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With the growing congestion in the airspace, Air Traffic Man-

agement (ATM) requires advances in massive data processing, so-

phisticated avionics techniques, coordination with weather updates,

and assessment of multiple types of uncertainty. The complex situ-

ation overwhelms pilots and ATM controllers. To provide depend-

able artificial decision-making support for ATM and Unmanned

Aerial System Traffic Management (UTM) systems, ontologies are

an attractive knowledge technology. This paper proposes an Avion-

ics Analytics Ontology (AAO) to bring together different types of

uncertainties including semantic from operators, sensing from navi-

gation, and situation from weather modeling updates. The approach

is aligned with the Uncertainty Representation and Reasoning Eval-

uation Framework (URREF), that develops an uncertainty ontology.

The degree of uncertainty to improve effectiveness in ATM/UTM

decision-making processes quantifies information veracity; in ad-

dition to accuracy, timeliness, and confidence. Application exam-

ples are presented that involves two ATM/UTM operation scenarios

where Unmanned Aerial Vehicles (UAVs) fly nearby commercial

aircraft and/or airports which requires situation awareness safety

response. As compared to a baseline approach without Automatic

Dependent Surveillance-Broadcast (ADS-B), results from recorded

ADS-B data demonstrate a over 0.75 veracity improvement) from

Newark Liberty International Airport.
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1. INTRODUCTION

There has been a growth in the use of ontologies

for communities such as medical diagnostics, target as-

sessment, and chemical composition. An area that can

benefit from an unified ontology is that of avionics;

with only limited reporting for groups interested in sup-

porting the the Federal Aviation Administration (FAA)

Next Generation Air Transportation System (NextGen)

and the Single European Sky ATM Research (SESAR)

systems. The use of ontologies would enhance the coor-

dination between physics-based sensing (e.g., positing

and navigation), human-derived communications (e.g.,

call sign and Notice to Airmen–NOTAMS), and situa-

tion reporting (e.g., weather map updates on the cockpit

displays). The ontologies support a common taxonomy

for reporting to help pilots and Air Traffic Controllers

(ATC) make difficult decisions in the context of data,

feature, and information uncertainty.

Air Traffic Management (ATM) is growing in com-

plexity as avionics systems are getting sophisticated,

airspaces are densely occupied, and air transport is fly-

ing in more adverse weather conditions. Overwhelmed

aviators, air traffic controllers, and air transport busi-

nesses have to prioritize dependability (safety, security,

reliability, etc.) in aviation procedures while sharing

the airspace with other types of aircraft such as un-

manned aerial vehicles (UAVs). Due to the emergence

of inexpensive UAVs, accessible from a diverse set of

users from the scientific, recreational, commercial, civil

and military aviation communities, there is need for

a common set of rules (or procedures) for Unmanned

aerial system Traffic Management (UTM). ATM/UTM

aerospace information management systems need be (1)

efficient with larger amounts of data, (2) effective with
combining information from different sources such as

weather forecasts, flight profiles, airports, and UAVs,

and (3) relevant through reducing uncertainty in deci-
sion support systems (DSS).

An attractive approach to support decision making in

advanced ATM/UTM systems is the implementation of

Ontologies for NextGen Avionics Systems (ONAS). On-
tologies are meant to model cognitive processes by rep-

resenting and reasoning on knowledge. Following this

direction, a proof of concept for an ONAS solution was

proposed [1], which has a knowledge-based ATM/UTM

architecture for avionics analytics. In this Avionics Ana-
lytics Ontology (AAO), an ontological database captures
information (data along with meaning) as to concepts,

entities, and relations in order to build knowledge re-

lated to weather, flights, and airspace. The ontology en-

ables artificial reasoning to make decisions based on the

knowledge stored and the current situation estimates.

The AAO supports Decision-Support System (DSS)

for ATM/UTM to dependably minimize human inter-

vention by making decisions simultaneously based on

multiple information inputs. A key issue when design-

ing DSSs is the credibility, reliability, and veracity of the
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Fig. 1. Big Data Constructs and Uncertainty Metrics

gathered information. Veracity is an element of big data

that assesses the truthful of the data and is include in

the 4 V’s of big data: volume, variety, velocity, and ve-

racity; while other options include value, volatility, and

visualization. Veracity can be used to assess the truth

of data for such cases are aircraft sensor failures [2].

The alignment of the big data V’s and the Uncertainty

Representation and Reasoning Evaluation Framework

(URREF) are shown in Fig. 1.

This paper proposes to endow the above AAO with

semantic uncertainty for input information to improve

DSS effectiveness in the decisions taken. The pro-

posed approach is based on the Uncertainty Represen-

tation and Reasoning Evaluation Framework (URREF).

It deals with the URREF input criterion (i.e., weight

of evidence, relevance to problem, and credibility). The

ontology development presents veracity as part of in-
formation credibility. The AAO construct captures not

only information on concepts, entities, and relations;

but also uncertainty of the input information as to its

veracity for metadata information. The AAO considers

the degree of uncertainty by means of quantitative met-

rics of throughput, timeliness, confidence, and accuracy.

Veracity then includes qualitative metrics such as relia-

bility, credibility, and quality mapped to precision and

recall. The URREF assessment enhances avionics DDS

analytics when considering semantic and physical data

sources. Ultimately, it will enhance Situation AWare-

ness (SAW) as well as Situation Assessment (SA) in

information fusion [3].

This paper presents application examples that in-

volve two ATM/UTM operation scenarios where UAVs

are flying nearby commercial aircraft and/or airports.

The closeness of UAV proximity has an impact on the

ATM/UTM decisions taken by the DSS. The DSS pro-

vided by the URREF-based AAO takes into account se-

mantics from updates of weather maps, airport maps,

and route maps as well as information uncertainty (ve-

racity of the above updates, in particular from flights).

The scenarios are meant to represent realistic flight sit-

uations since they make use of real-time airspace in-

formation provided by a flight tracking service (Flight-

radar24 [4]).

The rest of the paper is organized as follows. Sec-

tion 2 recalls existing approaches for ATM. Section 3

reviews supporting and existing technologies and con-

cepts regarding SAW and SA. Section 4 introduces the

URREF. Section 5 discusses the AAO foundations for

ontological decision-making support in avionics, and

the uncertainty scope and considerations for veracity

metrics. Section 6 presents applications examples by

means of three application examples. The final section

presents the conclusions and future research steps.

2. EXISTING APPROACHES FOR AIR TRAFFIC
MANAGEMENT

Air Traffic Management evolved with air services

and current incorporates three methods: Air Traffic

Control (ATC), Air Traffic flow Management (ATFM),

and aeronautical information services (AIS).

The approaches to decision support improved with

technology, collaboration, visualization, and mandates.

