = F(k,k¡ 1)x(k¡ 1)+ v(k,k¡ 1) (16)

where

F(k,k¡ 1) ¢=

264F(k,k¡ 1) 0 0

0 Ini 0

0 0 Inj

375 (17)

Ini denotes the ni£ ni identity matrix and

v(k,k¡ 1) ¢=

264v(k,k¡ 1)0

0

375 (18)

i.e., the biases are assumed constant between their (ex-

ternal) updates. The measurement at time k is

zi(k) =Hi(k)x(k) +wi(k) (19)

where

Hi(k)
¢
=[Hi

x(k) Hib(k) 0]: (20)

Let the prediction covariance of x(k) be

P(k j k¡ 1)

¢
=

264 Pxx(k j k¡ 1) Pxbi (k j k¡ 1) Px¯j (k j k¡ 1)
Pxbi (k j k¡ 1)0 Pbibi (k j k¡ 1) 0

Px¯j (k j k¡ 1)0 0 P̄ j¯j (k j k¡ 1)

375

=

264 Pxx(k j k¡ 1) Pxbi (k j k¡ 1) Px¯j (k j k¡ 1)
Pxbi (k j k¡ 1)0 Pbibi 0

Px¯j (k j k¡ 1)0 0 P̄ j¯j

375 :
(21)
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Then the optimal filter gain for updating x(k) is

Wi(k)OPT = P(k j k¡ 1)Hi(k)0Si(k)¡1

= P(k j k¡ 1)Hi(k)0

¢ [Hi(k)P(k j k¡ 1)Hi(k)0+Ri(k)]¡1

=

264W
i
x (k)

Wi
bi
(k)

Wi
¯j
(k)

375 (22)

which consists of three blocks.

The idea of the SKF is to use only the top block

from the above, i.e., the actual gain will be

Wi(k) =

264W
i
x (k)

0

0

375 (23)

The expression of this block is

Wi
x (k) = [Pxx(k j k¡ 1)Hi

x(k)
0+Pxbi (k j k¡ 1)Hi

b(k)
0]Si(k)¡1

(24)

where the innovation covariance is

Si(k) =Hi
x(k)Pxx(k j k¡ 1)Hi

x(k)
0+Hi

x(k)Pxbi (k j k¡ 1)Hi
b(k)

0

+Hi
b(k)Pbix(k j k¡ 1)Hi

x(k)
0+Hi

b(k)PbibiH
i
b(k)

0+Ri(k):

(25)

Since (23) is a suboptimal gain, the state covariance2

update equation to be used in this case is the Joseph

form (see, e.g., [1], Eq. (5.2.3-18)), which is the only

one valid for an arbitrary gain. Thus, we have

P(k j k) = [Inx+ni+nj ¡Wi(k)Hi(k)]P(k j k¡ 1)

¢ [Inx+ni+nj ¡Wi(k)Hi(k)]0

+Wi(k)Ri(k)Wi(k)0: (26)

Using (20), (21), and (23), the blocks of (26) are

obtained as

Pxx(k j k) = [Inx ¡Wi
x (k)H

i
x(k)]Pxx(k j k¡ 1)[Inx ¡Wi

x (k)H
i
x(k)]

0

¡Wi
x (k)H

i
b(k)Pxbi (k j k¡ 1)0[Inx ¡Wi

x (k)H
i
x(k)]

0

¡ [Inx ¡Wi
x (k)H

i
x(k)]Pxbi (k j k¡ 1)Hi

b(k)
0Wi
x (k)

0

+Wi
x (k)H

i
b(k)PbibiH

i
b(k)

0Wi
x (k)

0+Wi
x (k)R

i(k)Wi
x (k)

0

(27)

2Actually this is not “state covariance” but “state-error covariance,”

since the state estimate is not the conditional mean any more due to

the use of the suboptimal gain. However, for simplicity we still use

the term “state covariance.”

Pxbi (k j k) = [Inx ¡Wi
x (k)H

i
x(k)]Pxbi (k j k¡ 1)¡Wi

x (k)H
i
b(k)Pbibi

(28)

Px¯j (k j k) = [Inx ¡Wi
x (k)H

i
x(k)]Px¯j (k j k¡ 1), 8j 6= i(k)

(29)

Pbibi (k) = Pbibi (k¡ 1) = Pbibi (30)

P̄ j¯j (k) = P̄ j¯j (k¡ 1) = P̄ j¯j (31)

Pbi¯j (k) = 0: (32)

The state update is done, in view of (23), according

to

x̂(k j k) = x̂(k j k¡ 1)+Wi
x (k)º

i(k) (33)

where the innovation corresponding to zi(k) is

ºi(k) = zi(k)¡Hi
x(k)x̂(k j k¡ 1): (34)

The prediction equations, based on the model (16)

are the standard ones, namely,

x̂(k j k¡ 1) = F(k,k¡ 1)x̂(k¡ 1 j k¡ 1) (35)

and for the covariance

P(k j k¡ 1) = F(k,k¡ 1)P(k¡ 1 j k¡1)F(k,k¡ 1)0

+Q(k,k¡ 1): (36)

where

Q(k,k¡ 1) ¢=diag[Q(k,k¡ 1),0ni ,0nj ]: (37)

The blocks of the prediction covariance (36) are calcu-

lated as

Pxx(k j k¡ 1) = F(k,k¡ 1)Pxx(k¡ 1 j k¡1)F(k,k¡ 1)0

+Q(k,k¡ 1) (38)

Pxbi (k j k¡ 1) = F(k,k¡ 1)Pxbi (k¡1 j k¡ 1) (39)

Px¯j (k j k¡ 1) = F(k,k¡ 1)Px¯j (k¡ 1 j k¡ 1),
8j 6= i(k): (40)

Equations (28) and (29) yield the updated crossco-

variances of the state with the bias in the measurement

used in the update and with each bias in the other mea-

surements, respectively. This procedure avoids having

to handle the update of a potentially very large covari-

ance matrix. The crosscovariance of the state with the

bias in another sensor’s measurement will be needed

when that sensor’s measurement becomes available for

updating the state. Similarly, the predicted crosscovari-
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ances are obtained using (39) and (40) and they are the

same for all the biases.

Thus, the above equations show how one can obtain

the state estimate of the target accounting for all the

biases in a multisensor situation, without resorting to

state augmentation as far as the computations are con-

cerned. The augmentation was used only to obtain the

covariance matrix block updates.

4. MODIFIED JOSEPH FORM FOR OOSM

As discussed above, since the filter gain in the SKF

is not optimal, the Joseph form should be used for

covariance update. For an out-of-sequence measurement

(OOSM), the time of the OOSM is not at the current

time, so the Joseph should be modified accordingly.

First, we consider the standard Joseph form. Then, the

modified Joseph forms for OOSM are derived for the

cases with and without residual biases.

