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In extended object tracking, a target is capable to generate more

than one measurement per scan. Assuming the target being of ellip-

tical shape and given a point cloud of measurements, the Random

Matrix Framework can be applied to concurrently estimate the

target’s dynamic state and extension. If the point cloud contains

also clutter measurements or origins from more than one target,

the data association problem has to be solved as well. However,

the well-known joint probabilistic data association method assumes

that a target can generate at most one detection. In this article, this

constraint is relaxed, and a multi-detection version of the joint inte-

grated probabilistic data association is proposed. The data associa-

tion method is then combined with the Random Matrix framework

to track targets with elliptical shape. The final filter is evaluated in

the context of tracking smaller vessels using a high resolution radar

sensor. The performance of the filter is shown in simulation and in

several experiments.
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I. INTRODUCTION

Radar systems have become standard for many auto-
motive applications like adaptive cruise control or lane
change assistance. Customarily, these sensors have the
advantage that they need low mounting space, have low
power consumption, are available at low cost, and still
have a good resolution for ranges up to approx. 200 m.
These features make the sensor also interesting for al-
ternative applications. In this paper, these kind of radar
sensors are considered for application in marine envi-
ronment. Radars in this context typically operate with
3 GHz or 9 GHz and, as a consequence, have rather
large apertures and high energy consumption. Small un-
manned surface vessels (USV) usually do not have suf-
ficient space or energy resources for such systems. On
the other hand, very often these types of vessels operate
in harbors or on rivers and in general require only short
range surveillance [1]. Thus, automotive radar sensors
(ARS) are an interesting alternative.
When applying these sensors in marine environment,

the extension of a scanned vessel in comparison to
sensor resolution is very high. Hence, at each scan, a
point cloud of detections from an object is provided
by the sensor. This leads to an extended target tracking
problem. In order to solve this, numerous algorithms
have already been proposed, see e.g. the surveys in [2]
and [3].
Assuming the sensor does not generate stable but

fast fluctuating reflection centers, an estimation of the
target extent can be obtained by analyzing the noise dis-
tribution. If the measurements are randomly distributed
over the target extent, or the noise of the measurements
is correlated with the target’s size, [4] presented an ap-
proach for simultaneously estimating the state and ex-
tension of a target. There, the target’s physical extension
is assumed to be of an elliptical shape and is repre-
sented by a symmetric positive definite random matrix.
For many real sensors, the measurement spread is only
partially dependent on the target’s extent and also on
the sensor’s accuracy. Thus, [5] made the proposition
to model this spread as a linear combination of exten-
sion noise and measurement noise. Due to the heuristics
in [5], [6] derived a more complex filter update step
which improves the estimation results. A unification of
[4] and [5] was proposed in [7] and further extended for
non-elliptical models in [8]. An alternative for arbitrary
shapes is presented in [9], where Random Hypersurface
Models are used to estimate the extent of an object.
Besides the pure state estimation task, the measure-

ment to track data association problem has to be solved.
A typical problem in Extended Target Multi Object
Tracking (ET-MOT) is shown in Figure 1. Each object
generates several detections, and, in combination with
the clutter measurements, using the detections only it
is unclear which target created how many detections,
and where these measurements are located. A first data
association method in the context of the Random Matrix
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Fig. 1. Typical situation in extended object tracking if the targets
have an elliptical shape. The dashed lines indicate a typical

association threshold. Only detections within are considered for
update of the central track.

framework is given in [10] and [11], where the Prob-
abilistic Multi-Hypothesis algorithm is applied. Using
Random Finite Sets, various Multi Object trackers have
been presented, e.g. in [12]—[14]. Although the results
of the Labeled Multi Bernoulli in [14] are very promis-
ing, in the authors opinion it is worth to also take a
look at more traditional approaches and to investigate
how these can be modified to be applied in ET-MOT.
One of the most popular methods for assigning mea-

surements to a track is the Probabilistic Data Associa-
tion (PDA) filter [15]. It performs a measurement update
for each possible association and computes for each as-
sociation the corresponding likelihood that the selected
measurement is correct, i.e. was originated by the tar-
get. The a posteriori estimate of the track is then given
by the weighted sum of the updated state estimates. In
case that more than one object is present, the PDA is
extended to the Joint PDA (JPDA), which also reflects
the partitioning of the measurements to the tracks when
calculating the association likelihood.
Besides the state estimate, for a multi-object tracker,

the existence probability is of relevance, as well. There-
fore, [16] modified the PDA to integrate also the esti-
mation of the existence likelihood into the filtering and
data association process. The new methods are named
IPDA for the single object case and JIPDA for the multi-
object case [17], respectively, where the letter ‘I’ stands
for “Integrated.”
All these PDA algorithms rely on the common as-

sumption that an object can generate at most one mea-
surement during a sensor scan cycle. As already stated
in the abstract, for extended object tracking, this as-
sumption does not hold in general. To make PDA feasi-
ble in this context, spatial clustering of the detections in
combination with a JPDA is proposed in [18]. A version
of the PDA that can handle more than one detection was
presented in [19] and a Multi-Detection JPDA in [20].
The MD-JPDA was used to handle multi-path reflec-
tions from over-the-horizon radars. With the General-
ized PDA, also the existence estimation was introduced
into the MD-PDA by [21]. Since for multi-target track-
ing algorithms, the existence likelihood estimation is

essential, in this paper, a Multi-Detection JIPDA (MD-
JIPDA) is derived, as an extension to the JIPDA to as-
sign more than one measurement to an object.
The structure of this paper is as follows: First,

the general derivation of the MD-JIPDA is given in
section II. In section III, an implementation of the
MD-JIPDA that uses the concept of Random Matrices
is proposed. It gives a short introduction to Random
Matrices and also illustrates an approximation scheme
of the MD-JIPDA to make it real-time applicable. Some
results of Monte Carlo Simulations for different sensor
characteristics and scenarios are shown in section IV. In
the context of tracking smaller vessels in close distance
using an automotive radar sensor on USV, also some
experimental results are presented in section V, and
conclusions are drawn in section VI.