For example, in 1982, Pararas developed a modu-

lar system using Mixed Integer Linear Programming

Language (MILP) modular automation approach for

ATM/C that afforded aircraft dynamics, a flexible con-

troller interface, and a real-time terminal area simulation

[5]. Many approaches in the 90s sought to use automa-

tion for optimization of airspace data to support visu-

alization. In 2000, Ball et al [6] reported on efforts for

collaborative decision making using the distribution of

the National Airspace System (NAS) status information

and the management of en-route traffic flow through

optimization with a ground delay program, convective

weather forecast, and LAADR (Low Altitude Arrival

and Departure Routes) for congestion avoidance. The

FAA methods were documented to include decision

making, capacity performance, traffic flow, and weather

support [7]. Access to the information services in a uni-

fied display assists controllers, pilots and dispatchers

for a flight management system, as demonstrated by

the NASA Multi Aircraft Control System (MACS) [8].

A key element for ATM is the International Civil Avi-

ation Organization (ICAO) air traffic management [9]

information that includes traffic flow requirements, sep-

aration rules, flight information, coordination routines,

message format, phraseology, ADS services, and Con-

troller/pilot Data Link Communications (CPDLC).

ATM decision support systems design sought ad-

vances in airspace dynamics developed for monitoring,

capacity flow, and scheduling for system wide infor-

mation management (SWIM), that did not focus on the

information services. In 2008, the Sky-Scanner project

sought to develop LIDAR sensing for monitoring as

an improved decision support system for ATM [9].

The data was utilized with a risk-based approach from

the airspace rules to augment capacity flow [10]. Fur-

ther, the Next Generation Air Traffic Management (NG-

ATM) operational concepts were sought for the Sin-

gle European Sky Air Traffic Management Research

(SESAR) and the United States’ Next Generation of

Air Transportation System (NextGen) programs which
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included a 4-Dimensional Trajectory Negotiation and

Validation System [11]. The system was to support

safety, capacity, efficiency, and the environment. An

optimization method for spatial-temporal airspace use

was developed to assist in scheduling for intent negoti-

ation. Efforts continue to provide techniques for ATM

including: performance based operations, capacity and

flow control, efficiency and environmental impact, de-

parture and arrival management, Terminal area (TMA)

and surface operation interactions, complexity manage-

ment, and planning quality.

An analysis of text messages was conducted using

a Conflict Probe which predicts potential airspace im-

pending separation violations and a Trajectory Predic-

tor suggesting a more accurate aircraft position [12]

The Common Message Set (CMS) relays flight plan,

altitude, radar tracking and other data. The message

data includes: Flight Plan Information (FH), Flight Plan

Amendment (AH), Cancellation Information (CL), In-

terim Altitude Information (LH), Departure Information

(DH), and Converted Route Information (HX). A Java

En Route Development Initiative (JEDI) software was

used to translate the message types for separation error

prediction [13]. However, researchers have yet to focus

on the semantic analysis of the meaning of the messages

as an information service. The need for an ontology was

highlighted by Koelle and Strijland [14]. NASA sought

to development an otology as evidenced in the slides

[15] and the current version is released as the NASA

Air Traffic Management Ontology (atmonto) [16]. To

the best of our knowledge, no reports can be found of a

literature publication using the NASA ATM ontology.

3. DECISION-MAKING SUPPORT IN AVIONICS
ANALYTICS

This section reviews supporting and existing tech-

nologies and concepts regarding SAW and SA in sup-

port of the analysis towards the URREF.

A. Situation Awareness

The decision-making process is based on the four-

stage loop called Observe-Orient-Decision-Act (OODA)

[17]. The OODA loop is essential for situation aaware-

ness assessment in information fusion [18]. Fig. 2 shows

a SAW model.

SAW allows systems to understand dynamic and

complex environments, and operate with them. Cog-

nitive SAW can be divided into three separate levels:

perception of the elements in the environment, compre-

hension of the current situation, and projection of future

status [18].

The concepts of the OODA loop enable a process-

ing of information. The Observation stage is the SAW

perception level. The Orientation stage takes into ac-

count the information acquired from the Observation

stage and the knowledge represented by the ontology,

to understand the situation (SAW comprehension level).

Fig. 2. Situation Awareness (SAW) Model

Fig. 3. Data Fusion Information Group (DFIG) model

The Decision stage is carried out at the SAW projection

level. The Action stage closes the OODA loop by car-

rying out actions according to the adaption made in the

previous stage.

SAW involves the events, states, condition, and ac-

tivities of the environment dynamics as to time and

space from which some situations arise (in particular

those changes that occurred in the environment over

some time interval). A situation is defined by a spe-
cific state after a sequence of events (with intermediate

states, and activities with pre and post conditions). The

situation is concerned with the comprehension of the

environment features, and with the evolvement of these

features over time.

SAW decision making mechanisms are critical for

problem-solving processes that are preformed every

time step for a situation from which data is collected at

level 0 information fusion according to the Data Fusion

Information Group Model [19], [20].

B. Situation Assessment

Situation assessment takes place at level 2 (SAW

comprehension) in data fusion models. The Data Fusion

Information Group Model levels include (Fig. 3):

In the DFIG model, the goal was to separate the

information fusion (IF) (L0—L3) and resource manage-

ment (RM) functions (L4—L6) [21], [22].
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Fig. 4. Situation Uncertainty

Fig. 5. URREF Categories

For UTM systems, there is both the resource man-

agement across sensors, users, and the mission (SUM)

to coordinate with the objects, situations, and threats.

The elements of the airspace need to be provided to air

traffic controllers for enhanced SAW. Two integral con-

cepts for Level 5 “User Refinement” information fusion

are displays to support usability [23] and information

management systems that are trustworthy [24].

Uncertainty of a situation is based on information,

assessment, and knowledge (shown in Fig. 4).

A binding element between the levels of fusion

to reduce uncertainty is an ontology [25], [26]. The

URREF model provides an ontology that supports the

interaction between low-level information fusion (LLIF)

and high-level information fusion [27].

4. UNCERTAINTY REPRESENTATION AND
REASOING EVALUATION FRAMEWORK

The URREF was developed and used for analysis

over imagery [28], detection [29], and text data [30].

The URREF supports uncertainty analysis [31] such as

for trust [32] applications. The URREF can advance

methods for image quality [33], object recognition [34],

and object tracking [35]. Inherently, it is the ontology

of metrics of uncertainty that can support DSS.

Recent efforts include applications for rhino poach-

ing assessment [36], maritime anomaly detection [37],

and cyber analytics [38]. The URREF developments are

meant to support decision making [39] and context [39].

The ontology can resolve the decades old problem of

Fig. 6. Use of Ontologies for avionics analytics

relevance metrics in Simultaneous Tracking and Identi-

fication (STID) methods [40, 42].

A. URREF Ontology

The key elements from the URREF include data

quality issues of accuracy, precision, and veracity (as

shown in the current categories of the URREF in

Fig. 5) within an OODA architecture. While accu-

racy and prediction have been explored, veracity re-
quires further inspection. More details on the UR-

REF are available at the Evaluation of Technologies

for Uncertainty Representation (ETUR) working group

(http://eturwg.c4i.gmu.edu/).

B. Ontologies for Air Traffic Management

There is an emergence of interest of the use of

ontologies for ATM and aerospace technologies [43—

48]. Examples include the Federal Aviation Adminis-

tration (FAA) Next Generation Air Transportation Sys-

tem (NextGen) [49] and the Single European Sky ATM

Research (SESAR) [50] systems. In order to frame the

discussion, Fig. 6 highlights an example of how on-

tologies are included in an avionics system analysis.