4.1. Standard Joseph Form

The state model and measurement model are given

by

x(k) = F(k)x(k¡ 1)+ v(k¡1) (41)

z(k) =H(k)x(k) +w(k) (42)

where v(k) and w(k) are mutually independent white

noise sequences with covariance Q(k) and R(k), respec-

tively. The state estimate using a Kalman Filter is given

by

x̂(k j k) = x̂(k j k¡ 1)+W(k)º(k) (43)

whereW is the filter gain and º is the innovation, which

is given by

º(k) = z(k)¡H(k)x̂(k j k¡ 1)
=H(k)x(k)+w(k)¡H(k)x̂(k j k¡ 1): (44)

By substituting (44) into (43), the state estimate can be

written as

x̂(k j k) = x̂(k j k¡ 1)+W(k)H(k)[x(k)¡ x̂(k j k¡1)]
+W(k)w(k): (45)

Then, using (45) the estimation error at time k is given

by

x̃(k j k) = x(k)¡ x̂(k j k)
= [I¡W(k)H(k)][x(k)¡ x̂(k j k¡ 1)]¡W(k)w(k)
= [I¡W(k)H(k)]x̃(k j k¡ 1)¡W(k)w(k)

(46)

where x̃(k j k¡ 1) is the prediction error. Thus, the

error covariance P(k j k) can be obtained as

P(k j k) = covfx̃(k j k)g

= [I¡W(k)H(k)]covfx̃(k j k¡ 1)g
¢ [I¡W(k)H(k)]0+W(k)covfw(k)gW(k)0

= [I¡W(k)H(k)]P(k j k¡ 1)[I¡W(k)H(k)]0

+W(k)R(k)W(k)0 (47)

due to the fact that the prediction error x̃(k j k¡1) is
independent of the measurement noise w(k). Formula

(47) is known as the Joseph form.

4.2. Modified Joseph Form For OOSM Without
Residual Biases

Now, we consider an OOSM z(·) (· < k). The most

recent state estimate after receiving z(·) is given by

[3]

x̂(k j ·) = x̂(k j k)+W(k,·)º(·) (48)

where º(·) is the innovation at time · of the OOSM,

that is

º(·) = z(·)¡H(·)x̂(· j k): (49)

Using the suboptimal technique B [5] (performed within

1% of the optimum when the OOSM has a one-step lag),

the state retrodiction x̂(· j k) is given by
x̂(· j k) = F(·,k)x̂(k j k) (50)

and º(·) is obtained as

º(·) = z(·)¡H(·)F(·,k)x̂(k j k)

=H(·)x(·) +w(·)¡H(·)F(·,k)x̂(k j k)

=H(·)F(·,k)[x(k)¡ v(k,·)]
+w(·)¡H(·)F(·,k)x̂(k j k)

=H(·)F(·,k)[x(k)¡ x̂(k j k)]
¡H(·)F(·,k)v(k,·) +w(·) (51)

which has made use of (8). Substituting (51) into (48),

we have

x̂(k j ·) = x̂(k j k) +W(k,·)H(·)F(·,k)[x(k)¡ x̂(k j k)]
¡W(k,·)H(·)F(·,k)v(k,·)+W(k,·)w(·):

(52)
Thus, the estimation error is

x̃(k j ·) = x(k)¡ x̂(k j ·)

= [I¡W(k,·)H(·)F(·,k)][x(k)¡ x̂(k j k)]
+W(k,·)H(·)F(·,k)v(k,·)¡W(k,·)w(·)

= [I¡W(k,·)H(·)F(·,k)]x̃(k j k)
+W(k,·)H(·)F(·,k)v(k,·)¡W(k,·)w(·):

(53)
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Using (53), the error covariance is given by

P(k j ·) = covfx̃(k j ·)g
= [I¡W(k,·)H(·)F(·,k)]covfx̃(k j k)g
¢ [I¡W(k,·)H(·)F(·,k)]0

+W(k,·)H(·)F(·,k)covfv(k,·)g
¢ [W(k,·)H(·)F(·,k)]0

+W(k,·)covfw(·)gW(k,·)0

+[I¡W(k,·)H(·)F(·,k)]
¢ covfx̃(k j k),v(k,·)g
¢ [W(k,·)H(·)F(·,k)]0

+W(k,·)H(·)F(·,k)covfv(k,·), x̃(k j k)g
¢ [I¡W(k,·)H(·)F(·,k)]0

= [I¡W(k,·)H(·)F(·,k)]P(k j k)
¢ [I¡W(k,·)H(·)F(·,k)]0

+W(k,·)H(·)F(·,k)Q(k,·)

¢ [W(k,·)H(·)F(·,k)]0

+W(k,·)R(·)W(k,·)0

+[I¡W(k,·)H(·)F(·,k)]Pxv(k,· j k)
¢ [W(k,·)H(·)F(·,k)]0

+W(k,·)H(·)F(·,k)Pxv(k,· j k)0

¢ [I¡W(k,·)H(·)F(·,k)]0 (54)

due to the fact that the measurement noise w(·) of the

OOSM is independent of the estimation error x̃(k j k)
and the process noise v(k,·). Note that, we have (as in

[2] Eq. (22))

Pxv(k,· j k) = covfx̃(k j k),v(k,·)g
= covfx(k),v(k,·) j Zkg (55)

since the covariance is independent of the conditioning

Zk. Therefore, when OOSM is considered and the state

estimation is given by the technique B, the Joseph form

should be modified as in (54).

4.3. Modified Joseph Form For OOSM With Residual
Biases

Next, we derive the Joseph form by considering both

OOSM and residual biases of the sensors, i.e., (54) for

the state augmented with the biases. Using (14), the state

equation for this augmented state evolving from · (the

time of the OOSM) to the current time k is given by

x(k) = F(k,·)x(·)+ v(k,·) (56)

where

F(k,·) =

264F(k,·) 0 0

0 Ini 0

0 0 Inj

375 (57)

and

v(k,·) =

264v(k,·)0

0

375 : (58)

The corresponding covariance of v(k,·) is

Q(k,·) =

264Q(k,·) 0 0

0 0 0

0 0 0

375 : (59)

The OOSM at time · obtained from sensor i is

zi(·) =Hi(·)x(·)+wi(·) (60)

where

Hi(·) = [Hix(·) Hi
b(·) 0]: (61)

Let the updated covariance of x(k) be

P(k j k) =

264 Pxx(k j k) Pxbi (k j k) Px¯j (k j k)
Pxbi(k j k)0 Pbibi 0

Px¯j (k j k)0 0 P̄ j¯j

375
(62)

and the crosscovariance between x(k) and v(k,·) be

Pxv(k,· j k) =

264Pxv(k,· j k) 0 0

0 0 0

0 0 0

375 (63)

due to the independence between the sensor biases and

process noise. The SKF gain using the OOSM z(·) at

time k is

Wi(k,·) =

264W
i
x (k,·)

0

0

375 : (64)

Then, using the modified Joseph form given in (54), the

covariance for the state augmented with residual biases

can be written as

P(k j ·) = [Inx+ni+nj ¡Wi(k,·)Hi(·)F(·,k)]P(k j k)
¢ [Inx+ni+nj ¡Wi(k,·)Hi(·)F(·,k)]0

+Wi(k,·)Hi(·)F(·,k)

