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This article provides an elaborate overview of current research

in extended object tracking. We provide a clear definition of the ex-

tended object tracking problem and discuss its delimitation to other

types of object tracking. Next, different aspects of extended object

modelling are extensively discussed. Subsequently, we give a tutorial

introduction to two basic and well used extended object tracking

approaches–the random matrix approach and the Kalman filter-

based approach for star-convex shapes. The next part treats the

tracking of multiple extended objects and elaborates how the large

number of feasible association hypotheses can be tackled using both

Random Finite Set (RFS) and Non-RFS multi-object trackers. The

article concludes with a summary of current applications, where

four example applications involving camera, X-band radar, light

detection and ranging (LIDAR), and red-green-blue-depth (RGB-D)

sensors are highlighted.
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I. INTRODUCTION

Multiple Target Tracking (MTT) denotes the process
of successively determining the number and states of
multiple dynamic objects based on noisy sensor mea-
surements. Tracking is a key technology in many areas
such as robotics, surveillance, autonomous driving, au-
tomation, medicine, and sensor networks.
Traditionally, MTT algorithms have been tailored for

scenarios with multiple remote objects that are far away
from the sensor, e.g., as in radar-based air surveillance.
In such scenarios, an object is not always detected by the
sensor, and if it is detected, at most one sensor resolu-
tion cell is occupied by the object. From traditional sce-
narios, specific assumptions on the mathematical model
of MTT problems have evolved including the so-called
“small object” assumptions:

² The objects evolve independently,
² each object can be modelled as a point without any
spatial extent, and

² each object gives rise to at most a single measurement
per time frame/scan.

MTT based on the “small object” assumptions is a
highly complex problem due to sensor noise, missed
detections, clutter detections, measurement origin un-
certainty, and an unknown and time-varying number of
targets. The most common approaches to MTT are:

² Multiple Hypothesis Tracking (MHT) [23], [106],
[154],

² Joint Probabilistic Data Association (JPDA) [4], [6],
[61],

² Probabilistic Multiple Hypothesis Tracking (PMHT)
[177], [203], and

² Random Finite Sets (RFS) approaches [125], [127].

In the hypothesis-oriented MHT [154] and track-
oriented MHT [106], the probability and log-likelihood
ratio of a track, respectively, are calculated recursively.
The JPDA type approaches blend data association prob-
abilities on a scan-by-scan basis. The PMHT approach
allows multiple measurement assignments to the same
object,1 which results in an efficient method using the
Expectation-Maximization (EM) framework, see, e.g.,
[22, Ch. 9]. The RFS type approaches rely on modelling
the objects and the measurements as random sets. A
recent overview article about MTT, with a main focus
on small, so-called point objects, is given in [197].
Today, there is still a huge variety of applications

for which the “small object” assumptions are reason-
able. However, due to rapid advances in sensor tech-
nology in the recent years, it is becoming increasingly
common that objects occupy several sensor resolution
cells. Furthermore, novel applications with objects in

1Note that allowing multiple assignments to the same object is in
violation of the “small object” assumption, which assumes at most a
single measurement per time frame/scan.
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the near-field of sensors, e.g., in mobile robotics and
autonomous driving, often render the “small object” as-
sumptions invalid.
The tracking of an object that might occupy more

than one sensor cell leads to the so-called extended ob-
ject tracking or extended target tracking problem. In ex-
tended object tracking the objects give rise to a varying
number of potentially noisy measurements from differ-
ent spatially distributed measurement sources, also re-
ferred to as reflection points. The shape of the object is
usually unknown and can even vary over time, and the
objective is to recursively determine the shape of the
object plus its kinematic parameters. Due to the non-
linearity of the resulting estimation problem, already
tracking a single extended object is in general a highly
complex problem for which elaborate non-linear esti-
mation techniques are required.
Although often misunderstood–extended object

tracking, as defined above, is fundamentally different
from typical contour tracking problems in computer
vision [212]. In vision-based contour tracking [212],
a complete red-green-blue (RGB) image is available at
each time frame and one extracts a contour from each
image that is tracked over time. In extended object
tracking, one works with a few (usually two or three-
dimensional) measurements per time step, i.e., a sparse
point cloud. It is nearly always impossible to extract a
shape only based on the measurement from one time
instant. The object shape can only be determined if
measurements over several time steps are systemati-
cally accumulated and fused under incorporation of the
(unknown) object motion and sensor noise. An illus-
tration of the difference between point object tracking,
extended object tracking, and contour tracking is given
in Figure 1.
In many practical applications it is necessary to track

multiple extended objects, where no measurement-to-
object associations are available. Unfortunately, data as-
sociation becomes even more challenging in multiple
extended object tracking as a huge number of associa-
tion events are possible: all possible partitions of the set
of measurements have to be enumerated, followed by
all possible ways to assign partition cells to object esti-
mates. The first computationally feasible multi-extended
object tracking algorithms have recently been devel-
oped, and rely on approximations of the partitioning
problem in the context of RFSs.
The objective of this article is to

(i) provide an elaborate and up-to-date introduction to
the extended object tracking problem,

(ii) introduce basic concepts, models, and methods for
shape estimation of a single extended object,

(iii) introduce the basic concepts, models, and methods
for tracking multiple extended objects,

(iv) point out recent applications and future trends.

Fig. 1. Illustration of different types of tracking problems: a) Point
object tracking example: Frame 1 (left) & Frame 2 (right). In point
object tracking, at most one measurement (red markers) per frame is
received. b) Extended object tracking example: Frame 1 (left) &

Frame 2 (right). In extended object tracking, multiple measurements
(red markers) from a varying number of measurement

sources/reflection centers are obtained per frame. c) Contour
Tracking example: Frame 1 (left) & Frame 2 (right). In contour

tracking, a single contour (red) is extracted from each single image
frame. Hence, one can say that in contour tracking, the

measurements are contours, while in extended object tracking the
measurements are (Cartesian) points. However, in both extended
object tracking and contour tracking one aims at estimating the
shape, i.e., a contour, based on the received measurements.

Historically, the first works on extended object track-
ing can be traced back to [42], [43]. Already in 2004,
[199] gave a short literature overview of cluster (group)
tracking and extended object tracking problems. How-
ever, since then, huge progress has been made in
both shape estimation of a single object and multi-
(extended)-object tracking. An overview of Sequential
Monte Carlo (SMC) methods for group and extended
object tracking can be found in [132]. The focus of
[132] lies on group object tracking and SMC meth-
ods. Hence, the content of [132] is orthogonal to this
article, and the two articles complement each other. A
comparison of early versions of the random matrix and
random hypersurface approach was performed in [17].
Since the publication of [17], both methods have been
significantly further developed.
The rest of the article is organised as follows. In the

next section some definitions are introduced, and mod-
elling of object shape, number of measurements, and
object dynamics is overviewed. Section III discusses
two popular approaches to extent modelling and estima-
tion: the random matrix model, Section III-A, and star-
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convex models, Section III-B. Multiple extended object
tracking is overviewed in Section IV, and in Section VI
four applications are presented: tracking cars using a LI-
DAR, marine vessel tracking using X-band radar, track-
ing groups of pedestrians using a camera, and tracking
complex shapes using a RGB-D sensor. The article is con-
cluded in Section VII.

II. DEFINITIONS AND EXTENDED OBJECT
MODELLING

In this section we will first give a definition of
the extended object tracking problem and some related
types of object tracking. We will then overview ex-
tended object state modelling, measurement modelling,
shape modelling, and dynamics modelling.

A. Definitions

In tracking problems the physical, real-world-
objects-of-interest always have spatial extents. This is
true for relatively large objects-of-interest, like ships,
boat, cars, bicyclists, humans and animals, and it is
true for relatively small objects-of-interest, like cells.
The differences between extended object tracking and
point object tracking is due to sensor properties, espe-
cially the sensor resolution, rather than object proper-
ties such as spatial extent. If the resolution, relative to
the size of the objects, is high enough, then an ob-
ject may occupy several resolution cells. Thus, each
object may generate multiple detections per time step
in this case. In other words, depending on the sensor
properties, specifically the sensor resolution, different
types of object tracking will arise, and it is therefore
instructive to distinguish between different types of ob-
ject tracking problems. The following are definitions
of types of tracking problems that are relevant to this
article.

² Point object tracking:
Each object generates at most a single measurement
per time step, i.e., a single resolution cell is occupied
by an object.

² Extended object tracking:
Each object generates multiple measurements per
time step and the measurements are spatially struc-
tured on the object, i.e., multiple resolution cells are
occupied by an object.

² Group object tracking:
A group object consists of two or more subobjects
that share some common motion. Further, the objects
are not tracked individually but are instead treated
as a single entity. Thus, the group object occupies
several resolution cells; each subobject may occupy
either one or several resolution cells.

² Tracking with multi-path propagation:
Each object generates multiple measurements per
time step that are due to multi-path propagation. Thus,
the measurements are not spatially structured around
the object.

All of the tracking approaches, except for point ob-
ject tracking, assume the possibility of multiple mea-
surements per target. Due to the required differences
in motion and measurement modelling, we differentiate
between the three tracking approaches rather than defin-
ing a single type called multi-detection tracking. Most
literature considers one type of tracking problem, how-
ever, for the same sensor it can be the case that when an
object is far away from the sensor it occupies at most
one resolution cell, but when it is closer to the sensor it
occupies several resolution cells.
The focus of the article lies on extended object

tracking. However, we note that it is possible–and quite
common–to employ extended object tracking methods
to track the shape of a group object, see, e.g., [132]
and the example in Section VI-A. It is easy to see that
extended object tracking and group object tracking are
two very similar problems. However, some distinctions
can be made that warrant two definitions instead of just
one.
In extended object tracking, each object is a single

entity, e.g., a car, an airplane, a human, or an animal.
Often the shape can be assumed to be a rigid body,2

however, extended objects with deformable extents are
also possible. In group object tracking, each object
is a collection of (smaller) objects that share some
common dynamics, while still allowing for individual
dynamics within the group. For example, in a group
of pedestrians, there is an overall group motion, but
the individual pedestrians may also shift their positions
within the group.
The measurements from an extended object are

caused by measurement sources, which has different
meaning depending on the sensor that is used and the
types of objects that are tracked. In some cases, e.g.,
see [25], [26], [91], one can model a finite number of
measurement sources, while in other cases it is better
to model an infinite number of sources. For example, in
[91] automotive radar is used to track cars, and the mea-
surements are located around the wheelhouses of the
tracked cars, i.e., there are four measurement sources.
In [165], [167] LIDARs are used to track cars, and the
measurements are then located on the chassi of the car.
This can be interpreted as an infinite number of points
that may act as measurement sources.
Note that certain sensors measure the object’s cross-

range and down-range extents (or similar object fea-
tures), allowing for the extent (size and shape) of the
object to be estimated, see e.g., [1], [162], [179—181],

2With the exception of the orientation of the extent, the size and shape
of the object does not change over time.
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Fig. 2. Example illustration of car state. The state vector x models
position x,y, velocity v, heading ', turning-angle , length `, and
width w. Note that velocity, length, and width are not marked in the

illustration.

[223]. However, by the definitions used here, this is not
extended object tracking unless there are multiple such
measurements.
Lastly, multi-path phenomenon occur, e.g., when

data from over-the-horizon-radar (OTHR) is used, see,
e.g., [90], [164], [184]. An important difference be-
tween extended object tracking and tracking with multi-
path phenomenon lies in the distribution of the mea-
surements: for the plain multi-path problem a spatial
distribution is not assumed.

B. Object state

The extended object state models where the object
is located, where it is going, and what its spatial extent
(shape and size) is. The state typically includes the
following:

² Position: Either (x,y)-position in 2D or (x,y,z)-posi-
tion in 3D.

² Kinematic state: The motion parameters of the object,
such as velocity, acceleration, heading, and turn-rate.

² Extent state: Parameters that determine the shape and
the size of the object, as well as the orientation of the
shape.

An example object state, appropriate for a car that is
tracked using a horizontally mounted 2D LIDAR sensor
[85], is illustrated in Figure 2. In this example the state
vector at time step k, denoted xk, is

xk = [xk yk vk 'k k `k wk]
T (1)

where xk,yk is 2D position, the kinematic state is com-
prised by velocity vk, heading 'k and turning angle k,
and the extent state is comprised by length `k and width
wk. Note that the shape of the car is assumed to be a
rectangle, and the orientation of this rectangular shape
is assumed to be aligned with the heading of the car.
This state model is used in the car tracking example
that is presented in Section VI-C.

In general, exactly what parameters the object state
includes–e.g., 2D or 3D position? Which kinematics?
Any assumed shape?–depends very much on the type
of object that is tracked, the type of sensor data that is
used, and the type(s) of object motion that one wishes
to describe.
For example, for tracking cars it is often sufficient to

only model the 2D position on the road, while airborne
objects typically require 3D position. The position state
may coincide with the objects centre-of-mass, however,
this is not always the appropriate choice. When cars are
tracked it is suitable to take the position as the mid-
point on the rear-axle, because this facilitates the use
of single-track-bicycle models in the motion modelling.
Motion modelling, or dynamic modelling, for extended
objects is address further in Section II-E.
If 2D position is modelled, the heading/orientation

of the object can be described by a single angle, while
3D position may require more angles to accurately
describe the heading/orientation, e.g., roll, pitch, and
yaw angles. Often the orientation of the extent is aligned
with the heading, however, this is not always the choice.
For example, some motion models for cars include a so
called slip angle that describes the angular difference
between the heading of the car and the orientation of
the shape of the car, see, e.g., [168] for an introduction
to vehicle dynamics modelling.
The extent state is determined by the type of shape

that one wishes to describe; it could be a simple ge-
ometric shape like the rectangle used in Figure 2, or
it could be a more general shape. There are many dif-
ferent alternatives for this, and an overview is given in
Section II-D.

