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In this paper, the uncertainties that enter through the life-cycle
of an information fusion system are exhaustively and explicitly con-
sidered and defined. Addressing the factors that influence a fusion
system is an essential step required before uncertainty representa-
tion and reasoning processes within a fusion system can be eval-
uated according to the Uncertainty Representation and Reasoning
Evaluation Framework (URREF) ontology.
The life cycle of a fusion system consists primarily of two

stages, namely inception and design, as well as routine operation and
assessment. During the inception and design stage, the primary flow
is that of abstraction, through modelling and representation of real-
world phenomena. This stage is mainly characterised by epistemic
uncertainty.
During the routine operation and assessment stage, aleatory

uncertainty combines with epistemic uncertainty from the design
phase as well as uncertainty about the effect of actions on the
mission in a feedback loop (another form of epistemic uncertainty).
Explicit and accurate internal modelling of these uncertainties,
and the evaluation of how these uncertainties are represented and
reasoned about in the fusion system using the URREF ontology,
are the main contributions of this paper for the information fusion
community. This paper is an extension of previous works by the
authors, where all uncertainties pertaining to the complete fusion
life cycle are now jointly and comprehensively considered. Also,
uncertainties pertaining to the decision process are further detailed.
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I. INTRODUCTION

The characterisation of uncertainty is required for

pragmatic decision making when sensor data and other

forms of information from several sources are fused

in decision support systems. Uncertainty characterisa-

tion requires implicit and explicit forms of abstraction

to model the problem, represent entities and concepts

within the world, associate entities to uncertainties, and

to reason about decision consequences. Uncertainties

propagate through the life cycle of an information fu-

sion system (hereafter referred to as a fusion system),

from the problem statement and modelling phases to

design and implementation. Ideally a fusion system life

cycle should include:

a) the exhaustive characterisation of uncertainties

throughout the life cycle of a fusion system;

b) the explicit (i.e., direct, solvable) representation of

these uncertainties within the fusion system; and,

c) the implicit (i.e., indirect, iterative) evaluation of

these uncertainties.

Two life cycle stages which have been previously

considered are the modelling phase [1] (representing un-
certainty) and the operation phase (performing the de-
cision loop) [2]. This paper will consolidate the uncer-

tainty evaluation of these phases, as well as include the

inception and design phase, presented in [3]. Although
subsets of uncertainties are considered during the de-

sign and use of all fusion systems, in this paper, and for

the first time, all uncertainties that enter throughout the

complete fusion life cycle are jointly and comprehen-

sively considered.

This paper provides concepts that, in combination

with the evaluation criteria defined in the Uncertainty

Representation and Reasoning Evaluation Framework

(URREF) [4], facilitate the development of verifiable

operational fusion systems. Entity abstraction provides

a clear mapping between the physical phenomena of in-

terest and the abstract models used in the fusion system.

The development process (or flow of abstraction) is par-

titioned into activities that focus on isolation abstraction,

process abstraction, data generation abstraction, datum

abstraction and agent abstraction. The flow of informa-

tion, on the other hand, introduces a taxonomy of oper-

ational elements, which facilitate the development of a

system that satisfies the functional and performance re-

quirements. The concepts introduced by abstraction and

information flows support both, the analysis in the in-

ception phase (where the problem statement is defined)

and the development of concrete solutions in the design

phase of a URREF driven development life cycle [3]

shown in Fig. 1. Fig. 1 defines the system partitions that

enable logical allocations of various URREF evaluation

criteria.

Although preliminary works [1], [2] classify several

types of uncertainty, there are two types of uncertainty

prevalent in the literature. The two types are epistemic
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Fig. 1. URREF roles in a development life cycle [3] depicting the

inception phase, the design implementation and testing phase, and

the operation phase.

and aleatory uncertainty [5], [6]. Epistemic uncertainty is
derived from the Greek word “episteme” and relates to

uncertainty owing to a lack of knowledge or ignorance

about the modelled process or entity. Therefore this

uncertainty lies outside of the entity or process being
modelled. Aleatory uncertainty is derived from the Latin
word “alea” which refers to the casting of dice. Aleatory

uncertainty refers to random events within the entity
or process being modelled. As such, both epistemic

and aleatory uncertainties are encountered throughout

the life cycle of an information fusion system. The

focus of this paper will be to unify uncertainties that

enter during abstraction, design, and modelling [1], [3]

with those during explanation, operation, and decision

making [2].1

There exists a significant body of knowledge on the

quantification of uncertainty inherent in models of phys-

ical processes [5]—[9]. In these works, uncertainty classi-
fication is organized as being forward or inverse [9]. On
the one hand, forward uncertainty quantification consid-

ers how uncertainty propagates through a model from

the input to the output of the model. On the other hand,

inverse uncertainty quantification involves not only the

characterisation of the discrepancy between the exper-

imental results and the predictions of the mathematical

model, but also the estimation of parameter values [10].

The ISIF Evaluation Techniques for Uncertainty

Representation Working Group (ETURWG) investi-

gates challenges associated with uncertainty reasoning,

analysis, and usability in information fusion processes.

An ongoing effort of the working group is the design of

the URREF ontology, which captures primary and sec-

ondary concepts that relate to uncertainty representation

and reasoning in information fusion systems, as well as

the links between the concepts [4]. The evolution of the

concepts, links and definitions of the URREF ontology

1Note the duality between: abstraction, design, modelling; and expla-

nation, operation, decision-making.

Fig. 2. The two main phases of a fusion system, namely the

inception and design phase (input/output loop), and the routine

operation phase (decision loop) are depicted. The double arrows

depict where uncertainty enters the two phases, and the dashed

arrows depict implementation and design refinement. Apart from

aleatory and epistemic uncertainty, decision uncertainty captures the

uncertainty of the effect of an action on the world.

has reached a stable form and is utilised to evaluate un-

certainty related aspects in a variety of fusion problems

e.g., [11]—[17].

Over the years, a comprehensive “joint uncertainty”

formulation (or a globally complete consideration of un-

certainty) has been identified as a need by several In-

ternational Society of Infomation Fusion (ISIF) panels

[18]. The purpose of this paper is to define, within the

context of the URREF ontology, all the stages at which

there is potential for uncertainty to enter the full life cy-

cle of an information fusion system as well as to classify

these uncertainties. These uncertainties are referred to

as the subjects of evaluation of the URREF ontology, as
discussed in [19]. Siloed approaches to uncertainty rep-

resentation and reasoning (traditional approaches) could

fail in many applications. Table I (column 3) provides

some examples of processes of abstraction (modelling)

that could fail if the joint uncertainty is not consid-

ered. For example, in [20] the author focused on the

scheduling based on the time available. Time available

is a good choice, but uncertainty is also needed to get

to a “value” function. If one radar’s performance starts

decreasing (meaning possibly more uncertainty), then

scheduling needs to adapt. Furthermore, different types

of uncertainty (described semantically) can affect the

end utility/policy.