¢Q(k,·)[Wi(k,·)Hi(·)F(·,k)]0

+Wi(k,·)Ri(·)Wi(k,·)0

+[Inx+ni+nj ¡Wi(k,·)Hi(·)F(·,k)]Pxv(k,· j k)
¢ [Wi(k,·)Hi(·)F(·,k)]0

+Wi(k,·)Hi(·)F(·,k)Pxv(k,· j k)0

¢ [Inx+ni+nj ¡Wi(k,·)Hi(·)F(·,k)]0: (65)
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Using (56)—(64), the blocks of (65) are obtained as

Pxx(k j ·) = [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]Pxx(k j k)

¢ [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]

0

¡Wi
x (k,·)H

i
b(·)Pxbi (k j k)0

¢ [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]

0

¡ [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]

¢Pxbi (k j k)Hi
b(·)

0Wi
x (k,·)

0

+Wi
x (k,·)H

i
b(·)PbibiH

i
b(·)

0Wi
x (k,·)

0

+Wi
x (k,·)R

i(·)Wi
x (k,·)

0

+Wi
x (k,·)H

i
x(·)F(·,k)Q(k,·)

¢ [Wi
x (k,·)H

i
x(·)F(·,k)]

0

+[Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]Pxv(k,· j k)

¢ [Wi
x (k,·)H

i
x(·)F(·,k)]

0

+Wi
x (k,·)H

i
x(·)F(·,k)Pxv(k,· j k)0

¢ [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]

0: (66)

The crosscovariance of the state at k with the bias of the

OOSM evolves as

Pxbi(k j ·) = [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]Pxbi(k j k)

¡Wi
x (k,·)H

i
b(·)Pbibi : (67)

The crosscovariance of the state at k with the other

biases evolve as

Px¯j (k j ·) = [Inx ¡Wi
x (k,·)H

i
x(·)F(·,k)]Px¯j (k j k),

8j 6= i(k) (68)

and the bias covariances stay unchanged, as in (30)—

(32).

5. ONE-STEP ALGORITHM FOR MULTISTEP-LAG
OOSM FOR MULTIPLE SENSORS WITH
BIASES–SKF/OOSM

Using the approach of [3], one can perform in one

step the update with an l-step-lag OOSM. Suitable mod-

ifications will be made to account for the fact that the

measurements are biased. Two procedures, designated

as Al1 and Bl1, were presented in [3] for the situation

without biases. Both procedures retrodict the current

state to the time of the OOSM, calculate the covariance

of the retrodicted state, the retrodicted measurement and

its the covariance, the crosscovariance between the cur-

rent state and the retrodicted measurement and, with

these, one can perform the direct update of the current

state with the OOSM.

These algorithms are based on the 1-step-lag OOSM

algorithms, designated in [2] as A and B, respectively.

The difference between algorithms A and B is in the

retrodiction of the current state to the time of the

OOSM:

A) uses the exact conditional mean, which turns out

to be an affine function of the current state estimate,

with a second term being a linear transformation of the

latest innovation;

B) uses a linear function of the current state esti-

mate, which is the first term from the above.

Algorithm Al1, is similar to A but, using an (approxi-

mate) “equivalent measurement” for the measurements

in the interval [k¡ l+1,k], its second term is a linear

transformation of the innovation corresponding to the

equivalent measurement. Algorithm Bl1 uses, similarly

to B, only the first term from Al1 and it does not need

the equivalent measurement.

As shown in [3], both algorithms, while subopti-

mal, performed within 1% of the optimum obtained by

reordering and reprocessing the measurements, which

would not be practical in real systems. In view of their

performance and the fact that, in the presence of bi-

ases, the statistical relationship between the “equivalent

measurement” and the biases is difficult to quantify, the

proposed approach is to modify Bl1 to account for the

biases.

The suboptimal technique Bl1 [3] assumes the retro-

dicted noise to be zero. The retrodiction of the state to

· from k is3

x̂(· j k) = F(·,k)x̂(k j k) (69)

i.e., a linear function of x̂(k j k), rather than an affine
function. The covariance of this state retrodiction is

Pxx(· j k) = F(·,k)[Pxx(k j k)+Pvv(k,· j k)¡Pxv(k,· j k)
¡Pxv(k,· j k)0]F(·,k)0 (70)

where

Pvv(k,· j k) =Q(k,·) (71)

Pxv(k,· j k) = Pxx(k j k)Pxx(k j k¡ l)¡1Q(k,·) (72)

are the covariances of the process noise for the retro-

diction interval and its crosscovariance with the cur-

rent state, respectively. Equation (72) above follows by

substituting in Equation (37) of [3] its preceding Equa-

tions (24) and (18) and simplifying the result.

The covariance of the retrodicted measurement, as

given in Equation (39) of [3] for the situation without

biases, is, assuming the OOSM is from sensor i, given

3The superscript B used in [3] to distinguish between the variables

in algorithm versions A and B is dropped, since here we use only

algorithm B.
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by

Si(·) =Hix(·)P(· j k)Hi
x(·)

0+Ri(·): (73)

For the situation of the state augmented with biases,

(73) is replaced by

Si(·) =Hi(·)P(· j k)Hi(·)0+Ri(·)
=Hi

x(·)Pxx(· j k)Hi
x(·)

0+Hi
x(·)Pxbi (· j k)Hi

b(·)
0

+Hi
b(·)Pbix(· j k)Hi

x(·)
0+Hi

b(·)PbibiH
i
b(·)

0+Ri(·)

(74)
where, using (8), (69), one has

Pxbi (· j k) = Ef[x(·)¡ x̂(· j k)][bi]0g
= Ef[F(·,k)[x(k)¡ v(k,·)]¡F(·,k)x̂(k j k)][bi]0g
= F(·,k)Pxbi (k j k) (75)

because the residual bias and the process noise are

independent.

The crosscovariance between the state at k and the

OOSM is, for the case without biases, given by Equa-

tion (40) of [3] as

Pxzi(k,· j k) = [Pxx(k j k)¡Pxv(k,· j k)]F(·,k)0Hi
x(·)

0:

(76)

In the case with biases one has

Pxzi (k,· j k) = Ef[x(k)¡ x̂(k j k)][zi(·)¡ ẑi(· j k)]0g

= Ef[x(k)¡ x̂(k j k)][Hi
x(·)x(·) +w

i(·) +Hib(·)b
i¡Hi

x(·)F(·,k)x̂(k j k)]0g

= Ef[x(k)¡ x̂(k j k)][Hi
x(·)[F(·,k)(x(k)¡ v(k,·))]+wi(·)+Hi

b(·)b
i¡Hi

x(·)F(·,k)x̂(k j k)]0g

= [Pxx(k j k)¡Pxv(k,· j k)]F(·,k)0Hi
x(·)

0+Pxbi(k j k)Hi
b(·)

0: (77)

Therefore, the gain for the update of the current state

estimate with the OOSM zi(·) in the presence of biases

is (the first block of Wi(k,·)OPT = Pxzi (k,· j k)Si(·)¡1)

Wi
x (k,·) = Pxzi(k,· j k)Si(·)¡1 (78)

with Pxzi(k,· j k) given in (77) and Si(·) given in (74).
The update with the OOSM zi(·) of the most recent

state estimate x̂(k j k) is thus

x̂(k j ·) = x̂(k j k)+Wi
x (k,·)º

i(·) (79)

where the innovation corresponding to the OOSM zi(·)

is

ºi(·) = zi(·)¡ ẑi(· j k) (80)

and the retrodicted OOSM is

ẑi(· j k) =Hix(·)x̂(· j k) (81)

which uses the retrodicted state x̂(· j k) given in (69).
Using the filter gain given in (78) and the (approximate)

crosscovariance in (72), the covariance for the state

estimate and the crosscovariances of the state with the

biases can be obtained from (66)—(68).