Using the incoming data from weather, flight profiles,

and airports; that data needs to be accessed and nor-

malized. Structuring the data is enabled with templates

and ontologies. The structured ontology organizes the

information (including syntactic and semantic meta-

data) for analytic tools. The resulting analytics supports

visualization for aviators and Air Traffic Controllers

(ATCs). Examples include mandates, current reports,

and airspace information. Hence, ontologies afford a

common method to organize, process, and share data.

For air traffic management, System Wide Informa-

tion Management (SWIM) including the ATM Infor-

mation Reference Model (AIRM) [51], the Informa-

tion Service Reference Model (ISRM), and the SWIM

Technical Infrastructure (SWIM-TI) are being devel-

oped [52]. The concept of SWIM is an emerging con-

cept to manage information for aviation systems for

various ATM networks [53]. The SWIM approach de-

fines concepts for ATM as well as specifies what kind
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Fig. 7. Main OWL components of the AAO

of information has to be shared, and what stakeholders

have to share such information [54]. An AIRM example

requiring ontologies is semantic filtering of notices to

airmen [55].

Key developments for SESAR and NextGen include

the potential for ontological capabilities.

5. ONTOLOGY AND UNCERTAINTY

This section presents foundations of the AAO and

the integration of URREF in the AAO to include uncer-

tainty.

A. Avionics Analytics Ontology

The syntax (symbols and rules) of the Avionics An-

alytics Ontology (AAO) is based on the Description

Logic (DL) syntax structure. However, the implemen-

tation language for the ontology ultimately defines the

syntax to semantically specify and describe ontology el-

ements. The OWL and the Protégé tool [56] are selected

to realize the ontology for the approach proposed.

The main OWL components to be created are the

concepts (classes), properties for individuals, and in-

stances of classes (individuals) are shown in Fig. 7.

These components are set for AAO as follows:

² Classes (concepts). They are conceptually defined as
classes (special datatype) in object-oriented program-

ming languages. Thus, they can be atomic classes

(stand-alone ones) or associate classes (subclasses)

along with “is-a” links. The main AAO classes are:

vehicle (aircraft), radar, criteria, pilot, route, airport,

runway, status, airspace, weather, and metrics. Fig. 5

shows the above is-a relations between classes.

² Properties (roles). They are basically relationships be-
tween classes (or eventually individuals). The OWL

allows for properties on objects (based on classes)

or data (specific values). The first version of AAO

only includes properties for objects as follows: has-

Radar, hasPilot, hasRoute, hasTakeoff, hasLanding,

hasAirspace, hasRunnay, hasStatus, hasVeracity, and

hasWeather.

² Individuals (instances). They are instances of classes
(objects), e.g. a Boeing 747-800 is an individual

(instance of the class “aircraft”).

The main AAO classes are:

² Aircraft (as a subclass of Vehicle): any type of air-
craft falls into this category, including manned and

unmanned fixed-wing or rotatory-wing air vehicles.

² Route: all the air corridors (as a collection of way-
points) for different airspace regions for aircraft falls

into this category. They are defined by departure point

to arrival point. However, no specification of way-

points is required for this first version of AAO.

² Airport (as a subclass of Aerodrome): all the aero-
dromes mostly for commercial air transport fall into

this category. They are distinct from aviation airfields

and military airbases.

² Runway: any runway from aerodromes falls into this

category, runways have an identification code.

² Status: the class “Status” in the AAO is only defined
to define the condition of runways.

² Airspace: any aerial region above a territory (portion
of the atmosphere) controlled by a country.

² Weather: all weather conditions falls into this cate-
gory.

² Criteria: the criteria defined in section 4.B is notated
in this category. This class is from the URREF and it

is actually the link between the AAO and the URREF.

A subclass of Criteria is Veracity.
² Radar: all types of radar used in aeronautics falls into
this category.

² Metrics: the metric assessment as defined in section
4.B falls into this category.

Table I presents AAO classes, examples of their in-

stances, and some properties associated to them. Ap-

pendix A shows details of the hierarchical structure of

the AAO.

DL operators are considered as different types of

property restrictions in ontologies: quantifier restric-

tions such as existential and universal restrictions, has-

Value restrictions (counting operators such as “less than

or equal to” and “more than or equal to”), as well as car-

dinality restrictions such minimum and maximum cardi-

nality restrictions. Also, complex classes can be created

by means of simpler classes described based on logical

operators like “or” and “and”.
Property restrictions along with classes and individ-

uals are the building block to define axioms. Termi-

nological axioms (usually based on operators such as

inclusion, equivalence, etc.) are in the TBox, e.g., “Air-

craft A subclass of AircraftcannotLand and Aircraftcan-
Takeoff”, and “ClearSky subclass of GoodWeather and
VeryGoodWeather”. A set of assertional axioms (facts

or assertions) are in ABox, e.g., “AircraftcanLand equiv-
alent to Aircraft and (hasRoute only Landing)”, and
“VeryBadWeather equivalent to Weather and (Tornado
or microburst)”.
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TABLE I.

Examples of the AAO Classes, Instances, and Properties

Property

Class Subclass Instance Class Instance

Vehicle Aircraft (Aircraft x is a

subclass of Aircraft)

e.g. B787 is an instance

of Aircraft x

hasRoute

hasPilot

hasPeople

hasRadar

hasSystem

hasWingspanValue

Route Route A e.g. LAX-DWF is an

instance of Route A

hasAirspace

hasTakeoff

hasLanding

hasNearbyAirport

hasAirport

Airport Airport II e.g. LAX is an instance

of Airport II

hasRunway

Runway Runway IA e.g. 18L/36R is an

instance of Runway IA

hasStatus

hasLanding

hasTakeoff

hasAirspace

Status Available

Unavailble

Airspace Airspace IV e.g. USAAirspace

airspace is an instance of

Airpace IV

hasWeather hasSeparation

Weather BadWeather e.g. NewarkWeather

Criteria Veracity e.g. Very low veracity hasVeracity

Radar LWRS

SWRS

AWRS

T-KFJK

F-KNEL

F-KEWR

e.g. JFKRadar hasStatus hasSensitivity

Metrics WeatherAvoidance

AircraftAvoidance

AircraftManagment

AircraftSeparation

hasWingspanValue

The ABox and the TBox form the AAO knowledge

base and are shown in Fig. 8. Details of the TBox and

ABox axioms are shown in Appendix B.

Reasoners are the engine for the knowledge-based

queries. They not only apply inference rules but also

check semantic consistency on ontologies. These rea-

soning engines are able to deduce logical questions from

axioms defined in ontologies. Fig. 9 shows the asserted

classes of the AAO, including the added concepts (Cri-

teria and Radar) and their relations.

Aircraft have radars (that detect them) which in turn

have veracity for the information provided by them.

Aircraft also have aairports and routes.

Fig. 10 shows the inferred classes of the AAO as

result of executing the reasoner. This figure shows some

example of AAO inferences as follows (from top to

bottom). Airport I, II, and III are take-off and landing

airports (aircraft can take off and land). Airspace I, II,

and IV are flying airspace. Route C and D have landing.