The rest of the paper is ordered as follows. Section II

presents the information fusion life cycle. Section III ar-

ticulates details of an information fusion system design.

Section IV complements Section III with the informa-

tion fusion operation. Section V contains a discussion

on use cases and Section VI a discussion of evaluation

UNCERTAINTY REPRESENTATION AND EVALUATION FOR MODELLING AND DECISION-MAKING 199



using the URREF within the context of atomic decision

processes. Section VII concludes the paper.

II. INFORMATION FUSION SYSTEM LIFE CYCLE

According to the taxonomy presented in this paper,

there are two phases where uncertainty can enter into a

fusion system. These are the inception/design and op-

eration/assessment phases. These phases are presented

in the subsections below, and Fig. 2 provides further

clarification.

A. Inception and design–Abstraction flow

The first phase of an information fusion system is

the Inception and Design (IAD) during which the archi-

tecture is specified and the mathematical models are as-

sembled. The IAD process is concerned with the flow of
abstraction, i.e., where real world entities and processes
(RWEPs) are modelled, and epistemic and aleatory un-

certainties are represented in a mathematical formalism.

The abstraction flow takes place on a relatively large

time scale (e.g., months), while feedback spiral pro-

cesses in the systems engineering requirements speci-

fication and design can result in incremental improve-

ments in the system in shorter time scales (e.g., days).

B. Routine operation and assessment–Information
flow

The second phase of an information fusion systems

is the Routine Operation and Assessment (ROA) during

which the system functions as a decision process, akin

to the Observe, Orient, Decide and Act (OODA) loop

of Boyd [21]. The ROA phase is mainly concerned

with the flow of information, where the information is
collected from transducers (sensors) that convert real-

world observable phenomena into categorical quantities,

associated uncertainties, and representation processes

(such as probability, fuzzy logic, belief functions, etc.).

The objective of the information fusion system is to

reduce uncertainty and improve inference for informed

decision making.

III. FUSION SYSTEM INCEPTION AND DESIGN

The modelling of fusion systems involve abstract-

ing RWEPs and the mechanisms whereby they generate

observable phenomena, to result in mathematical and

uncertainty models of RWEPs of interest. These observ-

able phenomena are, for example in a multisensor radar

tracking system, the electromagnetic characteristics of

the skin of moving aircraft and how it interacts with

radar pulses to form a series of detections, whereby the

first objective is to determine the state vector of all the

aircraft in some area of regard. The second objective

is to make informed decisions, using the inferred state

vectors, such as in the case of air traffic control.

Fig. 3 is a symbolic depiction of the process of

modelling with the objective of performing information

fusion. Fig. 3 has been extended when compared to

Fig. 1 in [1] in that the uncertainties that enter during

the abstraction and modelling of the decision process

resulting in the “Decision Model” have been appended.

The objective of presenting such a detailed view, is to

provide the fusion system designer with an explicit and

exhaustive view of where uncertainties enter the design

and modeling process through the adoption of several

assumptions.

There is a clear flow of abstraction from left to right.

The real world is depicted by the shaded cloud as a se-

ries of RWEPs that generate observable phenomena. To

be explicit, the nth RWEP denoted by RWEPn generates
a real world datum Dn,k at time instant k. A datum is de-
fined as an observable real-world effect, such as a radio

frequency transmission, a visible light reflection off a

target, etc. The nth real world process has physical prop-
erties that are represented by the symbol −n. The way
in which observable effects are generated by the RWEP,

is represented by the transformation fDn j −ng, and can
be read as Dn given −n, analogous to as if it would
have been conditioned on −n in the statistical sense.
Furthermore, these real world entities can interact with

each other, forming the situation and impact levels of the
Joint Director of the Laboratory/Data Fusion Informa-

tion Group (JDL/DFIG) fusion models [22]—[25]. The

different types of uncertainties that enter through the ab-

straction process are represented by different variables,

which are summarised in the first column of Table I.

A. Isolation Abstraction

If the objective of a specific fusion system is consid-

ered, then there are typically only a few RWEPs that are

of interest for a specific decision making problem. For

example, in the air traffic control application, the con-

troller is only interested in air targets within a certain

area of regard, and also not surface targets, unless these

are at an airport. This is the first element of abstraction

that takes place, and is referred to as isolation abstrac-
tion. Uncertainties enter during this type of abstraction
whereby assumptions are made that outside influences

are ignored or simplified, and boundary conditions are

specified. These uncertainties are labeled isolation un-

certainties and are denoted by °. Since all models and
processes downstream from this decision are influenced

by °, and to simplify notation, dependence on ° will not
be explicitly shown, although it should be kept in mind.

Isolation abstraction uncertainty ° is epsitemic in nature
(indicated by † in Fig. 3).

B. Process Abstraction

Typically, RWEPs contain some properties that are

hidden or latent, but which are needed for decision

making purposes. It is for this reason that models are

needed to describe as accurately as possible how these

processes and entities behave and evolve over time.

The procedure for assembling such models is labeled

as process abstraction, and result in a process or plant
model (PM) for the nth RWEP. Such models are time
dependent, and describe the stochastic evolution of cur-
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Fig. 3. The modelling (abstraction) of a fusion system making a measurement at time k is depicted. The principal components depicted are

a) real world entities and processes (RWEPs), b) agents acting in the world (a specific type of RWEP), and c) models/abstractions of these

RWEPs. Solid arrows indicate how data is generated. Dotted arrows indicate that real world or model processes influence each other. Dashed

arrows indicate the flow of abstraction during the modelling process. Ribbons indicate processes of abstraction (i.e. representing RWEPs as

mathematical objects). The symbol † indicates epistemic uncertainty, whereas the symbol ¤ indicates aleatory uncertainty. The shaded bar in
the lower right of the figure shows that the uncertainty representation cross-cuts the modelling and implementation of a fusion system. The

index i denotes the sensor index and n is the nth real-world entity/process being modelled.

rent (and future) states xk:k+N based on past states

x0:k¡1 and model parameters μ, which are time invari-
ant. These states and parameters are typically abstrac-

tions of the real world physical attributes contained in

−n. In traditional Bayesian tracking, the evolution of
the uncertainty relation in the PM is represented by

p(xk j xk¡1,μn). The modelling of how RWEPs generate
data, and as such, how observed phenomena relate to

hidden (unobserved) processes, are encapsulated by the

sensor/data model.2 Hidden uncertainty processes are

discussed in the next section.

