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This paper reviews Multi-Criteria Classifiers (MCCs) or com-
monly multi-criteria classification methods. These methods have
many advantages including flexibility, the integration of human
judgments and prevention of black box syndrome. However, these
advantages come with a price: large number of parameters to be
setup. In particular, this paper focuses on Nominal Concordance/
Discordance-based MCCs (NCD-MCCs). A generalized framework
is proposed to synthesize the underlying computation algorithm for
each MCC. In order to address MCCs disadvantages, an Automated
Learning Method (ALM) based on Real-Coded Genetic Algorithm
(RCGA) is proposed to infer these parameters. The empirical re-
sults of some MCCs are compared with those obtained by other
classifiers (e.g. Bayes and Dempster-Shafer classifiers). A military
dataset of 2545 Forward Looking Infra-Red (FLIR) images repre-
senting eight different classes of ships is therefore used to test the
performance of these classifiers. In this paper, we argue the benefits

of cross-fertilization of MCCs and information fusion algorithms.
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1. INTRODUCTION

Supervised classification often consists in assign-
ing a set of entities (e.g. alternatives, images, projects,
subjects) into pre-defined and homogeneous categories.
Categories are known a priori either by defining pro-
files limit between them or by a set of typical profiles
(reference prototypes or elements) for each category.
Ordinal Classification (or Sorting) usually refers to an
order relationship between the categories, and nominal
classification otherwise. Recently, a variety of classifi-
cation methods—based on Artificial Intelligence (AI)
and Operations Research (OR) techniques—have been
proposed to solve classification problems [41]. Neural
Networks (NN), Machine Learning (ML), Rough Sets
(RS), Fuzzy Sets (FS) and Multi-Criteria Decision Anal-
ysis (MCDA) were used for the development and the
validation of these methods. This paper focuses on clas-
sification methods based on MCDA methodology.

In this paper we use Multi-Criteria Classifiers
(MCCs) to designate supervised classification methods
based on MCDA methodology. The most MCCs are
based on either outranking or multi-attribute utility
approaches. Roy and Moscarola [35], Masaglia and
Ostanello [24], Yu [42], Perny [31], Belacel [3] and
Henriet [15] have proposed MCCs based on the out-
ranking approach, while M.H.DIS (Multi-group Hi-
erarchical DIScrimination) method [40] and UTADIS
(UTilités Additives DIScriminantes) method and its
variants ([21], [39], [10]) are typical methods based on
multi-attribute utility theory. This paper focuses essen-
tially on outranking-based nominal MCCs where there
is no order relationship between the categories. These
MCC:s are based on concordance/discordance concepts.

Limitation of outranking-based methods is due to the
large number of parameters (e.g. discrimination thresh-
olds, weights, reference alternatives, etc.) required. In
MCDA context, these parameters are generally elicited
using interactive approaches from the decision-maker
to articulate his relational preference system: it’s the
Direct Elicitation Approach (DEA). However, it is diffi-
cult for the decision-maker to provide such information
in a coherent way when the number of these parameters
is considerable. Indirect Elicitation Approach (IEA) or
Automatic Learning Methods (ALMs) might be the so-
lution to elicit automatically the values of these param-
eters based on a training set of pre-assigned examples.
These two elicitation approaches will be discussed in
Section 3.

This paper makes three main contributions. First,
we propose a generalized framework for Nominal
Concordance/Discordance-based MCC (NCD-based
MCCs). Second, we develop an ALM based on Real-
Coded Genetic Algorithm (RCGA) to estimate the pa-
rameters of NCD-based MCCs. Then we illustrate and
assess the performance of the proposed approach on
selected NCD-based MCCs. Even if the purpose of the
comparison might be seen limited, we present exper-
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Fig. 1. NCD-based MCCs concepts.

imental results by comparing NCD-based MCCs with
other classifiers such as Bayes and Dempster-Shafer
classifiers. A dataset of 2545 Forward Looking Infra-
Red (FLIR) images representing eight different classes
of ships is used for the empirical validation.

This paper is organized as follows. Section 2 pre-
sents a generalized framework for NCD-based MCCs.
Section 3 proposes an ALM based on RCGA to infer
the parameters of the NCD-based MCCs. Section 4
presents a brief description of the dataset used to test
the performance of the different classifiers. In Section 5,
computational results of some NCD-based MCCs are
presented and compared with those obtained by other
classifiers. Finally, conclusions, discussions and future
works are presented in Section 6.