However, Route D has no take-off. Aircraft C and D

can land in their corresponding airports. Bad weather

includes storms and thunderstorms.

B. Semantic Uncertainty

Semantic uncertainty in the context of this paper

is achieved by means of endowing the AAO with the

URREF. Thus, the AAO is combined with the URREF

ontology. The focus is on the input information coming

from the ATM sensing systems (in particular, the land

radars) which is taken into account through the URREF

InputCriteria concept. The approach particularly targets
Veracity (in sensed data) as one of the key concept from
the URREF to establish the Credibility concept (URREF
class).

The DSS provides ATC operators with ontological

decision-making support based on the sensed data and
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Fig. 8. AAO knowledge base: TBox and Abox (only new axioms

and facts)

Fig. 9. Asserted AAO classes

processed information. The veracity of the input has

an impact on decision outcomes, and it is the main

driver for right decisions to be taken. Hence, veracity

is important to be researched for valid analysis in the

AAO. Thus, the URREF-endowed AAO is expected to

improve DSS accuracy, and ultimately DSS effective-

ness when decisions are taken by the AAO to support

ATC operators.

Veracity metrics are based on the confusion matrix.

This matrix is a “true” table that allows for definition

and specification of true positives, false positives, true

negatives, and false negatives when classifying possible

outcomes from a process. Confusion matrices are useful

for assessment of sensing systems, in particular for de-

tection of objects/targets, e.g. radars detecting aircraft.

The above statistical classification approach is well

known and used in other domains such as machine

learning to analyse system accuracy by deferring and

identifying elements. Hence, the confusion matrix ap-

proach of veracity assessment is attractive for predic-

tive analytics and its statistical measures utilizing well-

known attributes of: Sensitivity, Accuracy, Precision,

Credibility, and Timeliness.

Typically, these statistical metrics include correla-

tion and normalization for a probabilistic measure. Us-

ing probability theory affords Bayesian estimation, and

filtering techniques.

Fig. 10. Inferred AAO classes

The metric approach considered in this paper only

focus on the source sensitivity (i.e., the sensor’s which

comes along with proximity range to the target) to es-

timate veracity. Thus, the veracity of the sensed data

is estimated based on the sensor’s sensitivity (Obser-
vationalSensitivity subclass of the URREF Credibility
class), and the range (distance between the sensor and

the weather condition). A radar is the sensor in question

in this paper. The spectrum defined for Observation-

alSensitivity is as follows:

² 0—5%, Very low sensitivity.
² 5—25%, Low sensitivity.
² 25—70%, Regular sensitivity.
² 70—95%, High sensitivity.
² 95—100%, Very high sensitivity.
The radar’s range is as follows:

² < 50 Km, Very close range.
² 50—150 Km, Close range.
² 150—250 Km, Medium range.

² 250—400 Km, Far range.
² > 400 Km, Very far range.
The above radar’s sensitivities are combined with

the radar’s ranges as radars are located at different dis-

tances from what is sensed. This combination allows for

the estimation of the veracity of the gathered informa-

tion. This actually has an impact on the veracity metrics.

The veracity metric is calculated as follows:

VR = SR£RR (1)

Where VR is the veracity, SR is the sensitivity, and RR
is the range of the radar. This veracity is notated in the

AAO in the URREF class Veracity by means of the fol-
lowing subclasses: VeryLowVeracity, LowVeracity, Reg-
ularVeracity, HighVeracity, and VeryHighVeracity. Like-
wise, the individual veracity for each radar is assigned

to the property (object property) hasVeracity.

6. APPLICATION EXAMPLES

This section presents application examples of the

approach proposed in this paper. They are based on

realistic scenarios.
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Fig. 11. Area of interest in the US airspace

A. Operation Context

The case study is meant to be as realistic as possi-

ble. It involves a dataset from a flight tracking service

(Flightradar24 [4]). The dataset records all flights of air-

craft with ADS-B transponders. It has 390,607 records

generated between 17:00 and 18:00 UTC on 1st April

2017 (approx. 109 records streamed per second). Nev-

ertheless, there is about a revisit rate of 30 second on

every aircraft.

The airspace area of interest (Fig. 11) is that from

the US airspace, entailing arrivals/departures from the

north of Newark Liberty International Airport (code

EWR). Three radar systems are considered for the case

study: the F-KNEL1 radar from Lakehurst Maxfield

Field Airport (code NEL), the T-KJFK16 radar from

John F. Kennedy International airport (code JFK), and

the F-KEWR1 radar from EWR.

Each of the above radars can cover the above area.

However, they usually track aircraft depending on how

far aircraft are from the radars and what is the destina-

tion of the flights. F-KNEL1 belongs to a military air-

field in New Jersey and usually tracks aircraft approach-

ing from or departing to the US east coast. T-KJFK16

tracks landed or arriving/departing flights in JFK. F-

KEWR1 tracks landed or arriving/departing flights in

EWR. Additionally, EWR has weather updates (from

weather forecast and radars) to assist aircraft when lad-

ing or departing.

The case study considers Flight BA185, a British

Airways flight from London Heathrow (code LHR)

to EWR, that is planned to land in EWR. The FAA

defines airplane design groups according to aircraft

wingspans. The BA185 airplane is a Boeing 777-200,

which belongs to group V (52—65 m of wingspan).

Table II presents the details for Flight BA185 obtained

from the Automatic Dependent Surveillance-Broadcast

(ADS-B) dataset.

Two airspace situations are considered when Flight

BA185 is approaching EWR: Scenario 1 entails weather

conditions ahead of Flight BA185, and Scenario 2 en-

tails potential collision of Flight BA185 with UAVs.

TABLE II.

FLIGHT BA185 DETAILS

Dataset Record

Time

(UTC) Latitude Longitude Altitude Heading Speed Radar

17:01:59 40.7683 ¡74:5569 5675 177 299 F-KNEL1

17:03:56 40.6111 ¡74:543 5100 168 269 F-KNEL1

17:07:57 40.4859 ¡74:348 3075 62 183 F-KNEL1

17:10:09 40.5561 ¡74:251 2900 25 173 F-KNEL1

17:10:24 40.5667 ¡74:2442 2650 25 170 F-KNEL1

17:11:00 40.5925 ¡74:228 2075 26 161 F-KNEL1

17:11:27 40.6088 ¡74:2176 1700 25 135 F-KNEL1

17:11:54 40.6248 ¡74:2076 1375 25 138 F-KNEL1

17:12:40 40.651 ¡74:191 800 26 133 T-KJFK16

17:16:01 40.6991 ¡74:1669 0 275 30 F-KEWR1

B. Scenario 1: Aircraft in Weather

The first scenario considers Flight BA185 approach-

ing EWR for landing (17:01:59—17:10:09 UTC in Table

I). The airplane has descended (altitude 5675 feet) down

to 2900 feet in such a period. Flight BA185 took off

from LHR and is scheduled to land in EWR. Weather

conditions are assumed to be deteriorated in the north

of the US east coast. However, the weather is good for

landing in EWR.