As it can be seen from (72), the need to invert the

state covariance and the augmentation of the state with

all the sensor biases would make the algorithm pro-

hibitive for real-time implementation. The procedure

presented above avoids the need to invert the augmented

covariance matrix since it does not use any state aug-

mentation.

6. THE IMM ESTIMATOR IN THE PRESENCE OF
MEASUREMENT BIASES

As discussed above, one can carry out target state es-

timation with biased measurements from multiple sen-

sors without augmenting the state with all the biases.

This was shown in the context of Kalman filtering,

i.e., when a single target motion model is used. Next,

these results are extended to the case where multiple

motion models are used and the tracking filter is an

IMM estimator [1]. In this case, because of the bi-

ases, each of the r modules of the IMM will be an

SKF.

6.1. Update With A Current Measurement

In the IMM algorithm, the first step is mixing.

Using the augmented representation, the mixed state and

mixed covariance are given by

x̂0m(k¡ 1 j k¡1)

=

rX
n=1

x̂n(k¡ 1 j k¡ 1)¹njm(k¡ 1 j k¡ 1) (82)

P0m(k¡ 1 j k¡ 1)

=

rX
n=1

¹njm(k¡ 1 j k¡ 1)

¢ fPn(k¡ 1 j k¡ 1)
+ [x̂n(k¡ 1 j k¡ 1)¡ x̂0m(k¡ 1 j k¡ 1)]
¢ [x̂n(k¡ 1 j k¡ 1)¡ x̂0m(k¡1 j k¡ 1)]0g

(83)
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for m= 1, : : : ,r, where ¹njm is the mixing probability

[1], and the augmented state estimate x̂n(k¡1 j k¡ 1)
and state covariance Pn(k¡ 1 j k¡ 1) matched to mode
n are

x̂n(k¡ 1 j k¡ 1) =

264 x̂n(k¡1 j k¡ 1)0

0

375 (84)

Pn(k¡ 1 j k¡ 1) =

264 Pxnxn(k¡ 1 j k¡ 1) Pxnbi (k¡ 1 j k¡1) Pxn¯j (k¡ 1 j k¡ 1)
Pxnbi (k¡ 1 j k¡ 1)0 Pbibi 0

Pxn¯j (k¡ 1 j k¡ 1)0 0 P̄ j¯j

375 (85)

with the bias terms in (84) being zero in view of

(23). Using (82)—(85), the blocks of (82) and (83) are

obtained as

x̂0m(k¡ 1 j k¡ 1)

=

rX
n=1

x̂n(k¡ 1 j k¡ 1)¹njm(k¡ 1 j k¡ 1) (86)

P0xmxm(k¡ 1 j k¡1)

=

rX
n=1

¹njm(k¡ 1 j k¡ 1)

¢ fPxnxn(k¡ 1 j k¡ 1)

+ [x̂n(k¡1 j k¡ 1)¡ x̂0m(k¡ 1 j k¡ 1)]
¢ [x̂n(k¡1 j k¡ 1)¡ x̂0m(k¡ 1 j k¡ 1)]0g

(87)

P0xmbi (k¡ 1 j k¡1)

=

rX
n=1

¹njm(k¡ 1 j k¡ 1)Pxnbi (k¡1 j k¡ 1)

(88)

P0xm¯j (k¡ 1 j k¡ 1)

=

rX
n=1

¹njm(k¡ 1 j k¡ 1)Pxn¯j (k¡ 1 j k¡ 1)

8j 6= i(k): (89)

The likelihood of mode m at time k is, assuming

the mode-conditioned innovations to be Gaussian dis-

tributed (the common assumption [1]) is

¤m(k) =N [ºim(k);0,Sim(k)], m= 1, : : : ,r

(90)

where, with x̂m(k j k¡1) being the mode-m-conditioned
predicted state, the innovation corresponding to mode m

is, similarly to (34),

ºim(k) = z
i(k)¡Hi

x(k)x̂m(k j k¡ 1) (91)

and the innovation covariance is, similarly to (25),

Sim(k) =H
i
x(k)Pxmxm(k j k¡1)Hi

x(k)
0

+Hi
x(k)Pxmbi (k j k¡ 1)Hib(k)0

+Hi
b(k)Pbixm(k j k¡ 1)Hi

x(k)
0

+Hi
b(k)PbibiH

i
b(k)

0+Ri(k) (92)

where Pxmxm(k j k¡ 1) and Pxmbi (k j k¡ 1) are the pre-
dicted state covariance and state-bias crosscovariance

matched to mode m. In the above it is assumed that

the measurement equations are the same for all the

modes. The values of x̂m(k j k¡ 1), Pxmxm(k j k¡ 1), and
Pxmbi(k j k¡1) are obtained from (35)—(39) using the

mixed state estimate and mixed covariances given in

(86)—(89).

Based on the mode likelihoods, the model probabili-

ties at current time k, f¹m(k j k)gm=1,:::,r, can be obtained
[1], which are then used to calculate the combined state

estimate and state covariance, namely,

x̂(k j k) =
rX

m=1

x̂m(k j k)¹m(k j k) (93)

P(k j k) =
rX

m=1

¹m(k j k)

¢ fPm(k j k) + [x̂m(k j k)¡ x̂(k j k)]
¢ [x̂m(k j k)¡ x̂(k j k)]0g: (94)

Similar to the mixing step, the blocks of (93) and (94)

are obtained as

x̂(k j k) =
rX

m=1

x̂m(k j k)¹m(k j k) (95)

Pxx(k j k) =
rX

m=1

¹m(k j k)

¢ fPxmxm(k j k) + [x̂m(k j k)¡ x̂(k j k)]
¢ [x̂m(k j k)¡ x̂(k j k)]0g (96)

Pxbi (k j k) =
rX

m=1

¹m(k j k)Pxmbi (k j k) (97)
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Px¯j (k j k) =
rX

m=1

¹m(k j k)Pxm¯j (k j k), 8j 6= i(k)

(98)

where the values of x̂m(k j k), Pxmxm(k j k), Pxmbi(k j k), and
Pxm¯j (k j k) are obtained from (27)—(33) for each mode.

