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Various information measures have been defined on Bayes Nets
(BN) with the assumption that the Bayes Net is stationary. Our
interest is in the utilization of a BN as a component of a real-time,
information-based sensor management system wherein the dynam-
ics of the situation cause changes both in the structure and underly-
ing probabilities of the nodes in the BN. If a BN is used to represent
the situation assessment (SA) of an environment as a result of our
observations of that environment, we can say that the BN repre-
sents our knowledge about the situation in the form of a temporal
Bayes net (TBN). If one were to not observe the processes in an
environment with additional sensor observations, then the underly-
ing probabilities of at least some of the BN nodes diffuse at a rate
dependent on the dynamics of the process whose uncertainty is rep-
resented by that node, hence the use of the modifier temporal. This
loss of knowledge in the form of increasing uncertainty results in
information flow from the TBN, or, as we refer to it here, temporal
information loss. In order to compensate for this temporal informa-
tion loss and maintain or improve our knowledge of an environment,
the environment needs to be observed by obtaining data. We focus
in this paper on choosing a global TBN information measure In
doing so, we differentiate between aleatory nodes with stationary
uncertainties and epistemic nodes with temporal uncertainties, as
well as formulate a dynamic representation of these temporal un-
certainties. We provide several examples of temporal information
loss under different dynamic assumptions.
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1. INTRODUCTION

This document introduces the concept of informa-

tion loss over time from Bayes nets (BN) due to the dy-

namics associated with epistemic nodes in a BN. Epis-

temic and aleatory uncertainties will be defined in the

sequel and adapted to BN. We call this phenomenon

temporal Bayes information (TBI) loss to distinguish it
from the term dynamic used in dynamic Bayes nets
(DBN) by Kjaerulff [1] and Chang & Sun [2]. DBN

can also have a temporal component by incorporating

changes in the network structure itself over time rather

than just changes in the uncertainty. Furthermore, it will

be shown that the decision as to which epistemic node

to update in order to maximize the information rate can

change with time. This is due to the fact that the un-

certainties associated with the processes represented by

different epistemic nodes do not change at the same rate.

We will relate the concept of TBI to two different inter-
pretations of Bayes nets, one of which is purely aleatory

in that it provides a graphical representation of the joint

probability distribution of random variables, and one

used in target detection and tracking problems which is

composed of both epistemic and aleatory nodes. There

are two examples presented later in this paper which

differentiate between aleatory (yellow) and epistemic

(blue) nodes as shown in Figure 2 and Figure 4. The

latter BN is representative of a causal Bayes net as in-

troduced by Pearl in his fundamental book [3].

Our interest in TBI is intimately tied with our use
of a BN as an underlying component of our method of

information based sensor management (IBSM). IBSM

will not be discussed further here as it is has been pre-

sented in previous papers by Hintz & McVey [4], and

Hintz & Kadar [5]. Briefly, the IBSM situation informa-

tion expected value net (SIEV-net) takes an information

measure defined on a situation assessment Bayes net

and combines it with mission values and the probabil-

ity of obtaining information to compute the expected

situation information value rate. We use the resulting

expected situation information value rate (EIVRsit) to

choose from among the several situation information

needs that information request which will yield the high-

est value of EIVRsit. Our interest in TBI stems from
the fact that the predictable loss of information from a

BN will yield different values of the maximum EIVRsit
depending on the delay in fulfilling that information re-

quest. The different values of EIVRsit at different times

results in different choices of which information to re-

quest.

As a brief preliminary example of how TBI can af-
fect the amount of information which could be obtained

from mutually exclusive sensing actions which could be

taken at two different times in the future, let’s assume

that we are tracking 2 targets, the state of each one being

represented as individual nodes in a BN. Let’s further

hypothesize that one has highly dynamic kinematics,

e.g., a fighter aircraft, with a large process noise, and
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Fig. 1. BN showing the use of the target kinematic state produced

by an external K-filter fusion process to populate nodes of a BN in

order to estimate whether a contact is a threat.

a second target with slow dynamics, e.g., a helicopter,

and smaller process noise. If we extrapolate the Kalman

filter (K-filter) error covariance matrix of each of these

to some proximate time in the future, it may be that we

will obtain more situation information if we choose to

observe the helicopter rather than the fighter, as in the

case where we may have just detected the helicopter

and started tracking it. However, if we were to wait to

make an observation to some later time, then the high

kinematic dynamics of the fighter may, through the ex-

trapolation of both the helicopter and fighter error co-

variance matrices to this later time, result in the fact that

more situation information will be gained by observing

the fighter.

This loss of information over time has been recog-

nized, but not explicitly evaluated by Ciftcioglu et al.

[6] in dealing with maximizing information from mul-

tiple sensors. They say that “[t]he main property of QoI

[Quality of Information] is that it is a composite metric

which deteriorates with age and increases with time due

to additional information gathered. The amount of in-

formation that sensors collect varies randomly through-

out time, which leads to uncertainty in the QoI utility

evolution.”