The information provided by the weather forecast

from Satellite Weather Radar Systems (SWRSs) and

Land Weather Radar Systems (LWRSs) are considered

accurate and true. They have a high sensitivity although

the later are considered to have slightly lower sensitiv-

ity than the former. Additionally, commercial airplanes

are equipped with an Airborne Weather Radar systems

(AWRSs) (located in the aircraft nose) which allows

for detection of the intensity of convective weather

conditions such as massive hails, powerful lighting,

and excessive precipitation (strong downdraft), e.g. mi-

crobursts. This alternative weather radar source is con-

sidered to have the highest sensitivity (of the three

weather radars) when the weather in question comes

from the area ahead the airplane. Thus, it is used as

a very credible reference for the calculation of verac-

ity metrics and the sensitivities for weather forecast are

assumed as follows:

² AWRS sensitivity (SAWRS = 0:99)
² SWRS sensitivity (SSWRS = 0:75)
² LWRS sensitivity (SLWRS = 0:55)
The above weather radar sensitivities are combined

with the radar ranges as radars are located at different

distances from the weather condition. Thus, veracity

metric is calculated as follows:

VxWRS = SxWRS£RXwrs (2)

Where VxWRS is the veracity, SXwrs is the sensitivity, and

RxWRS is the range of the type of radar x (A: airborne,

S: satellite, and L: land).
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Fig. 12. Scenario 1 in the airspace area of interest

Absolute weights (100) for radar ranges are consid-

ered in scenario 1 depending on their distance to the

weather condition. The following weights are assumed

for AWRS range (the closest to the weather condition).

RAWRS = fVery close = 100,Close = 0,Medium = 0,
Far = 0, Very Far = 0g
Then,

VAWRS = SAWRS£RAWRS = 0:99£ 100 = 99%
Therefore, for AWRS 99% (True) and 1% (false).

The following weights are assumed for SWRS range

(the closest to the weather condition).

RSWRS = fVery close = 0, Close = 100, Medium = 0,
Far = 0, Very Far = 0g
Then,

VSWRS = SSWRS£RSWRS = 0:75£ 100 = 75%
Therefore, for SWRS 75% (True) and 25% (false).

The following weights are assumed for LWRS range

(the closest to the weather condition).

RLWRS = fVery close = 0, Close = 0, Medium = 100,
Far = 0, Very Far = 0g
Then,

VLWRS = SLWRS£RLWRS = 0:55£ 100 = 55%
Therefore, for LWRS 55% (True) and 45% (false).

Scenario 1 also supposes Flight BA185 and the ATC

in EWR are concerned about the weather condition

(microburst) when approaching the EWR airport from

the northeast. Fig. 12 shows the above scenario 1.

The information provided by the AAO can be visu-

alized by ATCs to support their decisions on the above

situation (also, aviators and pilots of remotely-piloted

aircraft could make use of this information). They can

run AAO queries as to the weather condition in prox-

imity (ahead) of Flight BA185 airway. This also pro-

vides suggestions about what to do with Flight BA185

to avoid any potential risk that jeopardize the flight

safety. The query is regarding possibilities for an air-

plane (Flight BA185 in this case) to encounter adverse

weather conditions that make aircraft change their route.

The rerouting possibilities are:

² Very low chances of re-routing (0—19%),
² Low chances of re-routing (20—39%),
² Medium chances of re-routing (40—59%),

² High chances of re-routing (60—79%), and
² Very high chances of re-routing (80—100%).
The above rerouting possibilities are directly related

with the radar veracities as calculated for VxWRS. Thus,

VAWRS means a very high chance of re-routing, VSWRS
means a high chance of re-routing, and VLWRS means a

medium chance of re-routing if a microburst is detected

by the above radars.

Fig. 13 shows AAO query results including verac-

ity metrics (top of the figure) for scenario 1 along

with AAO queries for each of the radars that de-

tects the weather condition (bottom of the figure).

The weather information is provided by three weather

radars: AWRS (onboard the Boeing 777-200, i.e. Flight

BA185), SWRS (weather forecast), and LWRS (from

EWR). AWRS is the most veracious radar (SAWRS =

0:99 and RAWRS = 100; very close)) for this weather
condition (NewarkWather 1) since such a radar is

closely placed near the weather situation. SWRS is less

sensitive and is further (from the weather condition)

than AWRS (SSWRS = 0:75 and RSWRS = 100; close),
and LWRS is the least sensitive and the furthest one

(from the weather condition) of the three weather radars

(SLWRS = 0:55 and RLWRS = 100; Medium). Therefore,
the veracity of the query is 100% when the weather

information is from AWRS, the veracity of the query

is 75% when the weather information is from SWRS,

and the veracity of the query is 55% when the weather

information is from LWRS.

The query inference results (from Fig. 14) suggest

that (from left to right):

1. Flight BA185 must slightly change route (to avoid

weather condition; NewarkWather 1) on its way to

EWR for landing (very high chance of rerouting).

The veracity of this query is based on a veracity

of 99%, i.e., when AWRS detects the microburst

weather condition ahead of Flight BA185. This sug-

gestion is the most veracious out of the three sug-

gestions.

2. Flight BA185 should slightly change route on its

way to EWR for landing (high chance of rerouting).

The veracity of this query is based on a veracity

of 75% when SWRS detects the microburst weather

condition ahead of Flight BA185. This suggestion is

less veracious than suggestion 1.

3. Flight BA185 could slightly change route on its way

to EWR for landing (high chance of rerouting). The

veracity of this query is based on a veracity of

55% when LWRS detects the microburst weather
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Fig. 13. Querying results to assess situation in scenario 1

condition ahead of Flight BA185. This suggestion

is most less veracious of the three suggestions.

Fig. 14 shows the reasoning path (in green colour)

followed by the reasoner to determine the AAO query

results (“aircraft chance of Rerouting” and (“weather

chance of Rerouting”).

C. Scenario 2: UAVs in AirSpace

The second scenario considers the approach of

Flight BA185 to EWR for landing as in scenario

1, although a different time segment is considered

(17:11:27—17:16:01 UTC in Table I). The airplane has

descended (altitude 1700 feet) down to 0 feet in such

a period. The weather condition (microburst) from sce-

nario 1 has been left behind. However, Flight BA185

is supposed to face a new challenge (before landing

in EWR) which is airspace invasion due to three Un-

manned Air Vehicles (UAVs) flying nearby EWR.

The three drones are: a small UAV (sUAV) that

is a small-unmanned quadcopter which wheelbase is

0.5 m, a medium UAV (mUAV) that is a medium-

unmanned airplane with 1.5 m of wingspan, and a huge

UAV (hUAV) that is a large-unmanned airplane which

wingspan is 20 m. The UAVs are flying at different alti-

tudes and locations around the EWR airport during the

landing of Flight BA185. These UAVs fly high enough

to dangerously come close to Flight BA185 while de-

scending from 1700 down to 0 feet in about four and a

half minutes. The sUAV has a non-contactable remote

pilot, and it is less than 300 m away from Flight BA185.

The mUAV is more than 1100 m away from Flight

BA185. The hUAV is less than 900 m away from Flight

BA185. The mUAV and the hUAV have contactable re-

mote pilots.