II. MULTI DETECTION—JOINT INTEGRATED
PROBABILISTIC DATA ASSOCIATION

In the original Integrated Probabilistic Data Associ-
ation (IPDA) approach, a track is considered to consist
of two components [22, p. 142]: The object’s dynamic
states and the object’s existence estimates. While the
dynamic state is a continuous random variable, the ex-
istence is a binary variable that only can take the values
“object exists” and “object does not exist.” One central
assumption of the IPDA filter, as proposed in [16], is
that an object can generate at most one measurement
at time k. The Generalized Probabilistic Data Associ-
ation Filter relaxes this constraint in such a way that
up to nmax measurements can be originated by a single
object. The obtained GPDA filter can be applied for
multi-object cases only if the objects are well separated
in the measurement space. If the targets are in close
proximity to each other, the GPDA will tend to merge
tracks. To avoid this, in this section, a new algorithm,
that can be used to consider joint track to measurement
associations is described.
In the following, the dynamic state of track t at

time k will be referred to as xtk, and Â
t
k describes the

event that the object exists and Â̄tk the complementary
event. If a set of new measurements is received, for
each track, only those measurements are considered that
fall into some elliptical association gate with constant
probability PG. Tracks that share at least one common
measurement in their association gate are put together in
a new association cluster, and a joint cluster volume Vk
can be computed. Since gating and track clustering are
commonly known techniques, the reader is referred to
the literature for further information, e.g. [23, p. 334ff].
The set of nk gated measurements will be denoted as
Zk = fz1k , : : : ,z

nk
k g and Z

k the measurements received up
to time k.
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From the Bayes’ filter update equation, the posterior
probability of the target existence is given by:

p(Âk j Z
k)

=
p(Zk j Âtk)p(Âk j Zk¡1)

p(Zk j Â̄tk)p(Â̄tk j Zk¡1)+p(Ztk j Âk)p(Âtk j Zk¡1)

(1)

The predicted existence probability from time k¡ 1 is
computed from

p(Âtk j Z
k¡1) = psurv ¢p(Â

t
k j Z

k¡1), (2)

where, for simplicity, the probability of object survival
psurv is here considered as state independent. Using
a proper existence time constant ¿Â for a track, the
probability of survival is only conditioned on the sample
time T with

psurv = e
¡T=¿Â : (3)

To evaluate the likelihoods in (1), the following
assumptions are made:

² Clutter is uniformly distributed over the volume V:

pCls (n) = V
¡n

² The number of clutter measurements is Poisson dis-
tributed with constant clutter rate ¸:

pClc (n) =
(¸V)n

n!
e¡¸V

² An object is detected by the sensor with probabil-
ity PD.

² The number of measurements m generated by one
object t follows an arbitrary distribution ptc(m).

² The spatial model for a single measurement of an
object t is denoted pts(zk j xk), which is typically a
Gaussian of the form

pts(zk j x
t
k) =

1
PG
N (zk;Hxk,§k),

where H is the observation matrix and §k the corre-
sponding covariance.

A. Joint Association Probability

Let Hi,j denote a joint association event that de-
scribes one hypothesis how the nk measurements within
an association cluster have been created. The joint asso-
ciation events can be grouped into joint detection events
Di which assign the same detection count pattern. One
pattern assigns a specific measurement count mt to track
t, e.g. for the situation in Figure 1 the event Hi,1 =
ff4,7g,f3,5,6gg that assigns measurementsM4 andM7
to track one, andM3,M5,M6 to track two belong to the
same detection event Di as Hi,2 = ff1,7g,f3,5,6gg.

The a posterior probability of a joint event Hi,j is
defined as

p(Hi,j j Z
k) = ´H ¢p(Zk,nk,Hi,j ,Di j Z

k¡1)

= ´H ¢p(Zk j nk,Hi,j ,Di,Z
k¡1)

£p(nk j Hi,j ,Di,Z
k¡1)

£p(Hi,j j Di,Z
k¡1) ¢p(Di j Z

k¡1): (4)

With this definition, in order to compute the indi-
vidual probabilities for each joint detection event, the
tracks can be separated in two sets:

1) Tmis(Di): Set of tracks with no allocated measure-
ments

2) Thit(Di): Set of tracks with at least one allocated
measurement

Let further Atmis denote an event, where no mea-
surement is assigned to track t and Athit for at least one
assigned detection.
For each track t in Tmis(Di) the prior probability is

p(Atmis j Z
k¡1) = 1¡PtDP

t
Gp(Â

t
k j Z

k¡1),

and if one or more measurements are assigned

p(Athit j Z
k¡1) = PtDP

t
Gp(Â

t
k j Z

k¡1):

With these two definitions, the prior probability of a
joint detection event is [22, p. 161]

p(Di j Z
k¡1) =

Y
t2Tmis(Di)

(1¡PtDP
t
Gp(Â

t
k j Z

k¡1))

£
Y

t2Thit(Di)

(PtDP
t
Gp(Â

t
k j Z

k¡1)): (5)

In the next step, consider that Di assigns m1 mea-
surements to track one, m2 to track two, and mnT up to
track nT. The total number of combinations for joint as-
sociation events Hi,j in Di is given by the multinominal
coefficient. Since all events are a priori equally likely,
the a priori probability that event Hi,j is true is given by
the inverse of the multinominal:

P(Hi,j j Di,Z
k¡1) =

nk

nk ¡mT,m1, : : : ,mnT

¶¡1
= n¡1M ,

(6)
where mT =m1 + ¢ ¢ ¢+mnT is the total number of as-
signed measurements in the detection event Di.
In the next step, the probability of receiving nk

measurements is defined using the cardinality models
pClc (n) for clutter, and p

t
c(n) for the target:

p(nk j Hi,j ,Di,Z
k¡1) = pClc (nk ¡mT)

Y
t2Thit(Di)

ptc(mt) (7)

In the last step, the probability for the newly received
measurement set Zk, given all the quantities above, is
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defined as

p(Zk j nk,Hi,j ,Di,Z
k¡1)

= pCls (nk ¡mT)
Y

t2Thit(Di)

Y
l2M

pts(z
l
k j x

t
k): (8)

In this equation, pCls (n) is the spatial distribution of clut-
ter and p(zlk j xk) is the spatial measurement model. The
set M with cardinality mt comprises of the indices of
the measurements assigned to track t in hypothesis Hi,j .
Inserting (5), (6), (7) and (8) into (4) finally yields:

P(Hi,j j Z
k)

= ´H ¢p
Cl
s (nk ¡mT)p

Cl
c (nk ¡mT) ¢ n

¡1
M

£
Y

t2Tmis(D)

(1¡PtGP
t
Dp(Â

t
k j Z

k¡1))

£
Y

t2Thit(D)

PtGP
t
Dp

t
c(mt)p(Â

t
k j Z

k¡1)
Y
l2M

pts(z
l
k j x

t
k)

(9)

Since all feasible association hypotheses are mutu-
ally exclusive and form an exhaustive set, the normal-
ization constant ´H can be derived by demandingX

H

P(Hi,j j Z
k) = 1:

B. Track-Based Association Probability
From this point, the MD-JIPDA is derived exactly

the same way as the JIPDA in [17]: The hypotheses
set H now, in general, contains several hypotheses that
assign the same measurement combination for the tth
track. Let Amti denote the ith combination hypothesis
of assigning m measurements to a track t with i=
[1, : : : ,

¡
nk
mt

¢
]. For example from Figure 1, the first two

combinations are A21 = f1,4g, which assigns detections
M1,M4 and A22 = f4,7g with detections M4,M7.
Let H̃ 2 H denote the set of hypotheses with a

specific combination Amti assigned to track t. For each
combination in Amti n fA01g, the probability that it was
generated by t and the object exists, is then given by

p(Âtk,A
mt
i j Z

k) =
X
H̃2H

P(H̃ j Zk): (10)

The set of hypotheses, where no detection is assigned
to a track is denoted H0. Then, in case of a missed
detection, following the probability that the object exists
is given by

p(Âtk,A
0
1 j Z

k) =
(1¡PtDPtG)p(Âtk j Zk¡1)
(1¡PtDPtGp(Âtk j Zk¡1))

X
H̃02H

P(H̃0 j Zk):

(11)
The final object existence is given by summing up

over all possible measurement combinations Amti 2 A:

p(Âtk j Z
k) =

X
A

p(Âtk,A
mt
i j Z

k) (12)

The association likelihoods are then given by

p(Amti j Z
k) = p(Amti j Â

t
k,Z

k) =
p(Âtk,A

mt
i j Zk)

p(Âtk j Zk)
, (13)

since assigning a measurement to a track requires the
underlying assumption that the track also exists. Since
(10)—(13) are basically the same equations as for a point
target, the reader is referred to [22, p. 162ff.] for a more
detailed derivation.
With the association likelihoods, the new posterior

state estimate is computed by

p(xtk j Z
k) =

X
A

p(xtk j Z
k,Amti )p(A

mt
i j Z

k), (14)

where p(xtk j Z
k,Amti ) is the computed measurement up-

date for a specific combination e.g. obtained via stan-
dard Kalman filtering.

III. IMPLEMENTATION USING RANDOM MATRICES

For the derivation of the MD-JIPDA given above,
very few assumptions regarding the sensor model have
been made. Since an ET-MOT has to concurrently esti-
mate the object’s kinematic state and extension, a large
variety for the spatial model pts(z

(j)
k j xtk) and measure-

ment cardinality model ptc(mt) are possible. As one
possible approach, in this section, the implementation
of MD-JIPDA using the Random Matrix framework is
briefly described.
It is assumed that each object is of elliptical shape

and its extension is described by a symmetric positive
definite random matrix Xk. The extension is considered
to be statistically independent of the kinematic state
and of the cardinality model as well. It shall only
influence the spatial model which is then rewritten as
pts(z

(j)
k j xtk,X

t
k).

For the measurement cardinality model ptc(mt), using
a Poisson distribution is the most common way. How-
ever, the expected number of detections per scan can be
different for each object. Thus, this parameter, denoted
as measurement rate °k, has to be estimated in parallel
as well.
With these two new quantities, the posterior state

estimate is now given by

p(xtk,X
t
k,°

t
k j Z

k) =
X
A

p(xtk,X
t
k,°

t
k j Z

k,Amti )p(A
mt
i j Z

k),

(15)
The individual steps for solving this equation are ex-
plained in the following: First some details on the ran-
dom matrix framework are given and some considera-
tions on the measurement cardinality model are exem-
plified. Since for real-time applications, evaluating all
possible combinations Amti may require too much time,
in this section, a proposal is made to handle the expo-
nential increase of the hypotheses trees. Finally, the al-
gorithm applied for track birth and deletion is presented
as well.
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A. Random Matrices

The seminal work for the Random Matrices frame-
work for estimation of extended objects was presented
in [4]. Using the Bayes’ filter, a concept to estimate
kinematic target state and its physical extension in par-
allel was established. Therefore, the following assump-
tions on the target characteristics are made: First, it is as-
sumed that the shape of the target can be represented by
an ellipse. Further, the direction of the object’s motion
shall be independent of the orientation of the ellipse.
Finally, as the most important assumption, the noise

of the measurements is mainly caused by the physical
extension. For a measurement zjk at time k it is assumed
that it can be described by a linear function of the
state xk, superimposed by a normally distributed noise
term wk:

zjk =Hxk +wk (16)