1.1. Aleatory vs epistemic definitions

Winkler [7] states that “[a]t a fundamental level, un-

certainty is uncertainty, yet the distinctions [aleatory and

epistemic, reducible and irreducible, stochastic and sub-

jective] are related to very important practical aspects

of modelling [sic] and obtaining information.” Costa,

et al. [8], state that “Uncertainty Type is a concept

that focuses on underlying characteristics of the infor-

mation that make it uncertain. Its subclasses are Am-

biguity, Incompleteness, Vagueness, Randomness, and

Inconsistency: : :” Shafer [9], in discussing the distinc-
tion between belief and chance, provides a simple ex-

ample by writing that “[c]hances arise only when one

describes an aleatory (or random) experiment, like the

throw of a die or the toss of a coin.” We focus on

two particular uncertainties, aleatory and epistemic, as

they apply to BN in order to differentiate between those

nodes that participate in an information measure and

those that don’t.

Aleatory and epistemic are terms used in seismic

hazard analysis, reliability engineering, system safety,

structural reliability, and risk analysis, but are not com-

mon in the information fusion literature. The general

meaning of aleatory and epistemic can be taken from

the Oxford English Dictionary as:

aleatory: Dependent on uncertain events or occurrences;
haphazard, random [10]

epistemic: Of or relating to knowledge, or to its extent,
linguistic expression, or degree of validation [11]

Unfortunately these are not very satisfying defini-

tions for our intended use in information fusion and, in

particular, situation assessment utilizing BN.

To facilitate the discussion we first make clear what

we mean by aleatory and epistemic by quoting from Der

Kiureghian and Ditlevsen [12] in the field of structural

reliability or risk analysis:

The word aleatory derives from the Latin alea,
which means the rolling of dice. Thus, an aleatoric

uncertainty is one that is presumed to be the intrin-

sic randomness of a phenomenon. Interestingly, the

word is also used in the context of music, film and

other arts, where a randomness or improvisation in

the performance is implied. The word epistemic de-

rives from the Greek "¼¶¾¿"¹" (episteme), which
means knowledge. Thus, an epistemic uncertainty

is one that is presumed as being caused by lack of

knowledge (or data).

In Abrahamson’s paper related to seismic hazard

analysis we find [13]

Aleatory variability is the natural randomness in

a process. For discrete variables, the randomness is

parameterized by the probability of each possible

value. For continuous variables, the randomness is

parameterized by the probability density function.

Epistemic uncertainty is the scientific uncertainty

in the model of the process. It is due to limited data

and knowledge. The epistemic uncertainty is char-

acterized by alternative models. For discrete random

variables, the epistemic uncertainty is modelled [sic]

by alternative probability distributions. For contin-

uous random variables, the epistemic uncertainty

is modelled [sic] by alternative probability density

functions. In addition, there is epistemic uncertainty

in parameters that are not random by have [sic] only

a single correct (but unknown) value.

While other authors have presented alternative views

of these two terms, we believe that Abrahamson’s mean-

ing best serves our purposes in the field of information

fusion and situation assessment.
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Fig. 2. Bayesian network representing enemy intent showing both

aleatory (shown in yellow) and epistemic (shown in blue) nodes.

After Buede, et al. [22].

According to DK&D [12], “[a]ny discussion on the

nature and character of uncertainties should be stated

within the confines of the model universe.” They further

suggest this determination should be a pragmatic choice

based on how the modeler intends to use the uncertainty

in the model. Since BN situation models in the informa-

tion fusion world are quite diverse, it would seem that

the allowance for both aleatory and epistemic chance

nodes is appropriate. Furthermore, there is the possi-

bility that the nodes change from aleatory to epistemic

over time as the model is used. For example, DK&D

[12] use the concept of the strength of concrete in a

building having a known statistical uncertainty before

the building is built (aleatory); however, after the build-

ing is built, measurements of the strength can be taken

over the time the concrete is curing leading to an epis-

temic statistical uncertainty. Note that the process is the

curing of the concrete with an associated uncertainty

which can be reduced if measured, but remains the same

or increases in uncertainty if not measured. In the case

of situation assessment, an example is converting from

the probability that a target is going to enter a volume

of space (aleatory) to the probability that a target has

been detected (epistemic) once a detection is made. The

fact that there has been a detection does not mean that

there is a target in that volume with absolute certainty

since each detection has associated with it a probabil-

ity of detection less than 1 (Pd < 1) and a probability
of false alarm of greater than zero (Pfa > 0). The uncer-
tainty about whether a target is actually in the volume is

reduced with repeated measurements. Another example

is shown in Figure 2 wherein the weather is an explicit

aleatory node during mission planning, but becomes an

epistemic node during its use when particular values of

the weather can be acquired as evidence.

If we relate the above to Pearl’s causal networks

[14] [3] which require a directed relation between

nodes, epistemic is a straightforward uncertainty which

is added to either the linear or nonlinear functional re-

lation between nodes as in the linear relationship below

with the additive aleatory random variable ui:

xi =
X
k 6=i
®ikxk + ui i= 1, : : : ,n (1)

The nodal value of interest, xi, is epistemic as its
uncertainty can be refined with repeated measurements

thereby reducing the uncertainty introduced by the ran-

dom additive component, ui.