A process model relates parameters and states to

each other over time. Epistemic uncertainty enters into

the PM through incomplete knowledge about the cor-

responding RWEP. Aleatory uncertainty enters into the

2This is also known as a measurement or observation model.

model through random perturbations in the time evo-

lution of the model. Consider, for example, a discrete

time varying equation xk = f(xk¡1)+ ², where xk is the
system state at discrete time step k and ² some random
quantity. In many cases both epistemic and aleatory un-

certainties are (possibly incorrectly) lumped together in

a single random quantity ². The framework presented
here provides for their explicit separation via an addi-

tional variable ±n to capture epistemic uncertainty.

C. Data Generation Abstraction

Data generation abstraction involves the modelling

of how observable effects relate to unobservable (hidden

or latent) processes with states xk and parameters μn. The
output of data generation abstraction is both a model of

how a specific measurement is related to an unobserved

parameter or state, and also a sensor/data model, which

UNCERTAINTY REPRESENTATION AND EVALUATION FOR MODELLING AND DECISION-MAKING 201



TABLE I

Different types of abstraction in the modelling process, their descriptions and examples

Abstraction

Type/Related

Uncertainty Abstraction

Variable Process Description Example

Isolation

°

Choosing system

boundaries, making

assumptions

Isolating the RWEP or multiple RWEPs by

choosing the domain, processes and entities of

interest in the real world

The features, dynamics and sensing of multiple

targets that are observable or can be inferred

indirectly from measurements within the

coverage area of multiple radars. This isolation

could explicitly be represented by an ontology.

Datum

®

Define mathematical

variable type and

uncertainty

representation

Choosing a mathematical or numeric

representation of a measurement zk and
associated uncertainty to represent a real world

datum Dn,k or data

Integer, natural number, real number, vector,

matrix, complex number, tensor, norm, first

order logic expression, etc.

Data

generation

¯i

Define data/sensor

model

Choosing a mapping between RWEPs, and data

and an uncertainty representation for

representing uncertainty in the data generation

process as well as characterising the real world
data generation process

Choosing a probabilistic uncertainty

representation and specifying a Gaussian model

of data generation with mean and covariance

parameters to model the generation of range

and Doppler measurements by a radar.

Process

±n

Define process

model

Choosing states, parameters, a mapping

between parameters and states* and an

uncertainty representation for states, parameters

and mappings

Choosing a hidden Markov model to represent

the time evolution of a target state, where the

plant noise captures both uncertainties in

knowledge of the motion model and real world

randomness such as air pockets, and imprecise

control inputs by the pilot of an aircraft.

Action

Ân

Define model of

actions

Define the actions available to an agent. Define

a mapping between available actions, and the

evolution of world (and agent) states.

Defining the available scan patterns and

tracking tasks in an Active Electronically

Scanned Array (AESA) radar, and how these

tasks influence future tasks of the radar.

Utility

Ãn

Define a

utility/reward model

Choosing a mapping between agent/world states

and their desirability as perceived by the

agent/system user

Define a reward function which balances the

effort spent by the AESA radar tracking

existing targets as opposed to scanning for

possibly undetected targets.

Policy

¢n

Define a policy

representation

Choose a mapping between the world state as

perceived by the agent and the most appropriate

action for being in that perceived state

Choose a pre-defined rule for time spent on

tracking vs scanning, which maximises the

expected sum of future discounted rewards.

*An example of a mapping between parameters and states is how a probability distribution over target mass maps to a probability distribution

over accelerations.

specifies how data are generated and transduced by the

ith sensor. These are two sides of the same coin. In

the case of traditional probabilistic modelling, these re-

lations are characterised by the quantity pi(zk j xk,μn).
If the measurement zk is known and xk,μn are vari-
able, the function pi(zk j xk,μn) represents the likelihood
Lz(xk,μn) and is a function, not a probability distribu-
tion. However if x,μn are known and zk is the variable,
then pi(zk j xk,μn) represents the probabilistic model of
data generation, and it is a proper probability distribu-

tion. Note that p(zk j xk,μn) typically includes the sen-
sor model or the model of perception, as the sensor

forms part of the RWEPs and also generates data. There-

fore, pi(zk j xk,μn) could serve as both a model for es-
timation/inference (for example maximum likelihood)

which is related to inverse uncertainty quantification or

a model for data generation (a generative model) which

is related to forward uncertainty quantification.

The uncertainty in data generation abstraction for

sensor i is denoted by the symbol ¯i. The procedure
of data generation abstraction causes epistemic uncer-

tainty, since there may be lack of knowledge about the

nature of the transformation from a RWEP to a datum.

In addition to epistemic uncertainty, aleatory uncertainty

(denoted by a ¤ in Fig. 3) is expressed through the ran-
dom nature by which data are generated and sensed.

Hence the measurement process is depicted in Fig. 3 to

contain both epistemic and aleatory uncertainties.

D. Datum Abstraction

The datum Dn is a real world effect that is observed.
It cannot be used in any kind of reasoning, since a

process of abstraction is needed to convert it into a

mathematical quantity such as a integer, real number,

complex vector, a first order logic statement, etc. This

process is labelled datum abstraction. In some cases,
a datum may already be abstracted, such as output of
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another fusion process (such as the output of a filter),

and as such, dependencies exist between data points. In

a subset of these cases, datum abstraction may not be

needed, unless some form of conversion takes place. A

datum should also not be confused with a measurement
(in this taxonomy denoted by zk) which has already
been transduced by a sensor into an instantiation of a

mathematical quantity.

Uncertainties that enter with the process of datum

abstraction (i.e., the numerical, ordinal or logical rep-

resentation of observable physical phenomena), are de-

noted by the symbol ® and is epistemic in nature (indi-
cated by † in Fig. 3.). An example would be for ® to rep-
resent the fact that a continuous variable is discretised,

and as such may not sufficiently capture the important

or relevant properties of the datum, resulting in signifi-

cant quantisation noise. Epistemic uncertainties associ-

ated with representing the uncertainty relations/functions
(probability densities, belief functions) of a datum Dn
are also contained within ®, and a loss may occur if,
for example, an imprecise language statement is repre-

sented by a discrete probability distribution. This is an

example of second order uncertainty (uncertainty about

uncertainty).

E. Agent abstraction
The decision process, fusion resource management,

and mission actions need to be modelled if a fusion sys-

tem needs to be automatically steered to produce desired

states of the world. In Fig. 3, a model is depicted as

an agent. Although an agent is simply another type of

RWEP, whose actions and influences can be observed

as data by sensors, they merit explicit mention, as being

an integral part of the decision loop. An agent in the real

world is motivated by some utility or reward, which cap-

tures the desirability of a world state at a time instance.

If all time is considered, a (discounted) accumulation of

utilities (sum of rewards) over all time is of relevance.