6.2. Update With An OOSM

Using the same notations–subscripting with m the

mode-m-conditioned state estimates, covariances, in-

novations–the equations from Section 5 provide the

procedure for using an OOSM in each module. The

likelihood of each mode based on an OOSM will be,

analogously to (90),

¤m(·) =N [ºim(·);0,Sim(·)], m= 1, : : : ,r

(99)

where, with x̂m(· j k) being the mode-m-conditioned

retrodicted state, the innovation corresponding to mode

m is, similarly to (80),

ºim(·) = z
i(·)¡Hi

x(·)x̂m(· j k) (100)

where x̂m(· j k) is given by
x̂m(· j k) = Fm(·,k)x̂m(k j k): (101)

The innovation covariance is, similarly to (74),

Sim(·) =H
i
x(·)Pxmxm (· j k)Hi

x(·)
0+Hi

x(·)Pxmbi (· j k)Hi
b(·)

0

+Hi
b(·)Pbixm (· j k)Hi

x(·)
0+Hi

b(·)PbibiH
i
b(·)

0+Ri(·):

(102)

Using the likelihood function (99), the current mode

probabilities updated with the OOSM are as in [4],

namely,

¹m(k j ·) =
1

c

"
rX
n=1

¤n(·)¦mn(·,k)

#
¹m(k j k):

(103)
where the normalization constant is

c=

rX
m=1

rX
n=1

¤n(·)¦mn(·,k)¹m(k j k): (104)

The mode transition probability ¦mn(k2,k1) from time

k1 to k2 is defined as

¦mn(k2,k1) = PfM(k2) = n jM(k1) =mg (105)

which is an element (row m, column n) in the tran-

sition matrix ¦(k2,k1). For r = 2, the transition matrix

¦(k2,k1) according to a continuous-time Markov chain

is given by [4]

¦(k2,k1) =
1

¸1 +¸2

·
¸2 +¸1e

¡(¸1+¸2)T ¸1¡¸1e¡(¸1+¸2)T
¸2¡¸2e¡(¸1+¸2)T ¸1 +¸2e

¡(¸1+¸2)T

¸
(106)

where T = jtk2 ¡ tk1 j, and 1=¸m is the expected sojourn
time for mode m.

Similar to (95)—(98), the combined state estimate

and covariances with the OOSM are given by

x̂(k j ·) =
rX

m=1

x̂m(k j ·)¹m(k j ·) (107)

Pxx(k j ·) =
rX

m=1

¹m(k j ·)

¢ fPxmxm(k j ·)+ [x̂m(k j ·)¡ x̂(k j ·)]
¢ [x̂m(k j ·)¡ x̂(k j ·)]0g (108)

Pxbi(k j ·) =
rX

m=1

¹m(k j ·)Pxmbi(k j ·) (109)

Px¯j (k j ·) =
rX

m=1

¹m(k j ·)Pxm¯j (k j ·), 8j 6= i(k)

(110)

where the values of x̂m(k j ·), Pxmxm(k j ·), Pxmbi (k j ·),
and Pxm¯j (k j ·) are obtained from (79) and (66)—(68)

for each mode. Note that the mixing step is not carried

out with the OOSM [4].

7. THE HEURISTIC “COVARIANCE INFLATION”
APPROACH FOR BIASES

This approach increases the measurement noise vari-

ance by the variance of the biases (assumed to have

mean zero). Note that this amounts to treating the biases

as if they were an additional zero-mean white noise,

which is clearly not correct. Only the SKF correctly

treats the biases as fixed random variables. The reason

this heuristic approach is considered here is that it has

been used due to its simplicity, but as it will be shown,

it yields inconsistent estimates.

Consider a measurement model given by

z(k) = h(x(k),b) +w(k) (111)

which may be a nonlinear function of the target state

and residual biases. The superscript i has been dropped

for simplicity. Using the first-order Taylor expansion at

x(k) = x̂(k j k¡ 1) and b = 0, the measurement z(k) can
be approximated as

z(k)¼ h(x̂(k j k¡ 1),0)+Hx(k)(x(k)¡ x̂(k j k¡ 1))
+Hb(k)(b¡ 0)+w(k)

= h(x̂(k j k¡ 1),0)+Hx(k)x̃(k j k¡ 1)
+Hb(k)b+w(k) (112)

where

Hx(k) =
@h(x,b)

@x

¯̄̄̄
x(k)=x̂(kjk¡1),b=0

(113)

Hb(k) =
@h(x,b)

@b

¯̄̄̄
x(k)=x̂(kjk¡1),b=0

(114)
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TABLE I

Sensor Indices and Corresponding Time Stamps

Sensor Index 1 1 2 1 2 1 2 1 2 1 2 1 2 1

Time Stamp (s) 0 5 2.5 10 7.5 15 12.5 20 17.5 25 22.5 30 27.5 35

and x̂(k j k¡1) is the state prediction at time k using the
set of measurements zk¡1. The MMSE estimate of z(k)
is given by

ẑ(k j k¡ 1) = Efz(k) j zk¡1g ¼ h(x̂(k j k¡ 1),0)
(115)

which has used the Taylor approximation given in (112)

(this is actually the estimate using EKF). The corre-

sponding error covariance, which has the same expres-

sion as in (25), is

S(k) = covfz(k)¡ ẑ(k j k¡ 1)g
¼ covfHx(k)x̃(k j k¡1)+Hb(k)b+w(k)g
=Hx(k)covfx̃(k j k¡1)gH 0x(k)
+Hb(k)covfbgH 0b(k)+ covfw(k)g
+Hx(k)covfx̃(k j k¡ 1),bgH 0b(k)
+Hb(k)covfb, x̃(k j k¡ 1)gH 0x(k) (116)

due to the fact that the measurement noise w(k) is inde-

pendent of the prediction error x̃(k j k¡ 1) and residual
biases b. If the crosscovariances between the estimation

error and residual biases are set to be zero, S(k) can be

written as

S(k) =Hx(k)covfx̃(k j k¡ 1)gH 0x(k) +Hb(k)covfbgH 0b(k)
+ covfw(k)g (117)

which amounts to a covariance inflation with the infla-

tion term Hb(k)covfbgH 0b(k), similar to that in [18]. The
effect of ignoring the crosscovariances will be evaluated

in the simulation results.

8. SIMULATION RESULTS

8.1. Example 1: One-Dimensional Motion With
Position Measurement Only

The target starts at origin and moves with a constant

velocity of 10 m/s along the x-axis. The power spectrum

density (PSD) of the process noise is q= 0:5 m2=s3.

Two sensors are used, which are located at (¡50,0) km
and (50,0) km. The (unaugmented) target state is de-

noted by x as

x= [x _x] (118)

and the measurement model is

zi = (1+®i)[1 0](x¡ xip)+¢i+wi, i= 1,2

(119)

TABLE II

Bias Standard Deviations for Position Measurement (Example 1)

Bias Level Offset Bias ¢ Scale Bias ®

Small 10 m (= ¾w) 10¡4

Large 20 m (= 2¾w) 2£ 10¡4

where ¢ denotes an offset bias and ® denotes a scale

(multiplicative) bias. The superscript i is the sensor in-

dex and xip is the state of the ith sensor. The measure-
ment noise s.d. is ¾w = 10 m for both sensors. The sam-

pling interval for each sensor is 5 s, but they are not

synchronized. The times at which the measurements are

taken (their “time stamps”) and the order of the mea-

surements arriving at the fusion center are shown in

Table I, where sensor 2 has all its measurements delayed

with 1 step lag.