C. Measurement modelling
Depending on what type of sensor is used, where

the measured object is located w.r.t. the sensor, and how
the object is oriented, the sensor will produce a different
number of detections, originating from different points
on the object. In addition to this, sensor noise will affect
the detections, and all these properties have to be taken
into account in the measurement modelling.
An example with real-world LIDAR data is given

in Figure 3. Here the 2D-LIDAR was used to track a
car; in the Figure LIDAR detections from three different
time steps are shown. We can see that the number
of detections, as well as their locations relative to the
target, changes with the sensor-to-target geometry.
Due to sensor noise and model uncertainties, the

measurement modelling is typically handled using prob-
abilistic tools. Let the extended object state be denoted
x, and let

Z= fz(j)gnj=1 (2)

be a set of measurements that were caused by the object.
Modelling the extended object measurements means to
model the conditional distribution

p(Z j x), (3)

often referred to as the extended object measurement
likelihood. The likelihood (3) needs to capture the num-
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Fig. 3. Example of real-world LIDAR detections. The sensor is
located in the origin, the measured object is a car. a)—c) shows

detections from the same car from three different time steps. When
the sensor-to-target geometry changes, the set of detections changes.
In a) only the front side of the car is visible to the sensor, and the
detections form a line. In b) the front and right sides are visible, and
the detections (approximately) form an L-shape. In c) only the right
side is visible to the sensor. Note that the car is farthest from the

sensor in a), and closest in c).

ber of detections, and how the detections are spatially
distributed around the target state x. This modelling can
be approached in several different ways; we overview
the most common ways in the following.

1) Set of points on a rigid body: One way is to model
that the extended object has some number L of reflec-
tion points3 located on a rigid body shape, as described

3For some sensors, e.g., high resolution radar, the term scattering point
may be a more accurate description of the underlying sensor proper-
ties. Further, reflection source may be a more accurate terminology in
some cases, because the reflector may not be a discrete point but a
larger structure, e.g., in automotive radar where the entire side of the
car can be a reflector [29]. However, reflection point appears to be
the more common expression in extended object tracking literature,
so in the remainder of the paper we adhere to this terminology.

Fig. 4. Car with eight modelled radar reflection points: four points
on the corners of the car, and four points on the wheel-houses. Also

illustrated are the visibility regions. Image courtesy of
Hammarstrand et al. [92].

in, e.g., [125, Sec. 12.7.1]. We denote this as a Set of
Points on a Rigid Body (SPRB) model.
In SPRB models the reflection points are detected

independently of each other, and the `th reflection
point has a detection probability p`D that is a func-
tion of the object state. The measurement likelihood is
[125, Eq. 12.208]

p(Z j x) =
XY

`=0

(1¡p`D)
Y
`>0

p`Dp
`(z( `) j x) (4)

if jZj · L and p(Z j x) = 0 otherwise. Here jZj is the
cardinality of the measurement set, and is an assign-
ment variable.4 In mathematical terms, the measurement
process for each reflection point can be described as a
Bernoulli RFS [125], [127], and the measurement pro-
cess for the extended object is a multi-Bernoulli RFS
[125], [127].

SPRB models were used in some early work on
extended object tracking, see, e.g., [27], [28], [39], [96],
and were applied to data from vision sensors [27], [28].
SPRB modelling has also been applied to automotive
radar, e.g., to model the reflection points on cars [29],
[88], [92]. An illustration of the L= 8 automotive radar
reflection points modelled in [88], [92] is shown in
Figure 4.
A challenge with the SPRB approach is that in a

Bayesian estimation setting it requires data association
between the L points on the extended object and the tar-
get detections, see the summation over the assignments
in (4). This association problem can be quite challeng-
ing in settings where the number of points, and their re-
spective locations on the object, are (highly) uncertain.
There are some standard methods for handling asso-
ciation problems, such as finding the best assignment
using the auction algorithm [20], finding the M best

4
` = 0 means that the `th point is not associated to any measurement,

and ` = j means that the `th point is associated to the jth measure-
ment. Each measurement in Z is associated to one of the reflection
points, however, no reflection point is associated to more than one
measurement.
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assignments using Murty’s algorithm [135], or comput-
ing marginal association probabilities using, e.g., Prob-
abilistic Data Associastion (PDA) [4] or fast-PDA [57].
A framework for handling the association uncertainty
when automotive radar is used to track a single extended
object is presented in [91]. In [25], [26], the association
problem for the SPRB approach is by-passed by allow-
ing more than one measurement from a point on the
extended object and using the expectation maximization
(EM) algorithm.

2) Spatial model: It was proposed by Gilholm et al.
[66], [67] to model the target detections by an inhomo-
geneous Poisson Point Process (PPP). This models the
number of detections as Poisson distributed with a rate
°(x) that is a function of the object’s state, and the detec-
tions are spatially distributed around the target. By this
means, the data association problem is entirely avoided.
The name spatial model derives from the assumption
that the detections are spatially distributed. In this model
the measurement likelihood is [125, Eq. 12.216]

p(Z j x) = e¡°(x)°(x)jZj
Y
z2Z

p(z j x): (5)

Using a PPP model is motivated in part by mathe-
matical convenience–it is simple to use in both sin-
gle object and multiple object scenarios, and avoiding
an explicit summation over associations between mea-
surements and points on the object is very attractive
[66], [67].
The single measurement likelihood p(z j x) in (5) is

called spatial distribution, and it captures the structure
of the measurements by using a model of the object
extent and a model of the sensor noise. One alternative
is to model p(z j x) directly, e.g., using physics based
modelling of the sensor. Another alternative is to model
each detection z as a noisy measurement of a source
y located somewhere on the object. The distribution
p(z j y) models the sensor noise, the distribution p(y j x)
models the extent and the spatial distribution p(z j x) is
given by the convolution

p(z j x) =
Z
p(z j y)p(y j x)dy: (6)

In other words, the measurement likelihood (6) is the
marginalization of the reflection point y out of the
estimation problem. For the noise model p(z j y) the
Gaussian distribution is a common choice, however,
other noise models are possible. An appropriate choice
for the measurement source distribution p(y j x) depends
heavily on the type of sensor that is used and the
representation of the object’s shape.
In [130, Sec. 2.3] the PPP model (5) is interpreted to

imply that the extended object is far enough away from
the sensor for the measurements to resemble a cluster
of points, rather than a structured ensemble. However,
the PPP model has been used successfully in multiple

Fig. 5. Example of the spatial measurement model. The sensor is a
2D LIDAR located in the origin, and the tracked object is a car. The
sensor can either recieve measurements from two sides (example on

left), or measurements from one side (example on right).

object scenarios where the object measurements show a
high degree of structure, see, e.g., [70], [78], [85].
Multiple extended target tracking using the PPP

model (5) has shown that the tracking results are sensi-
tive to the state dependent Poisson rate °(x), see [74].
The Bayesian conjugate prior for an unknown Poisson
rate is the gamma distribution, see, e.g., [64]. By aug-
menting the state distribution with a gamma distribution
for the Poisson rate, an individual Poisson rate can be
estimated for each extended object [79].
In [85] the PPP spatial model was used to track cars

using data from a 2D LIDAR. The cars were modelled
as rectangularly shaped, see (1) and Figure 2. The
measurement modelling can be simplified by assuming
that the LIDAR measurements are located along either
one side of the assumed rectangular car, or along two
sides. Example measurement likelihoods for these two
cases are shown in Figure 5. The source density p(y j x)
is assumed uniform along the sides that are visible to the
sensor, and a Gaussian density was used for the noise
p(z j y).
A second alternative to the SPRB model with L reflec-

tion points is to use a spatial model where the number of
detections is binomial distributed with parameters L and
pD [159], [160], i.e., there is an implicit assumption that
the probabilities of detection are equal for all L points,
p`D ´ pD, 8`. As in the PPP model, the detections are
spatially distributed around the target state. The mea-
surement likelihood is [159, Eq. 5]

p(Z j x) =
L!

(L¡ jZj)!
p
jZj
D (1¡pD)

L¡jZj
Y
z2Z

p(z j x): (7)

if jZj · L and p(Z j x) = 0 otherwise. Note the consid-
erable similarity to (5): the difference is in the assumed
model for the number of detections, and the single
measurement likelihood p(z j x) in (7) is analogous to
p(z j x) in (5). For known L, the conjugate prior for
an unknown pD is the beta distribution. Bayesian ap-
proaches to estimating unknown L given a known pD, or
estimating both L and pD, have to the best of our knowl-
edge not been presented. However, a simple heuristic for
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Fig. 6. Illustration of the three levels of shape complexity. a) No
shape model is used, the point corresponds to, e.g., the

centre-of-mass. b) A basic geometric shape, such as an ellipse, is
used to represent the extent of the target. c) An arbitrary shape

model is used for the extent of the target.

determining L, under the assumption that pD is known,
is given in [159].
In [66], [67] the Poisson assumption for the number

of detections is not given much motivation using direct
physical modelling of sensor properties. Similarly, in
[159], [160] there is no physical modelling of sensor
properties to motivate the binomial distribution model
for the number of detections. Indeed, both models may
be crude approximations for some sensor types, e.g.,
LIDAR. Nevertheless, experiments with real-world data
show that both models are applicable to many different
sensor types, regardless of whether or not the number
of detections are actually Poisson/binomial distributed.
The PPP model has been used successfully with data
from LIDAR [70], [78], [85], radar [75], [76], and camera
(see Section VI-A). The binomial model has been used
successfully with camera data [159], [160].

3) Physics based modelling: In [29], [88], [91] SPRB
models for car tracking using automotive radars are
derived using a physics based approach. Naturally, it
is possible to use physical modelling of the sensor
properties–both the modelling of the number of de-
tections, and the modelling of the single measurement
likelihood–to derive models that do not fit into the
SPRB model or the spatial model. For example, for a high
resolution radar the number of measurements and their
locations in the range-Doppler image can be reasonably
predicted by deterministic electromagnetic theory, see,
e.g., [21]. In [100] automotive radars are modelled us-
ing direct scattering, and this model is integrated into a
multi-object framework in [166]. LIDAR sensors can be
modelled precisely using ray-tracing [148] which fa-
cilitates the integration into multi-object tracking algo-
rithms using the separable likelihood approach [167].

D. Shape modelling

When it comes to modelling the shape of the object,
it is useful to distinguish different complexity levels for
describing the shape, because different shape complex-
ities might require different approximations and algo-
rithms. The different ways to model this type of ex-
tended object tracking scenario are here divided into
three complexity levels:

TABLE I
Object shape (2D in 2D-space)

Stick [7], [24], [67], [70], [186]
Circle [11], [145], [146]
Ellipse [2], [12], [38], [73], [102], [108], [155], [157],

[171], [224]
Rectangle [73], [85], [100]
Arbitrary shape [9], [32], [86], [95], [109], [111], [121], [198]

1) The simplest level of modelling is to not model the
shape at all, i.e., to only estimate the object’s kine-
matic properties. This approach has lowest compu-
tational complexity and the flexibility to track differ-
ent type of objects is high because this model, even
though it is simplistic in terms of object shape, is
often applicable (with varying degree of accuracy).

2) A more advanced level of modelling is to assume a
specific basic geometric shape for the object, such
as an ellipse, a line, or a rectangle.

3) The most advanced approach is to construct a mea-
surement model that is capable of handling a broad
variety of both different shapes and different mea-
surement appearances. While such a model would
be most general, it could also prove to be overly
computationally complex.

The three complexity levels are illustrated in Fig-
ure 6, and some references whose shape modelling fall
into the latter two categories are listed in Table I.
The correct choice of complexity level is challenging

and does not have a simple answer. In general, the more
complex the shape, the more measurements (with less
noise) are required to get a reasonable shape estimate.
Furthermore, it depends on the type of sensor that is
used, the types of objects, their motions, and what the
tracking output will be used for. In some scenarios it
may be sufficient to know the position of each object, in
other scenarios it is necessary to have a detailed estimate
of the size and shape of each object.
For example, in [70] it is shown that using LIDAR

data bicycles can be tracked fairly accurately with-
out modelling the extent. However, estimation perfor-
mance5 is improved by using a spatial distribution
model where the measurement source distribution, cf.
p(y j x) in (6), is modelled by a stick shape and uniform
distribution and the noise distribution, cf. p(z j y) in (6),
is modelled by a Gaussian distribution. Specifically, by
modelling the shape it becomes possible to capture ro-
tations of the shape, and thus capture the onset of turn-
ing maneuvers. Without a shape estimate, the turning is
captured at a later time [70].
The 2D-LIDAR bicycle tracking results are also an

example of how a simple geometric shape, in this case
a stick, combined with a simple Gaussian noise model,
is a suitable measurement likelihood. A 2D stick shape

5Video with tracking results: https://youtu.be/sGTGNkrprts.
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is a crude approximation of the way a person riding a bi-
cycle looks from a top-down perspective, however, here
the stick shape is intended to model the measurement
likelihood, and is not intended to be a nice visualization
of the tracked bicyclist. Similarly, a rectangle shape is
suitable when 2D-LIDAR is used to track cars, see, e.g.,
[73], [85], [148], even though many cars are only ap-
proximately rectangular. Another example is the ellipse-
shape that is used to track boats and ships using marine
radar in, e.g., [75], [76], [188—190]. Typically neither
boats, nor ships, are shaped like ellipses, however, the
ellipse shape is suitable for the measurement modelling,
and the estimated major and minor axes of the object
ellipses are accurate estimates of the real-world lengths
and widths of the boats/ships [188—190].
In some scenarios the objects have extents with

shapes that cannot accurately be represented by a simple
geometric shape like an ellipse or a rectangle. For esti-
mation of arbitrary object shapes, the literature contains
at least two different types of approaches: either the
shape is modelled as a curve with some parametrization
[9], [32], [95], [121], [198], or the shape is modelled
as combination of ellipses [86], [109], [111]. When the
shape is given a curve parametrization the noisy detec-
tions can be modelled using Gaussian processes [95],
[198]. Applied to car tracking using 2D-LIDAR [95],
[198], this allows for shape modelling with rounded cor-
ners, which is a more accurate model of actual cars than
a rectangle with sharp corners is. The price of a more
accurate model is an increased complexity: a general
shape requires more parameters than a simple geometric
shape.
The increased complexity can be alleviated by uti-

lizing the prior knowledge that cars are symmetric, see
[51] for a general concept to incorporate symmetries
and [95] for a Gaussian process model example. An-
other approach to handling the complexity is to use dif-
ferent models at different distances from the sensor; in
[206] the priority of objects is ranked in three groups,
specifying how accurately the different objects should
be modelled. For example, for collision avoidance in au-
tonomous driving, the objects closest to the ego-vehicle
are more important than the distant objects, and this jus-
tifies “taking” computational resources from the distant
objects and “spending” it on the closer objects.
In addition to modelling the shape itself, there are

different ways to model how the measurements are
spatially distributed over the shape. The types of ex-
tended object spatial distributions can be divided into
two classes:

² Measurements along the boundary of the object’s
extent. For measurements in 2D, this means that
the measurements are noisy points on a curve. For
measurements in 3D, the measurements are noisy
points on either a curve or a surface. Measurements
along the boundary are obtained, e.g., when LIDAR is
used in automotive applications.