1.2. Aleatory or epistemic: stationary or
nonstationary?

Aleatory uncertainties may change, but cannot be

improved with repeated measurements as they are asso-

ciated with a naturally occurring randomness. A counter

argument to this, which we will ignore without loss of

generality, can be best exemplified by the probabilities

associated with the roll of a die. Mathematically, a fair

die has equal probability of the single event comprised

of a face of a die. No amount of experiments on this

mathematically fair die will change that. In reality, no

physical die is perfect and hence, not fair. That is, re-

peated rolling of the die will show that some faces will

occur more than others due to the imperfections in the

physical die. This is not to be confused with the typical

gambler’s mistake most easily associated with the flip

of a coin. If the coin toss results in an unusually long

run of heads or tails, one wants to think that the next toss

will be the opposite even though we know that there is

equal probability of the two faces of the coin occurring

as a result of the next toss.

Aleatory uncertainties may change over time, but

not due to measurements. In the case of weather and

whether or not it is going to rain, the aleatory uncer-

tainty changes if there are observed clouds, but repeated

measurements to determine if clouds are present do not

change the uncertainty about whether it is going to rain

or not.

Epistemic uncertainties can be non-stationary or

changing over time due to observations of, or changes

in, the process dynamics. An interesting example is a

situation assessment node which represents the kine-

matic state of a target in track. If this nodal estimate

is derived from a Kalman filter, then we can see both

aleatory and epistemic statistics depending on how the

modeler utilizes the K-filter. The equations from the dis-

crete K-filter are [15]

system model,

~xk =©k¡1~xk¡1 +wk¡1, wk »N(0,Qk) (2)

in which ©k¡1 is the state transition matrix and wk¡1 is
the process noise, both having subscripts indicating that

they are non-stationary and may change over time,

measurement model,

~zk =Hk~xk + vk, vk »N(0,Rk) (3)

in which ~zk is the observation vector, Hk is the obser-
vation matrix, and vk is the additive, white, Gaussian
measurement noise, all having subscripts indicating that

they are non-stationary and may change over time,
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state estimate extrapolation,

~̂x
¡
k =©k¡1~̂x

+

k¡1 (4)

error covariance matrix extrapolation,

P¡k =©k¡1P
+
k¡1©

T
k¡1Qk¡1 (5)

Kalman gain matrix,

Kk = P
¡
k H

T
k [HkP

¡
k H

T
k +Rk]

¡1 (6)

state estimate update,

~̂x
+

k = ~̂x
¡
k +Kk[~zk ¡Hk~̂x

¡
k ] (7)

and, error covariance matrix update.

P+k = [I¡KkHk]P¡k (8)

Notice the similarity in form of the K-filter equations

(2) and (3) to (1) of Pearl in that there is an additive ran-

dom component to both the system model (2), and the

measurement (3) which ripples through the other state

estimator equations. The random variable in the system

equation, (2), ~w(t), generally called the process noise,
represents the unmodeled uncertainties (Pearl’s latent

variables) associated with the process dynamics includ-

ing the random maneuvers of the target. The random

variable in the measurement equation, ~v(t), represents
the additive noise due to the fact that no observation is

perfect and there are uncertainties associated with it.

As an example of using the state estimate produced

by a K-filter to populate or update the parameters of a

node in a BN, we present the simple BN of Figure 1.

This network shows how the various uncertainties in the

components of the kinematic state vector can affect the

uncertainty in a situation assessment node which is not

directly determined by the kinematic state.

In these most general K-filter equations (2) through

(8) ©k¡1, wk¡1, ~zk, Hk, and vk all have subscripts indi-
cating that they are non-stationary and may change over

time, indicating that the process and the resulting state

estimates are not stationary. The system model propa-

gates based on the previous state with a time-dependent

random component added to it and a reduction in un-

certainty based on noisy observations. It is important

for our purpose here to note that if an observation of

the system is not taken, then the uncertainty of the

extrapolated state variable, ~̂x
¡
k , as represented by the

extrapolated error covariance matrix, P¡k , grows. The
uncertainty in the extrapolated state estimate is repre-

sented by some norm of the error covariance matrix. The

trace will not do as a norm as it is dimensionally non-

conformal; the determinant, while dimensionally con-

formal, and monotonically related to information, does

not have meaningful dimensions but may still be a use-

ful norm. Alternatively, the error covariance matrix can

be normalized to meaningful spatial units by pre- and

post-multiplying by a dimension conforming matrix.

It can be seen from the error covariance extrapola-

tion (5) that the state estimate (7) depends on the propa-

gation of the previous state estimate (4) plus the Kalman

gain (6), K(t), multiplying the difference between the
previous estimate and the observation. If there is no

observation (3), ~z(t), then the uncertainty continues to
grow. This is our first hint that without continual obser-

vations of the state of a process corrupted by random

process (latent variable) noise (2), our uncertainty about

its state (5) grows, and hence its entropy.

Whether the elements of the K-filter are treated as

stationary or non-stationary depends on the modeler’s

understanding of the process and how the model is to be

used. One might consider the state propagation matrix in

(2), ©k¡1, representing the physics of the target’s trajec-
tory, to be stationary and unchanging over time yielding

a constant ©. If the same sensor is used to obtain a mea-
surement of the target, then the observation matrix of (3)

also becomes a constant, Hk =H. Even with this simpli-
fying assumption, we still need to deal with the additive

random components in (2) and (3), the process noise,

wk, and the measurement noise, vk which are character-
ized in (2) and (3) by their covariance matrices, Qk and
Rk, respectively. Typically target trackers include multi-
ple model (e.g., IMM, Interacting Multiple Model [16])

methods with different process noise covariances Qk at
different stages in the target tracking process. Since Qk
is directly involved in the computation of the extrapo-

lated error covariance matrix of (5), P¡k , which is used
to compute the error covariance matrix update of (8),

P+k , the amount of information change associated with
target observations under different model assumptions

will change independently of the observation noise.