Two levels of biases are considered with the bias s.d.

given in Table II (the same for both sensors).

For each bias level, two options are considered:

1. Reorder the measurements (in-sequence data).

2. Process OOSM.

The option of ignoring OOSMs has been shown in [3]

to lead to significant performance loss.

For each scenario, we compare three filters: Kalman

filter4 without covariance inflation (KFwoINF), Kalman

filter with covariance inflation (KFwINF), and SKF

(Schmidt-KF). Each of these is modified appropriately

when processing OOSM. The modified SKF to process

OOSM is the SKF/OOSM from Section 5.

The discretized CWNAmodel (DCWNA) [1] is used

as the target’s dynamic model. Since the smallest time

interval between the time stamps shown in Table I is

2.5 s, we use T = 2:5 s as the filter’s sampling interval.

The results below are based on 1000 Monte Carlo sim-

ulations. The two-sided 99% probability region of the

NEES (normalized estimation error squared, [1] Sec-

tion 5) based on the Â22000 distribution [1] is [1:84,2:16],

marked by two dashed lines in the figures.

All filters were initialized with “one point” initial-

ization (see [1], Section 5) according to which the first

position measurement is used as the initial estimate and

the initial velocity estimate is set to zero; the standard

deviation of the latter is set at half the maximum speed

in each coordinate.

The RMSE at the times when OOSMs are processed

(at the time stamps of sensor 1 in our case) in Figs. 3

4Here, “Kalman filter” may also refer to extended Kalman Filter for

nonlinear cases. We use the same acronym “KF” for simplicity.
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Fig. 1. Position RMSE for target with position measurement only

(small bias, reordering measurements).

Fig. 2. NEES for target with position measurement only

(small bias, reordering measurements).

and 7, is nearly the same as the RMSE from the in-

sequence data in Figs. 1 and 5 at the corresponding

times. From the NEES in Figs. 2, 4, 6 and 8, we can see

that SKF is consistent (i.e., its NEES falls in its proba-

bility region [1]) for both in-sequence data and process-

ing OOSMs. KFwoINF is the most inconsistent (overly

optimistic) and its inconsistency increases with the bias

level. KFwINF improves the filter’s consistency but it

is still not consistent due to ignoring the correlation be-

tween the bias and estimation error (because it assumes

the bias to be white noise, as indicated in Section 7).

The inconsistency of KFwINF also increases with the

bias level. The results also show that KFwINF and SKF

do not improve the estimation accuracy in this example

with position only measurements. However, in the next

example we will see that the SKF does improve the es-

timation accuracy for the case of GMTI measurements,

which include additional range rate measurements.

Fig. 3. Position RMSE for target with position measurement only

(small bias, OOSM processing).

Fig. 4. NEES for target with position measurement only

(small bias, OOSM processing).

Tables III and IV show a comparison of the three

algorithms for various levels of process noise in the

case of small bias for in-sequence data and process-

ing OOSMs, respectively. SKF is consistent in almost

all cases.5 For all process noise PSD levels, KFwoINF

is inconsistent (optimistic). For KFwINF, when the

PSD is around 10 m2=s3 (with the maneuvering index

around 1), KFwINF is consistent and for the other cases,

KFwINF is inconsistent.

For large bias, the results are shown in Tables V

and VI for in-sequence data and processing OOSMs,

respectively. The consistency of SKF is the best, though

it seems a little “pessimistic” when the process noise

PSD is below 0:01 m2=s3. For this case of large bias,

KFwINF is always inconsistent. Also, from the RMS

5Since the multiplicative bias requires linearization, minor inconsis-

tencies (NEES slightly outside the probability region) can occur.
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Fig. 5. Position RMSE for target with position measurement only

(large bias, reordering measurements).

Fig. 6. NEES for target with position measurement only

(large bias, reordering measurements).

in Tables III—VI we can notice a small improvement in

estimation accuracy using SKF at the final estimate (as

in Figs. 1, 3, 5 and 7). However, as shown in Figs. 1,

3, 5 and 7, this improvement is not significant and may

not be achieved for every point.

In a realistic scenario, the target is usually tracked in

3D space and a more complicated bias model should be

used [15]. However, the results with the use of SKF are

similar to the above 1D case and this simple example

provides a good illustration of the effect of biases.

8.2. Example 2: Target With Low Process Noise And
GMTI Measurements

This example considers a target that moves in a

2-dimensional space with a nearly constant velocity.

The target state consists of position and velocity along

each coordinate (x and y). The initial target state is

Fig. 7. Position RMSE for target with position measurement only

(large bias, OOSM processing).

Fig. 8. NEES for target with position measurement only

(large bias, OOSM processing).

[100 m,9 m/s,200 m,5 m/s]. The PSD of the process

noise is q= 0:5 m2=s3 for both x and y coordinate.

The motion model considered is DCWNA. Two GMTI

radars are located with nearly perpendicular LOS to the

target. One is at (¡48,13) km with a slant range around
50 km to the target and the other is at (¡26,¡96) km
with a slant range around 100 km to the target. The

measurements are range (r), azimuth (μ) and range rate

(_r) with s.d. ¾r = 10 m, ¾μ = 1 mrad and ¾_r =1 m/s,

respectively, for both sensors. The measurement model

is

zi = (I3 +¤
i)h(x¡ xip)+¢i+wi, i= 1,2

(120)

where

x= [x _x y _y]0 (121)

denotes here the (unaugmented) target state and and xip
denotes the ith sensor state, the function h :R4!R3 is
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TABLE III

Comparison of RMS Errors at Final Estimate for Different Maneuvering Index Based on 1000 Monte Carlo Runs

(Small Bias, Reordering Measurements)

Maneuvering Process Noise Position Velocity

Algorithm Index ¸ PSD (m2=s3) RMS (m) RMS (m/s) NEES

KFwoINF 0.0125 0.001 10.4110 0.3176 9.6063

KFwINF 0.0125 0.001 10.2422 0.2914 4.8272

Schmidt-Kalman 0.0125 0.001 10.1193 0.2832 1.9872

KFwoINF 0.0395 0.01 10.5154 0.4651 6.2039

KFwINF 0.0395 0.01 10.3116 0.4382 3.4659

Schmidt-Kalman 0.0395 0.01 10.2021 0.4299 1.8121

KFwoINF 0.125 0.1 11.7715 1.0856 4.7297

KFwINF 0.125 0.1 11.4237 1.0669 2.8152

Schmidt-Kalman 0.125 0.1 11.3450 1.0640 1.9334

KFwoINF 0.3953 1 14.0554 2.2643 4.0057

KFwINF 0.3953 1 13.9014 2.2850 2.3912

Schmidt-Kalman 0.3953 1 13.8626 2.2634 1.9900

KFwoINF 1.25 10 14.0609 4.8089 3.3235

KFwINF 1.25 10 14.1587 4.9487 2.0359

Schmidt-Kalman 1.25 10 13.9012 4.8435 1.8791

TABLE IV

Comparison of RMS Errors at Final Estimate for Different Maneuvering Index Based on 1000 Monte Carlo Runs

(Small Bias, OOSM Processing)