The agent would then act according to a general set

of rules (or policy) which would ideally maximise the

discounted accumulation of utilities/rewards over a pos-

sibly infinite time horizon. Agent actions are the gen-

eral premise of the fields of linear Gaussian quadratic

(LGQ) control [26], [27], reinforcement learning [28],

Markov decision processes (MDPs) [28], [29], partially

observed Markov decision processes (POMDPs) [28],

[30], and model predictive control [31]. Being central

to the decision making process, this setting needs to

be modelled–first mathematically and then be instan-

tiated algorithmically, for automated decision making.

These processes of abstraction are depicted in Fig. 3,

which capture the main components of the agent. The

processes include: action abstraction ¹n, which models
the effect of actions on the evolution of world states,

utility abstraction Ãn, which models the desirability of
world states, and policy abstraction ¢n, which models
the rule set by which to act given a world state. Ac-

tion abstraction may introduce aleatory and epistemic

uncertainty–“aleatory” owing to how actions may in-

fluence the world state in a “noisy” sense, and “epis-

temic” owing to lack of knowledge how actions are

represented and how they influence the world state.

The utility and policy abstraction processes typically

exhibit epistemic uncertainty, since the uncertainty per-

tains to how the desirability of states, and the mapping

of perceived states (otherwise known as belief states)

to actions are modelled (represented by some function).

Owing to the vastness of policies for most belief state

spaces, several methods exist to compress these policies,

leading to epistemic uncertainty owing to representation

approximations. These include belief compression [32],

certainty equivalence [28], and symbolic policy approx-

imation [33] to name a few. Current and recent research

has, for example, looked to extend the scalability [34] of

these approaches and apply them in pertinent contexts

such as automotive applications [35].

F. Association Uncertainty

The association problem in information fusion is

concerned with knowing which entity or process gener-

ated which observable datum Dn,k at some time k. This
ambiguity is depicted as the diagonal dotted lines be-

tween different RWEPs and D’s. The association un-
certainty will also be assigned a symbol, and will be

denoted by ·. Association uncertainty · is epistemic in
nature, because it is due to a lack of knowledge.

G. The Computer Model

The final layers of abstraction, when proceeding

from the mathematical model to a computer model is

very briefly discussed here, and quotes the discussion

in [1]. “In the case of digital computers, the use of es-

tablished scientific libraries and vector-matrix mathe-

matical programming environments make variable ab-
straction fairly well characterised. Uncertainties may en-
ter through algorithmic abstraction in the form of pos-

sible incorrect implementation, numerical instabilities

or strange behaviour in untested states. However, most

cases of numerical instabilities in digital computer code

are well characterised [36], and examples include the in-

version of an ill-conditioned matrix, or numerical insta-

bilities owing to Euler numerical integration. In this case

incorrect implementation would be owing to oversight

by the programmer. Uncertainty abstraction is charac-
terised by pseudo number generators and Taylor series

expansions to represent continuous probability distribu-

tions. Uncertainties for this type of abstraction are also

well characterised in the literature. If on the other hand,

analogue computers were used, this abstraction would

have needed particular care in characterising uncertain-

ties, as the results would be noisy.”

H. Towards a full data, process and decision model

Epistemic modelling uncertainties (i.e., those that

occur when going through the different processes of
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abstraction) are sometimes not sufficiently accounted

for or explicitly modelled in traditional models. Tradi-

tional models are depicted as “Trad World Model” and

“Trad Decision Model” in Fig. 3. Explicit consideration

of modelling uncertainties are thus accounted for as in

Ch 3 of [37]). A full data, process and decision model

is therefore proposed, extended from [1]. Although it

might be that the fusion system designer may choose to

discount some of the uncertainties in Fig. 3, it is better

that it is a conscious decision with consideration for the

implications thereof, rather than an act of omission.

In traditional statistical modelling, zk is considered
to be the “datum” and p(z j x,μn) is considered to be
the complete uncertainty model of z. However, zk is
itself an abstraction of Dn,k, and similarly p(z j x,μn)
is an abstraction of fDn j −ng. As such, any uncertain-
ties associated with these abstraction processes are ig-

nored in traditional models. This steers the discussion

towards higher order uncertainty (uncertainty about un-

certainty). Higher-order uncertainty is modelled by im-

precise probability models, belief functions or credal

sets. For instance: rather than a single probability dis-

tribution, a set of probability distributions is considered,

and the probability of an event is defined by upper and

lower bounds.

A complete model of data generation must have the

form p(¡ j xk,μn,®), where ¡ = fzk,®g is a mathemat-
ical model for zk as well as the uncertainties associ-
ated with constructing zk, denoted by ®. Furthermore,
the uncertainty representation denoted by p(¢ j xk,μn,¯)
must be a mathematical model of both the data gener-

ation process, as well as the uncertainties ¯ associated
with its construction. Such an uncertainty representation

analogous to the generalised likelihood in [37].
The complete process model p(xk j xk¡1,μn,±) (which

describes the time evolution of the world state) should

encapsulate the aleatory uncertainty in the evolution of

states as well as the epistemic uncertainties ± associ-
ated its construction. This is opposed to the traditional

process model p(xk j xk¡1,μn) which is not conditioned
on ±.
A similar approach should be followed for the deci-

sion model, where epistemic and aleatory uncertainties

should be explicitly considered and incorporated into

models where appropriate.

IV. FUSION SYSTEM OPERATION

In contrast with the inception, design and implemen-

tation of a fusion system in Fig. 3, the system oper-

ation at runtime is depicted in Fig. 4. Fig. 4 depicts

the operation of the fusion system within the context

of a decision loop. There are two principal flows that

are identified in Fig. 4. The first is the flow of infor-

mation, from RWEPs which generate observable phe-

nomena, observed by sensors (or sources in general),

combined in the fusion system, resulting in inference

of world states and parameters. The second flow, the

flow of decisions/actions involves the interpretation of

inferences of the fusion system through a system which

balances uncertainties with risks, rewards and utilities

(such as Bayes’ risk). The result of this process is a de-
cision which is fed to a resource management algorithm,
which in turn generates actions or controls that instruct
sensors and mission actors to execute instructions. The

principal taxonomies of such a decision process are ad-

dressed in [38], [11] and [19] as elementary constructs

of conceptually indivisible atomic decision processes or
ADPs.