The measurement noise covariance matrix in (3), Rk,
also directly affects the amount of information associ-

ated with the computation of the state estimate update

as well as the Kalman gain of (6), Kk, which is used
to compute the error covariance matrix update of (8),

P+k . Of course, the measurement covariance may change
from observation to observation, but let’s assume it is

constant for the sake of discussion. The point here is to

show that while the process and measurement noises can

be considered stationary and hence aleatory, the result-

ing uncertainties in the target state updates as measured

by the updated error covariance matrix are epistemic.

1.3. Aleatory and epistemic BN nodes

Concerning the modeler’s view of the K-filter state

estimate of a target in track as part of a BN representing

the situation assessment, the random components can

be viewed as either aleatory or epistemic. Continuing

with our K-filter example which uses observation data

of (3), ~zk, to reduce our uncertainty about the kinematic
state of a target in track, we can look at the sources of

randomness and see that they are, in the general model,

non-stationary as they are all functions of time.
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We do not discuss here the choices made by the

modeler, but will, in our example later, show how

evolving process dynamics of a target model affect

the amount of information that one can extract from

a measurement. We do recognize that in a situation

assessment there will be a combination of both aleatory

and epistemic nodes. Our concern with respect to a

global entropy of a BN is limited to the epistemic nodes

since there is no change in uncertainty in the aleatory

nodes.

As we will see in the sequel, entropy changes reflect

a gain or loss of information. We will extend this

epistemic entropy change to a BN and see that there

is a global gain or loss of information over time but

only due to epistemic nodes.

Section 1 is the introduction which provides some

necessary background information. Section 2 differen-

tiates and makes clear the distinction among data, infor-

mation, and knowledge. Section 3 investigates proper-

ties of hard (i.e., physics based) and soft (i.e., human-

derived) data to conclude that there exist probabilistic

measures which can be used to compute entropy of both

hard and soft data. In section 4 we present sample com-

putations which may help to clarify some of the newly

introduced concepts.

2. DATA, INFORMATION, AND KNOWLEDGE

Waltz [17] distinguishes among three levels of ab-

straction of knowledge: data, information, and knowl-

edge.

² Data are “individual observations, measurements, and
primitive messages [which] form the lowest level.

Human communication, text messages, electronic

queries, or scientific instruments that sense phenom-

ena are the major sources of data.”

² Information is “organized sets of data: : :The organi-
zation process may include sorting, classifying, or

indexing and linking data to place data elements in

relational context for subsequent searching and anal-

ysis.”

² Knowledge or foreknowledge (predictions or fore-
casts) is “information once analyzed, understood, and

explained: : :”

For our purposes we take a slightly different ap-

proach by considering information to be a change in our
uncertainty about processes in the environment which

result from temporal changes, an observation, or the

acquisition of relevant data (evidence). Knowledge in
our context is expressed in the form of a Bayes net

because the BN contains both the causal processes in

the environment as well as the uncertainties associated

with them. Furthermore, the fact that BN uncertainty in-

creases over time is already known as Singhal & Brown

[18] note in their discussion of dynamic Bayes nets,

“[a] decay function is associated with the PDFs that

increases the variance of the beliefs when they have

not been updated for a period of time.” They also rec-

ognize that observations do not have to be regular or

synchronous. “To relax synchronization issues and con-

straints, we employ an asynchronous update policy that

uses dynamic Bayesian networks to create new proba-

bility density functions (PDF).” [18]

If we consider the BN as the repository of knowl-

edge about the situation, then the changes in uncertainty

associated with the BN can be considered as information

gain or loss. It is common to think about information

gain as a result of obtaining data, but it is less common

to think about the information loss associated with in-

creases in our uncertainty about a process as the process

evolves over time. Generally the BN is considered to be

stationary until more data, i.e., evidence, are obtained

to decrease the remaining uncertainty, but that is not

the case when we are dealing with processes. As we

saw in the K-filter target tracking example previously

presented in Figure 1, our uncertainty about the kine-

matic state estimate grows as time advances if we do not

observe the process due to the additive process noise. In

the case of K-filters, the loss of information can be com-

puted as a change in the entropy of our state estimate

over time [4]. If we make an observation and obtain

data, then the difference in uncertainties represented by

the entropies of a norm of the extrapolated error co-

variance matrix (5), P¡k , and the norm of the error co-

variance update (8), P+k , is a measure of the amount of
information gain. This information gain represents the

increase in knowledge as a result of obtaining data and

decreases the uncertainty in the BN.