Fig. 7. a) Measurements from the boundary b) Measurements from
the surface.

TABLE II
Shape Dimensions

Curve in 2D/3D space: [7], [24], [67], [70], [150], [222]
Surface in 2D space: [12], [38], [73], [102], [108], [146], [155],

[157], [171], [224]
Surface in 3D space: [48], [52]

² Measurements inside the object’s extent, i.e., the
measurements form a cluster. For example, two-
dimensional radar detections of marine vessels can
be interpreted as measurements from the inner of a
two-dimensional shape, e.g., an ellipse, see [76] and
Section VI-B for an experimental example.

In Table II some references are listed according
to the shape dimension and measurement type, and
Figure 7 provides an illustration. To our knowledge
there is no explicit work about the estimation of 3D
shapes in 3D space, probably because there are rarely
sensors for this case. However, most algorithms for 2D
shapes in 2D space can be generalized rather easily to
the 3D case.
When the measurements lie on the boundary of the

extended object, the resulting theoretical problem shares
similarities with traditional curve fitting, where a curve
is to be matched with noisy points [34], [58]. However,
the curve fitting problem only considers static scenarios,
i.e., non-moving curves. Additionally, the noise is usu-
ally isotropic and non-recursive non-Bayesian methods
have been developed. Hence, curve fitting algorithms
usually cannot directly be applied in the extended object
tracking context. For a discussion of the rare Kalman
filter-based approaches for curve fitting, we refer to
[150], [222].
To summarize the discussion about shape modelling,

we note that it is important that the shape model is not
only a reasonable representation of the true object shape
but is also suitable for the measurement modelling, and
that the shape model has a complexity that is appropriate
for the sensor, the tracked object, and the computational
resources.

E. Dynamics modelling

The object dynamic model describes how the ob-
ject state evolves over time; for a moving object this
describes how the object moves. This involves the posi-
tion and the kinematic states that describe the motion–
e.g., velocity, acceleration, turn-rate–however, it also
involves descriptions of how the extent changes over
time (typically it rotates when the object turns) and how
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the number of measurements changes over time (often
there are more measurements the closer to the sensor
the object is).
There are two probabilistic parts to dynamics mod-

elling that are important: the transition density and the
Chapman-Kolmogorov equation. The transition density
is denoted

p(xk+1 j xk), (8)

and describes the transition of the state from time step k
to time step k+1, i.e., from xk to xk+1. The Chapman-
Kolmogorov equation

p(xk+1) =
Z
p(xk+1 j xk)p(xk)dxk: (9)

describes how, given a prior state density p(xk) and
a transition density, the predicted density p(xk+1) is
computed.
In many cases the dynamics for the position and

the kinematic states can be modelled using any of the
models that are standard in point object tracking, see
[115] for a comprehensive overview. Examples include
the constant velocity (CV) model, the constant accel-
eration (CA) model, and the coordinated, or constant,
turn (CT) model. Detailed descriptions of CV, CA and
CT models are given in [115]. When the tracked objects
are cars, so called bicycle-models, introduced in [158],
are suitable for describing the target motion, see, e.g.,
[168, Ch. 10—11] for an overview and introduction to
bicycle-models.
When the extended object is a rigid body its size

and shape does not change over time, however, the
orientation of the shape (typically) rotates when the
object turns. If the object is described by a set of
points on a rigid body, see Section II-C.1, the point of
rotation must be specified, and the centre-of-mass is a
suitable choice. For the more common spatial models,
see Section II-C.2, a typical assumption for the extent
is to assume that its orientation is aligned with the
heading of the object, e.g., this is the case in the bicycle
models that are used in [70], [85]. When the heading
and orientation are aligned the rotation of the extent
does not have to be explicitly modelled as it is implicitly
modelled by the object’s heading. However, if this is not
the case, the point of the rotation must be specified–
again a suitable choice is the object’s centre-of-mass.
When there are multiple objects present a common

assumption is that the objects evolve independently of
each other, resulting in the object estimates being pre-
dicted independently. Obviously, an independent predic-
tion may result in physically impossible (e.g., overlap-
ping/intersecting) object state estimates. To better model
target interactions one can use, e.g., social force mod-
elling [93]; this is done in [155], where LIDAR is used
to track pedestrians. In group object tracking, where
several objects form groups while remaining distin-
guishable, it is possible to apply, e.g., leader-follower

models, allowing for the individual objects to be pre-
dicted dependently, see e.g., [35], [143]. A Markov
Chain Monte Carlo (MCMC) approach to inferring inter-
action strengths between targets in groups is presented
in [134].

III. TRACKING A SINGLE EXTENDED OBJECT

In this section we overview some widely-used ap-
proaches for single extended object tracking, namely
random matrix models and star-convex models.

A. Random Matrix Approach

The random matrix model was originally proposed
by Koch [102], and is an example of a spatial model
(Section II-C.2). It models the extended object state
as the combination of a kinematic state vector xk and
an extent matrix6 Xk. The vector xk represents the
object’s position and its motion properties, such as
velocity, acceleration, and turn-rate. The d£d matrix Xk
represents the object’s extent, where d is the dimension
of the object; d = 2 for tracking with 2D position and
d = 3 for tracking with 3D position. The matrix Xk
is modelled as being symmetric and positive definite,
which implies that the object shape is approximated
by an ellipse. The ellipse shape may seem limiting,
however, the model is applicable to many real scenarios,
e.g., pedestrian tracking using LIDAR [78] and tracking
of boats and ships using marine radar [75], [76], [171],
[188]—[190].

1) Original measurement model: In the original
model [102] the measurements are assumed indepen-
dent, and conditioned on the object state xk,Xk the sin-
gle measurement likelihood–cf. (5), (7)–is modelled
as Gaussian,

p(zk j xk,Xk) =N (zk; (Hk Id)xk,Xk): (10a)

where is the Kronecker product, Id is an identity
matrix of the same dimensions as the extent, the noise
covariance matrix is the extent matrix, and (Hk Id) is a
measurement model that picks out the Cartesian position
from the kinematic vector xk.
For Gaussian measurements, the conjugate priors

for unknown mean and covariance are the Gaussian
and the inverse Wishart distributions, respectively. This
motivates the object state distribution [102]

p(xk,Xk j Z
k) = p(xk j Xk,Z

k)p(Xk j Z
k) (10b)

=N (xk;mkjk,Pkjk Xk)

£IWd(Xk;vkjk,Vkjk), (10c)

6The book by Gupta and Nagar [89] is a good reference for various
matrix variate distributions.
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Fig. 8. Illustration of the random matrix measurement model. The sensor is located in the origin. a) Uniform reflection points, no noise.
b) Gaussian approximation of uniform distribution. c) Uniform reflection points, Cartesian Gaussian noise. d)—e) Uniform reflection points,

polar Gaussian noise. Note how the spread due to noise is larger when the object is further away (e).

where the kinematic vector is Gaussian distributed with
mean mkjk and covariance Pkjk Xk, and the extent ma-
trix is inverse Wishart distributed with vkjk degrees of
freedom and scale matrix Vkjk. Owing to the specific
form of the conditional Gaussian distribution, where the
covariance is the Kronecker product of a matrix Pkjk and
the extent matrix, non-linear dynamics, such as turn-
rate, can not be included in the kinematic vector. In
this model the kinematic state xk is limited to consist of
a spatial state component rk that represents the center
of mass (i.e., the object’s position), and derivatives of
rk (typically velocity and acceleration, although higher
derivatives are possible) [102]. It follows from this that
the motion modelling for the kinematic state is linear
[102], see further in Section III-A.4.
The measurement update is linear without approx-

imation [102], the details are given in Table III. For
the kinematic state a Kalman-filter-like update is per-
formed, and the extent state is updated with two matri-
ces N and Z, where the matrix N is proportional to the
spread of the centroid measurement z̄ (mean measure-
ment) around the predicted centroid (Hk Id)m, and the
matrix Z is proportional to the sum of the spreads of
the measurements around the centroid measurement.

2) Improved noise modelling: An implicit assump-
tion of the original random matrix model (10) is that
the measurement noise is negligible compared to the
extent. In some scenarios this assumption does not hold,
for example when marine X-band radar is used [188].
If the measurement noise is not modelled properly the
filtering will lead to a biased estimate, see, e.g., [76].
To alleviate this problem Feldmann et al. [54]—

[56] suggested to use a measurement likelihood that
is a convolution of a source distribution and a noise
distribution, see (6). The noise is modelled as zero mean
Gaussian with constant covariance,

p(zk j yk) =N (zk;yk,R), (11)

and the measurement sources are modelled as uniformly
distributed on the object,

p(yk j xk,Xk) = U(yk;xk,Xk): (12)

A uniform distribution is appropriate, e.g., when marine
radar is used to track boats and ships, see [75], [76],
[188]—[190]. The drawback of the uniform distribution
is that the convolution (6) is not analytically tractable.

It is shown in [56] that for an elliptically shaped ob-
ject the uniform distribution (12) can be approximated
by a Gaussian distribution

p(yk j xk,Xk) =N (yk;Hkxk,zXk) (13)

where z is a scaling factor and Hk is a measurement
model that picks out the position. A simulation study
in [56] showed that z = 1=4 is a good parameter set-
ting; this result is experimentally verified in [188]. The
difference between the uniform distribution (12) and its
Gaussian approximation (13) is illustrated in Figure 8,
see subfigures a and b.
With the Gaussian noise model (11) and the Gaus-

sian approximation (13) the solution to the convolution
(6) is

p(zk j xk,Xk) =N (zk;Hkxk,zXk +R): (14)

An example with elliptic extent X and circular mea-
surement noise covariance R is given in Figure 8, see
subfigure c. The inclusion of the constant noise matrix R
means that, with a Gaussian inverse Wishart prior of the
form (10), the update is no longer analytically tractable.
Feldmann et al. [54]—[56] proposed to approach this by
modelling the extended object state with a factorised
state density

p(xk,Xk j Z
k) = p(xk j Z

k)p(Xk j Z
k) (15a)

=N (xk;mkjk,Pkjk)

£IWd(Xk;vkjk,Vkjk): (15b)

Note the assumed independence between the kinematic
state xk and Xk in (15b), an assumption that cannot be
fully theoretically justified.7

Despite this theoretical drawback of a factorised
density (15), there are some practical advantages to us-
ing the state distribution (15b), instead of (10c). The
factorised model allows for a more general class of
kinematic state vectors xk, e.g., including non-linear dy-
namics such as heading and turn-rate, and the Gaussian
covariance is no longer intertwined with the extent ma-
trix. Further, the measurement model is better when the
size of the extent and the size of the sensor noise are
within the same order of magnitude [56]. The assumed
independence between xk and Xk is alleviated in practice

7After updating with a set of measurements Z the kinematic state x
and extent state X are necessarily dependent.
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TABLE III
Random matrix update from [102]

Input: Parameters m,P,v,V of conditional state density (10), mea-
surement model H, set of detections W, n= jWj
Output: Updated parameters m+,P+,v+,V+

m+ =m+(K Id)"

P+ = P¡KSK
T

v+ = v+ n

V+ = V+N +Z

"= z̄¡ (H Id)m

z̄=
1
n

X
zi2W

zi

Z =
X
zi2W

(zi ¡ z̄)(zi ¡ z̄)T

S =HPHT +
1
n

K = PHTS¡1

N = S¡1""T

by the measurement update which provides for the nec-
essary interdependence between kinematics and extent
estimation, see [56].
With the measurement likelihood (14) and the state

density in (15) the updated extent estimate is unbiased,
however, the measurement update requires approxima-
tion. The update presented in [56], for details see Ta-
ble IV, is based on the assumption that the extent is
approximately equal to the predicted estimate,

Xk ¼ X̂kjk¡1 = E[Xk j Z
k¡1], (16)

and on the approximation of non-linear functions of
the extent using matrix square roots computed with
Cholesky factorisation, X̂ = X̂T=2X̂1=2. After some clever
approximations the update of the kinematic state is
again a Kalman filter-like update, and the extent state
shape matrix is again updated with two matrices N̂ and
Ẑ proportional to the spreads around the predicted mea-
surement and the centroid. Note that the difference to
the original approach, see N and Z in Table III is in the
scaling of the two matrices.
A simulation study in [56] shows that the noisy

measurement model (14) and the factorised state model
(15) does indeed outperform the original model (10)
when the measurement noise is non-negligible. A per-
formance analysis of the update in Table IV based on
the posterior Cramér-Rao lower bounds can be found in
[163].
For the models (14) and (15) two additional updates

are presented in [3], [138]. The update presented in

TABLE IV
Random matrix update from [56]

Input: Parameters m,P,v,V of factorised state density (15), measure-
ment model H, measurement noise covariance R, scaling factor z, set
of detections W, n= jWj
Output: Updated parameters m+,P+,v+,V+

m+ =m+K"

P+ = P¡KSK
T

v+ = v+ n

V+ = V+ N̂ + Ẑ

"= z̄¡Hm

z̄=
1
n

X
zi2W

zi

Z =
X
zi2W

(zi ¡ z̄)(zi ¡ z̄)T

S =HPHT +
Y

n

K = PHTS¡1

X̂ = V(v¡ 2d¡ 2)¡1

Y = zX̂ +R

N̂ = X̂1=2S¡1=2""T(S¡1=2)T(X̂1=2)T

Ẑ = X̂1=2Y¡1=2Z(Y¡1=2)T(X̂1=2)T

[138] is based on variational Bayesian approximation,8

where the unknown measurement sources y, cf. (6), are
estimated as so called hidden variables. The update is
iterative, and can be run either for a fixed number of
iterations, or until some convergence criterion is met.
The details are given in Table V.
A simulation study in [138] shows that the varia-

tional update has smaller estimation error than the up-
date based on Cholesky factorisation (Table IV), at the
price of higher computational cost. It is reported that the
update on average converges in 5 iterations, however, to
be on the safe side 20 iterations were performed in each
update in the simulation study [138].
An update based on linearisation of the natural log-

arithm of the measurement likelihood (14) is presented
in [3], details are given in Table VI. A simulation study
in [3] shows that the log-linearised update gives results
that almost match the variational update, at a lower com-
putational cost.