2. A GENERALIZED FRAMEWORK FOR NCD-BASED
MCCs

In our opinion, there are at least three major advan-
tages which distinguish MCCs from the other classi-
fiers:

1. MCCs are designed to incorporate objective and sub-
jective information and deal “correctly” with quan-
titative and qualitative data. In fact, it is possible to
take into account human judgments and compute in-
formation obtained on conflicting and heterogeneous
dimensions [10]. Therefore, these methods are es-
sential when it is important to explicitly integrate
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human judgments (decision-maker’s preferences), to
consider many conflicting criteria, and to deal with
data obtained on heterogeneous measurement scales
(see Fig. 1);

. MCCs allow pairwise comparisons between the ob-
jects to be assigned and the profiles (or reference ele-
ments). The pairwise comparison might be seen as a
projection isomorphism for each pair of alternatives
from the attributes spaces to the preferences spaces.
The result of the comparison is a valued function
between each pair of alternatives/elements. The ag-
gregation and exploitation of these valued functions
avoid computing distance measures obtained on het-
erogeneous measurement scales (as in K-NN classi-
fier) and allow handling qualitative and/or quantita-
tive information;

. MCCs avoid the black box situation: it is easy to
explain the classification result in natural language.

The advantages or strengths of MCCs could also be
seen as weaknesses if subjective human judgments are
to be avoided and the information is not heterogeneous
and highly correlated. Moreover, these methods require
a quite large set of parameters to be determined, which
could also be seen as a strength (offering many degrees
of freedom). To overcome these limitations, an IEA may
be used to infer automatically these parameters. To our
knowledge, there exist in the literature four NCD-based
MCCs: (i) TRI-NOMEFC classifier [23], (ii)) PROAFTN
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classifier [3], (iii) PIP and K-PIP classifiers [15] and
(iv) FBI classifier [31].! The concordance and discor-
dance concepts were introduced by Bernard Roy [32]
when he defined the outranking relation in ELECTRE
I method. Indeed, according to many authors ([7], [33],
[38]), an outranking relationship can be defined as fol-
lows: an alternative a; outranks an alternative a,, if and
only if there are enough arguments to decide that a; is at
least as good as a, (concordance concept) while there is
no essential reason to refute that statement (discordance
concept). Recently, Perny [31], Belacel [3] and Henriet
[15] extended the above definition by developing an in-
difference relation measuring the similarity between two
alternatives a; and a,. The main idea of this relation is
to compare the strength of the arguments supporting a
proposition to the strength of the arguments opposing
the same proposition (see Fig. 2). In fact, it’s on the
basis of this relation that NCD-based MCCs assign an
object (project, alternative, image, etc.) into a predefined
category. Hence, according to the NCD-based MCCs,
assigning an object consists in computing its member-
ship degree into a predefined category. Membership de-
gree is an aggregate of the evaluation of the indifference
between the object to be assigned and each prototype
characterizing each category. Each indifference evalua-
tion considers parameters such as discrimination thresh-
olds and criteria/attributes weights.
Let’s consider the following notations:

—Let A ={a,};_, ,, be asetof m objects to be assigned;
—Let C ={C"},_,,  be a set of H nominal and
predefined categories or classes. Each category C" is
characterized by a set of profiles or reference objects
B" = {b},_,.,- The set of all profiles is noted by

B = UleBh;

'Figueira er al. [11] have recently proposed an extension of
PROMETHEE method for classification purposes. This method will
not be considered in this paper because, according to these authors,
some improvements must be done to finalize it.

—Let F ={g;},_,_, be a set of n criteria. We assume
that the criteria are to be maximized (transforming a
minimization to a maximization is a straight forward).
To each criterion g;, we assign a weight wj? (=
1...n) which expresses its relative importance in the
category C";

—Each object g; (respectively profile b}) is evaluated on
all criteria by the vector: a;, = (g,(a,),8,(a;),....8,(a;))
(respectively by bl = (g,(b!),g,(b!),....g,(b1))).