The following sections will make the uncertainties

that propagate through the fusion system explicit, so

that each of them can be addressed if necessary. These

sections are organised in the same order as the OODA

loop, and Fig. 4 depicts the fusion decision loop. This

loop contains the fusion system, which in turn com-

prises the conceptual fusion elements (FEs). These ele-
ments are conceptual, since in certain fusion methods

they may all be present but not necessarily separable–

for example a certain uncertainty representation cannot

be separated from its inference method. Furthermore, it

shows where different types of uncertainties enter the

fusion system and propagate through the system. Fig. 4

is adapted from [2], where the elements of the fusion

system, denoted by FE-1 to FE-4 have replaced ADP-1

to ADP-4 that were presented in [2]. The fusion ele-

ments include information source (FE-1), the instanti-

ated model (FE-2), the inference and prediction (FE-3)

as well as the decision method and resource manage-

ment (FE-4).

A. Observe

Clues to the state of the world can be obtained by

observations. Such observations can be obtained using

sensors in the form of electronic transducers or human

observers. Observations are required under the premise

that “all decisions are based on observations of the

evolving situation tempered with implicit filtering of the

problem being addressed” [21]. In the subsections be-

low a distinction is made between a) physical effects

that could be observed by humans or sensors (observ-
able real world data), and b) source reports by either

humans or transducers (sensor data) that have observed
the aforementioned physical effects.

1) Observable real world data:
Referring to Fig. 4, as in Fig. 3 observations origi-

nate from observable phenomena generated by RWEPs

that interact with each other. A part of the world is iso-

lated for which decisions are to be made (as in the case

of modelling phase). Sensors make measurements of

phenomena in the isolated area of interest. Reports from

these sensors could assist in making inferences that may

inform decisions. In the taxonomy of the decision loop

in Fig. 4, not only the nth RWEP generates a datum Di,k
which is sensed by sensor i, but Di,k may also be influ-
enced by other RWEPs. An example is the use case of a
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Fig. 4. The fusion decision (e.g., OODA) loop depicting the flow of information through sensors (observe) and the Fusion Method (FM)

(orient), and the flow of decisions (decide) and actions (act) out of the decision method and resource management block. These actions in

turn influence the real world. Although this figure looks similar to Fig. 3, it has some distinct and important differences. It describes

uncertainties that enter the FM during runtime (routine operation phase), as opposed to Fig. 3, which describes uncertainties that enter during
modelling (inception and design phase). The flow of abstraction in Fig. 3 takes place on a large time scale (months/years), whereas the flow

information/decisions/actions takes place on a relatively short time scale (seconds or less).

single radar sensor i sensing multiple targets (RWEPs)
in an area of regard. Thus, the datum Di,k might be
composite and represents the set of observable effects

by all RWEPs visible to sensor i. As assumed in [2],
this is a generalisation of what is presented in Section

III and [1]. Specifically, we let the datum Di,k be con-
ditioned upon !i μ f−1,k, : : : ,−n,kg since the observable
datum depends on the properties of the physical entities

which sensor i can observe. Consequently the datum
conditioned upon its physical properties, !, is written
as fDi,k j !ig or Di,k given !i.

2) Sensor data:
Consider real word data fD1,k, : : : ,Dn,kg. Measure-

ments are made of fD1,k, : : : ,Dn,kg by sensors 1 to i and
converted into mathematical representations, which not

only represent the quantities themselves (z1 to zi), but

also supplement them with an uncertainty representa-

tion Z1 to Zi, and associated uncertainty relations h1(¢)
to hi(¢). Examples for quantities z1 to zi include inte-
gers, real numbers, vectors, complex numbers, tensors,

norms, logic expressions, etc. Examples for uncertainty

representations Z1 to Zi include probabilistic, eviden-
tial or fuzzy based representations. Examples of uncer-

tainty relations h1(¢) to hi(¢) include probability density
functions, belief functions or fuzzy membership func-

tions An uncertainty representation could be defined as
a set containing an uncertainty nature (aleatory or epis-

temic), uncertainty theory (e.g., Bayesian probability

theory, evidence theory, fuzzy set theory), an uncer-

tainty model (e.g., Markov model, Bayesian network,

Kalman filter), a semantic interpretation (e.g., causal-

ity, frequentist), uncertain variables (e.g., random vari-

ables, fuzzy variables) and joint uncertainty relations
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over these variables as described above (e.g,. probability

distribution functions, belief functions, fuzzy member-

ship functions).

It is noted that sensors have a broad definition and

may include transducers, humans that enter language

statements into a computer, and also information from

other fusion systems, along the lines of the distributed

fusion architectures of [39], [40]. Note that a distinction

should be made between uncertainty representations

from the sensors, Z1 to Zi, which may differ from each

other (in the case of heterogeneous sensors) and the

uncertainty representation internal to the FM, which is

typically common to all variables in the engine.

Relation to the ADPs: The “observe” part of the de-
cision loop may influence the universe of discourse el-
ementary construct of the ADP [38], [19] within the

modelling phase, as the definition of the universe of dis-

course for uncertain variable of interest may be guided

not only by some design concern fixing the granularity

of the problem (i.e., to ensure fast computation) but also

by the limitation of the sensors.

B. Orient

According to [21], the orient part of the loop serves

“as the repository of our genetic heritage, cultural tradi-

tion, and previous experiences.” In a semi-autonomous

or autonomous fusion system, the orient phase would be

the internal model of the fusion system (our understand-

ing of the functioning of the world), which contains

representations of RWEPs (process models, agents, re-

wards and policies), representations of data generation

(data/sensor models), representations of quantities in the

real world (variables), and a representation of uncertain-

ties, both of the model (epistemic) and of the RWEPs

and sensors (aleatory). In addition, the “orient” part of

the decision loop also involves making inferences from

the sensor data. The orient part of the decision loop

corresponds to the FM in Fig. 4. To summarise, the

FM contains mathematical models and algorithms for

the purpose of data association, data and information

fusion, and inference.

In the subsections below, the overarching system

model M is described followed by a discussion on

the distinction between physical models and uncertainty

models. Uncertain variables and the relations between

them are then discussed, followed by the concepts of

a composite uncertainty model and second order uncer-

tainty. The process and data models are then considered.

The “orient” phase of the decision loop is concluded by

a subsection discussing inference and prediction in a

fusion system.

1) Fusion System Model:
Considering the FM in more detail, we define the

model M as the overarching fusion system model,

which contains several sub models for RWEPs (object

models), models for their observation (sub-object mod-

els), models for groups of RWEPs (situation models),

models for the current and future impact of situations

(impact models) and models for agents (process refine-

ment models). Sub-object models correspond to level

0 of the JDL/DFIG taxonomy [22]—[24], [41], object

models of level 1, situation models of level 2, impact

models of level 3 and process refinement models of

level 4.