8Variational Bayes, or simply variational inference, is a type of ap-
proximate inference that builds upon approximating the true distri-
bution with a factorised distribution, i.e, approximation under as-
sumed independence. Thus, variational Bayes is a suitable estimation
method for the state model (15b), since this model already makes the
necessary factorisation assumption and approximates the distribution
p(xk ,Xk j Z

k) with a factorised distribution p(xk j Z
k)p(Xk j Z

k). Varia-
tional Bayes, and other approximate inference methods, are described
further in, e.g., [22, Ch. 10].
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TABLE V
Random matrix update from [138]

Input: Parameters m,P,v,V of factorised state density (15), measure-
ment model H, measurement noise covariance R, scaling factor z, set
of detections W, n= jWj
Output: Updated parameters m+,P+,v+,V+
Initialize

yi,(0) = zi

§(0) = zV(v¡ 2d¡ 2)¡1

m(0)+ =m

P(0)+ = P

v+ = v+ n

V(0)+ = V

Iterate until convergence

yi,(t+1) = §(t+1)(v+(zV
(t)
+ )¡1Hm(t)+ +R

¡1zi)

§(t+1) = (v+(zV
(t)
+ )¡1 +R¡1)¡1

m(t+1)+ = P(t+1)+

Ã
P¡1m+ nHTv+(zV

(t)
+ )¡1

1
n

X
i

yi,(t)

!
P(t+1)+ = (P¡1 + nHTv+(zV

(t)
+ )¡1H)¡1

V(t+1)+ = V+
1
z

X
i

(yi,(t)¡Hm(t)+ )(y
i,(t)¡Hm(t)+ )

T

+
n

z
HP(t)HT +

n

z
§(t)

Output (T is the final iteration)

m+ =m
(T)
+

P+ = P
(T)
+

v+ = v+ n

V+ = V
(T)
+

To improve the measurement modelling for the orig-
inal conditional state model (10c) the following mea-
surement likelihood was proposed in [107], [108],

p(zk j xk,Xk) =N (zk; (Hk I)xk,BkXkB
T
k ) (17)

where Bk is a known parameter matrix. The update,
see details in Table VII, builds upon the approximation
[108, Eq. 28]

BkXkB
T
k ¼ °kXk (18)

where °k is a scalar that is given by setting the determi-
nants of both sides equal [108, Eq. 29]

det(BkXkB
T
k ) = det(°kXk)) °k = det(Bk)

2=d (19)

Under the assumption that the extent is approximately
equal to the predicted estimate (16) the measurement
model (17) can model additive Gaussian noise approx-
imately by setting

Bk = (zX̂kjk¡1 +R)
1=2X̂

¡1=2
kjk¡1: (20)

TABLE VI
Random matrix update from [3]

Input: Parameters m,P,v,V of factorised state density (15), measure-
ment model H, measurement noise covariance R, scaling factor z, set
of detections W, n= jWj
Output: Updated parameters m+,P+,v+,V+

m+ =m+K"

P+ = P¡KSK
T

v+ = v+ n

V+ = V+M

"= z̄¡Hm

z̄=
1
n

X
zi2W

zi

Z =
X
zi2W

(zi ¡ z̄)(zi ¡ z̄)T

S =HPHT +
zX̂ +R
n

K = PHTS¡1

X̂ = V(v¡ 2d¡ 2)¡1

C =HPHT + zX̂ +R

M = nX̂ + nzX̂C¡1
³
Z

n
+ ""T¡C

´
C¡1X̂

Note that similarly to the update presented in [56], this
requires matrix square roots. In addition to modelling
noise, the matrix Bk can be used to model distortion of
the observed extent [108].

3) Non-linear measurements: Both the original mea-
surement likelihood (10a) and the noise adapted mea-
surement likelihoods (14) and (17) are linear with re-
spect to the kinematic state xk, and the noise covariance
in (14) and (17) is constant. However, when real-world
data is used the measurement model is often non-linear,
e.g., a radar measures range and azimuth to the object’s
position instead of measuring the position directly as in
(10a) and (14). Further, due to the polar noise the noise
covariance in Cartesian coordinates is not constant, but
increases with increasing sensor-to-object distance.
In [188]—[190] non-linear radar measurements are

handled by performing a polar to Cartesian conversion
in a pre-processing step, and by modelling the the noise
covariance R(y) as a function of the reflection point.
The measurement noise model (11) is modified to

p(zk j yk,xk,Xk) =N (zk;yk,R(yk)): (21)

After conversion to Cartesian coordinates the spread of
the measurements due to noise is larger the further the
object is from the sensor, see Figure 8, subfigures d and

150 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 12, NO. 2 DECEMBER 2017



TABLE VII
Random matrix update from [107]

Input: Parameters m,P,v,V of conditional state density (10), mea-
surement model H, parameter matrix B, set of detections W, n= jWj
Output: Updated parameters m+,P+,v+,V+

m+ =m+(K Id)"

P+ = P¡KSK
T

v+ = v+ n

V+ = V+N + Ẑ

"= z̄¡ (H Id)m

z̄=
1
n

X
zi2W

zi

Z =
X
zi2W

(zi ¡ z̄)(zi ¡ z̄)T

S =HPHT +
det(B)2=d

n

K = PHTS¡1

N = S¡1""T

Ẑ = B¡1ZB¡T

e. With the Gaussian noise model (21) and the Gaussian
approximation (13), the convolution of the two (cf. (6))

p(zk j xk,Xk)

=
Z
N (zk;yk,R(yk))N (yk;Hxk,zXk)dyk, (22)

does not have an analytical solution. In [188]—[190] this
is handled by approximating the noise covariance as

R(y)¼ R(ŷk), (23)

ŷk =Hx̂kjk¡1 =HE[xk j Z
k¡1]: (24)

This allows any of the updates presented in [3], [56],
[138] to be used (see Tables IV, V and VI).
Non-linear range and azimuth measurement for the

conditional state model (10c) and the measurement like-
lihood (17) are modelled in [113], where linearisation
and a Variational Bayes scheme are used to handle the
non-linearities in the update. Radar doppler rate is inte-
grated into the measurement modelling in [171].

4) Dynamic modelling: In the original random matrix
model [102] the transition density is modelled as

p(xk+1,Xk+1 j xk,Xk)

¼ p(xk+1 j Xk+1,xk)p(Xk+1 j Xk), (25a)

=N (xk+1;(Fk Id)xk,Dk Xk+1)

£Wd(Xk+1;nk,Xk=nk) (25b)

TABLE VIII
Random matrix prediction from [102]

Input: Parameters m,P,v,V of conditional state density (10), motion
model F, motion noise covariance D, sampling time Ts, temporal
decay constant ¿
Output: Predicted parameters m+,P+,v+,V+

m+ = (F Id)m

P+ = FPF
T +D

v+ = e
¡Ts=¿ v

V+ =
v+¡ 2d¡ 2
v¡ 2d¡ 2

V

and in [56] a slightly different transition density was
proposed,

p(xk+1,Xk+1 j xk,Xk)

¼ p(xk+1 j xk)p(Xk+1 j Xk): (26a)

=N (xk+1;Fkxk,Qk)

£Wd(Xk+1;nk,Xk=nk) (26b)

In both cases we have a linear Gaussian transition
density for the kinematic vector, and for the extent a
Wishart transition density where the parameter nk > 0
governs the noise level of the prediction: the smaller nk
is, the higher the process noise.
The predicted parameters of the kinematic state are

simple to compute. For the extent state, rather than
solving the Chapman-Kolmogorov equation, a simple
heuristic is used in which the expected value is kept
constant and the variance is increased [102]. This corre-
sponds to exponential forgetting for the extent state, see
[83] for additional discussion. The predicted parameters
are given in Table VIII and Table IX.
This model for the extent’s time evolution is suffi-

cient when the object manoeuvres are sufficiently slow.
In practice, this means that the object turns slowly
enough for the rotation of the extent to be very small
from one time step to another. The kinematics transi-
tion density p(xk+1 j xk) in (26) is assumed independent
of the extent. This neglects factors such as wind resis-
tance, which can be modelled as a function of the extent
Xk, however, the assumption is necessary to retain the
functional form (15b) in a Bayesian recursion.
An alternative to the heuristic extent predictions

from [56], [102] is to analytically solve the Chapman-
Kolmogorov equation (9) for a Wishart transition den-
sity, and approximate the resulting density with an in-
verse Wishart density. Different approaches to this is
discussed in, e.g., [83], [102], [107], [108], [117].
In [107], [108] the following transition density is

used, where transformations of the extent are allowed
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TABLE IX
Random matrix prediction from [56]

Input: Parameters m,P,v,V of factorised state density (15), motion
model F, motion noise covarianceQ, sampling time Ts, temporal decay
constant ¿
Output: Predicted parameters m+,P+,v+,V+

m+ = Fm

P+ = FPF
T +Q

v+ = 2d+2+ e
¡Ts=¿ (v¡ 2d¡ 2)

V+ =
v+¡ 2d¡ 2
v¡ 2d¡ 2

V

via known parameter matrices Ak,

p(xk+1,Xk+1 j xk,Xk)

¼ p(xk+1 j Xk+1,xk)p(Xk+1 j Xk), (27a)

=N (xk+1;(Fk Id)xk,Dk Xk+1)

£Wd(Xk+1;nk,AkXkA
T
k ) (27b)

The solution to the Chapman-Kolmogorov equation (9)
is not Gaussian inverse Wishart of the form (10), how-
ever, using moment matching it can be approximated as
such. The predicted parameters are given in Table X.
The parameter matrices Ak correspond to, e.g., rotation
matrices. Rotation matrices are useful for a turning tar-
get, because the extent rotates as the target turns. By
using the prediction in Table X with three motion mod-
els, with different matrices Ak corresponding to i) no ro-
tation, ii) clockwise rotation and iii) counter-clockwise
rotation, the target motion can be predicted better com-
pared to using the prediction in Table VIII, leading to
improved estimation, see [108].
The extent transition density p(Xk+1 j Xk) in (25),

(26), and (27), assumes independence of the prior kine-
matic state xk. The extent of an object going through a
turning manoeuvre will typically rotate during the turn,
because the extent is aligned with the object’s heading.
This implies that the extent transition density should be
dependent on the turn-rate, i.e., it should be dependent
on the kinematic state xk.
The inverse Wishart transition density is generalized

in [77], [83] to allow for transformation matrices M(xk)
that are functions of the kinematic state, which means
that the rotation angle can be coupled to, e.g., the
turn-rate, and estimated online. The following transition
density is used with the factorised state density (15),

p(xk+1,Xk+1 j xk,Xk)

¼ p(xk+1 j xk)p(Xk+1 j xk,Xk): (28a)

=N (xk+1; fk(xk),Qk)

£Wd Xk+1;nk,
M(xk)XkM(xk)

T

nk

¶
(28b)

TABLE X
Random matrix prediction from [107]

Input: Parameters m,P,v,V of conditional state density (10), motion
model F, motion noise covariance D, motion noise degrees of freedom
n, parameter matrix A
Output: Predicted parameters m+,P+,v+,V+

m+ = (F Id)m

P+ = FPF
T +D

v+ =
2n(¸¡ 1)(¸¡ 2)

¸(¸+ n)
+2d+4

V+ =
n

¸¡ 1
(v¡ 2d¡ 2)AVAT

¸= v¡ 2d¡ 2

Note that a non-linear motion model f(¢) is used.
Similarly to (27), the solution to the Chapman-

Kolmogorov equation is not of the desired form, i.e, not
a factorised Gaussian inverse Wishart (15). By minimis-
ing the Kullback-Leibler divergence, the predicted den-
sity can be approximated as Gaussian inverse Wishart
of the form (15). The parameters of the prediction are
given in Table XI. The proof that the solution s to the
non-linear equation is unique is given in [77].
A comparison of the predictions resulting from the

transition densities (26), (27) and (28), i.e., the predic-
tions in Tables IX, X, XI, is presented in [83]. For a
target that moves according to a constant turn motion
model, see, e.g., [115, Sec. V.A], the prediction in Ta-
ble XI is shown to give lowest filtering and prediction
errors when the true turn-rate is unknown. If the true
turn-rate is assumed to be known, the two predictions
in Tables X and XI perform similarly. Average cycle
times for Matlab implementations are reported for the
prediction in Table XI and the prediction in Table X; the
prediction in Table XI is shown to be about three times
faster than the prediction in Table X with three modes.
Note that any prediction or update can be speeded up,
e.g., by parallelising computations or implementing in a
fast low level language, like C++. Because of this it is
important to interpret any differences in average cycle
time with care.
When there are many measurements per object the

measurement update will dominate the prediction and
compensate for dynamic motion modelling errors. How-
ever, when multiple objects are located next to each
other the prediction is important even in scenarios with
many measurements per object, and accurate motion
modelling can be crucial for estimation performance,
see [83], [86], [87].