Most NCD-based MCCs compute for each object a;

a fuzzy number called p(a;,C h) € [0, 1], which measures

the membership degree of g, to a given category or class

C". Hence, if j(a;,C") = 1 we say that g; belongs per-

fectly to the category C”. However, when p(a;,C") = 0,

we say that a; has no common ground with the category

C". Fig. 1 presents a functioning schema of NCD-based

MCC:s. Fig. 3 shows a generalized framework used by

NCD-based MCCs to compute p(a;,C").

The membership degree of an object g; to a cate-
gory C" is computed using the concordance and dis-
cordance concepts. A local concordance C j(ai,b,’j) and

discordance D ; (a;, b/?) indices are computed for each ob-
ject a; to be assigned, for each criterion g; (j =1...n)

and for each profile b,’z (k=1...L,) characteristic of
C".2 For instance, PROAFTN method [3] proposes lin-
ear functions—similar to those used in ELECTRE III
method [34]—for the local concordance and discor-
dance indices (see Fig. 4). In TRINOMFC method [23],
only local concordance indices are computed using cri-
teria functions similar to those used in PROMETHEE
method [6]. According to [23], it’s not appropriate to
consider discordance concept when dealing with nomi-
nal classification. The computation of local concordance
and discordance indices of all NCD-based MCCs are
summarised in Tables I and II (see pages 80 and 81).
The computation of local concordance and discor-
dance indices is based on the following types of thresh-
olds: indifference, preference and veto thresholds. The
indifference (qj) and the preference (pj) thresholds
are used to nuance the distinction between two ob-
jects into weak and strong preference relationships. The
veto threshold (vj) represents the limit of the toler-
ance for partial compensation between evaluations. In
other word, if the evaluation of g, is at least v; differ-
ent than the evaluation of a; on criterion g;, then we
may refuse/confirm some propositions about ¢; and a,
without regarding their evaluations on the other crite-
ria. Note that these thresholds are established: 1) for
each criterion in FBI classifier, ii) for each criterion
and category in PIP, K-PIP and TRI-NOMEFC classi-
fiers and iii) for each criterion, category and profile
in PROAFTN classifier. The aggregation operators 7
and 7, are used in order to compute respectively the
global concordance and discordance indices (see Ta-

2In PROAFTN classifier [3] each profile b,i’ is defined, for each cri-
terion g i by an interval [S} (b,’j),Sj?(b,’})] which is an exception with
regards the other MCCs.
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bles I and II). For all NCD-based MCCs, the opera-
tor n. (respectively 7,) is often equal to the weighted
sum (respectively weighted geometric mean). The com-
putation of these global indices takes into account the
criteria weights. For PROAFTN, TRI-NOMFC, PIP and
K-PIP classifiers these weights are determined for each
criterion and category whereas for FBI classifier these
weights are computed only for each criterion.

The similarity index SI for each pair of objects
(a;,b") is computed as shown in Table III (see page
81). In general, two kinds of aggregation operator
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v are used to combine the quantities C(a;,b}) and
(1 —D(a;,bM): the Product and the Minimum. Since
for TRI-NOMEFC classifier there is no discordance, the
global concordance index is equal to the similarity in-
dex; i.e. C(a;,bl) = SI(ai,b,’j). The aggregation opera-
tor ¢y computes the membership degree u(a;,C") of
a; to C" as shown in Table IV (see page 82). Fi-
nally, based on these membership degrees 1i(a;,C"), Ta-
ble V (see page 82) presents the decision rules used
by NCD-based MCCs to assign an object g; to a cate-
gory C.
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Three interesting elements should be considered
from Tables IV and V. The first one is that K-PIP
classifier constitutes a generalization of the fuzzy K-
NN algorithm [22] where neighbouring is defined by
the similarity index SI. Thus, according to this classi-
fier an object a; has likelihood to be assigned to cat-
egory C" if and only if at least one of its profiles b
(k=1...L,) belongs to the set of the K more similar
profiles to a; in B = |Jj_, B". Secondly, TRI-NOMFC
classifier [23] has introduced weight coefficients wi (b))
for each profile. Indeed, we believe that the idea of
assigning weights to profiles is very interesting since
it is possible that, in the same category, a profile b,’jl
is more representative of the category C” than another
profile b,ilz. Finally, the third element is related to the
decision rule used in TRI-NOMEFC classifier [23] to as-
sign an object q; to a category C". In fact, the advantage
of this rule, also known as Hurwitz rule, is to com-
bine an optimistic (MaxiMax) and a pessimistic (Max-
iMin) behaviour in order to provide a more nuanced
behaviour in which the optimism level is controlled
by the parameter « € [0,1]; When o =1 (respectively
«a = 0) Hurwitz rule is equivalent to the optimistic rule
(MaxiMax) (respectively to the pessimistic rule (Max-
iMin)).