2.1. Bayes net information

We can extend this concept from the kinematic state

of a single target in track to the global knowledge

of a situation as represented in a BN [18]. Situation

information and sensor information are differentiated by

the authors [19], and we only focus here on situation

information as represented by the global change in

uncertainties in a BN, namely entropy changes among

the situation assessment nodes. The Shannon entropy

[20], H, of a discrete random variable, X, with possible
values fx1,x2, : : :xng and probability mass function P(X)
is computed in the usual manner as

H(X) = E[I(X)] (9)

H(X) = E[¡ ln(P(X))] (10)

with E being the expectation operator and I being the
information content of the RV. Alternatively, and letting

the RV, X, be a BN node, Nj , the node entropy can be
computed as follows

H(X) =
nX
i=1

P(xi)I(xi) (11)

H(Nj) =¡
nX
i=1

P(xi) logb P(xi) (12)
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here n is the number possible values that can be taken
on by a single node of a BN, Nj , and b is the radix of the
logarithm used. Utilizing the radix 2 yields the entropy

measured in bits.

After an observation which changes the probability

distribution associated with node Nj , the single node BN

information, I+j , [19] is, therefore,

I+(Nj) =H
¡(Nj)¡H+(Nj) (13)

where j is the index number of a single node of the
BN, the superscript “+” indicates the values associated

with the jth node after the effects of the observation
have changed the probability within the jth node (the
a posteriori value), and the superscript “¡” reflects the
probability of the jth node before the observation (the
a priori value).
The global BN information gain or loss is the sum

of the information gain/loss of all the nodes. Since we

assume a mixture of aleatory and epistemic nodes in

the BN, and furthermore that the aleatory nodes are

stationary, there is no information gain/loss associated

with them. That is, we only have to sum the informa-

tion gain/loss of epistemic nodes. Without observations,

there will be a net increase in our uncertainty of each

process node with an associated loss of information over

time. Assuming mutually exclusive sensor observation

opportunities, there may be either a net global gain or

net global loss of information in the situation assess-

ment BN with the observation of a single node. For the

observed node, there may be either a gain or a loss of

information based on whether the observation decreases

the uncertainty more than it had increased since the last

observation. For the non-observed process nodes there

may be a loss of information since they are not being

observed and their uncertainty may have grown since

their last observation.

The global temporal Bayes net information at the kth
observation is

ITBNk =
X

all epistemic
nodes

[Hk ¡Hk¡1] (14)

which can be reduced to

ITBNk =

mX
j¡1
I+(Nj) (15)

where m is the number of epistemic nodes in the BN

and I+(Nj) is defined in (13).

2.2. Hard/soft knowledge and information

The implication until now in this paper is that the

situation assessment in the form of a BN represents

only kinematic uncertainty of processes in the domain

of concern. We take a more egalitarian view of situation

assessment in that nodes can represent kinematic uncer-

tainties as well as intentional (not purposeful, but rather
motivational as in the node contact A is threat of Figure

Fig. 3. Relational diagram representing enemy intent. After Buede,

et al. [22].

1) uncertainties about hypotheses such as whether the

enemy is going to attack or not. Hypothesis nodes like

this can be partially resolved if there is overt physical

action or observable preparatory action on the part of the

enemy; however, it is more likely that actionable intel-

ligence is derived from the interception and analysis of

communications intelligence (COMINT) or other auto-

matically processed natural language communications,

i.e., soft data. According to Dragos, [21] “[s]oft data are

a mix of both facts and opinions” the difference between

the two being the source and the probability associated

with each.

Yet it doesn’t matter whether the source of data is

hard or soft, but rather whether the acquisition of data

changes our uncertainty about a particular aspect of

the situation being assessed as reflected by a changed

probability in one or more nodes of the BN.

2.3. Changing BN structure, information gain/loss?

Since we consider a BN as a knowledge represen-

tation structure with uncertainties associated with each

node, the addition of another node, be it aleatory or epis-

temic, does not inherently add any information unless
the addition of the node connects to other nodes which

are conditioned on it. The addition of a node may affect

the amount of temporal information that is gained or

lost as time progresses or observations are made since

the BN information is the sum of the information lost

over time and likely regained with observations.

But the question arises as to how much knowledge
is contained in a BN and whether adding or deleting a

node changes that amount of knowledge. If we take the

entropic view of uncertainty and the information the-

oretic view of information being a change in entropy,

then we can consider the maximum uncertainty, the total

entropy, in a BN to be the sum of the entropies of all

the nodes as if each of these entropies were at its maxi-
mum uncertainty. If we measure the entropy of a node,

we can view this as its potential information (PI) since
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Fig. 4. Example BN containing uniform probabilities (no evidence) and both aleatory (yellow) and epistemic (blue) nodes, KEn= 7.

it represents the amount of uncertainty that can be re-

solved through measurements if it is an epistemic node.

The maximum PI of a BN node occurs when all values
are equally probable and represents the maximum infor-

mation that can be obtained from a BN node resulting

in perfect knowledge of that node since the entropy of

a node with no uncertainty is zero. If we extend this

to the BN itself, then we can talk about the maximum

potential information of a BN as the sum of the maxi-

mum PIs of the individual nodes. Note, however, that
the probabilities of a node may not be at their maximum

uncertainty since we may have some a priori knowledge
which skews the probabilities. In this case, the PI is the
entropy of that skewed distribution associated with the

node.