5) Further extensions of the random matrix model:
Multiple extended object tracking is overviewed in
Section IV, here we briefly mention some MTT algo-
rithms where the random matrix model has been used.
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In [200]—[202] it is used in the Probabilistic Multi-
Hypothesis Tracking (PMHT) framework [176] to track
persons in video data. The random matrix model has
also been used in several RFS-type filters for multiple ex-
tended object tracking in clutter [19], [68], [78], [122].
JPDA-type MTT algorithms are presented in [170], [171],
[187]. Multi object tracking requires the predicted like-
lihood

p(Z) =
Z Z

p(Z j x,X)p(x,X)dxdX (29)

In [78, Appendix A] it is shown that for the original
model [102] the predicted likelihood is proportional to
a generalized matrix variate beta type 2 distribution. In
MTT algorithms it is necessary to maintain several ob-
ject hypotheses due to the many involved uncertainties.
When the random matrix model is used the number of
hypotheses can be reduced using the merging algorithm
presented in [81].
Elliptically shaped group objects are tracked un-

der kinematical constraints in [101]. A multiple model
framework is used to handle different object types in
[31], [112], leading to joint tracking and classification.
New object spawning, and merging of two object’s into
a single object, is modelled within the random ma-
trix framework in [82]. The MTT algorithms mentioned
above all consider a single sensor. In [191] the multi
sensor case is considered, and four different updates
are derived and compared using marine radar data. A
random matrix estimator based on a Rao-Blackwellised
state density, with a Gaussian for the kinematic state
density and a particle approximation for the extent
state density, is shown to have best performance, albeit
at higher average cycle time that the other estimators
[191]. The random matrix model is applied to mapping
in [53], where a batch measurement update is presented,
allowing all data to be processed at once instead of se-
quentially.
The random matrix model assumes an ellipse shape

for the object’s extent. For objects with irregular, non-
ellipsoidal, extents, the shape can be approximated as a
combination of several elliptically shaped subobjects.
Using multiple instances of a simpler shape allevi-
ates the limitations posed by the implied elliptic object
shape,9 and also retains, on a subobject level, the rel-
ative simplicity of the random matrix model. In [111]
a single extended object model is given where the ex-
tended object is a combination of multiple subobjects
with kinematic state vectors x(i)k and extent matrices
X(i)k , and each subobject is modelled using (10c). Note
that this model assumes independence between the sub-
objects. By modelling the subobject kinematic vectors
as dependent random variables estimation performance
can be improved significantly, see [86], [87]. In [110]
the non-ellipsoidal extended object model [111] is used

9As the number of ellipses grows, their combination can form nearly
any given shape.

TABLE XI
Random matrix prediction from [83]

Input: Parameters m,P,v,V of factorised state density (15), motion
model f(¢), motion noise covariance Q, motion noise degrees of
freedom n, matrix transformation function M(¢)
Output: Predicted parameters m+,P+,v+,V+
m+ = f(m)

P+ = FPF
T +Q

v+ = (d+1)
³
2+

(s¡ d¡ 1)(n¡ d¡ 1)(v¡ 2d¡ 2)
sn(v¡ d¡ 1)¡ (s¡ d¡ 1)(n¡ d¡ 1)(v¡ 2d¡ 2)

´
V+ =

v+¡ d¡ 1
v¡ d¡ 1

s¡ d¡ 1
s

n¡ d¡ 1
n

C2

F=rxf(x)jx=m

C1 = E[log(det(M(x)VM(x)
T))]

C2 = E[M(x)VM(x)
T]

where s is the unique solution to h(s) = 0,

h(s) = d log
³
s

2

´
¡

dX
i=1

Ã0

³
s¡ i+1
2

´
+C1¡ log(det(C2))

and Ãk(¢) is the poly-gamma function of order k. A solution to h(s) = 0
can be found using numerical root-finding. The second order Halley’s
iteration is

s(t+1) = s(t)¡
2h(s(t))h0(s(t))

2(h0(s(t)))2¡ h(s(t))h00(s(t))

where the first and second order differentiations of h(s) w.r.t. s are

h0(s) =
d

s
¡
1
2

dX
i=1

Ã1

³
s¡ i+1
2

´

h00(s) =¡
d

s2
¡
1
4

dX
i=1

Ã2

³
s¡ i+1
2

´
The expected values can be approximated using Taylor expansion,

C1 ¼ log(det(M(m)VM(m)
T))

+

nxX
i=1

nxX
j=1

d2 log(det(M(x)VM(x)T))
dxidxj

¯̄̄̄
x=m

Pi,j

C2 ¼M(m)VM(m)
T

+

nxX
i=1

nxX
j=1

d2(M(x)VM(x)T)
dxidxj

¯̄̄̄
x=m

Pi,j

where xi is the ith element of x, Pi,j is the i,jth element of P, and the
differentiations are (Mx =M(x) for brevity)

d2 log(det(W))
dxidxj

= Tr W¡1 d
2W

dxidxj
¡W¡1 dW

dxi
W¡1 dW

dxj

¶
dMxVM

T
x

dxj
=
dMx
dxj

VMT
x +MxV

dMT
x

dxj

d2MxVM
T
x

dxidxj
=
d2Mx
dxidxj

VMT
x +

dMx
dxj

V
dMT

x
dxi

+
dMx
dxi

V
dMT

x
dxj

+MxV
d2MT

x
dxidxj
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in a joint tracking and classification framework. The
work [225] derives a multi-Bernoulli filter for extended
targets based on sub-random matrices.
For performance evaluation of estimates computed

using any of the random matrix predictions/updates, the
Gaussian Wasserstein distance is a suitable performance
measure [211]. For the random matrix prediction/update
presented in [56], see Tables IV and IX, the posterior
Cramér-Rao Lower Bound CRLB is given in [163].

B. Star-Convex Shape Approaches

Star-convex shape approaches based on the random
hypersurface model [8], [10] and its variant the Gaus-
sian process model [95], [198] constitute an extended
object tracking framework that employs

² a parametric representation of the shape contour,
² a Gaussian distribution for representing the uncer-
tainty of the joint state vector of the kinematic and
shape parameters, and

² non-linear Kalman filters for performing the measure-
ment update.

In contrast to the random matrix model that inher-
ently relies on the elliptic shape, the approaches in this
subsection are designed for general star-convex shapes
(without using multiple subobjects). However, the in-
creased flexibility comes at the price of more complex
closed-form formulas.
In the following, we first discuss the benefits of

non-linear Kalman filters for extended object tracking.
Next, the random hypersurface model and the Gaussian
process model for star-convex shapes are introduced.
Finally, an overview of recent developments and trends
in the context of random hypersurface models is given.

1) Review–Non-linear Kalman Filtering: Consider a
general non-linear measurement function (time index is
omitted) in the form

z= h(x,v), (30)

which maps the state x and the noise v to the measure-
ment z. We assume that both the prior probability den-
sity function of the state and noise density are Gaussian,
i.e., p(x) =N (x;m,P) and p(v) =N (v;0,R). In order to
calculate the posterior density function

p(x j z) =
p(z j x) ¢p(x)

p(z)
, (31)

it is necessary to determine the likelihood function
p(z j x) based on (30). Unfortunately, as the noise in
(30) is non-additive, no general closed-form solution for
the likelihood is available. As a consequence, non-linear
estimators that work with the likelihood function (e.g.,
standard particle filters) cannot be applied directly to
this kind of measurement equation. However, there are
non-linear filters that do not explicitly calculate the like-
lihood function–instead they exclusively work with the

Fig. 9. Illustration of the representation of a star-convex contour
(left) with a radius function r(Á) (right).

measurement equation (30). The most prominent exam-
ples are non-linear Kalman filters, which directly apply
the Kalman filter formulas to the non-linear measure-
ment equation (30) in order to approximate the mean
m+ and covariance P+ of the posterior density (31) as

m+ =m+Cov[z,x]P¡1(z¡E[z]) (32)

P+ = P¡Cov[x,z]Cov[z,z]¡1Cov[z,x]: (33)

Of course, in case of high non-linearity of the mea-
surement equation, this can be a rough approximation.
The exact posterior is only obtained in case of a linear
measurement equation.
Analytic expressions for the required moments E[z],

Cov[z,x], and Cov[z,z] in (32) and (33) are only avail-
able for special cases, e.g., polynomial measurement
equations. However, a huge variety of approximate
methods has been developed in the past such as the un-
scented transform [98]. An overview of recent methods
is provided in [114].

2) Random Hypersurface Model: In the following, it
is shown how the extended object tracking problem can
be formulated as a measurement equation with non-
additive noise (30) using the concept of a random hy-
persurface model. Based on the derived measurement
equation, non-linear Kalman filters can be used to esti-
mate the shape of extended objects as described above.
For this purpose, we first define a suitable parametri-

sation of a star-convex shape based on the so-called ra-
dius function r(pk,Á), which maps a shape parameter
vector pk and an angle Á to a contour point (relative to
a centre dk), see Figure 9 for an illustration. A reason-
able (finite-dimensional) shape parameter vector pk can
be defined by a Fourier series expansion [217] with NF
Fourier coefficients, i.e.,

r(pk,Á) = R(Á) ¢pk,

where

R(Á) = [12 ,cos(Á),sin(Á), : : : ,cos(NFÁ),sin(NFÁ)],

pk = [a
(0)
k ,a

(1)
k ,b

(1)
k , : : :a

(NF )
k ,b(NF )k ]T:

Fourier coefficients with small indices capture coarse
shape features while coefficients with larger indices
represent finer details.
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The overall state vector xk consists of the shape pa-
rameters pk, location dk, and further kinematic parame-
ters ck, i.e.,

xk = [p
T
k ,d

T
k ,c

T
k ]
T: (34)

A suitable measurement equation following the ran-
dom hypersurface philosophy is formulated in polar
form,

zk = sk ¢ r(pk,Ák)+dk + vk, (35)

where sk 2 [0,1] is (multiplicative) noise that specifies
the relative distance of the measurement source from
the center, and Ák gives the angle to the measurement
vector. In [9], it has been shown that s2k is uniformly dis-
tributed in case the measurement sources are uniformly
distributed over the shape. It can be approximated by
a Gaussian distribution with mean 0.8 and covariance
1
12 . By this means, the problem of estimating a (filled)
shape has been reduced to a “curve fitting” problem,
because for a fixed scaling factor sk, (35) specifies a
closed curve. See also the discussion in Section II-D.
The parameter Ák can be interpreted as a nuisance

parameter (or latent variable) as in errors-in-variables
models for regression and curve fitting. A huge variety
of approaches for dealing with nuisance parameters has
been developed in different areas. The most simple (and
most inaccurate) approach is to replace the unknown Ák
with a point estimate, e.g., the angle between dk ¡ zk
and the x-axis. This approach can be seen as greedy
association model [50].
Having derived the measurement equation (35), a

measurement update can be performed using the for-
mulas (32) and (33). As (35) is polynomial for given
Ák, closed-form formulas for the moments in the update
equations are available.
As the greedy association model yields to a bias in

case of high noise, a so-called partial likelihood has been
developed, which outperforms the greedy association
model in many cases [50], [52], e.g., high noise scenar-
ios. For star-convex shapes, the partial likelihood model
can be obtained from an algebraic reformulation of (35)
and, hence, does not come with additional complexity
[50], [52].
A further natural approach would be to assume Ák

to be uniformly distributed on the interval [0,2¼], how-
ever, a non-linear Kalman filter implicitly approximates
a uniform distribution by a Gaussian distribution. Con-
sequently, a reasonable mean for this Gaussian approx-
imation is not obvious due to the circular nature of Ák.
Finally, we would like to note that due to the Gaus-

sian state representation, prediction can be performed
as usual in Kalman filtering, i.e., closed-form formulas
are available for linear dynamic models and for nonlin-
ear dynamic models, non-linear Kalman filters can be
employed.

3) Gaussian Process Model for Star-Convex Shapes:
Instead of using a Fourier series expansion for mod-
elling the shape contour, [198] proposed to use Gaus-
sian processes for star-convex shapes. A Gaussian Pro-
cess [153] is a stochastic process, which is completely
defined by a mean function ¹(u) and a kernel function
k(u,u0):

f(u)» GP(¹(u),k(u,u0)): (36)

For a finite number of inputs u1, : : : ,un, a Gaussian
process follows

[f(u1) ¢ ¢ ¢f(un)]
T »N (¹,K), (37)

where

¹= [¹(u1) ¢ ¢ ¢¹(un)]
T (38)

K =

2664
k(u1,u1) ¢ ¢ ¢ k(u1,un)

...
. . .