Assuming that the noise part of the measurement is
mainly due to the size of the object, the probability den-
sity function for a set of measurements Zk = fz1k , : : : ,z

nk
k g

is defined as:

p(Zk j nk,xk,Xk) =
nkY
j=1

N (zjk;Hxk,Xk) (17)

Substituting this relationship in the Bayes’ filter recur-
sion leads to an analytic solution for state expectation
and covariance update as well as for the update of Xk.
However, for many real-world sensors, the extension

driven noise is superimposed by some non-negligible
sensor driven measurement noise. For example, radar
detections are generally in polar coordinates with range
r and detection angle Á. Thus, if targets are detected
in greater distance, this leads to a larger spread of the
measurements in azimuth. Disregarding this fact for the
estimation of the physical extension would lead to an
overestimation of the true size when the object is far
away.
To include the contribution of the sensor error to

the measurement spread, [5] proposed the probability
density function in the following way:

p(Zk j nk,xk,Xk) =
nkY
j=1

N (zjk;Hxk,cXk +Rk) (18)

However, for this model, no exact analytical solution
for p(xk,Xk j Zk) can be found. To obtain a recursive
update scheme, in [5] the assumption is made that the
target extent is predicted with sufficient accuracy, which
makes it possible to separate kinematic and extension
updates.
As already mentioned in the introduction, a more

general update scheme using the sensor model as in (18)
was presented in [6]. According to [6], this approach
has a significant better extension estimate, but at the
price of a small decrease in position accuracy, and
only if the kinematic state uncertainty is sufficiently

small. Some analysis by the authors indicated that in
combination with a GPDA, it is also quite vulnerable
to false associations. The approach by [5] seems to be
more robust, so only this approach is further considered
here.
The integration of both update schemes into the

GPDA is straight forward: For computation of p(xk,Xk j
Zk,Ami ) the update schemes can be implemented exactly
as given in the cited papers. For the track prediction,
the method proposed in [5] is used. For the sake of
completeness, the prediction and update equations are
given in the appendix.
The final tracker is designed for radar sensors, so

for filtering, the detections have to be transformed from
polar to Cartesian space using

zk =
·
rk cos(Ák)

rk sin(Ák)

¸
: (19)

Since the polar measurement standard deviation ¾r for
range and ¾Á for the detection angle will be small, the
associated covariance matrix in Cartesian coordinates is
approximated using [24]

Rk ¼
1
2
(¾2r ¡ r

2
k ¾

2
Á)
·
b+cos(2Ák) sin(2Ák)

sin(2Ák) b¡ cos(2Ák)

¸

b =
¾2r + r

2
k ¾

2
Á

¾2r ¡ r2k ¾2Á
: (20)

This makes the measurement noise state dependent,
which may have serious impact in the resulting exten-
sion estimate.
For the computation of association likelihoods in (9)

with the Random Matrix framework, the spatial model
is modified to pts(z

(j)
k j xtk,Xtk). With respect to (18), it

is defined to be a normal distribution, with expectation
Hxtkjk¡1 and the covariance matrix given by

§k =HP
t
kjk¡1H

T+ cXtkjk¡1 +Rk:

B. Cardinality Model

In general, a target is considered to give birth to a
random number of detections in each scan. This number
is in general Poisson distributed with nearly constant
mean °. In a multi-object scenario, the individual targets
may also have different values for °, which are not
known a priori.
As long as the number of detections remains a small

single digit value (typ. ° < 5), it can be sufficient to use
an average number over all targets for °: The Poisson
distribution is rather indifferent for those values e.g. for
expecting ° = 3 the measurement probabilities ptc(m)
for m= 1 : : :6 are between [0:05,0:22]; if expecting
4, the values are in the same interval. In practice,
these little differences have no large impact on the
association likelihoods, compared to the spatial models.
For example, if m changes, the clutter model with its
factor Vnk¡m has, in general, an impact factor in the
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region to the power of ten, while the cardinality model
only changes by a factor of three at most.
However, in the case of higher detection counts, the

values of the Poisson distribution differ by orders of
magnitude as well. If the expected values are variable,
it is necessary to estimate them together with kinematic
state and extension. In [13], it was proposed to model
the distribution of ° by a Gamma Distribution and
estimate its parameters in parallel by assuming that it
is actually independent of the kinematic and extension
densities. This concept can be applied to the MD-JIPDA
as well.
The Gamma p.d.f. is defined with the two parameters

®k > 0 and ¯k > 0 as

pGAM(°;®k,¯k) =
¯®kk
¡ (®k)

°®k¡1e¡¯k°:

The expected cardinality is obtained from the expec-
tation value °k = ®k=¯k. The cardinality model for the
MD-JIPDA is then obtained from the joint likelihood
of the Poisson distribution with parameter ° and the
gamma distribution using

ptc(m) = ˜́
c ¢
Z
pPOI(m j °)pGAM(° j Z

k¡1)d° (21)

= ´c ¢
1
m!

nmaxX
°=1

°
m+®t

kjk¡1¡1e
¡°(¯t

kjk¡1+1):

The normalization constant ´c has to account for the
fact that the constraint

Pnmax
m=1p

t
c(m) = 1 still must be

fulfilled. The computation of the predicted parameters
®tkjk¡1,¯

t
kjk¡1 of the gamma distribution and also its

update equations are given in the appendix as well.