Maneuvering Process Noise Position Velocity

Algorithm Index ¸ PSD (m2=s3) RMS (m) RMS (m/s) NEES

KFwoINF 0.0125 0.001 10.4110 0.3176 9.6063

KFwINF 0.0125 0.001 10.2422 0.2914 4.8271

Schmidt-Kalman 0.0125 0.001 10.0202 0.2829 2.0357

KFwoINF 0.0395 0.01 10.5155 0.4651 6.2039

KFwINF 0.0395 0.01 10.3116 0.4382 3.4658

Schmidt-Kalman 0.0395 0.01 10.0704 0.4254 1.8400

KFwoINF 0.125 0.1 11.7723 1.0856 4.7301

KFwINF 0.125 0.1 11.4239 1.0669 2.8153

Schmidt-Kalman 0.125 0.1 11.0296 1.0564 1.9419

KFwoINF 0.3953 1 14.0557 2.2639 4.0057

KFwINF 0.3953 1 13.9006 2.2848 2.3909

Schmidt-Kalman 0.3953 1 13.5495 2.2835 1.9692

KFwoINF 1.25 10 14.0624 4.8086 3.3233

KFwINF 1.25 10 14.1590 4.9481 2.0351

Schmidt-Kalman 1.25 10 13.8653 4.8579 1.8629

given by

h(x) =

264 rμ
_r

375=
2664

p
x2 + y2

tan¡1
y

x

_xcosμ+ _y sinμ

3775 : (122)

I3 denotes the 3£ 3 identity matrix, ¤ represents the

scale bias, having the form

¤=

264®r 0 0

0 ®μ 0

0 0 ®_r

375 (123)

with the bias terms on its main diagonal and ¢ denotes

the offset bias, that is,

¢= [¢r ¢μ ¢_r]
0: (124)

The extended Kalman filter (EKF) is used with the

Jacobian terms given in Appendix A. The order of the

measurements arriving at the fusion center is shown

in Table I. Two bias levels are considered, with the

bias s.d. given in Table VII. The results are based

on 500 Monte Carlo simulations. The two-sided 99%

probability region of the NEES is [3:68,4:33] based on

the Â22000 distribution.
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TABLE V

Comparison of RMS Errors at Final Estimate for Different Maneuvering Index Based on 1000 Monte Carlo Runs

(Large Bias, Reordering Measurements)

Maneuvering Process Noise Position Velocity

Algorithm Index ¸ PSD (m2=s3) RMS (m) RMS (m/s) NEES

KFwoINF 0.0125 0.001 18.0346 0.4642 29.3834

KFwINF 0.0125 0.001 17.3345 0.3283 5.9046

Schmidt-Kalman 0.0125 0.001 16.8580 0.2902 1.7161

KFwoINF 0.0395 0.01 18.9462 0.6461 18.9844

KFwINF 0.0395 0.01 17.7781 0.4978 4.8489

Schmidt-Kalman 0.0395 0.01 17.2558 0.4684 1.7761

KFwoINF 0.125 0.1 20.6240 1.3104 13.7247

KFwINF 0.125 0.1 19.4403 1.1497 3.7531

Schmidt-Kalman 0.125 0.1 19.1942 1.1357 1.9113

KFwoINF 0.3953 1 23.4515 2.7203 9.7744

KFwINF 0.3953 1 22.6597 2.6533 2.7582

Schmidt-Kalman 0.3953 1 22.5325 2.6332 1.9727

KFwoINF 1.25 10 25.3687 4.9322 8.5757

KFwINF 1.25 10 25.4763 5.4990 2.3465

Schmidt-Kalman 1.25 10 24.7708 5.1617 1.9618

TABLE VI

Comparison of RMS Errors at Final Estimate for Different Maneuvering Index Based on 1000 Monte Carlo Runs

(Large Bias, OOSM Processing)

Maneuvering Process Noise Position Velocity

Algorithm Index ¸ PSD (m2=s3) RMS (m) RMS (m/s)NEES

KFwoINF 0.0125 0.001 18.0346 0.4642 29.3835

KFwINF 0.0125 0.001 17.3345 0.3283 5.9043

Schmidt-Kalman 0.0125 0.001 16.5600 0.2960 1.7797

KFwoINF 0.0395 0.01 18.9465 0.6461 18.9847

KFwINF 0.0395 0.01 17.7781 0.4978 4.8488

Schmidt-Kalman 0.0395 0.01 16.7486 0.4635 1.8212

KFwoINF 0.125 0.1 20.6255 1.3103 13.7260

KFwINF 0.125 0.1 19.4405 1.1497 3.7531

Schmidt-Kalman 0.125 0.1 18.5341 1.0975 1.9393

KFwoINF 0.3953 1 23.4517 2.7192 9.7738

KFwINF 0.3953 1 22.6590 2.6530 2.7580

Schmidt-Kalman 0.3953 1 21.1264 2.6219 1.9659

KFwoINF 1.25 10 25.3720 4.9349 8.5752

KFwINF 1.25 10 25.4715 5.4991 2.3454

Schmidt-Kalman 1.25 10 24.3123 5.3158 1.9246

TABLE VII

Bias Standard Deviations for GMTI Measurements

Bias Level Offset Bias Offset Bias Offset Bias Scale Bias Scale Bias Scale Bias

¢r ¢μ ¢_r ®r ®μ ®_r

Small 10 m (1£¾r) 1 mrad (1£¾μ) 1 m/s (1£¾_r) 1£ 10¡4 1£ 10¡4 1£ 10¡4

Large 20 m (2£¾r) 2 mrad (2£¾μ) 2 m/s (2£¾_r) 2£ 10¡4 2£ 10¡4 2£ 10¡4

From the RMSE in Figs. 9 and 11 we can see that

SKF improves estimation accuracy compared to KF-

woINF and KFwINF for in-sequence data as well as

in case of processing OOSM. KFwINF is even worse

than KFwoINF in this case. With the bias level increas-

ing, the improvement in RMSE using SKF (shown in

Figs. 13 and 15) becomes more significant. For con-

sistency, from the NEES shown in Figs. 10 and 12 we

can see that SKF takes some time to become consistent

since the initial crosscovariance between the estimation

TRACKING WITH MULTISENSOR OUT-OF-SEQUENCE MEASUREMENTS WITH RESIDUAL BIASES 17



Fig. 9. Position RMSE for target with GMTI measurement

(small bias, reordering measurements).

Fig. 10. NEES for target with GMTI measurement

(small bias, reordering measurements).

error and the bias is set to be zero6 and the SKF needs

several updates to obtain the correct crosscovariance.

When the bias level increases, SKF needs more

updates for the covariance to become consistent (as

shown in Figs. 14 and 16). KFwoINF is the most

inconsistent (with NEES around 40 in Fig. 14 for the

case of large bias). KFwINF improves the consistency

but is still not consistent (with NEES around 10 in

Fig. 14 for the case of large bias).

8.3. Example 3: Maneuvering Target With GMTI
Radar Measurements

This example considers a target with realistic

maneuvers. The initial state of the target is [100 m,

6The initial crosscovariance between the estimation error and the bias

is not available exactly since one needs the true state x to evaluate this

crosscovariance due to the scale bias. Using the initial state estimate

in the crosscovariance yields the same minor initial inconsistency as

when the initial crosscovariance is set to be zero.