...

k(un,u1) ¢ ¢ ¢ k(un,un)

3775 : (39)

Gaussian processes are often used in machine learning.
In contrast to machine learning approaches, where batch
processing it typically applied, tracking applications re-
quire a recursive estimate of the Gaussian process for
shape representation. Thus, the function f(u) is approx-
imated by a finite number of function values or basis
points which are updated over time. Consequently, the
Gaussian process is described using a constant num-
ber of parameters which resembles the parameterization
used in the random hypersurface model. However, the
basis points are uniformly distributed over the angle in-
terval, i.e., a separation of the basis points into points
for coarse and fine shape features (cf. parameters for
coarse and fine in (34)) is not possible.
The kernel function k restricts the kind of functions

which can be represented by the Gaussian process, e.g.,
to symmetric functions [95], [198]. Besides the Kalman
filter-based implementations, a Rao-Blackwellised par-
ticle filter implementation of the Gaussian process
model for star-convex objects has been proposed in
[142].

4) Further developments, extensions, and variations:
In the same manner as for star-convex shapes [9], the
concept of a random hypersurface model can be applied
for circular and elliptic shapes [12].
In many applications, the object to be tracked is

symmetric, e.g., an aircraft or a vehicle. In this case
specific improvements and adoptions can be performed
in order incorporate symmetry information [51], [95].
The concept of scaling the boundary of a curve in
order to model an extended object has been combined
with level sets in [213] in order to model arbitrary
connected shapes. A closed-form likelihood for the use
in non-linear filters based on the RHM measurement
equation (35) has been derived in [174]. Elongated
objects are considered in [214]. The RHM idea can be
used in the same manner to model three-dimensional
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shapes in three-dimensional space. In addition, two-
dimensional shapes in three-dimensional space can also
be modelled with RHM ideas [51], [52]. For example,
in [52], measurements from a cylinder are modelled by
means of translating a plane curve, i.e., a circle.
It is interesting to note that clutter detections that are

not from the extended object, can improve shape esti-
mation [215], [216] by modelling them as negative in-
formation. Furthermore, camera calibration can be per-
formed by means of tracking an extended object [49].

5) Multiplicative Error Model: The basic idea of the
RHM is to model one dimension of the spatial extent
with a random scaling factor and the other one with,
e.g., a greedy association model (GAM). By this means,
Bayesian inference becomes tractable with a non-linear
Kalman filter.
A recent line of work models both dimensions with

a scaling factor [15], [209], [210], i.e., multiplicative
noise. In this way, a uniform distribution can be matched
better for simple shapes, such as circles or ellipses. The
resulting model is called Multiplicative Error Model
(MEM).
For tracking an elliptical shape, the state vector can

be defined as
xk = [c

T
k ,p

T
k ]
T (40)

where cTk is the kinematic vector (here including the
center) and

pk = [®k lk,1 lk,2]
T

is the shape parameter vector with ellipse orientation
®k, and semi-axes lengths lk,1 and lk,2. Then the ith
measurement at time k is modelled as

zik =Hck +Rot(®k)
·
lk,1 0

0 lk,2

¸"
hik,1

hik,2

#
+ vik (41)

where Hk is a matrix that picks out the object position
from the kinematic state,

Rot(®k) =
·
cos®k ¡sin®k
sin®k cos®k

¸
(42)

is a rotation matrix, vik is additive sensor noise, and both
hik,1 and h

i
k,2 are (Gaussian) multiplicative noise terms

that we assume to be mutually independent of all other
random variables. Following the reasoning for the pa-
rameter z in (13), the variances of the multiplicative
noise are set to ¾h1 = ¾h2 =

1
4 in order to match an ellip-

tic uniform spatial distribution. In this manner, the mul-
tiplicative noise models the spatial distribution, i.e., the
uncertainty of the measurement source. The correspond-
ing likelihood to (41) coincides with the likelihood used
in the random matrix approach, i.e., (14), but the ellipse
parametrisation is different.
Unfortunately, it turns out that a direct application of

the Kalman filter formulas to (41) does not give satisfy-
ing results [15] due to the strong linearities. A solution
is to augment the original measurement equation (41)

TABLE XII
Update of the EKF for the multiplicative error model [210]. Source

code: http://github.com/Fusion-Goettingen.

Input: Kinematic state prior mean mc and covariance Pc, shape vari-
able prior mean mp and covariance Pp as defined in (40), measure-
ment matrix H, measurement noise covariance R, multiplicative noise
variance ¾h1 and ¾h2 , measurement z

Output: Updated parameters mc+, P
c
+, m

p
+ and P

p
+ ,

mc+ =m
c+Cov[x,z](Cov[z,z])¡1(z¡E[z])

Pc+ = P
c¡Cov[x,z](Cov[z,z])¡1(Cov[x,z])T

mp+ =m
p +Cov[x, z̃](Cov[z̃, z̃])¡1(z¡E[z̃])

Pp+ = P
p¡Cov[x, z̃](Cov[z̃, z̃])¡1(Cov[x, z̃])T

E[z] =Hmc

Cov[c,z] = PcHT

Cov[z,z] =HPcHT + S diag(¾h1 ,¾h2 )S
T +R

S =

·
cos® ¡sin®

sin® cos®

¸
diag(l1, l2)

[® l1 l2]
T =mp

z̃=

241 0 0 0

0 0 0 1

0 1 0 0

35((z¡E[z]) (z¡E[z]))

·
¾11 ¾12

¾12 ¾22

¸
=Cov[z,z]

E[z̃] = [¾11 ¾22 ¾12]
T

Cov[z̃, z̃] =

24 3¾211 ¾11¾22 +2¾
2
12 3¾11¾12

¾11¾22 +2¾
2
12 3¾222 3¾22¾12

3¾11¾12 3¾22¾12 ¾11¾22 +2¾
2
12

35
Cov[p, z̃] = PpMT

M =

24¡sin2® cos2® sin2®

sin2® sin2® cos2®

cos2® sin2® ¡sin2®

35
¢

24(l1)2¾h1 ¡ (l2)2¾h2 0 0

0 2l1¾h1 0

0 0 2l2¾h2

35

with the squared measurement z2 using the Kronecker
product and then apply a non-linear Kalman filter. In
this way, higher order moments are incorporated in the
update formulas. For this purpose, an Extended Kalman
filter is derived in [210] that results in compact update
formulas for the extent, which are depicted in Table XII.
Exact prediction can be performed for linear models, see
Table XIII.

IV. TRACKING MULTIPLE EXTENDED OBJECTS

In this section we overview multiple extended object
tracking. Regardless of the type tracking problem–
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TABLE XIII
Prediction of the EKF for the multiplicative error model prediction

[210]. Source code: http://github.com/Fusion-Goettingen.

Input: Kinematic state mean mc and covariance Pc, shape mean
mp and covariance Pp, process matrices Fc, Fp with process noise
covariances Qc and Qp

Output: Parameters mc¤,P
c
¤ , m

p
¤ and P

p
¤ for the prediction

mc¤ = F
cmc

Pc¤ = F
cPc(Fc)T +Qc

mp¤ = F
pmp

Pp¤ = F
pPp(Fp)T +Qp

point, extended, group, etc.–MTT is a problem that has
many challenges:

² The number of objects is unknown and time varying.
² There are missed measurements, i.e., at each time
step, some of the existing objects do not give mea-
surements.

² The objects that are not missed give rise to an un-
known number of detections.

² There are clutter measurements, i.e., measurements
that were not caused by a target object.

² Measurement origin is unknown, i.e., the source of
each measurement is unknown. This is often referred
to as the “data association problem.”

For multiple point object tracking the literature is
vast; recently a comprehensive overview of MTT algo-
rithms, with a focus on point objects, was written by Vo
et al. [197]. Since many of the existing extended object
MTT algorithms are of the RFS type, we focus on these
algorithms in the following (see IV-B.4 for selected ap-
proaches with other MTT algorithms). In the following
subsections we will first give a brief overview of RFS
filters, then we give examples of extended and group
object MTT algorithms, and lastly we discuss the data
association problem in extended object MTT.

A. Review–RFS filters

A random finite set (RFS) is a set whose cardinality is
a random variable, and whose set members are random
variables. In RFS based tracking algorithms both the set
of objects and the sets of measurements are modelled
as RFSS. Tutorials on RFS methods can be found in, e.g.,
[71], [126], [193], and in-depth descriptions of the RFS
concept and of finite set statistics (FISST) are given in
the books [125], [127].
The state of the set of objects that are present in the

surveillance space is referred to as the multi-object state.
Because of the computational complexity, specifically
due to the data association problem, a full multi-object
Bayes filter can be quite computationally demanding to
run, and approximations of the data association problem
are necessary. Computationally tractable filters include

the Probability Hypothesis Density (PHD) filter [128],
the Cardinalized PHD (CPHD) filter [129], the Cardinality
Balanced MeMBer (CB-MeMBer) filter [195], and the MTT
conjugate priors [194], [205].

1) PHD and CPHD filters: The first order moment of
the multi-object state is called the PHD,10 and can be
said to be to a random set as the expected value is to
a random variable. A PHD filter recursively estimates
the PHD under an assumed Poisson distribution for the
cardinality. A consequence of the Poisson assumption is
that the PHD filter’s cardinality estimate has high vari-
ance, a problem that manifests itself, e.g., where there
are missed measurements [46]. The CPHD filter recur-
sively estimates the PHD and a truncated cardinality dis-
tribution, and is known to have a better cardinality es-
timate compared to the PHD filter. The PHD and CPHD

filters were first derived in [128], [129] using probabil-
ity generating functionals.11 In [63] it is shown that the
PHD and CPHD filters can be derived by minimizing the
Kullback-Leibler divergence [104] between the multi-
object density and either a PPP density (PHD filter) or an
iid cluster process density (CPHD filter).
In both the PHD filter and the CPHD filter the ob-

jects are independent identically distributed (iid); the
normalised PHD is the estimated object pdf. When there
are multiple objects the PHD has multiple modes (peaks),
where each mode corresponds to one object. An excep-
tion to this is when two or more objects are located
close to each other; in this case a mode can correspond
to multiple objects, also called unresolved objects. The
estimated number of objects located in an area, e.g.,
under one of the modes, is given by integrating the PHD
over that area. Both the PHD filter and the CPHD fil-
ter are susceptible to a “spooky effect” [62], [127], a
phenomenon manifested by PHD mass shifted from un-
detected objects to detected objects, even in cases when
the objects are far enough away that they ought to be
statistically insulated.
Ultimately the desired output from an MTT algorithm

is a set of estimated trajectories (tracks), where a trajec-
tory is defined as the sequence of states from the time
the object appears to the time it disappears. In their most
basic forms neither the PHD nor the CPHD formally esti-
mate object trajectories. However, object trajectories can
be obtained, e.g., using post-processing with labelling
schemes [75], [76], [144].

2) CB-MeMBer filter: The CB-MeMBer filter [195] ap-
proximates the multi-object density with a multi-
Bernoulli (MB) density [125, Ch. 17]. In an MB den-
sity the objects are independent but not identically dis-
tributed, compared to the PHD and CPHD filters where

10The first order moment is also called intensity function, see, e.g.,
[126], [192].
11The probability generating functional is an integral transform that
can be used when working with RFS densities, see further in, e.g.,
[125], [127].
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the objects are iid. The Bernoulli RFS density is a suit-
able representation of a single object, as it captures both
the uncertainty regarding the object’s state, as well as
the uncertainty regarding the object’s existence. As the
name suggests, an MB density is the union of several in-
dependent Bernoulli densities, and it is therefore a suit-
able representation of multiple objects. The CB-MeMBer
filter fixes the biased cardinality estimate of the MeMBer
filter presented in [125, Ch. 17].

3) MTT conjugate priors: The concepts conjugacy
and conjugate prior are central in Bayesian probability
theory. In an MTT context, conjugacy means that if we
begin with a multi-object density of a conjugate prior
form, then all subsequent predicted and updated multi-
object densities will also be of the conjugate prior form.
Two MTT conjugate priors can be found in the literature,
both based on multi-Bernoulli representations for the set
of objects.
The first is based on labeled RFSS and is called Gen-

eralized Labeled Multi-Bernoulli (GLMB) [194]. In the
GLMB filter the labels are used to obtain target trajecto-
ries. Because of the unknown measurement origin, the
GLMB has a mixture representation, where each com-
ponent in the mixture corresponds to one possible data
association history. The GLMB filter performs well in
challenging scenarios, however, it is computationally
expensive. A computationally efficient approximation is
the Labeled Multi-Bernoulli (LMB) filter [156], which
approximates the GLMB mixture with a single labeled
multi-Bernoulli density. Both the GLMB and LMB filters
rely on handling the data association problem by com-
puting the M top ranked assignments, an analysis of
the approximation error incurred by this is presented in
[196].
The second MTT conjugate prior is based on regu-

lar RFSS, i.e., unlabeled, and is called Poisson Multi-
Bernoulli Mixture (PMBM) [205]. The PMBM conjugate
prior allows an elegant separation of the set of objects
into two disjoint subsets: objects that have been de-
tected, and objects that have not yet been detected. A
Poisson point process density is used for the undetected
objects, and a multi-Bernoulli mixture is used for the
detected objects. Explicitly modelling the objects that
have not been detected is useful, e.g., when the sensor is
susceptible to occlusions, or when the sensor is mounted
to a moving platform. Similarly to the GLMB filter, in
the PMBM filter the components in the multi-Bernoulli
mixture corresponds to different data association histo-
ries. A variational Bayesian approach to approximating
the multi-Bernoulli mixture density with a single multi-
Bernoulli density is presented in [204], leading to the
Variational Multi-Bernoulli (VMB) filter. Note that the
variational approximation does not affect the Poisson
part that models the undetected objects. The VMB filter
can be understood to be to the PMBM filter, as the LMB
filter is to the GLMB filter. However, it should be noted

that the approximations used in the VMB and LMB are
not the same.