3. ELICITATION OF NCD-BASED MCCs PARAMETERS

According to [41], any multiple criteria classifica-
tion methodology faces two issues: (i) The specifica-
tion of the aggregation model to be used, and (ii) the
assessment of the parameters of the model. In the above
section the first issue is discussed. In this section, we
propose first a mathematical model that provides the
optimal parameters values of the aggregation model.

A GENERALIZED FRAMEWORK FOR MULTI-CRITERIA CLASSIFIERS WITH AUTOMATED LEARNING

Since, as it will be shown later, the proposed mathemat-
ical model can not be solved using classical optimiza-
tion methods, an Automatic Learning Method (ALM)
based on Real-Coded Genetic Algorithm (RCGA) is
then proposed to approximate the optimal solution of
this model and consequently to infer the parameters val-
ues of NCD-based MCCs.

3.1. A Mathematical Model to Provide the Optimal
Values of NCD-Based MCC Parameters

It is essential to estimate the best values for aggre-
gation model’s parameters (e.g. criteria weights, substi-
tution ratios, indifference, preference and veto thresh-
olds). In MCDA literature, two approaches are proposed
to elicit the parameters of MCCs: the Direct Elicitation
Approach (DEA) and the Indirect Elicitation Approach
(IEA). In the first approach, through an interactive ques-
tioning, the decision-maker provides the values of these
parameters. The aim of this interaction is to ensure that
the provided parameters values represent properly the
decision-maker judgments and preference system (value
or expertise). However, in many other decision-making
situations, the determination of the values of these pa-
rameters represents a difficult task due to many reasons
such as the size of the problem (i.e. high number of
parameters), the imprecise nature of the data, the con-
fusing meaning of the parameters, the analyst ability
to perform efficiently the elicitation process, etc. Thus,
the DEA is often time-consuming and consequently it
may discourage the decision-maker from participating.
To overcome the drawbacks of the DEA, the IEA em-
ploys ALMs to infer automatically the values of these
parameters based on examples (or prototypes) known
as training objects (part of a training set). In MCDA
literature, this second approach is called Preference De-
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TABLE 1
Local and Global Concordance Indices

Method

Formula

PIP and K-PIP
classifiers [15]

C(a,b}) =3 W' XC,(a,,b!) or C(a,,b)=Min C (a,,b}) , where
=1

(0 if g(a)-g,B)<-p!

..]_+_l._sinL
2 2 \p-9q
1 if lg(a)-g,®h)<q!
l_lsinL
2 2 p:—qf

h+ h
nga.)—g,(b:}i’z—“”-) if -pl<g(a)-g®)<—q"
C,(a,b)="

'] ]
pi+a)) .
Igj(a.)—g,(b.*)’r%] if q,<g/(a)-g,b)<p]

0 otherwise

Zw: =1 and gjand p; are respectively the indifference and the preference thresholds.
J=l

C(a,,b}) =Y W} XC,(a,,b}), where C,(a,,b) = Min{C; (a,.b}), C; (a,,b})},
=

p; (b)) - Min{S) (b))~ g,(a,), p; (b})}

C_(anb*)= —( Lk s Legh L
PROAFTN classifier ! ' P (bi )= MH{S;(E’& )= g (af), 0}
[3] (b)) - Mimg (a) - S} (B]), p} (b;
C:(a,b}) = p,( :) i ’”{-‘?f("*) A ;} :o,( *)}, g,(B!) is defined by the interval [S'(8}), S>(8})],
P} (6))~ Minig,(a)~ 5} (b)), O}
ZN: w) =1 and p;(b;)and p; (b )are two preference thresholds.
=
C(a,,b;)= ;Wf xC,(a,,b;), where C (a,,b;) = M""{S; (a,,b)), Sj(b:,ﬂg)} ’
FBI classifier [31 - Mimg, (b;) - , :
S S, (a,,b))= P, l_n{g’( i} 8,(@) p"}, Zw: =1 and ¢,and p, are respectively the indifference and
p,—Minig, (b)) -g,(a).p,}' &
the preference thresholds.
TRENOMEC C(a,,b]) = Z} w; xC,(a,,b;), where C (a,,b;)=F,(g,(a)—g, (b)) and F, is an adaptation of some
classifier [23] a

PROMETHEE criterion functions and »_ w/ =1.