Fig. 11. Position RMSE for target with GMTI measurement

(small bias, OOSM processing).

Fig. 12. NEES for target with GMTI measurement

(small bias, OOSM processing).

10=
p
2 m/s,200 m,10=

p
2 m/s]. The target moves with

a constant velocity, 10 m/s during t 2 [0,15 s]. Then,
it makes a left turn with a constant speed V = 10 m/s

and a constant turn rate w = 5±=s¼ 0:09 rad/s during
t 2 [15 s,35 s]. In addition to the maneuver it subjects
to process noise with PSD of q1 = 0:01 m

2=s3 for the

entire period. The maneuver corresponds, over the sam-

pling interval T = 2:5 s, to a velocity change of (ap-

proximately) ¢V = wVT = 2:25 m/s. Equating this to

the RMS velocity change due to the process noise over

interval T, which is given by
p
q2T [1], yields for this

case q2 = (wVT)
2=T ¼ 2 m2=s3.

Two GMTI radars are used in this scenario as Ex-

ample 2. An IMM estimator is used to track the maneu-

vering target with two nearly constant velocity (NCV)

[1] models. One has a low process noise PSD q1 =

0:01 m2=s3 and the other has a high process noise PSD

q2 = 2 m
2=s3. The mode transition matrix is (106) with
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Fig. 13. Position RMSE for target with GMTI measurement

(large bias, reordering measurements).

Fig. 14. NEES for target with GMTI measurement

(large bias, reordering measurements).

the sojourn times: ¸¡11 = 15 s, ¸¡12 = 20 s. The motion

model used is DCWNA. The measurement sequence re-

ceived at the fusion center is as shown in Table I. The

bias s.d. is as given in Table VII. The simulation results

below are from 500 Monte Carlo runs.

From the NEES in Figs. 18, 20, 22, and 24 we

can see that, due to the use of IMM filter, SKF is

not consistent anymore,7 especially during the mode

transition period. However, compared to KFwoINF and

KFwINF, the consistency is still improved significantly.

At the times when the OOSMs are processed (at the time

stamps of sensor 1 in our case), the RMSE for OOSM

processing (as shown in Figs. 19 and 23) and the RMSE

for in-sequence data (in Figs. 17 and 21) are almost

the same. As in Example 2, SKF improves estimation

7No IMM estimation can be perfectly consistent because the incon-

sistency of a model drives it “soft switching”.

Fig. 15. Position RMSE for target with GMTI measurement

(large bias, OOSM processing).

Fig. 16. NEES for target with GMTI measurement

(large bias, OOSM processing).

accuracy compared to KFwoINF and KFwINF, even

though not significantly in the case of small bias.

9. SUMMARY AND CONCLUSIONS

The single sensor algorithm Bl1, which updates the

current state of a target with an OOSM from a single

sensor without bias has been extended to the multisen-

sor situation where each sensor exhibits a residual bias.

This has been accomplished using the proposed algo-

rithm SKF/OOSM, without having to use an augmented

state consisting of the target state and the sensor biases,

which can become prohibitive for real-time implemen-

tation. This method was presented in the context of a

Kalman filter and has also been extended to an IMM

estimator. The SKF/OOSM algorithm was compared

with the plain Kalman filter without compensation and

the (heuristic) Kalman filter with covariance inflation,

in the presence of residual biases. The simulation re-
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Fig. 17. Position RMSE for maneuvering target with GMTI

measurement (small bias, reordering measurements).

Fig. 18. NEES for maneuvering target with GMTI measurement

(small bias, reordering measurements).

sults show that, compared to the other two methods, the

major benefit of the SKF/OOSM algorithm is the sig-

nificant improvement in filter consistency for both in-

sequence data and processing OOSMs. For the estima-

tion error, in the case using position only measurements,

neither the SKF/OOSM algorithm nor the covariance-

inflation method provide improvement in estimation ac-

curacy over the plain Kalman filter without compen-

sation. However, when GMTI measurements are used,

which include additional range rate measurements, the

SKF/OOSM algorithm outperforms the other two meth-

ods in both estimation accuracy and filter consistency.

APPENDIX A. DERIVATIONS OF JACOBIAN FOR
GMTI MEASUREMENTS

As in (120), the GMTI measurement model is

z = (I3 +¤)h(x¡ xp) +¢+w (125)

Fig. 19. Position RMSE for maneuvering target with GMTI

measurement (small bias, OOSM processing).

Fig. 20. NEES for maneuvering target with GMTI measurement

(small bias, OOSM processing).

where the superscript is dropped for simplicity and h is

as in (122)

h(x) =

264 rμ
_r

375=
2664

p
x2 + y2

tan¡1
y

x

_xcosμ+ _y sinμ

3775 : (126)

In the sequel, the bias vector b, which consists of the

elements of ¢ (the offset biases) as well as the diago-

nal elements of ¤ (the multiplicative biases), is defined

as

b= [b0¢ b0¤]
0 (127)

where

b¢ =¢, b¤ = [®r ®μ ®_r]
0: (128)
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Fig. 21. Position RMSE for maneuvering target with GMTI

measurement (large bias, reordering measurements).

Fig. 22. NEES for maneuvering target with GMTI measurement

(large bias, reordering measurements).

The Jacobian with respect to the target state, Hx, is

Hx =
@z

@x

¯̄̄̄
x=x̂,b=0

= (I3 +¤)
@h(x¡ xp)
@(x¡ xp)

@(x¡ xp)
@x

¯̄̄̄
¯
x=x̂,b=0

=H(x̂¡ xp), (129)

where H(x) is

H(x) =
@h(x)

@x

=

26664
x

r
0

y

r
0

¡ y
r2

0
x

r2
0

l sinμ cosμ ¡lcosμ sinμ

37775 (130)

Fig. 23. Position RMSE for maneuvering target with GMTI

measurement (large bias, OOSM processing).

Fig. 24. NEES for maneuvering target with GMTI measurement

(large bias, OOSM processing).

and

l =
_xsinμ¡ _y cosμ

r
: (131)

The value of x̂ is x̂(k j k¡ 1) for a normal update and is
x̂(· j k) for OOSM.
The Jacobian with respect to the bias, Hb can be

divided into two parts, that is,

Hb = [Hb¢ Hb¤] (132)

where Hb¢ is the Jacobian with respect to the offset bias

b¢ and Hb¤ is the Jacobian with respect to the scale bias
b¤, which are given by

Hb¢ =
@z

@b¢

¯̄̄̄
x=x̂,b=0

=
@¢

@b¢

¯̄̄̄
x=x̂,b=0

= I3 (133)
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Hb¤ =
@z

@b¤

¯̄̄̄
x=x̂,b=0

=
@¤h(x¡ xp)

@b¤

¯̄̄̄
x=x̂,b=0

= diag[h(x̂¡ xp)] (134)

where diag[a] is a square matrix with the elements of
the vector a on its main diagonal and the other elements
zero.
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