Since we have made a distinction in this paper be-

tween aleatory and epistemic nodes, we need to define

which nodes need to be included in our definition of po-

tential information. We assert that only epistemic nodes

should be included as, by definition, the uncertainty in

aleatory nodes cannot be reduced by measurements and

those in epistemic nodes can. The decision between

which ones are epistemic nodes and which ones are

aleatory nodes is a modeling decision and can change

with point of view and over time and there is no general

rule that can be applied other than whether observations

of any other node in the network changes a node’s prob-

abilities.

We also can view the observing of a node to reduce

its uncertainty as gaining information about the node.

We call this kinetic information (KI) because it results
from a physical or cyber action and a change in the

BN as well as a reduction in the potential information

yet available to be gained. We can actively observe

the process associated with a node to obtain kinetic

information. Alternatively, by not observing a random

variable related to a dynamic process represented by a

node, the BN can leak KI over time which increases
its PI.
Currently, there is no unit for the uncertainty of

knowledge in a BN. We propose to use units of Knowl-
edge Entropy (KEn) to represent the uncertainty in a BN.

Zero KEn results when there is no uncertainty in any of
the epistemic nodes. There is precedence for this new

use of an old (if not archaic) word if one examines defi-

nitions found in the Oxford English Dictionary (Oxford

English Dictionary, 2017) which defines ken as:

² ken, v.1, 11. a. To know (a thing); to have knowl-

edge of or about (a thing, place, person, etc.), to be

acquainted with; † to understand. Now chiefly Sc.
² ken, v.1, 12. a. intr. or absol. To have knowledge (of
or about something). † Also with inf.: To know how
to, to be able to (obs.).

So we can refer to the KEn of a BN at any time

as measured in bits of uncertainty in our situation

knowledge. The KEn can change over time due to
the leakage of KI or the acquisition of KI through
observations, and can be computed as the sum of the

entropies of all epistemic nodes in the BN. Formally,

the knowledge entropy of a BN, KEn, is

KEn(t) =
X

all epistemic
nodes

H(t) (16)

and the amount of temporal Bayes information, TBI,
which results from a change in nodal probabilities or

network structure from time t0 to t1, is

TBI(t1) =KEn(t0)¡KEn(t1) (17)

As previously mentioned, TBI may be zero, positive,
or negative. Zero TBI means that no network informa-
tion was gained or lost over the time period although

there could be individual nodal information changes

whose net sum is zero. Positive or negative TBI indi-
cates a gain or loss of information respectively with a

concomitant change in our situation knowledge as rep-

resented by the temporal BN.

One would like to hypothesize that there is a con-

servation of knowledge law associated with BN, i.e.,

the KNowledge Entropy (KEn) is conservative, and that
there is a one-for-one exchange between KI and PI, but
this does not appear to be the case due to the conditional

probabilities relating nodes. Increasing or decreasing the
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TABLE 1.

Entropy of uniformly distributed probabilities based on the number

of bins.

# of bins in X Uniform

probability

log2(pi) PI =H(X) (bits)

2 0.500 ¡1:000 1.000

4 0.250 ¡2:000 2.000

5 0.200 ¡2:322 2.322

8 0.125 ¡3:000 3.000

uncertainty in one node may increase or decrease the en-

tropy in other nodes, but our preliminary investigations

lead us to conjecture that the gain in KI is not offset
by an equal loss in PI. This is a topic that bears further
investigation but is not the main point of this paper so

we leave it for now.

KEntotal 6=
X

PI+
X

KI (18)

We can now answer the question about what to do

about a node which is added to, or deleted from, a

dynamic BN and that is to simply consider it to be

adding or deleting potential information to or from

the knowledge represented in the BN. Adding a node

will increase the KEn, but by less that the PI of the
node if its connections affect the other probabilities.

Furthermore, the loss of information, KI, results in
an increase in the PI although not on an equivalent
basis. The acquisition of information, KI, by observing
a relevant RV decreases the PI. The total knowledge,
the KEn, in a structurally stationary BN is knowable

and computable. As with the question of conservation

of information in a BN, we defer this topic to a later

paper.

3. BN HARD/SOFT INFORMATION

We have already described the uncertainty asso-

ciated with kinematic state estimates utilizing the K-

filter formulation. This epistemic uncertainty is fully de-

scribed by the increase in a norm of the error covariance

matrix as it propagates over time or decreases with an

observation. Other similar physical state estimates have

continuous or discretized uncertainties that are straight-

forward to work with. Soft knowledge in BN, on the

other hand, requires additional explanation since it in-

cludes other forms of uncertainty as noted by Dragos

[21] namely

² Intrinsic uncertainties such as ambiguity, vagueness,
and precision

² Source related uncertainties which are a mixture of
facts and opinions

² Relational uncertainties which are concerned with in-
accuracies, overlappings, and contradictions in anal-

ysis

TABLE 2

Conditional Probability Table (CPT) of the TrackA Classification

node.

TrackA Int Obscured Combatant NonCombatant

Hostile Clear 75 25

Hostile Obscured 50 50

Not Hostile Clear 25 75

Not Hostile Obscured 50 50

Dragos [21] continues with methods for estimating

all of these uncertainties which will not be repeated

here. For our purposes, we will assume that soft un-

certainties can be estimated allowing us to compute en-

tropies of soft data.