C. Hypotheses Generation

It is easy to see that the MD-JIPDA suffers even
more from the exponential increase of possible asso-
ciation hypotheses than the standard JIPDA does. To
make the MD-JIPDA computationally feasible for com-
plex scenarios with several tracks within one association
gate, or if each track can evoke a large number of mea-
surements, an approximation scheme has to be found
in such a way that not all theoretically possible com-
binations have to be evaluated. This reduction problem
is a known issue for an ET-MOT. To solve this prob-
lem, the RFS approaches, cited in the introduction, use a
combination of distance and Expectation Maximization
partitioning to cluster nearby measurements and remove
unlikely combinations.
For simplification of the MD-JIPDA, a similar con-

cept is proposed in this paper: First, a k-means clus-
tering is applied to the gated measurements for each
track individually. The number of clusters should still
be larger than the number of tracks in the specific gate.
When the number of clusters is chosen too small, the ef-
fect that measurements from different objects are put in
the same cluster is very likely to happen, as was pointed

out in detail in [12]. This would also somehow foil the
idea of a PDA since the association tree would be very
small. The authors have made good experience if the k-
means creates at least as many clusters as three times the
number of tracks. This ensures that only very few clus-
ters contain measurements of several objects since each
object is sufficiently often split. Of course, dependent
on the clutter rate or distribution of the measurements
on target, a higher cluster number may be required.
If j clusters have been created, then CA · 2j single

object association combinations are possible. Given nT
tracks in the joint association gate, the total number of
joint multi-object hypotheses is CH < (CA)

nT . Even in
the case of five clusters per track and three tracks in a
common gate, this can lead to several hundred thousand
joint hypotheses, which might be beyond of a real-time
implementation. Thus, as a second step, it is considered
that by the user, a maximum value for CH is given, from
which with the relation above, a maximum value for CA
is derived. Since the number of single object combina-
tions created after the k-means cluster can be signifi-
cantly higher, from these combinations the CA best are
selected according to the cardinality model (21). Sam-
pling proportional to the cardinality model ptc(m) has
the advantage that combinations with highly probable
detection count m are preferred. For example, if ° = 5
detections were expected and CA = 20, assuming a pure
Poisson distribution, 4 combinations that assign m= 5
detections are selected, but only one for m= 1. For each
count m, the best combinations from the spatial model
are chosen. If for a specific count m more combinations
are desired than actually available, the next available
count is selected. Only for these selected single associ-
ation combinations, the joint association hypotheses are
built. Please note that when using a reduced number of
joint hypotheses, the multinominal coefficient in (9) has
to be replaced by the actually generated combination
count of each joint detection association event.

D. Birth Model

The basis of a new track is formed by those mea-
surements that have not been assigned to a track during
the data association process. Based on these detections,
first a DBSCAN algorithm is executed to cluster closely
spaced measurements. For each cluster, a new track is
initialized. The initial existence likelihood is computed
based on the number of measurements in a cluster and
its distance to existing tracks. Consider a measurement
cluster with mean z̄ that contains nz measurements, then
the initial probability is

p(Â0) = ¯birth ¢p
card
birth(nz) ¢p

sp
birth(z̄): (22)

The constant ¯birth denotes the general likelihood, typ-
ically selected as the average number of new born ob-
jects per scan. The likelihood pcardbirth(¢) accounts for the
probability that a specific number of detections are part
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of a new track. Here, it is proposed to use a typical
measurement cardinality model ptrefc as basis and set

pcardbirth(nz) =
nzX
i=1

p
tref
c (i): (23)

This model ensures that if the number of detections in
the cluster increases, also the probability of a new track
is increased.
The spatial model accounts for the distance between

the centroid and already existing tracks:

pspbirth(z̄) = 1¡ exp min
t21,:::,nT

fkz̄¡ ztkjkk
2g=¾2d

¶
(24)

The distance kz̄¡ ztkjkk denotes the Euclidean distance
between the centroid and the expected measurement
of track t. From all available tracks nT, the minimum
distance is selected to evaluate pspbirth. With the variance
¾2d , the desired distance from the centroid of an existing
track to a new track candidate can be specified.
Each new track is initialized at the center of the se-

lected cluster using the cluster spread as initial extension
estimate. If a cluster contains only very few detections,
some minimal size should be used to ensure numeri-
cal stability. The track is deleted when at any time the
existence probability falls below some small threshold.

IV. SIMULATION RESULTS

The performance of multiple detection JIPDA using
the Random matrix update schemes given by [5] are
evaluated in two sets of Monte Carlo simulations first.
One set of simulation is designed with respect to the de-
sired real data application: A high-resolution automotive
radar that is mounted on an unmanned surface vessel or
a smaller recreational craft. The targets to be tracked are
vessels with an overall length below 10 m. For clarity,
during maneuvers, in contrast to the true behavior of a
vessel, it is assumed that the major axis of the extension
ellipse is always aligned with the direction of motion of
the object. The second set of simulations is designed
to evaluate the capabilities of the MD-JIPDA when a
higher number of detections per object is created, and a
complete evaluation of the association tree is infeasible.
In all simulations, the coordinated turn model with

xk = [x,vx,y,vy,!]
T is used as motion model, with Carte-

sian positions x,y, the corresponding velocities vx,vy
and the turn rate ! around the vertical axis.
For the evaluation of each scenario, the modified

version of the optimal sub-pattern assignment (OSPA)
metric, as introduced in [13], is applied. This modifi-
cation enhances the OSPA to incorporate also the esti-
mated target size Xkjk and measurement cardinality °kjk
of an object.