=1

segregation Approach (PDA) (e.g. [4], [8], [9], [10] and
[36]). In artificial intelligence, the IEA is known as Ma-
chine Learning (ML) (e.g. [2] and [28]).

Indeed, the mathematical model that provides the
optimal values of NCD-based MCCs parameters is pre-
sented as follows:

H
I'= ZZ(M,»;,(PVPQPMPX) - 77,{1)2

Minimize
nep a€Z h=1
(A): ’ ,
Subject to Structural Constraints (SC)
Decision-Maker’s Constraints (DMC)
where
| 1 if aecCh )
= . ti = ma,CY, P ={p};_; ,
0 otherwise
80 JOURNAL OF ADVANCES I

is the parameters set and Z is the training set (i.e. a set of
objects which assignments is known in advance).’ T' is
the objective function of cumulative classification errors
and should be minimised, i.e. the difference between
the estimated membership degree of a; (i.e. u(ai,Ch))
obtained by applying a NCD-based MCC and the true
membership degree nl' of a; given a priori in the training
set Z. Two types of constraints are considered in A:
Structural Constraints (SC) and Decision-Maker’s Con-
strains (DMC). In general, the first type of constrains
are articulated in function of the characteristics of the
parameters and their mutual relationship (e.g. the sum

3The training set is obtained by partitioning the entire dataset in two
subsets: the first one, called training subset, is used to elicit the values
of the parameters and the second subset, called test subset, is used to
evaluate the performance of the MCCs.
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TABLE II
Local and Global Discordance Indices

Method Formula

D(a,b)=1-] (- D,(a,b})) or D(a,b")= Max D,(a,,b}) , where

J=1

1 if g/(a)-g,®)<-v,

11.( = v+,
E—Esm(u;_'v;k][g,-(a;)—g,(b:)"'T] if -v,<g/a)-g,b)s-v,

PIP and K-PIP
classifiers [15] D,(a,b})=40 if |g,(a)-g,b})|<v; ,

| T a Vi
E*Es’n[v;v, ][g,(a) g, (b2 ] if v,<g(a)-g,B)<V),

1 otherwise

L

v,and v}, are respectively two veto thresholds.

D(a, b )_1—]'[( D,(a,,b! }) where D, (a,,b!) = Max {D; (a,,b!), D} (a,,b!)}

J=t

(e = £1(@) = Maxle (@), S,(61)~ p (B1)}
j{aj"bt)_ —(h Leph -ty
PROAFTN classifier [3] p, (b)) - Max{S)(b}) - g,(a,), v, (b))}
g,(a)~ Minfg (a)), S*(B1) + p! (b))}
p; (b)) - Maxt-S} (b)) + g,(a,), v; (b))}
preference thresholds and v} (b)) and V] (b)) are two veto thresholds.

D;(a{,bf)— ereZw =1, p;(b})and p; (b}) are two

ailn

D,(a,b}) =1~ [(1-D!(a,b})) where D!(a,,b})= Max{D? (a,,b}), D (5!,a)},
Jjml

FBI classifier [31] g,(b))-g,(a)-p,
v;’ e p i

the degree of synergy between criteria and p and v, are respectively the preference and the veto thresholds.

Di(a,.b})= M:‘n{l, Max{(], H , a€ [1,n] is a technical parameter introduced to modify

TRI-NOMFC classifier

[23] No discordance

TABLE III
Similarity Index Computation

Method Formula
- SI(a,b!)=C(a,b!)x(1- D(a, b))
- SI(a,.b!)= Min(C(a,,b/),1- D(a,.b"))

PIP and K-PIP classifiers [15]