The information provided by the dataset for F-

KNEL1, T-KJFK16, and F-KEWR1 radars (as specified

in the ADS-B) dataset) is considered fully accurate and

true since they come from real measurements. These

radars are used as a very credible reference for the cal-

culation of veracity metrics. Hence, the sensitive of the

above radars is 0.99 when they manage to track the air-

craft of interest. The remaining radars (that do not track

the aircraft in the dataset) are considered to have smaller

sensitivities. This makes sense since they do not track

the above aircraft. Such a sensitivity difference along

with the range of the radar has an impact on the veracity

metrics.

The sensitivities for aircraft detection are assumed

as follows (from 17:01:59 to 17:11:54 where F-KNEL1

tracks Flight BA185):

² F-KNEL1 sensitivity (SF-KNEL1 = 0:99)
² T-KJFK16 sensitivity (ST-KJFK16 = 0:80)
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Fig. 14. Reasoning behind the queries for airspace situation in scenario 1

² F-KEWR1 sensitivity (SF-KEWR1 = 0:60)
The following weights are assumed for radar ranges:

RF-KNEL1 = fVery close = 100, Close = 0, Medium = 0,
Far = 0, Very Far = 0g
RT-KJFK16 = fVery close = 0, Close = 100, Medium = 0,
Far = 0, Very Far = 0g
RF-KNWR1 = fVery close = 0, Close = 0,Medium = 100,
Far = 0, Very Far = 0g
The calculation of the veracity metric is based on

equation (1), similar to the calculation in scenario 1.

The above three radars track Flight BA185 in the

period considered by the case study (Table I). They have

SBA185 = 0:99 (when they track Flight BA185) so they
are a fully-truthful source for both radars. However, the

tracking of the UAVs (i.e., sUAV, mUAV, and hUAV)

is assumed to be done by any of the above radars that

have difference veracities (VsUAV, VmUAV, and VhUAV).

The combination of two or more veracities given by

the multiplication of the veracities. Table III shows

examples of the impact of having different veracities

when detecting aircraft based on the radar used for

detection.

Fig. 15 shows the above scenario 2.

The information provided by the AAO can be visu-

alized by ATCs to support their decisions on the above

situation (also, aviators and pilots of remotely-piloted

aircraft could make use of this information). They can

run AAO queries as to the impact of the proximity of

the UAVs on Flight BA185. This also provides sug-

gestions about what to do with Flight BA185 or the

Fig. 15. Scenario 1 in the airspace area of interest

UAVs to avoid any potential air collision. The query is

regarding chances for air collision: very low risk of col-

lision (0—19%), low risk of collision (20—39%), medium

risk of collision (40—59%), high risk of collision (60—

79%), and very high risk of collision (80—100%). These

collision possibilities are directly related with the radar

veracities as calculated for VBA185 and VxUAV.

Scenario 2 considers six different airspace situations

(veracities are taken from Table III):

1. F-KNEL1 detects the three UAVs, and Flight BA185.
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TABLE III.

VERACITY METRICS (TRUES IN %)

SxUAV (solo) SsUAV, SmUAV & ShUAV (all)

KNEL1 KJFK16 KEWR1 KNEL1 KNEL1 KNEL1

& & & & & &

SBA185 KNEL1 KJFK16 KEWR1 KNEL1 KJFK16 KEWR1 KJFK16 KEWR1 KEWR1

& & & & & &

KNEL1 KJFK16 KEWR1 KJFK16 KJFK16 KEWR1

F-KNEL1 98 79.2 59.4 96.06 51.2 21.38 62.73 47.05 35.28

T-KJFK16 79.2 64 48 80 40.96 17.28 50.69 38.02 28.52

F-KEWR1 59.4 48 36 60 30.72 12.96 38.02 28.52 21.38

The veracity of this query is 98% (VxUAV = 99 ¤
VBA185 = 99). The most veracious radar from the

ADSB dataset.

2. F-KJFK16 detects sUAV, mUAV and hUAV, and

KNEL1 detects Flight BA185. The veracity of this

query is 51.2% (VxUAV = 51:72 ¤VBA185 = 99).
3. F-KEWR1 detects sUAV, mUAV and hUAV, and

KNEL1 detects Flight BA185. The veracity of this

query is 21.38% (VxUAV = 21:6 ¤VBA185 = 99).
4. F-KNEL1 detects the sUAV and Flight BA185, F-

KJFK16 detects the mUAV and the hUAV. The ve-

racity of this query is 62.73% (SsUAV and SBA185 =

98 ¤SmUAV and ShUAV = 64).
5. F-KNEL1 detects the sUAV and Flight BA185, F-

KEWR1 detects the mUAV, and F-KJFK16 detects

the hUAV. The veracity of this query is 47.05%

(SsUAV and SBA185 = 98 ¤SmUAV = 60 ¤ShUAV = 80).
6. F-KNEL1 detects the sUAV and Flight BA185, F-

KEWR1 detects the mUAV and the hUAV. The ve-

racity of this query is 35.28% (SsUAV = SBA185 =

98 ¤SmUAV and ShUAV = 36).
Fig. 16 shows the inferred AircraftChanceofCollision

class (top) and AAO query results (bottom) for each of

the radars that detects the UAVs for airspace situation

1, 2, and 3, including veracity metrics for scenario 2.

Fig. 17 shows AAO query results for airspace situation

4, 5, and 6.

The query inference results suggest that (from left

to right):

1. sUAV and hUAV have clear chances of collision

(very high risk of collision) and the veracity of this

query is based on a sensitivity of 99% (and prox-

imity of the radar to the aircraft) when F-KNEL1

detects the UAVs and Flight BA185 (top-left query

in Fig. 16). Detection makes by means of NELRadar

(F-KNEL1), bottom-left query in Fig. 16. These in-

ference and query suggestion are the most veracious

out of the six suggestions. Actually, the real one.

2. sUAV and hUAV have some chances of collision

(medium risk of collision) and the veracity of this

query is based on a sensitivity of 51.2% (and prox-

imity of the radar to the aircraft). This veracity is

not high enough to make a trusted decision when

F-KJFK16 detects the UAVs and F-KNEL1 detects

Flight BA185 (top-center query in Fig. 13). De-

tection makes by means of JFKRadar (T-KFJK16),

bottom-center query in Fig. 16.

3. Bottom-right query in Fig. 16: sUAV and hUAV have

low chances of collision (low risk of collision) and

the veracity of this query is based on a sensitivity of

21.6% (and proximity of the radar to the aircraft).

This veracity is very low to make a trusted decision

when F-KEWR1 detects the UAVs and F-KNEL1 de-

tects Flight BA185 (top-right query in Fig. 16). De-

tection makes by means of EWRRadar (F-KEWR1),

bottom-right query in Fig. 16.

4. sUAV and hUAV have some chances of collision

(medium risk of collision) and the veracity of this

query is based on a sensitivity of 64% (and proximity

of the radar to the aircraft). This veracity is not

high enough to make a trusted decision when F-

KNEL1 detects the sUAV and Flight BA185, F-

KEWR1 detects the mUAV, and F-KJFK16 detects

the hUAV. Query on the left of Fig. 17.