A. Low Detection Count Scenarios

To evaluate the joint data association, one scenario
with four vessels and one scenario with two vessels

are considered. For all scenarios, the measurements are
assumed to be uniformly distributed over the vessel’s
extension, and the cardinality is Poisson distributed with
constant mean. The sensor reports its measurements in
polar coordinates, where the accuracy of a point target
is ¾R = 1:0 m in range and ¾Á = 0:1

± for the bearing
angle. The observation area is set to 200 m£ 200 m,
with the sensor located in the center and its sample time
T = 1=15 s. Two different clutter rates are considered:
A lower case with a mean of 8 false alarms per scan,
(¸8 = 2 ¢ 10¡4=m2) and a high clutter case with 80 false
positives (¸80 = 2 ¢ 10¡3=m2). As a further challenge, a
different probability of detection is considered in both
cases: for the medium case, it is set to 95% and for the
high clutter case it is reduced to pD = 80%.
For tracking and filtering the following parameters

are used: The motion model process noise is set to
¾V = 0:1 m/s

2 and ¾! = 1:0
±=s. The sensor noise to

extension noise ratio in (18) is set to c= 1=4, and
the time constant for the capability of changes in the
extension is set to 5 s. The decay constant for track
existence is set to ¿E = 10 s, and the forgetting factor
for target measurement rate parameters ®kjk,¯kjk is set
to ·° = 1:25 (see prediction step in the appendix).
For the unassigned measurements, the DBSCAN

clustering is performed with a distance threshold of 5 m.
A new track is created at the cluster’s centroid position
with an initial existence likelihood of ¯birth = 0:01, a
track distance ¾d = 20 m and a Poisson distribution with
a mean of three for ptrefc . The initial position uncertainty
is set to P0 = diagf(3 m)2, (1=2 m)2, (3 m)2, (1 m/s)2,
(1±)2g, and the initial extension is a circle with radius
2 m. If the existence probability falls below the level of
10¡5, the track is considered dead, and if the probability
exceeds 50%, the track is treated as valid.
The modified OSPA metric uses the cut-off values

cx = 3 m, cX = 30 m
2 and c° = 2 with weights wx = 0:8,

wX = 0:1 and w° = 0:1. The norm p is just set to one.

1) Scenario A.1: The fist scenario is a typical multi-
target scenario to test the general capabilities of the
proposed MOT: A total of four different objects are on
a straight line trajectory with a nearly constant velocity
of about 3 m/s, see Figure 2 and Table I for details.
All objects meet at the same area but keep the distance
to their centroids mutually of at least four meters. The
scenario has a total of 600 samples (40 s). Each object
is created and deleted at a different time step. In this
scenario, only the suboptimal MD-JIPDA version is
applied with limiting the maximum number of joint
hypotheses to 1e3.
The average results for 1000 Monte Carlo Simula-

tion are shown in Figure 3. The tracking cardinality is
computed by taking the sum of existence probability
over all created tracks at time k:

P
t p(Â

t
k). Overall, for

both clutter rates and both cardinality models, an accept-
able and almost identical performance was achieved. As
could be expected, with higher clutter rates and smaller
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Fig. 2. Targets trajectories and received measurements. Ellipses
plotted every five seconds.

TABLE I
Object characteristics for Scenario A. Colors corresponding to

Figure 2. The variables A and a denote the length of semi-major and
semi-minor axis, respectively.

Blue Red Magenta Gray

A 4 m 5 m 4 m 3 m
a 1 m 1.5 m 1 m 0.75 m
° 3 4 3 2
tbirth 8 s 0 s 2 s 6 s
tdeath 34 s 40 s 36 s 28 s

detection probability, the confirmation of a new track
takes longer but is still handled fairly well for all ob-
jects.
Eye-catching is, of course, the overestimation of

objects in case of low clutter with adaptive measurement
cardinality. When clutter measurements occur close to
a new born target, the measurement data is ambiguous:
It could stem from two smaller objects or one large
and clutter. However, clutter measurements are in total
rare, so the algorithm prefers to keep both tracks alive
for a little longer time. Thus, depending on the current
distribution of measurements, two tracks moving behind
each other are computed as the most likely event. This
effect becomes less dominating when the clutter rate
increases, since the general track confirmation takes
significantly longer. From the OSPA, it is seen that
it still actually performs slightly worse than the fixed
cardinality model. This is just due to the same effect:
Instead of one larger object, two small objects are built.
While the fixed model prefers larger objects, and after
an initial phase only one object survives, the adaptive
cardinality permits two objects, each with an expected
cardinality of one or two detections only.

Fig. 3. Track cardinality and OSPA error for different clutter rates.
The suffix ‘¡ ’ indicates MD-JIPDA with estimated measurement

cardinality, and fix with the constant model.

Fig. 4. Trajectories and measurement data for Scenario B. Ellipses
plotted every five seconds. The space between both targets is about

22 cm.

2) Scenario B.1: In the second scenario, two objects
move towards each other, proceed in parallel for approx.
15 s and then split up again (Figure 4). Both objects
have the same characteristics as object ‘Blue’ from the
scenario above. To keep the total number of hypotheses
feasible for the MD-JIPDA, a limit of nmax = 6 detec-
tions per object is set. With this, the scenario enables
a comparison between the optimal and its suboptimal
version.
The results for 1000 Monte Carlo runs are shown

in Figures 5 for the low clutter case, and in 6 for the
high clutter case. In these, the additional prefix ‘Opt’
denotes the results using full MD-JIPDA, ‘Sub’ denotes
the hypothesis limited approach.
Like in the first scenario, an overshoot in the cardi-

nality can be seen when using an adaptive measurement
rate ¡ . This is again due to the fact that in some runs,
two tracks are initialized for one object. Besides this, in
all cases, accurate tracks were created for both objects.
The fact that the cardinality remains below the true car-
dinality is due to the limited detection probability PD. In
both OSPA also an increase of the OSPA at about half
time can be observed. This is due to another well-known
problem of the JIPDA: The track coalescence. Since
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Fig. 5. Track cardinality and OSPA error for medium clutter
rate ¸8.

measurements from the other object are also taken into
account, the tracks move closer together. This leads to
an overlapping of the extension ellipses in this scenario
but with still well-separated target centroids.
These figures also reveal that there is no significant

difference between the optimal and the suboptimal ap-
proach. Although some slight edge for the optimal ap-
proach in cardinality can be seen, it actually also suffers
more from track coalescence. Nevertheless, the differ-
ences are very small, except for the computation time.
These are shown in Table II.1 In a few runs, over one
hour is required to compute the full MD-JIPDA for this
scenario. This excluded the algorithm from being used
in real-time2 applications. In contrast, the suboptimal
MD-JIPDA with a limited hypotheses count is always
within reasonable computation time. Especially with the
low clutter scenario, each update step can be handled
easily within the update time T. It also has only a small
spread between the minimum and maximum required
time. The high clutter scenario takes actually more time
than the scenario duration. This is due to a large num-
ber of tracks that are created and deleted in each update
step.