PROAFTN classifier [3] - SIl(a,,b)=C(a,b]) ( - D(a,,b; ))
FBI classifier [31] ~ SI(a,b!) = Min(C(a,,b/),1- D(a,.b]"))
TRI-NOMFC classifier [23] - SI(a,,b!)=C(a,,b]') since there is no discordance.
of the criteria weights for each category is equal to 1, It’s noteworthy that Belacel [3] and Henriet [15]

i.e. Z;‘zl wﬁ-’ = 1; the indifference threshold is smaller or have proposed similar mathematical models to infer the
equal than the preference threshold for each criterion, parameters values of their respective NCD-based MCC.
i.e. qj-’ < p;‘ (j = 1...n)). The second group of constrains When the values of the different thresholds are known,
expresses the preferences of decision-maker with re- Henriet [15] has shown that for specific configurations
spect to the NCD-based MCC parameters. For instance, of global concordance, discordance and similarity in-
the decision-maker may specify, for a particular cate- dices, the mathematical model (A) can be easily relaxed
gory, that Zje 7 wj.’ > Zj o w;? where 1,J C {1...n} and into linear program and then solved by classical opti-
InJ =0@. mization methods. In addition, Henriet [15] has pro-
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TABLE IV
Membership Degree Computation

Method Formula
, Max SI(a,b!) if V.(a)nB"+0
- p1p: Y(a,C") = {tiet(@ns’ ;
0 otherwise
1= (1-SI(a,,b})) if Vi(a)NB"#0
PIP and K-PIP - k-PIp: fi(a,C") = eV (a)nB" ,
classifiers [15] .
0 otherwise
where B”" is the profile set of the category C", Vi (a,)is the set of the K more indifferent
H
(or similar) profiles to @, in B = UB;' .
h=1
PROAFTN classiier | . 1y(a;,C*) = Max SI(a;,b})
FBI classifier [31] Ma,C"= Max SI(a,,b!)
M(a,C" = Min SI(a,,b})
#(a,,C*)= Max Si(a,,b})
TRI-NOMFC Ly
classifier [23] - (@, C"y= > W (b))xSI(a;,b) where W] (b}') is the likelihood degree of object
k=1
L
by and Y w} (b)) =1.
k=1
TABLE V
Decision Rules to Assign a Given Object
Method Decision rule

PIP and K-PIP
classifiers [15]

= a{ € C. At #(ahct) = A{ax ﬂ(ai: Cﬁ)

PROAFTN classifier [3] 2

ae C o pa,C)= A{ax;t(a‘.,C;’)

FBI classifier [31]

aeC & ua,C)= Max u(a,,C")

TRI-NOMFC classifier
[23]

{
- a,eC & pa,C")= Max

ae [0, l] is a coefficient of relative optimism.

aeC o ua,C)= M;axy(ar.,cn)

Max | SI(a,,b! ]
ke{l..L,-,}{ (a ‘)} _—
h

+(l—a]><ké1{a‘1fﬂ}{ SI(a,, b))}

posed two methods based respectively on K-Means and
Genetic algorithms to identify the profiles which char-
acterize each category. In this same perspective, Belacel
et al. [4] have presented a methodology to infer the
parameters of PROAFTN classifier. In their methodol-
ogy, these authors have made some simplifications: only
concordance concept is considered, the criteria weights

are assumed to be equal and each category is character-
ized by only one profile. Hence, the parameters that are
inferred in their learning process are: the upper and the
lower bounds of the interval [S} (b,i‘),S/Z(b,i‘)] and the two
preference thresholds p]?(b,i’) and pj(b}). Belacel et al.
[4] solved a mathematical model similar to (A) by us-
ing a training set and the Reduced Variable Neighbour-
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hood Search (RVNS) meta-heuristic recently proposed
by [29]. Belacel et al. [4] have reported that the Average
Identification Rate (AIR)* of PROAFTN is, in general,
better than the AIR of other classification methods re-
ported on the same datasets.

Since the objective function I' of (A) is neither con-
vex nor concave and may have many local optima,
it will be difficult to find a global optimum for (A).
Therefore, it’s not possible to use classical optimization
methods (e.g. gradient algorithms and interior-point al-
gorithms) to solve (A). To overcome this difficulty, an
ALM based on RCGA is proposed to approximate the
optimal solution of (A) and consequently to infer the
parameters values of NCD-based MCCs.

An ALM Based on RCCA to Infer the Values of
NCD-Based MCC Parameters

3.2.