5. sUAV and hUAV have some chances of collision

(medium risk of collision) and the veracity of this

query is based on a sensitivity of 48% (and proximity

of the radar to the aircraft). This veracity is not

high enough to make a trusted decision when F-

KNEL1 detects the sUAV and Flight BA185, F-

KEWR1 detects the mUAV, and F-KJFK16 detects

the hUAV. Query on the left of Fig. 17.

6. sUAV and hUAV have some chances of collision

(medium risk of collision) and the veracity of this

query is based on a sensitivity of 51.2% (and prox-

imity of the radar to the aircraft). This veracity is

not high enough to make a trusted decision when

F-NEL1 detects the sUAV and Flight BA185, F-

KEWR1 detects the mUAV and the hUAV. Query

on the left of Fig. 17.

Query on the right of Fig. 17 suggests the mUAV

has no risk of collision. The inference and query results

make sense since the chance of collision is diminished

as the veracity of the radars is decreased. However, the

real chance of collision is very high (the one suggested

in 1.), and it is actually the most veracious.
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Fig. 16. Querying results and inferred classes to assess situation 1, 2, and 3.

D. Bayes’ Risk Assessment

The assessment as to determine whether to alert the

pilot is based on the information fusion analysis of

Bayes’ risk. The Bayesian estimate a posterior is the

measurement given a possible collision.

P(μj j x) =
P(x j μj)P(μj)

P(x)
(1)

where P(μj) is the prior sensitivity of the radar con-
figurations for each case j = 1, : : :6 (as those shown
from left to right in Table III for multiple detection

of all the UAVs, i.e., SsUAV, SmUAV & ShUAV), and the

conditional likelihood P(x j μj) is for a collision or no-
collision given the radar measurements. To determine

whether to send a semantic alert a pilot is based on the

measurement, the potential range (distance), and type of

the UAV. To determine the Bayes’ risk, a loss function

L was developed if no action (e.g., send an alert) was
taken.

R(®j j x) =
6X
j=1

L(®j j μj)P(μj j x) (2)

where L(®j j μj) represents the three cases for loss if the
range is j = fclose, near, farg. The results were normal-
ized. Given scenario 2, if there is a chance of collision,

the best action is to alert the pilot. If there is lower

chance of collision, the results still suggest sending a

warning to the pilot of a potential collision.

Fig. 17. Querying results to assess situation 4, 5, and 6 in

scenario 2.
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TABLE IV.

LOSS FUNCTION

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

High Medium Low Medium Medium Medium

Close 0 1 8 0 1 1

Near 0 2 1 3 3 3

Far 10 7 1 7 6 6

TABLE V.

BAYES’ RISK

Collision No collision

Close 0.494548297 1.579050007

Near 1.416107104 2.413458212

Far 8.089344598 5.825970614

Sum 10 9.818479

From the first row of Table III f0.9606, 0.512,
0.2138, 0.273, 0.4705, 0.3528g, they total up 3.1364.
Then, the prior probabilities (sensitivity/veracity) for the

six cases are (by dividing each of them by the total):

P(μj) = f0.306083, 0.163244, 0.068167, 0.200006,

0.150013, 0.112486g.
The likelihood P(x j μj) for collision are f0.9606,

0.512, 0.2138, 0.273, 0.4705, 0.3528g, and for no colli-
sion is f0.0394, 0.488, 0.7862, 0.3727, 0.5295, 0.6472g.
The prior probabilities (Bayes denominator) P(x) =

P(μj). P(x j μj) for collisions are f0.2938, 0.08358,
0.01457, 0.1255, 0.0706, 0.03968g which total up

0.627725, and for no collision is f0.0122, 0.07966,
0.0536, 0.0745, 0.0794, 0.0728g which total up

0.372275.

Theposterior probabilitiesP(μj j x) = P(x)=0:627725
for collisions are f0.4681, 0.1331, 0.0232, 0.1999,
0.1124, 0.0632g, and P(μj j x) = P(x)=0:372275 for no
collisions are f0.0329, 0.2140, 0.1440, 0.2002, 0.2134,
0.1955g.
The loss function L(®j j μj) is defined in Table IV.
The Bayes’ risk R(®j j x) (which formula is (2)) for

the three cases for loss are shown in Table V.

Presenting the information in a semantically mean-

ingful way by normalizing them based on the sum 10

and 9.818479 for collision and no collision, the Bayes’

risk was inverted so as to represent the results as shown

in Fig. 18.

For case collision assessments, the results are used

as (1 is high, 2, 4, 5, 6 is medium, and 3 is low). The

Bayes risk assessment is consistent with the ontology

from which > 0:95% would be a collision confirmed;

0.95—0.85 for collision likely, and < 0:85 for collision
possible. For values < 0:5, it is unlikely there would be
a collision. From Fig. 18, when a collision is detected

within a close range, the best action (reduce risk) is to

confirm an alert. Likewise, when the UAV is near, a

collision is likely, so a warning should be sent. If a col-

lision range is detected far away, the normalized action

is that there is enough time for future measurements to

Fig. 18. Bayes’ risk assessment results.

determine if a collision would result. On the other hand,

the case of a no-collision also presents a semantically

interesting result, as if the radars are sensitive and detect

a UAV in close proximity to the pilot, a likely warning

would result.

7. CONCLUSION AND FUTURE WORK

The paper proposed an Avionics Analytics Ontol-

ogy (AAO) based on the Uncertainty Representation

and Reasoning Evaluation Framework (URREF). The

AAO is developed to provide situation awareness up-

dates for aviators, air traffic controllers, and airport

security personnel in support of ATM/UTM decision-

making processes. The congestion of the airspace with

UAVs was presented as use cases to demonstrate the

workload reduction through an information fusion on-

tology methodology. Veracity was the measured degree

of uncertainty to support credible reporting and airspace

collisions. Examples involving two ATM/UTM oper-

ation scenarios where F-KNEL1, T-KJFK16, and F-

KEWR1 radars (as specified in the ADS-B) determine

the commercial aircraft (Flight BA185) collision analy-

sis from a set of UAVs. The AAO results present a use-

ful approach towards providing an integration method

among uncertainties including semantic from operators,

sensing from navigation, and situation from weather

modeling updates.

Future research work will involve methods to im-

prove veracity metrics. One of the relevant approach

as an interesting veracity metric to be considered for

further investigation is the big data veracity index [57].

It is based on three main dimensions to define veracity:

objectivity (subjectivity), truthful (deception), and cred-

ibility (implausibility). The index approach deserves

attention, but some research is required to deal with

artificial autonomy (DSS) since the potential tools to

support such a metric index are too human-oriented.

The challenge is to develop supporting tools that allow

for machine veracity metrics, e.g. radars. On the other

hand, some future refinement on the integration of ve-

racity (uncertainty) into the AAO will enhance useful-

ness. One of the inspiring methodologies (to deal with
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Fig. 19. Structure of hierarchy of the AAO
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probabilistic uncertainty when making decision) is the

Bayesian networks, e.g. BasesOWL [58] which is suit-

able for ontologies.