Inside the FM, the combined sensor measurement

vector of all sensors at time k are collected together
in a composite variable zk, which may be an array,
vector, set, etc. and their uncertainty relations in the

composite variable h. It is important to note that zk and
h are distinct from z1 to zi and h1(¢) to hi(¢) respectively,
since heterogeneous sensor reports may have different

uncertainty representations, whereas zk and h would
have typically been converted to a single uncertainty

representation UR such that an specific uncertainty

calculus can be applied within the FM. The uncertainty

of such a conversion is a component of the variable

® introduced earlier. This removes the necessity of the
uncertain variable ½ in [2], since by definition in Section
III-D, it is contained in the uncertain variable ®.

2) Physical and uncertainty models:
In the taxonomy of Fig. 4, a distinction is made be-

tween physical models, which explain RWEPs and the
data, and uncertainty models, which represent uncertain-
ties that enter into the FM, either during design or during

routine operation (runtime). The physical models con-

sist of a process model f(¢) and a sensor/data model g(¢),
which are characterised by uncertainties during mod-

elling, and encompasses several processes of abstraction

as explained in [1]. A discussion on the uncertainty rep-

resentation UR follows, after which the effect of these

uncertainties upon the physical models f(¢) and g(¢) are
discussed. FE-2 refers to the collection of the physical

and uncertainty models, i.e., the overarching modelM.

3) Uncertainty representation and relations:
Following the definition of [2], consider an explicit

set ´ of all known uncertain variables (see Table II)
that represent different types of uncertainty (e.g., in a

probabilistic representation, these may be random vari-

ables). The uncertainty representation UR is the internal
characterisation of all uncertainty elements of the fu-

sion system (uncertainty natures, theories, relations, se-

mantic interpretations), for a subset of ´, i.e., UR(½ ´)
since not all sources of uncertainty may be explicitly

represented within the fusion system model M. Simi-

larly, uncertainty relations U(¢) (e.g., probability density
functions, or belief functions) may be defined for a sub-

set of ´, i.e., U(½ ´). For example, in a fusion system
implementing Bayesian reasoning, a joint distribution

might not be available for all random variables, since

in a traditional model, many sources of uncertainty are

typically omitted.
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The notation U(´) indicates as the most general
case a joint uncertainty relation over all uncertain vari-
ables in the FM. An example is a joint probability

distribution if the uncertainty representation is prob-

abilistic. At the very least, most traditional Bayesian

based fusion systems will represent an uncertainty re-

lation over inputs xk,zk,¯a and ±a and outputs x̂k, μ̂, i.e.
U(xk,zk,¯a,±a, x̂k, μ̂,·).

4) Composite (joint) uncertainty variable–´:
The first, second and third components of ´ repre-

sent the uncertain hidden state xk of the process model to
be inferred, the uncertain measurement zk, and the com-
posite process model parameter variable μ respectively.
The variables f®,¯,±,°g are the abstraction uncertainty
variables as defined before, and the subscripts e and a in
Fig. 4 make a distinction between epistemic and aleatory

components of the underlying variable. Note that there

may be distinct ¯e and ¯a variables for every sensor,
unless the sensors and processes generating the data are

identical. Similarly there may be distinct ±e and ±a vari-
ables for every RWEP of interest and Âe and Âa for the
actions of agent RWEPs of interest, unless the entities

and processes in the real world can be explained us-

ing a single model. The variable Âe represents epistemic
uncertainty about how sensor controls sk and the mis-
sion controls uk influence the fusion system and the real
world respectively. The variable Âa represents aleatory
uncertainty about how world states evolve because of

sk and uk owing to random effect inherent to the world.

The following subsections explain the components of ´
that follow from the modelling (abstraction) processes.

Finally, ° represents association uncertainty. i.e. uncer-
tainty about which RWEP generated which datum Dn,k.

5) Second order uncertainty:
Although second order uncertainty is not repre-

sented explicitly in Fig. 4, this concept warrants a brief

discussion. There will be uncertainty about whether the

uncertainty representation UR and its corresponding re-
lation U adequately represent all the uncertainties listed
in Table II. This is a second order uncertainty (un-

certainty about uncertainty) and cannot be represented

within the modelM, since it involves a shortcoming of

the uncertainty representation UR.

6) Process model:
Consider the equation for the process model in the

FM of Fig. 4. The state evolution of RWEPs is governed

by the function f(¢). In Fig. 4 the evolution is first order
(i.e., the current state xk is a function of only the previ-
ous state xk¡1 and the previous control input uk¡1). The
Markovian state evolution may be generalised to higher

orders if required. The current state is also a function of

the uncertain static parameters μ of the sub-world and
the aleatory uncertainties associated with the state evo-

lution (e.g., the process noise). Since f(¢) is influenced
by epistemic uncertainties associated with the modelM,

the subscripts ±e and ° in f±e,° indicate that the model is
influenced by uncertainties in the abstraction of how

RWEPs operate (±e), and the abstraction of isolating
part of the world (°). In Fig. 4, f±e,° is not shown to
explicitly consider them (i.e., they are not explicitly a

function of these epistemic uncertainties), since most

typical systems do not; however in a complete model

of Fig. 3, they should be considered. Most models typi-

cally take aleatory uncertainty ±a (randomness or noise)
in the state evolution equation f(¢), and hence f±e,° is a
function of ±a.

7) Data/sensor model:
In Fig. 4, the data/sensor model is given by a func-

tion g(¢) under the heading “Data Model” in the FM.
The measurement or observation vector zk at discrete
time k, is a function of the hidden state xk, the sen-
sor control vector3 sk, aleatory measurement uncertainty
(e.g., sensor noise) ¯a and association uncertainty ·. The
influences of epistemic uncertainties such as the datum

uncertainty ®, data/sensor model uncertainty ¯e and iso-
lation abstraction uncertainty ° are again not typically
considered in most models, unless a full model is used.

As such g®,¯e,°(¢) is not shown to explicitly consider
these uncertainties (i.e. it is not shown as a function of

them). As with the process model, aleatory measure-

ment uncertainty ¯a (for example measurement noise)
typically does form part of g(¢), and as such, g®,¯e,°(¢) is
a function of ¯a.

8) Inference and Prediction:
Models are mathematical representations of reality

and uncertainties owing to inherent randomness in real-

ity or incomplete knowledge of humans. These models

are used to infer hidden states and parameters that are

needed for informed decision making. In Fig 4, inferred

or estimated states and parameters of some modelM by

an inference engine I are denoted by x̂k and μ̂ respec-
tively, and are obtained by inference procedures such

as Bayesian filtering in time varying systems [42]—[44]

(i.e., Kalman, particle, or Poisson point process). The

parameter inference procedure is denoted by »(zk,M)

and the state inference procedure by ½(z0:k,M), where

the subscript 0 : k indicates that all measurements up to
time k are used. In the probabilistic case, the outputs of
the fusion system are probability distributions, meaning

that U takes the form of a joint probability distribution

over system inputs zk and outputs x̂k, μ̂, i.e., U(x̂k, μ̂,zk).
This corresponds to the joint uncertainty relations be-

tween different inputs, different outputs, and also be-

tween inputs and outputs as in [15]. Often state and pa-

rameter inference is performed jointly, and as such the

functions »(¢) and ½(¢) are conflated. The inference part
of the fusion system, corresponds to FE-3, which are

3The sensor control vector sk is a set of sensor controls that can change
the measurement function g(¢). In a networked radar system, sk could
be a vector of several azimuth and elevation values to steer the beams

of multiple radars.
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the inference or reasoning parts of the atomic decision
process.