The suitability of uncertainty in any form: : :hard or
soft, social or physical, quantitative or fuzzy: : :has been
shown by Kjaerulff [23] to be applicable to formula-

tion as a BN. “Note, that the method in this paper can

be applied to other evidential frameworks where inde-

pendent pieces of evidence are combined into a joint

evidence e.g., Bayesian combination. For more high-

dimensional problems, i.e., when it could be more suit-

able to utilize a graph structure for modeling depen-

dencies e.g. Bayesian Networks,: : :” That is, relations
among aleatory and epistemic processes such as the ex-

ample of Buede et al., [24] as shown in Figure 2, can

be represented in a causal BN, also from Buede, et al.,

as shown in Figure 3.

4. EXAMPLE GLOBAL TEMPORAL BN
COMPUTATIONS

The following simplified examples will demonstrate

some of the concepts introduced in this paper. First,

looking at an individual node and computing the en-

tropy of a uniform distribution of discrete values in ac-

cordance with (11), we see as exemplified in Table 1 that

the potential information of the jth node is simply the
log2(number of bins in jth node) and the potential infor-
mation of the BN consisting of m nodes each having kj
values associated with each nodes.

PI(Nj) =
mX
j=1

¡ log2 kj bits (19)

If each node were a true/false hypothesis node, then

there would be one bit of PI/node resulting in an m-
node BN containing an upper bound of m-bits of PI
since the connectivity of the BN reduces the actual

amount of information that is available. Clearly as one

changes the number of uniformly distributed bins/node,

the summation of PI is easily calculated as well as the
amount of PI if a node is added or deleted.

4.1. Simple BN PI and KI example for epistemic
nodes

In order to instantiate some of the concepts in-

troduced here, we perform PI, KI, and KEn com-
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Fig. 5. Classification evidence at time T0.

Fig. 6. Classification evidence at time T30 showing a change in the BN’s initial knowledge with a KEn= 5:58 and the result of a loss of

information in the TrackA Classification node resulting in an increase in KEn to 5.95.

putations on a simple 8-node BN as shown in Fig-

ure 4, with all the nodes being epistemic and uniform

probability nodes, except one (Obscuration) which is

aleatory. Associated with the TrackA Classification and

TrackB Classification nodes is a Conditional Probabil-

ity Table (CPT) as shown in Table 3.

For our numerical example, we use the sensitivity

as computed in Norsys Netica [25] BN program. The

mathematical formulations utilized by Netica are docu-

mented in their on-line documentation [26]) and are the

same as (19) above. Furthermore, we have done sample

calculations outside of Netica utilizing the net of Fig-

ure 4 without the aleatory “obscurations” node and the

results of our calculations match those produced by the

Netica sensitivity analysis.

Referring to Figure 4, the initial entropy of the

Adversary Intention node at time t0 is the expected
1.0 bits with uniform distributions in the other two

nodes. If the TrackA Classification node of Figure 4

is set to 100% as shown in Figure 5 and Figure 6,

the Adversary Intention changes to 65% Hostile/35%

Non-Hostile and the BN KEn changes from 7 to 5.58

indicating a global network decrease in uncertainty (or

increase in KI) of 1.42 bits as a result of the sensing

action which provided the Combatant classification with

100% certainty.

We demonstrate the temporal increase in uncer-

tainty in the TBN by changing the probabilities of the

TrackA Classification node. At some later time, t30, we
assume the uncertainty has decreased from 100% Com-

batant to 95% Combatant/5% Non-Combatant. This

temporal loss of information results in the Adver-

sary Intention changing to 63.5% Hostile/36.5% Non-

Hostile and the BN KEn increasing from its t0 of 5.58
to its t30 value of 5.95 of a KI loss of 0.07 bits.
As an example of an alternative type of information

loss related to a different sensing node, TrackA Activity,

Figure 7 and Figure 8 shows the BN of Figure 4 with

initial, non-uniform uncertainties in the TrackA Activity

node of 100% Hostile/0% non-hostile. With this ini-

tial condition, the Adversary Intention becomes Hostile

74%/Non-Hostile 26% for an initial KEn at t0 of 5.06
bits.

We model the temporal change in our certainty of

the TrackA Activity node by decreasing the uncertainty

at some later time, t30, from 100% Hostile to 80%/20%

as shown in Figure 7 and Figure 8. This temporal loss of

information results in the Adversary Intention changing
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Fig. 7. Activity evidence at time T0.

Fig. 8. Activity evidence at time T30 showing a change in the BN’s initial knowledge with a KEn= 5:06 and the result of a loss of

information in the TrackA Activity node resulting in an increase in KEn to 6.41.

TABLE 3

Table summarizing the results of information loss over time due to

decreased uncertainty in classification and, alternatively, identity. No

obscuration in the aleatory node.

Scenario with no obscuration Total Knowledge Entropy

(epistemic only)

No evidence 7.00

Classify TrackA, t0 5.58

Classify TrackA, t30 5.95

Identify Activity TrackA, t0 5.06

Identify Activity TrackA, t30 6.41

to 64.4% Hostile/35.6% Non-Hostile and the BN KEn
increasing from its t0 of 5.06 to its t30 value of 6.41 of
a KI loss of 1.35 bits. The loss in KEn with time is
summarized in the table of Table 3.