B. Examples of extended and group MTT

1) PHD and CPHD filters: A PHD filter for extended
objects under the Poisson model [66], see also Sec-
tion II-C.2, was presented in [130]. Gaussian mixture
implementations of this extended object PHD filter, for
both linear and non-linear motion and measurement
models, are presented in [72]—[74]. The resulting filters
can be abbreviated ET-GM-PHD filters. A Gaussian in-
verse Wishart implementation, using the random matrix
extended object model [102] (see also Section III-A), is
presented in [78], [80], and the resulting filter is abbre-
viated GIW-PHD filter. A Gaussian mixture implementa-
tion using RHMs (see Section III-B) was presented in
[219]. Multiple model Gaussian mixture PHD filters can
be found in [70], [85]; the filters are applied to track-
ing of cars and bicycles, under assumed rectangle and
stick shape models, and it is shown that using multiple
measurement models can improve the estimation results.
Augmenting the implementations with gamma distribu-
tions makes it possible to estimate the unknown Poisson
measurement rate for each object [79]. The resulting
algorithms are then called gamma Gaussian (GG), or
gamma Gaussian inverse Wishart (GGIW), respectively.
An approach to group object tracking based on a

point object GM-PHD filter is presented in [35]. The
extended object PHD filter presented in [182], [183] is
derived for an object model different from the Poisson
point process model [66]. The objects are modelled
by a Poisson cluster process, a hierarchic process with
a parent process and a daughter process. The parent
process models a Poisson distributed number of objects.
For each object a daughter process models a number
of reflection points that generate measurements. An
implementation is proposed where the object is assumed
ellipse shaped and the reflection points are located on
the edge of the ellipse.
At least two different CPHD filters have been pre-

sented. The CPHD filter for extended objects presented
in [116] is derived under the assumption that “relative
to sensor resolution, the extended objects and the unre-
solved objects are not too close and the clutter density
is not too large” [116, Corollary 1]. However, this is
an assumption that cannot be expected to hold in the
general case. A CPHD filter capable of handling both
spatially close objects and dense clutter is presented in
[122], [139]—[141], and a GGIW implementation is also
presented. A comparison shows that the GGIW-CPHD fil-
ter outperforms the GGIW-PHD filter, especially when the
probability of detection is low, and/or the clutter density
is high. The price for the increased performance is that
the computational cost increases.

2) CB-MeMBer filters: An extension of the CB-MeMBer
filter [195] to extended objects, using the PPP mea-
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surement model overviewed in Section II-C.2, was pre-
sented in [218]. A Gaussian mixture implementation is
presented in [218], and Sequential Monte Carlo (SMC)
implementations of the CB-MeMBer for extended ob-
jects can be found in [118], [124]. An extended ob-
ject CB-MeMBer filter with multiple models is presented
in [97].

3) Conjugate priors: Labeled MB filters for extended
object tracking are presented in [18], [19], both a GLMB
filter and its approximation the LMB filter. GGIW imple-
mentations are presented, and simulation results show
that the labelled MB filters outperform their PHD and
CPHD counterparts. Additionally, the GLMB and LMB fil-
ters estimate object trajectories, which the PHD and CPHD
filters do only if labeling is used in post processing, see,
e.g., [75], [76]. The LMB filter was applied to LIDAR

data for rectangular objects using the separable likeli-
hood approach [167] and for star-convex objects using
a modelling with Gaussian processes [95].
A PMBM filter for extended and group objects is de-

rived and presented with a GGIW implementation in [68],
[69]. A simulation study showed that the extended ob-
ject PMBM filter outperforms the PHD, CPHD and LMB

filters, and an experiment with LIDAR data illustrates that
the PPP model can accurately represent the occluded ar-
eas of the surveillance space. The GGIW-PMBM model is
applied to mapping in [53], where a batch measurement
update is derived.

4) Non-RFS approaches: A Gaussian Mixture Mark-
ov Chain Monte Carlo filter for multiple extended object
tracking is presented in [33]. The filter is compared to
the linear ET-GM-PHD-filter [72], [74], and is shown to
be less sensitive to clutter but also considerably more
computationally costly (as measured by the average cy-
cle time). The Probabilistic Multi-Hypothesis Tracker
(PMHT) [176] allows more than one measurement per
object, and the random matrix model (Section III-A)
has been integrated in the PMHT framework, see [200]—
[202]. A variational Bayesian Expectation Maximisa-
tion approach to mapping with extended objects is pre-
sented in [120].

C. Multiple extended object data association

In MTT a data association specifies for each mea-
surement the source from whence it came: either it is
an object measurement or a clutter measurement. The
possibility of multiple measurements per object means
that in extended object MTT a data association can be
split into two parts:

1) Partition: A partition of a set, denoted P, is defined
as a division of the elements of the set into non-
empty subsets, called cells [130] and denoted W,
such that each element belongs to one and only
one cell. The cells are to be understood to contain
measurements that are from the same source, i.e., all
measurements in the cell are from the same extended
object, or they are all clutter.

Fig. 10. Partition illustration. There are three measurements z(1)
k
,

z(2)
k
, and z(3)

k
, which can be partitioned in five different ways. In the

jth partition, denoted pj , the ith cell is denoted W
j
i . With three

measurements there is one partition with one cell, three partitions
with two cells, and one partition with three cells. Note that the
ordering of the partitions and cells is arbitrary; the particular
ordering in this example is only used for notational simplicity.

2) Cell association: An association of the cells to a
measurement source, either one of the objects or a
clutter source.

Note that an association from measurement to cell,
and from cell to source, defines an association from
measurement to source.
For Bayes optimality it is necessary to consider all

possible data associations in the MTT update. This means
that in extended and group MTT it is necessary to con-
sider all possible partitions of the set of measurements,
and for each partition one has to consider all possible
cell associations. Unless the measurement set contains
a trivial number of measurements (i.e., extremely few)
and there is a trivial number of objects, both of these
problems are intractable because there are too many
possible partitions, and too many possible cell associa-
tions. Fortunately, in the literature we can find methods
that allow us to handle both of these problems. Below
we first discuss the complexity of the partitions and the
cell associations, and then we overview the solutions to
these problems that can be found in the literature.

1) Complexity analysis: Let the set of measurements
contain n measurements in total. The number of possi-
ble ways to partition a set of n measurements is given
by the nth Bell number, denoted B(n) [161]. The se-
quence of Bell numbers is log-convex,12 and B(n) grows
very rapidly as n grows. For n= 3 measurements there
are B(3) = 5 possible partitions; an example is shown

12The sequence of Bell numbers is logarithmically convex, i.e.,
B(n)2 · B(n¡ 1)B(n+1) for n¸ 1 [45]. If the Bell numbers are
divided by the factorials, B(n)=n!, the sequence is logarithmically
concave, (B(n)=n!)2 ¸ (B(n¡ 1)=(n¡ 1)!)(B(n+1)=(n+1)!), for n¸
1 [30].
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in Figure 10. For twice the number of measurements
(n= 6) there are B(6) = 203 possible partitions, and
for n= 90 measurements there are B(90)> 10100 possi-
ble partitions. In other words, it is computationally in-
tractable to consider all partitions, and approximations
are necessary for implementation.
Let jPj be the number of cells in the partition P,

and let m be the prior number of object estimates. Each
cell can either be from one of the existing prior object
estimates, or it could be from a new object. Thus, there
are jPj+m possible sources. The number of possible
ways to associate jPj cells to jPj+m sources is

m+ jPj
jPj

¶
=
(m+ jPj)!
m!jPj!

(43)

Similarly to the partitions, unless the number of cells
and number of objects are very small, it is infeasible to
consider all possible associations.

2) Complexity reduction: The MTT literature contains
several different methods that can be used to alleviate
the complexity, and that allows extended object MTT
filters to be implemented using limited computational
resources.
Gating, see, e.g., [5, Sec. 2.2.2.2], is a method that

removes possible measurement-to-object associations
by comparing the measurements to predictions of the
objects’ measurements. If the difference between the
measurement and the predicted measurement is too
large, the association is ruled out as infeasible. Gating
has been used in a plethora of MTT algorithms, both
for point targets and extended targets. Naturally, for
extended targets the gates must take into account the
position of the target, the size and shape of the target,
as well as state uncertainties. Using gating it is possible
to group the measurements and the objects into smaller
groups that, given the gating decision, are independent.
This way one can solve several smaller data association
problems instead of one larger data association problem.
Even after gating, there are typically too many pos-

sible partitions and cell associations. An important con-
tribution of [72], [74], [78] is to show how clustering
can be used to find a subset of partitions. The basic
insight behind the use of clustering lies in the defi-
nition of extended objects: the measurements are spa-
tially distributed around the object. Therefore spatially
close measurements are more likely to be from the
same object, than spatially distant measurements. By
only considering the partitions in which the cells con-
tain spatially close measurements many partitions can
be pruned, and the update becomes tractable.
Distance Partitioning [72], [74] is a simple method

that puts measurements in the same cell if the distance
between a measurement and its closest neighbour is less
than a threshold. A detailed description of Distance Par-
titioning is given in [72], [74], [84]. By considering
multiple thresholds, a subset of partitions is obtained.

Fig. 11. Illustration of the output form Distance Partitioning, with
17 measurements. By clustering the measurements with

progressively larger thresholds d different partitions are obtained.
The smallest and largest threshold that are used are parameters of

the clustering algorithm.

Finding a good subset of partitions is especially impor-
tant when multiple extended objects are located in close
vicinity of each other, see [19], [78], [122].
An example where Distance Partitioning is used is

given in Figure 11. In this example there are 17 mea-
surements, for which there are more than 1010 possible
partitions. Using Distance Partitioning this is limited to
five partitions. Results from both simulations and ex-
periments have shown that, despite the very drastic re-
duction in the number of partitions that are considered,
performance is not sacrificed when clustering is used,
see, e.g., [70], [76], [85], [165]. However, there may be
scenarios where two objects are so close to each other,
that their measurements may not be separated any more
based on the distance. In these scenarios, prior infor-
mation about the number of objects (e.g., based on the
current cardinality estimate) may be used to improve
partitioning (cf. [78]).
Distance Partitioning is an example of a hierarchical

single linkage clustering algorithm, see, e.g., [22] for
a discussion about clustering. Other clustering methods
have also been used in an extended object MTT context,
e.g., Gaussian Mixture Expectation Maximisation [78],
spectral clustering [208], and fuzzy adaptive resonance
theory [220], [221].
The extended object PHD and CPHD filters avoid the

cell association through approximation, and instead the
PHD is updated using all measurements. When the PHD
has a distribution mixture representation, e.g., a Gaus-
sian mixture, then the updated PHD is obtained by updat-
ing each Gaussian component in the PHD mixture with
each measurement. In other extended object MTT filters,
the number of cell associations can be reduced, either
by computing association probabilities or by finding the
best associations. Using association probabilities means
that for each measurement-object-pair we compute the
probability that the object is the origin of the measure-
ment, and the probabilities are then used in the MTT
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update. JPDA association probabilities are used in [171],
[187]. Alternatively, one can find the best association
assignment(s) by optimising a cost function that is re-
lated to the MTT predicted likelihood. The single best
assignment can be found using the auction algorithm
[20], and the M top ranked assignments can be found
using Murty’s algorithm [135]. Finding optimal assign-
ments is used in the implementations of the extended
object conjugate priors [18], [19], [68], [69]. In [175],
a JPDAF intensity filter that estimates an intensity func-
tion for each extended object is developed.

V. METRICS AND PERFORMANCE EVALUATION

Regardless of the target type–point, extended,
group or multi-path–it is important to be able to evalu-
ate the performance of a target tracking algorithm, such
that the estimates can be compared to the ground truth
and different tracking algorithms can be compared to
each other. For point targets the root mean squared er-
ror (RMSE) is a standard metric. For Gaussian assumed
state estimates, the normalised estimation error squared
(NEES) is another standard performance measure, that
incorporates also the estimated covariance matrix and
evaluates whether or not the estimate is consistent.
In extended object tracking the tracker output in-

corporates extent information, and because of this it is
not trivial to answer the question: what is the distance
between the estimate and the ground truth. It may seem
tempting to use the RMSE, however, doing so is not al-
ways straightforward as the following two examples il-
lustrate.

1) Consider an extended object with an assumed rect-
angular shape and state vector

x= [x,y,`1,`2,']
T (44a)

where x,y is the position, `1 and `2 are the dimen-
sions of the two sides, and ' is the orientation of the
side with length `1 (and does not specify the moving
direction of the object). For this state vector the two
estimates

x̂(1) = [x,y,`1,`2,']
T, (44b)

x̂(2) = [x,y,`2,`1,'+0:5¼]
T, (44c)

where width and length are switched in x̂(2), define
exactly the same shape in the Cartesian surveillance
space, however, the RMSE errors would not be the
same for the two estimates, which clearly violates
intuition.

2) In the random matrix model the extended object
state is a combination of a vector and a matrix. The
estimated vector can be compared to the ground truth
using the Euclidean norm. The matrix generalisation
of the Euclidean norm for vectors is the Frobenius
norm, and this norm can be used to compare the
estimated matrix to the ground truth. In [122] it is
suggested to use a weighted summation to combine

the vector norm and the matrix norm, however, this
leads to a problem whereby one has to determine the
weights in the summation.