B. High Detection Count
In most cases of the simulations above, the need of

clustering or hypotheses limitation for real-time compu-
tation is rare. Thus, in this subsection, some of the sce-
narios above are simulated again using different settings
for the measurement model, e.g. an object can create at
least 10 detections per step. For this type of sensors, it is
even for a single track computationally too expensive to

1The values are obtained using single core Matlab simulation on a
3.7 GHz PC.
2Here, a tracker is considered real-time applicable when a complete
measurement update step can be computed within the sensor’s sample
time T.

Fig. 6. Track cardinality and OSPA error for high clutter rate ¸80.

TABLE II
Computation Time for the complete sequence of Scenario B.1 for
the full MD-JIPDA and the hypothesis reduced suboptimal version.
The first value is the mean time over 1000 runs, the value in

parentheses the maximum occurred time.

¸8 Fix ¸8 ¡ ¸80 Fix ¸80 ¡

optimal 42 s (4441 s) 33 s (4331 s) 48 s (3278 s) 50 s (1121 s)
suboptimal 13 s (16 s) 13 s (16 s) 37 s (44 s) 40 s (48 s)

evaluate all possible association hypotheses. However,
since e.g. for laser scanner such a measurement count is
quite normal, it is important to analyze how the subop-
timal approach will perform, and if it can be applied to
such problems. Since for this type of sensors the polar
sensor noise is low, it is set to zero for these simulations.

1) Scenario A.2: In general, the settings are identical
to the previous scenario A.1, except for the target count:
Each expected number of measurements in Table I is
multiplied with a factor of five, so the expected number
is between 10 and 20. In contrast to the scenarios above,
with these measurement rates, it is at no time possible
to compute a full set of joint association events. The
results using the suboptimal with a maximum of 104

hypotheses are shown in Figure 7. In these figures,
again a comparison with a fixed cardinality model with
° = 15 and the adaptive scheme are given. As could be
expected, only the adaptive scheme handles the scenario
correctly, while in the fixed case, for the large red object
in many cases, two tracks are established. This effect
is again reduced when the clutter rate is higher. For
the adaptive scheme, in all runs, the objects are tracked
accurately and of course with also better results than in
scenario A.1 due to the higher measurement count.

2) Scenario B.2: As a final scenario, the special high
clutter scenario as given in [25] is also applied. On the
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Fig. 7. Track cardinality and OSPA error for different clutter rates
for A.2. The suffix ‘¡ ’ indicates MD-JIPDA with estimated
measurement cardinality, and ‘fix’ with the constant model.

Fig. 8. Target trajectories over the clutter measurement data from
one scan in the very high clutter case.

first glance, this scenario is similar to the scenario B
with a starting turn and a parallel phase (Figure 8).
However, the conditions are completely different. Each
target is moving with a constant speed of 120 m/s
with a distance of less than one meter to the outline
of the object during the parallel phase. The first target
starts at the south-east, has a size of 40 m£ 20 m and
generates about ° = 20 measurements per scan. The
second target’s dimensions are 20 m£ 10 m with an
average measurement count of 10.
The parameters for the suboptimal assignment are

set to 5 clusters per track and a total maximum of 104

hypotheses is chosen.
For this dynamics, the parameters for track initializa-

tion and maintenance are therefore changed as follows:
The initial position uncertainty is increased to 50 m, and
the velocity uncertainty to 80 m/s. The initial extension
matrix X0 = 10

2£ I2 with DOF º0 = 10. The cardinality
model is initialized with ®0 = 10 and ¯0 = 1. The pro-
cess noise for the velocity is increased to ¾V = 3 m/s

2.
The remaining track parameters and decay constants are
the same as in the scenarios above.

Fig. 9. OSPA and track cardinality error for different clutter rates
for scenario B.2.

The scenario is evaluated with three different clutter
rates: A low clutter case of 100 false alarms per scan,
a high case with 1000 and a very high case with
5000 clutter measurements on a surveillance area of
2 ¢103 m£ 2 ¢104 m. The detection probability is in all
cases pD = 98%.
From Figure 9, it can be seen that the proposed algo-

rithm can handle this type of scenarios also very well.
As can be seen, the OSPA error is slowly increasing dur-
ing the parallel target movement. The problem of track
coalescence occurs once more. Due to the measurement
clustering by the k-means, this effect is stronger here
than in scenario B.1. This also affects the estimated size
of the targets, which becomes gradually overestimated,
however with a rather slow increase. The issue is re-
solved, as soon the targets split off again.