C. Decide

Inferences may take the form of multiple compet-

ing hypotheses of world states and parameters, but in

the end a single final decision needs to be made, which

balances the costs/rewards/utilities of making a decision

with probabilities of certain outcomes. The “Decision

Method/Resource Management” block in Fig. 4 repre-

sents the balancing of competing decisions, actions and

outcomes. The outputs of the inference engine at time

k are the inferences about RWEPs, situations and im-
pacts and their uncertainties, and are represented by ỹk.
This quantity is fed into the decision method D. In a
system where the uncertainty representation is frequen-

tist (non-Bayesian) statistics, the decision involves the

thresholding of some uncertainty relation to end up with

a non-probabilistic estimate of the world states and/or

parameters (i.e., a single hypothesis of states and pa-

rameters). In the case of using Bayes risk for decisions,

the decision method and resource management blocks

combine, since sk and uk are optimised directly such that
a utility function is optimised. The decision method is

then concerned with balancing the reward/cost of events

with the probability of them occurring, for example by

maximising the expected reward (or minimising the ex-

pected cost). The decision method and its output corre-

spond to FE-4 in the atomic decision process, namely

the decision method and output information. The model
M will be used to make predictions under different ac-

tions sk and uk with the inferred x̂k, μ̂ in order to opti-
mise the decision and maximise some utility/reward r,
or alternatively minimise some cost/loss function. The

utility/reward function ºÃ(xk is a function which maps
a state xk to a reward r, and is characterised by the
epistemic utility uncertainty Ã. In a reinforcement learn-
ing or model predictive control setting, a policy Á¢(¢)
would be defined/learned which would maximise the

discounted sum of rewards over a (possibly infinite)

time horizon. The uncertainty associated with a particu-

lar policy representation would be characterised by the

epistemic policy uncertainty variable ¢.
The fusion system user might sensibly consider a

different abstraction in making a decision to that which

was used to provide inferences of the current situation

awareness picture. For example, “belief compression”

[32] a technique for summarising probability distribu-

tion functions (lowering their dimensionality) in the

rollout over a sliding window into the future. More gen-

erally, there are different requirements placed on the

models used here than in the “Orient” part of the de-

cision loop. Therefore, D and the associated decision

mapping º(¢) may be rooted in a different formalism
than the FM. As such another form of uncertainty may

be introduced through, for example, dimensionality re-

ductions, which may be easily overlooked.

TABLE II

Table of variables representing currently known forms of uncertainty

that enter or exist within the Fusion Method (the elements of ´ and

uncertainties pertaining to the utility and policy models)

Uncertain

variable Description

xk State at time k

zk Measurement at time k

μ Time invariant parameters of process model

sk Sensor controls at time k with uncertain effect

uk Mission controls at time k with uncertain effect

® Datum abstraction variable (pertaining to

quantities, associated uncertainty

representations and relations)

¯e Epistemic data/sensor model variable,

representing that the process of generating data

is poorly understood (one for each sensor type)

¯a Aleatory data model variable, for noisiness of

the data source (sensor or uncertainty in the

way the RWEP generates Dn,k). Typically one

exists for each sensor type and/or mechanism

which generates data in the real world)

±e Epistemic process model variable (one per

process representation, unless different models

for different processes are used)

±a Aleatory process model variable (one per

process, unless different models for different

processes are used)

° Isolation abstraction variable

· Association uncertainty variable, capturing

uncertainty about which RWEP generated

which datum Dk,n
Âe Epistemic action uncertainty variable, capturing

uncertainty about how state evolution is

modelled because of actions sk and uk
Âa Aleatory action uncertainty variable, capturing

uncertainty about state evolution because of

some inherent random effects of actions sk
and uk

Ã Epistemic utility uncertainty variable, capturing

uncertainty about the proper representation of

the agent’s mapping from a perceived state to a

utility or reward

¢ Epistemic policy uncertainty variable, capturing

uncertainty about the proper representation of

the agent’s mapping from a perceived state to

appropriate actions sk and uk that maximises,
for example, the discounted sum of future

rewards

D. Act

Once a decision is made, it is converted to action by

some resource management function in Fig. 4. It affects

controls sk over sensors and controls uk over missions.
As discussed, there will be uncertainty in how decisions

and actions will influence RWEPs in the real world.

These are represented by Âe and Âa and are considered
in the PM, which models world state evolution. It should

be noted that although the information fusion system

(including the sensors) is explicitly indicated in Fig. 4

as being separate from the real world, this is not actually

the case. In a real setting, the fusion system is part of

208 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 2 DECEMBER 2018



the real world. However, in the presented formulation, it

is assumed that the fusion system affects the real world

only through the quantities sk and uk, and that all other
effects are deemed to be negligible. Whether this is the

case depends on the accuracy of the understanding of

the effect of sk and uk on the real world in the model
M, the decision method D and resource management

function R, through an understanding of ±e and Âe.
V. EXAMPLE USE CASES
For the sake of brevity, a single example use case

is presented (the same as in [2]), which demonstrates

the fusion uncertainty evaluation taxonomy presented

here. RWEPs represent aircaft that can be sensed by a

network of radars (for example as in [20] and [45]).

The radars are intelligent sensors, in that they already

provide processed information to the fusion system

in the form of target tracks and associated filtering

covariances. Consequently, the FM combines the tracks

from several radars to result in one fused track for

each target, all contained within the joint inferred state

vector x̂k. This vector and its associated uncertainty
support is used in the decision method and resource

management functional blocks to a) to search an area

and detect targets, b) balance the search requirement

with the requirement to direct the radars through sk
to minimise (for example) the sum of covariances of

all existing tracks and c) to decide and communicate

through uk whether to scramble fighters to intercept
targets deemed to be serious threats based on some

cost/benefit analysis. The reader can consult [2] for an

additional anti-rhino poaching use case example. The

example (captured in Table III) should hopefully be self

explanatory, but for a brief description, the reader can

consult [2].