In some works, see, e.g., [56], the extended object
state is broken down into specific properties, such as
position, velocity, orientation, extent area, and extent
dimensions.13 This facilitates easy interpretation of the
results, however, by this means it is no longer possible
to rank estimates from different trackers using a single
score. Furthermore, standard multi-object metrics, such
as the optimal sub-pattern assignment (OSPA) metric
[169] and the generalized OSPA (G-OSPA) [152] build
upon single object metrics that give a single output. In
other words, breaking down the extended object state
into different properties does not facilitate multi-object
performance evaluation.
A widely-used measure in computer vision is the so-

called Intersection-over-Union (IoU), which is defined
as the area of the intersection between the estimated
shape and the ground truth shape, divided by the area
of the union of the two shapes. In the extended object
tracking context, IoU has been used, e.g., for rectangular
and elliptical extended objects [73]. For axis-aligned
rectangles the IoU is simple to compute, however, for
other shapes, or rectangles that are not axis-aligned,
computing the IoU can be cumbersome. Furthermore,
the IoU is always zero for non-overlapping objects,14

meaning that the error measure is the same regardless
of how big the translational error is. This goes against
intuition, which tells us that the larger the translational
difference is between two shapes, the larger the error
should be.
One work in this direction is [211], which addresses

performance metrics for elliptically shaped extended
objects. By comparing several metrics and measures, the
so-called Gaussian Wasserstein distance is identified as
the most appropriate one. The Gaussian Wasserstein dis-
tance is available in closed-form, gives intuitive results,
and is a true metric. Unfortunately, for general shapes,
no analytic formulas for the Wasserstein distance exist,
meaning that the Wasserstein metric is currently only
suitable for objects with elliptic extents.
For star-convex shapes, the work [178] discusses

a modified Hausdorff distance that fully incorporates
different shape parametrisations.
While the existing extended object performance

measures for non-elliptic shapes, such as decomposi-
tion into specific properties and IoU, have their appli-
cations, there is still a lot of work needed to specify a
general single extended object performance evaluation
criterion. However, for multiple extended object perfor-
mance evaluation, given a chosen single object metric,

13For example, the semi-axes of an ellipse or the two sides of a
rectangle.
14For two non-overlapping shapes, the intersection is empty, and thus
the area of the intersection is zero.
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Fig. 12. Example application: tracking groups of pedestrians in video data. (a) Input image with pedestrian measurements in red.
(b) Foot-print of measurements projected onto ground plane. (c) Group tracking output, numbers are estimated Poisson rates. (d) Output

projected into input image, and visualised as elliptic cylinders.

the standard performance measures such as OSPA [169]
and G-OSPA [152] are directly applicable.

VI. EXTENDED OBJECT TRACKING APPLICATIONS

Extended object tracking algorithms have been ap-
plied in many different scenarios and have been eval-
uated using data from many different sensors such as
LIDAR, camera, radar, RGB-depth (RGB-D) sensors, and
unattended ground sensors (UGS). A list of references
that contain experiments with real data is given in Ta-
ble XIV. In this section we will present four example
applications:

² Tracking groups of pedestrians using a camera over-
looking a footpath.

² Tracking marine vessels using X-band radar.
² Tracking cars using a LIDAR mounted in the grille of
an autonomous vehicle.

² Tracking objects with complex shapes using an RGB-D
sensor.

TABLE XIV
Experiments with different sensor types

Sensor References

Automotive Radar [29], [88], [91], [92], [100], [123], [166],
[170]

Camera [27], [28], [37], [44], [159], [160]
GMTI radar [149]
Imaging Sonar [103]
LIDAR [19], [59], [60], [70], [73], [74], [78], [85],

[119], [136], [140], [147], [155], [165],
[172], [173], [201]

Marine Radar [47], [75], [76], [171], [188], [189], [190]
RGB-D [13], [14], [16], [49], [52]
Through wall radar [65]
UGS, group tracking [36]

These four examples are complementary in the sense
that they illustrate different aspects of extended object
tracking: different sensor modalities; the applicability
of extended object methods to group object tracking;
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Fig. 13. Example appliation: tracking boats and ships using marine
X-band radar. Aerial image of harbour, with sensor’s field of view

shown in red.

object shapes of different complexities; and tracking in
crowded scenarios with occlusions.

A. Tracking groups of pedestrians using camera

Automatic crowd surveillance is a complex task, and
in scenes with a large number of persons it may be in-
feasible to track each person individually. In this case
group object tracking using extended object MTT meth-
ods is a viable alternative, as this does not require track-
ing and identification of each individual. In the example
presented here camera data is used to track groups of
pedestrians that walk along a footpath. The online avail-
able PETS 2012 data set [185] is used for evaluation. For
each image in the dataset a pedestrian detector [40], [41]
is used, and the measurements are projected onto the
ground plane using the camera parameters.
In this data the groups of pedestrians are loosely

constructed and typically do not have a detailed shape
that remains constant over time. Therefore the groups
can be assumed to be elliptically shaped, and the random
matrix measurement model can be used [102]. The
ground plane measurements are input into a GGIW-PHD
filter [78], [79], and the object extractions are projected
back into the camera image for visualization. The GGIW-
PHD filter is based on the Poisson model for the number
of measurements from each group, i.e., for each group a
Poisson rate parameter is estimated. This estimated rate
can be taken as an estimate of the number of persons in
the group.
Example results are shown in Figure 12.15 The re-

sults show that the estimated ellipses are a good approxi-
mation of the pedestrian groups. The estimated Poisson
rates tend to underestimate the number of persons in
the group. The reason for this is that in groups with
many persons, some individuals tend to be occluded and
therefore are not detected. The estimated Poisson rate is
more accurate when interpreted as a lower bound for the
number of persons in the group, instead of interpreted
as a count of the number of persons in the group.

15Video with tracking results: https://youtu.be/jN-KXQqargE.

Fig. 14. Example appliation: tracking boats and ships using marine
X-band radar. a) and b) Example detections (green dots), ground
truth (real ellipse), and two estimates (red and black ellipses). The
black ellipse is when the noise is correctly modelled, and the red
ellipse shows the estimate when the noise is not modelled.

B. Tracking marine vessels using X-band radar

Harbours are busy places where many vessels share
the water, from small boats to large ships. To keep track
of where all the vessels are, marine X-band radar can
be used [76]. These sensor produce high-resolution data
that allow the tracking algorithm to estimate the size of
the vessel, further allowing the possibility to classify
the tracked vessels using prior information about the
size of different ships and boats. An example is given
in Figure 13, where the field of view of the sensor is
overlaid on an aerial image of a harbour.
The raw sensor data is pre-processed using a Con-

stant False Alarm Rate (CFAR) detector, producing po-
lar detections (range and azimuth) [76]. Because boats
and ships are best modelled in Cartesian coordinates,
polar detections are converted to Cartesian coordinates
[76]. The pre-processed data is suitable for use with
the random matrix model, meaning that the shapes of
the vessels are assumed to be ellipses. Typically neither
boats, nor ships, are elliptically shaped, however, the
major and minor axes of the estimated ellipses corre-
spond to the length and width of the vessel. If measure-
ment noise is modelled correctly low estimation errors
can be achieved, however, if the noise is not modelled
the size of the vessel is overestimated, especially in the
cross-range dimension [188]. The significant difference
between modelling the noise correctly, or not, is shown
in Figure 14. If multiple radar sensors are used, the
tracking results can be improved further [191].

C. Tracking cars using LIDAR

Autonomous active safety features are standard in
many modern cars, and in both research and industry
there is a considerable push towards fully driverless
vehicles, see, e.g., [105]. For safe operation in dense
scenes, such as inner city and other urban environments,
an autonomous vehicle must be capable of keeping track
of other objects, to avoid collisions. To this end, high
resolution sensors such as LIDAR and extended object
tracking algorithms can be used.
The high angular resolution of LIDAR sensors typ-

ically results in a large number of measurements for
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each object. Thus, if an extended object tracking filter
is not used, preprocessing is necessary to update the ob-
ject estimates. Such preprocessing commonly consists
of segmentation and clustering [94], [131], [151], shape
fitting [133], or feature extraction [137]. The drawback
of using such algorithms is that they are heavily depen-
dent on parametrization, and often suffer from over-or
under-segmentation. Especially in scenarios in which
the environment changes, or when there are different
object types, it is very difficult to find appropriate pa-
rameters. Because the tracking builds upon the data that
is input, any error during segmentation and clustering
will manifest itself as a tracking error.
In this section we will present experimental results

where LIDAR sensors and an extended object PHD fil-
ter have been used to track cars; the results presented
here are a subset of the results presented in [85]. The
LIDAR sensor is assumed to be mounted in the grille of
the ego vehicle, and the cars are assumed to be rect-
angular, with unknown length and width. The measure-
ment modelling that was used is shown in Figure 5. The
tracking problem is cast as a multiple model problem,
and a multiple model PHD filter is used to track mul-
tiple cars. A full description of the tracking algorithm
can be found in [85]. When there are multiple cars in
the sensor’s field of view the cars may occlude each
other, either partially of fully. To avoid loosing track of
cars that are occluded a non-homogeneous probability
of measurement can be used. This is illustrated in Fig-
ure 15. Similar approaches to occlusion modelling are
taken in [74], [78], [155], [207].
Experimental results in [85] show that the lateral

position of the tracked cars can be estimated with an
average error of less than 5 cm, while the average
longitudinal position error is slightly larger, around 10
to 30 cm for different datasets. The shape parameters
are estimated with an average error around 2 cm for the
width, and around 20 cm for the length. The increased
error in object length is due to the limited observability
of the object length due to the aspect angle. Example
detections and tracking results for a scenario with four
cars is given in Figure 16, snapshots of this data are also
shown in Figure 3.

D. Tracking complex shapes using RGB-D sensor

In this subsection we present an experimental setup
where complex object shapes are estimated using RGB-D
sensor data. This experiment has been published first in
[13], [14], [16]. Specifically, a moving miniature rail-
way vehicle is to be tracked from a bird’s eye view with
the help of a RGB-D camera. An optical flow algorithm
determines the velocity of each image point incorporat-
ing both the RGB and depth image sequences. Based on
a threshold on the velocity, we obtain measurements,
i.e., points classified as “moving,” that originate from
the moving object. In this manner, a varying number

Fig. 15. Occlusion example. The sensor is located in the origin;
darker color means higher probability of measurement; estimates in
orange, ground truth in blue. Thanks to the use of an occlusion
model the occluded car can be tracked with high accuracy while it

traverses an area where it cannot be detected.

Fig. 16. Results from scenario with four cars. Top: sensor data,
color coded according to time. Bottom: Estimated positions.

of noisy measurements from the object’s surface is re-
ceived at each frame, see Figure 17 for an example
frame. Due to the noisy images and inaccuracy of the
optical flow algorithm, the measurements are noisy and
do not completely fill the object surface. In fact, this
is a typical extended object tracking problem where
measurements come from a two-dimensional shape in
two-dimensional space. Figure 18 shows example re-
sults with an implementation of the star-convex random
hypersurface approach as discussed in Section III. Also,
Figure 18 shows the result obtained from an active con-
tour (snake) algorithm [99], which is a standard algo-
rithm in computer vision. In general, an active contour
model works with intensity/RGB images and not with
point measurements. It calculates a contour by mini-
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Fig. 17. Tracking a railway vehicle using a RGBD camera from a
bird’s eye view [14]. (a) Depth image. (b) RGB image.

(c) Measurements.

Fig. 18. Result for “+”-shaped vehicle: RHM (green) vs. active
contour model using depth images (yellow) [14].

mizing an energy function [99] that is composed of an
external force for pushing the contour to image fea-
tures and an internal force for regularization. In this
scenario, active contours are applied to the depth image
and hence, can be unreliable in case the vehicle passes
objects with similar depth, see Figure 18.
Alternatively, active contours can be applied to a

“smoothed” version of the point measurements: the
measurements are interpreted as an intensity image by
placing a Gaussian kernel function at each measurement
location. As indicated by Figure 19, active contours then
aim at determining an enclosing curve of the point mea-
surements in each frame. As the vehicle’s surface is
not covered completely by the measurements in a single
frame, active contours do not give a reasonable shape
estimate. Active contours are not capable of systemati-
cally accumulating individual point measurements over
time–without this capability no reasonable shape esti-
mate can be expected.

VII. SUMMARY AND CONCLUDING REMARKS

In this article we gave an introduction to extended
object tracking, a comprehensive up-to-date overview of
state-of-the-art research, and illustrated the methods us-
ing several different sensors and object types. Increasing

Fig. 19. Results for a “T”-shaped vehicle: RHM (green) vs. active
contour model using (smoothed) point measurements (blue) [14].

sensor resolutions mean that there will be an increasing
number of scenarios in which extended object meth-
ods can be applied. It is possible to cluster/segment the
data in pre-processing and then apply standard point ob-
ject methods, however, this requires careful parameter
tuning, thereby increasing the risk for errors. Extended
object tracking, on the other hand, uses Bayesian mod-
els for the multiple measurements per object, meaning
that the tracking performance is much less dependent
on clustering/segmentation.
During the last ten years an impressive number of

new methods and applications have appeared in the lit-
erature, covering different approaches to extent mod-
elling and multiple object tracking. This trend can be
expected to continue, as there are many open questions
to solve, and improvements that can be made. Due to the
high non-linearity and high dimensionality of the prob-
lem, estimation of arbitrary shapes is still very much
challenging. There is a need for performance bounds
for extended object tracking methods: for a given shape
model, how many measurements are required in order
for the estimation algorithm to converge to an estimate
with small error? Performance bounds may help in an-
swering the question of which shape complexity is suit-
able when modelling the object. Naturally, in most ap-
plications one is interested in a shape description that is
as precise as possible.
For arbitrary object shapes, the determination of

suitable performance metrics for the evaluation of the
shape estimate is still an open research question. Fur-
ther, existing works on extended object tracking focus
on single sensor systems (or perhaps systems with sev-
eral very similar sensors). However, the fusion of com-
plementary sensors like camera and LIDAR in an ex-
tended object tracking algorithm raises new challenges
due to the different measurement principles and percep-
tion capabilities.
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Linköping University, Sweden. He previously held postdoctoral positions at the
Department of Electrical and Computer Engineering at University of Connecticut,
USA, from September 2014 to August 2015, and at the Department of Electrical
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