Future methods would also include physics-based

and human-derived (PHIF) graphical information fusion

methods where graph ontologies can be matched, asso-

ciated, and extended for narratives [59, 60]. The applica-

tion scenarios discussed in this paper are meant to easily

demonstrate the benefits of the AAO-based DSS pro-

posed. They are simple but realistic. However, further

development of the AAO will consider demonstrations

involving and targeting ATM operational performance

indexes as those discussed by Civil Air Navigation Ser-

vices Organisation (CANSO) [61] and SESAR Key Per-

formance AREA [62]. For example, capacity and effi-

ciency are listed are listed as operational metrics; while

less defined metrics of societal metrics include safety,

security, and environmental sustainability [63].

APPENDICES

APPENDIX A: AAO HIERARCHICAL STRUCTURE

Fig. 19 shows the structural hierarchy of the classes

in the AAO.

APPENDIX B: TBOX AND ABOX

The axioms of the AAO TBox are shown below.

Aircraft (subclass of Vehicle)

Aircraft K subclass of AircraftcannotLand and AircraftcanTakeoff

Aircraft L subclass of AircraftcannotLand and AircraftcanTakeoff

Aircraft M subclass of AircraftcanLand and AircraftcanTakeoff

Aircraft N subclass of AircraftcannotLand and AircraftcannotTakeoff

AircraftcanLand subclass of Aircraft

AircraftChanceofCollision subclass of Aircraft

AircraftChanceofRerouting subclass of Aircraft

Route

Route A subclass of Landing and Takeoff

Route B subclass of NoLanding and Takeoff

Route C subclass of Landing and Takeoff

Route D subclass of Landing and NoTakeoff

Airport

Airport I subclass of LandingAirport and TakeoffAirport

Airport II subclass of LandingAirport and TakeoffAirport

Airport III subclass of NoLandingAirport and NoTakeoffAirport

Airport IV subclass of LandingAirport and TakeoffAirport

Airspace

Airspace I subclass of FlyingAirspace

Airspace II subclass of FlyingAirspace

Airspace III subclass of NoFlyingAirspace

Airspace IV subclass of FlyingAirspace

Weather

ClearSky subclass of GoodWeather and VeryGoodWeather

CloudedSky subclass of VeryBadWeather

Hurricane subclass of VeryBadWeather

Rain subclass of GoodWeather

Storm subclass of BadWeather

Thunderstorm subclass of BadWeather

Tornado subclass of VeryBadWeather

Microburst subclass of VeryBadWeather

Metrics

AircraftAvoidance subclass of Metrics

AircraftManagment of Metrics

AircraftSeparation subclass of Metrics

WeatherAvoidance subclass of Metrics

Criteria

ImputCriteria subclass of Criteria

Credibility subclass of ImputCriteria

Veracity subclass of Credibility

VeryLowVeracity subclass of Veracity

LowVeracity subclass of Veracity

RegularVeracity subclass of Veracity

HighVeracity subclass of Veracity

VeryHighVeracity subclass of Veracity

Radar

AWRS subclass of hasVeracity only VeryHighVeracity and Radar

SWRS subclass of hasVeracity only HighVeracity and Radar

LWRS subclass of hasVeracity only RegularVeracity and Radar

F-KNEL1 subclass of hasVeracity only VeryHighVeracity and Radar

F-KJFK16 subclass of hasVeracity only HighVeracity and Radar

F-KNEW1 subclass of hasVeracity only RegularVeracity and Radar

The facts of the AAO ABox are shown below.

Aircraft

AircraftChanceofCollision equivalent to Aircraft and (RiskofCollision

and (hasRadar only Detecting)

AircraftChanceofRerouting equivalent to Aircraft and (ChanceofRerouting

and (hasRadar only Detecting)

AircraftcanLand equivalent to Aircraft and (hasRoute only Landing)

AircraftcannotLand equivalent to Aircraft and (hasRoute only NoLanding)

AircraftcanTakeoff equivalent to Aircraft and (hasRoute only Takeoff)

AircraftcannotTakeoff equivalent to Aircraft and (hasRoute only NoTakeoff)

Route

Landing equivalent to Route and (hasLanding only LandingAirport)

NoLanding equivalent to Route and (hasLanding only NoLandingAirport)

Takeoff equivalent to Route and (hasTakeoff only TakeoffAirport)

NoTakeoff equivalent to Route and (hasTakeoff only NoTakeoffAirport)

Airport

LandingAirport equivalent to Airport and (has Airspace only FlyingAirspace)

NonLandingAirport equivalent to Airport and (has Airspace only NonFlying-

Airspace)

TakingoffAirport equivalent to Airport and (has Airspace only FlyingAirspace)

NonTakingoffAirport equivalent to Airport and (has Airspace only NonFlying-

Airspace)

Airspace

FlyingAirspace equivalent to Airspace and (not (NonFlyingAirspace))

NonFlyingAirspace equivalent to Weather and (hasWeather only VeryBad-

Weather)

Weather

VeryGoodWeather equivalent to Weather and (ClearSky or CloudedSky)

GoodWeather equivalent to Weather and (CloudedSky or Rain)

BadWeather equivalent to Weather and (Storm or ThuderStorm)

VeryBadWeather equivalent to Weather and (Hurrican or Tornado)

Metrics

RiskofCollision equivalent to (ManagedAircraft and ((hasWingspanValue

some xsd:short[> 00200ˆˆxsd:short]) and (hasWingspanValue some xsd:

short[<= 003000ˆˆxsd:short])) and (hasSeparation some xsd:short[<= 00100000

ˆˆxsd:short])) or (NonManagedAircraft and (hasSeparation some xsd:

short[<= 0050000ˆˆxsd:short]) and (hasWingspanValue some xsd:short[<=
00200ˆˆxsd:short]))
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Criteria

VeryLowVeracityequivalent tohasVeracity somexsd:short[>= 00500ˆˆxsd:short]
LowVeracity equivalent to (hasVeracity some xsd:short[> 00500ˆˆxsd:short])
and (hasVeracity some xsd:short[< 002500ˆˆxsd:short])
RegularVeracity equivalent to (hasVeracity somexsd:short[> 002500ˆˆxsd:short])
and (hasVeracity some xsd:short[< 007000ˆˆxsd:short]))
HighVeracity equivalent to (hasVeracity some xsd:short[> 007000ˆˆxsd:short])
and (hasVeracity some xsd:short[< 009500ˆˆxsd:short]))
VeryHighVeracity equivanlent to hasVeracity some xsd:short[> 009500ˆˆxsd:
short]

Radar

Detecting equivalent to Radar and (hasVeracity only VeryHighVeracity)

NoDetecting equivalent to not(Detecting)

DECLARATION

The Avionics Analytics Ontology (AAO) used in

this paper has been developed for specific airspace

situations. It is based on intuitive knowledge gathered

from an investigation done on trusted sources such FAA

regulations. The AAO is at its early development stage

(prototype) and it is a living approach as it is been

continuously updated. It has not been validated yet.

However, there is a plan to integrate the NASA ontology

into the AAO, which will require validation for further

development.
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