VI. EVALUATION USING THE URREF ONTOLOGY
The Uncertainty Representation and Reasoning

Evaluation Framework (URREF) includes an ontology,

the URREF ontology, that captures primary and sec-

ondary concepts related to uncertainty representation

and reasoning in information fusion systems, the crite-

ria for their evaluation, as well as the links between the

concepts.4 One of the main objectives of the URREF

ontology is to define and articulate the criteria which

enable the systematic reasoning about and evaluation
of uncertainty representation (instantiated or theoreti-
cal, for example a specific probability distribution or

the underlying uncertainty formalism e.g., probability,

belief based representations, fuzzy representations) and

reasoning (inference in general e.g., Bayes’ rule, Demp-
ster’s combination rule) in information fusion systems.

These are the primary subjects of evaluation [19]. The

4The latest version of the ontology can be viewed at the webpage

with the following URL: http://eturwg.c4i.gmu.edu/?q=URREFv3.

The OWL file of the URREF ontology can be opened using the free,

open-source ontology software “protégé.”

TABLE III

Table of symbols together with examples from multi-sensor

multi-target tracking with track fusion use case.

Symbol Example

RWEP An aircraft that can be sensed by radars

Isolated

sub-world

Area that is within range of radar network

Di,k All EM returns at time k from targets sensed by

radar i

Sensor i The ith radar in a network of air surveillance

radars

−n,k Dynamical characteristics (mass, powerplant,

airfoil etc.) of the nth aircraft

!i Dynamical characteristics (mass, powerplant,

airfoil etc.) of all aircraft, as well as dynamical

characteristics owing to interactions between

aircraft, all observed by sensor i

zi All radar tracks at time k from radar i

Zi Bayesian probability (sensors), Fuzzy natural

language (human report)

hi(¢) Probability density function of filtering densities

parameterised by means and covariances

xk Combined state of all targets after track fusion

zk Combined state vectors of all tracks before

fusion

f±e,°(¢) Almost constant velocity dynamical model

g®,¯e ,°(¢) Gaussian filtering probability densities for radar

tracks

½ N/A, since Z and UR are both probabilistic

uk Message to fighter to intercept target

sk Message to increase scan rate of a radar

μ New track density

® Uncertainty associated with quantisation error

in radar digital to analog converter

¯e Uncertainy owing to Gaussian approximation of

measurement noise in rectangular coordinates

¯a Measurement noise

±e Uncertainy owing to Gaussian approximation of

plant noise to represent target manoeuvres

±a Plant noise

° Uncertainty owing to ignoring targets out of

range of the radar network

UR Bayesian probabilistic representation

U Probability distribution

μ̂ Inferred new track density

x̂k:N Inferred distribution of the states of all targets

after fusion at time k, and state distribution

predictions from time k+1 up to a future

horizon of k+N

ºÃ(¢) A mapping from a perceived state to a

utility/reward. In a target tracking system, this

could be the reciprocal of the sum of track

covariances.

Á¢(¢) A mapping from a perceived state and predicted

future states to actions. In the case of a target

tracking example, this could be a function

which defines the amount of time spent by

radars on scanning as opposed to tracking,

given the sum of track covariances and the

recency of scan coverage of an area. This

would be to balance current and future track

accuracy as opposed to detecting possibly

undetected targets at a time and into the future.

UNCERTAINTY REPRESENTATION AND EVALUATION FOR MODELLING AND DECISION-MAKING 209



primary subjects cannot stand on their own, and as such,

the evaluation of secondary subjects is also catered for
in the URREF ontology. The secondary subjects are de-

fined as the source of information (sensors), the piece of

information (sensor output), the fusion method (imple-

mented by the fusion algorithm) and the mathematical

model (the process and sensor/data model, both repre-

sented byM).

A. FE-1 (sources of information)

Sources (sensors) that produce information, whether

they are humans or transducers should be evaluated ac-

cording to source criteria. These are secondary subjects

of evaluation, and fall under DataCriterion the current
view of the ontology, with the relevant subclasses be-

ing Quality (specifically relating to source quality dis-
tinct from information quality) and Credibility. Note that
since in this paper FE-1 to FE-4 replace ADP-1 to ADP-

4 that was presented [2], the criteria specified are dif-

ferent.

B. FE-2 (input information and model)

Here the information criteria are relevant for the in-

put information, and representation criteria are relevant

for the modelM and uncertainty representation UR and
associated uncertainty relations U . In the URREF ontol-
ogy the information criteria are under the classes Dat-
aCriterion and DataHandlingCriterion. The associated
subclasses can be used to evaluate the input information.

Quality can also be used, but here relate to information
quality as opposed to source quality used in FE-1. The

model M and uncertainty representation UR and as-

sociated uncertainty relations U can be evaluated using
the class RepresentationCriterion and all the associated
subclasses.

C. FE-3 (reasoning and combined information)

This element of the FM (the inference engine I
in Fig. 4), is evaluated according to ReasoningCriteria,
which consist of ComputationalCost, Scalability, Perfor-
mance and Consistency. The output of the reasoning
component (or inference engine) can again be evaluated

according to the DataCriteria, as with the input of the
FM. The output of a FM may form the input of another

FM in the case of distributed fusion.

D. FE-4 (decision method and output information)

The uncertainty about the effect of actions sk and
uk on the real world in the modelM is a form of epis-

temic process abstraction uncertainty, represented by Âe.
It reduces the optimality of the decision process. This

is epistemic uncertainty may be evaluated according to

RepresentationCriteria, and is the uncertainty owing to
imperfect modelling contained in the model M. Fur-

thermore, the decision process is a form of reasoning

(through optimisation), and can be therefore be eval-

uated according to ReasoningCriteria. Maximising the

expected utility combines uncertainty with utility, and

the utility part carries an element of subjectivity related

to a desired outcome. In many cases, a desired outcome

is the combination of conflicting and competing ob-

jectives with relative weightings. Therefore, some Dat-
aCriteria such as Objectivity, RelevanceToProblem and

WeightOfEvidence may be used.

VII. CONCLUSIONS

In this paper, the flow of abstraction in fusion

system inception, design and implementation is con-

trasted to the flow of information and the flow of de-

cisions/actions during the routine operation of a fusion

system. Without a complete list of uncertainties that en-

ter during these two phases of the fusion system life

cycle, the fusion system practitioner might not consider

the implications of certain design choices relating to

chosen variables of interest, uncertainty representations,

reasoning formalisms, and simplifying assumptions. As

mentioned in [3], engineers and system designers are

biased towards a default uncertainty representation or

reasoning methods, namely the methods they know and

are comfortable with. As such, the cost for them to learn

new formalisms that could possibly be better suited to

a particular application should also be evaluated. Con-

sulting a list of explicit uncertainty types that are a re-

sult of fusion system development and routine opera-

tion, would minimise errors of omission and oversight,

and simplifying assumptions and design choices can be

properly characterised.
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