This example shows that if we were to use a BN

with no evidence and a KEn of 7.0 with the expected
information gains at t0 of 1.42 bits if we choose to clas-
sify as opposed to 1.94 bits if we choose to identify, we

would choose to classify since it yields the maximum

information. If, on the other hand, if we chose to wait

until t30 the expected information gain from the initial

KEn of 7.0 would yield 1.05 bits for classify and 0.59
bits for identify showing that accounting for the tempo-

ral loss of information from t0 to t30 results in a different
choice of which sensor function to use.

Other findings have been computed which result

in higher losses of information while most result in a

positive flow of KI into the BN.

4.2. Information in the presence of aleatory node

Remembering that the computation of KEn only in-
cludes epistemic nodes, the question arises as to the ef-

fect of an aleatory node on the amount of information

gain and choice of sensor function if one makes differ-

ent assumptions about the probabilities in an aleatory

node. If the aleatory Obscuration node is changed from

its 100% clear as used for the previous example to 75%

clear/25% obscured, the following results. The results

are shown in Table 4.

Referring to Figure 4, the initial entropy of the Ad-

versary Intention node at time t0 is still the expected 1.0
bits with uniform distributions in the other two nodes.

If the TrackA Classification node is set to 100%, the

Adversary Intention changes to 61.3% Hostile/38.8%

Non-Hostile and the BN KEn changes from 7 to 5.77
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TABLE 4

Table summarizing the results of information loss over time due to

decreased uncertainty in classification and, alternatively, identity.

Twenty-five percent obscuration in the aleatory node.

Scenario with 25% obscuration Total Knowledge Entropy

(epistemic only)

No evidence 7.00

Classify TrackA, t0 5.77

Classify TrackA, t30 6.10

Identify Activity TrackA, t0 5.12

Identify Activity TrackA, t30 6.43

indicating a global network decrease in uncertainty (or

increase in KI) of 1.23 bits as a result of the sensing
action which provided the Combatant classification with

100% certainty.

As before, we model the temporal change in our cer-

tainty of the TrackA Classification node by decreasing

the uncertainty at some later time, t30, from 100% Com-

batant to 95%/5%. This temporal loss of information

results in the Adversary Intention changing to 60.1%

Hostile/39.9% Non-Hostile and the BN KEn increasing
from its t0 of 5.77 to its t30 value of 6.10 of a KI loss
of 0.33 bits.

As an example of an alternative type of infor-

mation loss under aleatory uncertainty related to a

different sensing node, the TrackA Activity, node is

changed to 100% Hostile/0% non-hostile. With this ini-

tial condition, the Adversary Intention becomes Hostile

74%/Non-Hostile 26% for an initial KEn at t0 of 5.12
bits.

Again, modeling the temporal change in our cer-

tainty of the TrackA Activity node by decreasing the

uncertainty at some later time, t30, from 100% Hos-

tile to 80%/20%. This temporal loss of information

results in the Adversary Intention changing to 64.4%

Hostile/35.6% Non-Hostile and the BN KEn increasing
from its t0 of 5.12 to its t30 value of 6.42 of a KI loss
of 1.30 bits. The loss in KEn with time is summarized
in Table 4.

This aleatory example, Table 4, shows that if we

were to use a BN with no evidence and a KEn of 7.0,
choosing to classify would yield an expected informa-

tion gains at t0 of 1.23 (7:0¡ 5:77). If, instead, choosing
to identify would yield 1.88 bits (7:0¡ 5:12). Because
of this expected differential information gain, would

choose to identify since it yields the maximum infor-

mation. If, on the other hand, we choose to wait until

t30 the expected information gain from the initial KEn
of 7.0 would yield 0.9 bits (7:0¡ 6:1) for classify and
0.57 bits (7:0¡ 6:43) for identify, leading us to choose
to classify as the maximum information choice. That is,

accounting for the temporal loss of information from

t0 to t30 results in a different choice of which sensor
function to use in order to maximize the information

gain for a single observation.

For this example of changes in our a priori assump-
tion about the probabilities associated with an aleatory

node, there is a change in the expected information gain

even though the entropy of the aleatory node is not in-

cluded in the information measure. This shows that our

model assumptions about the unmeasurable causal prob-

abilities can affect our choice of sensing actions since

they may affect our expected situation information ex-

pected value rate (EIVRsit).

5. CONCLUSION

The differentiation between aleatory and epistemic

nodes in Bayes nets has been defined and illustrated. It

is also shown that BN are not limited to hard data as the

analogy to Kalman-filter shows, but soft data nodes can

be included since there exist soft data entropy measures.

The fact that both hard and soft data uncertainty mea-

sures can be expressed as entropies allows one to put the

two types of knowledge in the same BN and apply in-

formation measures based on entropy changes. Potential

information and kinetic information are defined and it is

conjectured that a conservation of knowledge law exists,

but the details of this will be the subject of further re-

search. Finally, a simple example of a temporal BN was

presented showing how the leakage of information over

time could lead to increases in entropy over time which

could affect the choice of expected situation informa-

tion gain when utilizing an information based sensor

measurement (IBSM) approach to sensor management.
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