V. EXPERIMENTAL RESULTS

For the experimental tests, an automotive radar sen-
sor was mounted on a small vessel. In contrast to the
simulation, the radar has an opening angle of only §26±
for a 60 m short range mode and §9± for larger dis-
tances. Due to the limited field of view, the objects un-
der observation are allowed to just perform small ma-
neuvers, as they have to remain inside the field of view
(FoV).
The test setup consists of two vessels moving in

front of the host vessel (Figure 10). For all three ves-
sels, the GPS traces are recorded. The vessels perform
small approaching and bear off maneuvers while slowly
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Fig. 10. Target vessels used for data acquisition. The left one
(blue) is also used for the single object scenario and has a size of

8:5 m£ 2:5 m. The dimensions of the right one (red) are
6:9 m£ 2:47 m.

increasing the distance to the host. The recorded trajec-
tory relative to the host and the received measurements
are shown in Figure 11.
The tracking algorithm is executed in the body-

fixed coordinates of the host vehicle. This requires the
compensation of the motion of the host vehicle for each
track before performing the update step. Since this is
done using the velocity measurement from the GPS and
the yaw rate measurement from a low-cost gyro, addi-
tional uncertainty is induced into the estimate. To take

Fig. 11. Reference trajectory of targets (red and blue ellipse) from GPS and received detections (green) in local coordinate frame. The
distance to the host vessel during the sequence varies from 20 m to 120 m. The ellipses are plotted in time intervals of 6 s. The scenario

starts in the lower left corner, when both ships enter the FoV after overtaking the host vessel. The vessels perform three “draw near and bear
away” maneuvers. After about two minutes, the red vessel turns starboard and leaves the FoV (upper right).

Fig. 12. Estimated trajectory of targets (red and blue ellipse) from MD-JIPDA filter and received detections (green) in local coordinate
frame.

this into account, for the prediction step, the method
proposed by [26] is used to rotate the ellipses according
to the motion of the host vessel. However, estimates
of the target’s yaw rate are not used for extension
prediction. The tracking parameters are identical to the
values given in the first simulation set for low clutter
tracking.
For this scenario, the MD-JIPDA is tested with adap-

tive measurement rate and a constant rate °k = 4. The
cardinality estimates and OSPA results for both schemes
are shown in Figure 13, and Figure 12 shows the es-
timate for the variable approach in a local coordinate
frame. From the cardinality plot, it can be seen that
in the beginning of the sequence, the fixed ° performs
slightly better, but at the end, when the red object moves
out of the sensor FoV, it performs significantly worse.
This is due to the fact that the target reduces to a point
target, which, in combination of a low detection rate,
leads to several low estimates of the existence probabil-
ity. This is compensated by the adaptive version. The
OSPA metric is identical for both schemes.
With increasing distance, the number of received

detections is decreasing, and so the overshoot, as seen
in the simulation, does not occur.

VI. CONCLUSION

This paper presents generalized versions of the
JIPDA filter to assign more than one measurement to a
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Fig. 13. OSPA metric and number of tracks validated tracks for the
experimental data sets.

track. The so-called MD-JIPDA is connected to the ran-
dommatrix framework to track extended objects with an
elliptical shape. To overcome the problem of exponen-
tial increase of association hypotheses, a simple cluster
and sample technique is applied.
It was shown in simulation and real data scenarios

that the proposed MOT algorithm is capable of resolv-
ing extended targets, which are moving in close prox-
imity. The results with more complex scenarios indicate
that the MD-JIPDA can achieve quite similar results as
the RFS approaches. However, like any JPDA, it suffers
from track coalescence. Instead, it is the author’s opin-
ion, that the MD-JIPDA comes with a reduced com-
plexity e.g. when compared to the recently published
LMB. Of course, for a real comparison, the according
studies are yet to be made. Another nice feature of the
MD-JIPDA is that it can make use of well-known tech-
niques from target tracking, like e.g. gating.
The proposed hypotheses reduction is a rather coarse

and intuitive scheme, which offers space for further
improvement. An interesting alternative that has to be
investigated, is the use of an iterative approach as it
was given for the JIPDA in [27]. Starting from the
GPDA solution, the association hypothesis tree could
be successively expanded up to the desired resolution
level. Also, the problem of track coalescence must be
addressed by e.g. checking if the techniques from the
JPDA can be adopted.

APPENDIX A FILTER STEPS FOR TRACK PREDICTION
AND UPDATE

The prediction equations for sample time T are
given in Table III and the update equations for track

TABLE III
State filter prediction steps

Kinematic:
xkjk¡1 = Fkxk¡1jk¡1

Pkjk¡1 = Pk¡1jk¡1 +FkQkF
T
k

Extension:
Xkjk¡1 =Xk¡1jk¡1

±kjk¡1 = ±k¡1jk¡1 ¢ e
¡T=¿±

Measurement rate:

®kjk¡1 =
1
·°
®k¡1jk¡1

¯kjk¡1 =
1
·°
¯k¡1jk¡1

TABLE IV
State filter update steps

Kinematic:
xkjk = xkjk¡1 +Kkjk¡1(z̄k ¡Hxkjk¡1)

Pkjk = Pkjk¡1 +Kkjk¡1HP
T
kjk¡1

Skjk¡1 =HPkjk¡1H
T +

1
nk
Ykjk¡1

Kkjk¡1 = Pkjk¡1H
TS¡1

kjk¡1

Ykjk¡1 = cXk¡1jk¡1 +Rk

Extension:

Xkjk =
1
±kjk

(±kjk¡1Xkjk¡1 + N̂kjk¡1 + Ŷkjk¡1)

±kjk = ±kjk¡1 + nk

Nkjk¡1 = (z̄k ¡Hxkjk¡1)(z̄k ¡Hxkjk¡1)
T

N̂kjk¡1 =X
1=2
kjk¡1S

¡1=2
kjk¡1N

1=2
kjk¡1(S

¡1=2
kjk¡1)

T(X¡1=2
kjk¡1)

T

Ŷkjk¡1 =X
1=2
kjk¡1Y

¡1=2
kjk¡1Z̄

1=2
k
(Y¡1=2
kjk¡1)

T(X¡1=2
kjk¡1)

T

Measurement rate:

®kjk = ®kjk¡1 + nk

¯kjk = ¯kjk¡1 +1

state estimate for an assigned measurement set with nk
detections, centroid z̄k and spread Z̄k in Table IV.
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