Genetic Algorithms (GAs) are stochastic algorithms
based on the mechanism of the genetic evolution (se-
lection, cross-over and mutation) to solve complex and
large optimization problems. GAs were initially intro-
duced by John Holland [19], but they were popular-
ized thanks to the book of Goldberg [12]. The main
idea of GAs is to start with an initial population of po-
tential solutions (or chromosomes) arbitrarily selected.
Then, evaluate the relative performance of each solution
through a fitness function. Then, on the basis of so-
lutions performances, generate a new population using
three evolutionary operators: selection, crossover and
mutation. The selection operator identifies both the rel-
atively “good” solutions that will be used to generate
the new population and the relatively “bad” solutions
that will be removed from the current population. The
crossover operator swaps the structures of two “parent
solutions” in order to form two similar “offspring so-
lutions” that will be involved in the new population.
The mutation operator alters arbitrarily the features of
one or more solutions in order to increase the structural
variability of the population. The above three opera-
tors are repeated until a stopping condition is met. A
simplified structure of genetic algorithm is shown in
Fig. 5.

The application fields of GAs are considerable. For
instance, these algorithms are used in:

—Optimization, when the functions to optimize are
complex, irregular and with high dimensionality;

—Physics, as optimization methods for real problems
(e.g. structures optimization);

—Artificial intelligence, where the adaptive abilities of
GAs are exploited;

—Economy, to model the behaviour of agents for in-
stance;

—Image recognition, for example to classify the un-
known objects to pre-defined categories;

4This is a performance measure of a classifier. It’s defined by the
following ratio: the number of objects that are correctly classified
divided by the total number of objects.

Begin

= =0

= Initialize Population (1)

= Evaluate Population (1)

While (not stopping condition) do
w r=r+1
= Select Population (t) from Population (t —1)
* Recombine (Crossover and Mutation) Population (1)
= Evaluate Population (1)

End do
End

Fig. 5. A simplified architecture of a GA.

—Graph and game theories, to solve for example the
Traveling Salesman Problem (TSP) or some problems
in repetitive and differential games;

The success of GAs is mainly due to their ability to
exploit vast unknown search spaces in order to orient
subsequent searches into useful subspaces. This feature
makes GAs more efficient and effective search tech-
nique to explore large, complex, and poorly understood
search spaces, where classical search tolls are inappro-
priate. Since many years, binary coded solutions (or
chromosomes) have dominated GAs research. However,
Michalewicz [25] has showed that this kind of represen-
tation for optimization problems with continuous vari-
ables may involves at least three drawbacks:

o It’s difficult to use binary coding for optimization
problems with high dimension and numerical preci-
sion. For instance, with 100 variables belonging to
the interval [—500,500] and a precision of 6 decimal
numbers, the size of a binary coded solution is 3000.
This generates a search space of about 10'%%, For this
kind of binary coded problems GAs will have weak
performance [27];

e The Hamming® distance between two neighborhood
real numbers may be large in binary coding. For ex-
ample, the Hamming distance between 0111 (which
is equal to 7) and 1000 (which equal to 8), is equal
to 4;

e When the crossover and the mutation operators are
applied on binary coded continuous chromosomes
they may generate new infeasible solutions.

The above drawbacks of the binary coding have mo-
tivated the development of other coding types. Real cod-
ing is particularly natural when optimization problems
involve real variables. GAs with this type of coding
are called real-coded GAs (RCGAs) [18]. In the recent
years, RCGAs have been used to solve various continu-

5The Hamming distance between two binary coded strings is defined
as the number of bits which are different in the two strings.

A GENERALIZED FRAMEWORK FOR MULTI-CRITERIA CLASSIFIERS WITH AUTOMATED LEARNING 83



ous optimization problems (e.g. [26], [16], [17], [1]). In
RCGAs, each solution (or chromosome) is treated as a
vector of real numbers. Since the conventional crossover
and mutation operators for binary coding are not appli-
cable for real coding, many other adapted operators are
proposed in the literature for real coding [18].

In this work, RCGAs will be used to infer the
parameters of the NCD-Based MCCs since all of them
are real numbers (e.g. thresholds, weights, etc.). To
implement the RCGA, some technical choices have
been made on its parameters (e.g. selection methods,
crossover and mutation operators, etc). These choices
will be specified in Section 5. In next section, we briefly
describe the military dataset that will be used to test the
performance of the different classifiers.

4. MILITARY DATASET DESCRIPTION

The military dataset that will be used in this work
includes 2545 Forward Looking Infra-Red (FLIR) im-
ages belonging to eight different classes of ships. These
images were provided by the U.S. Naval Weapons Cen-
ter and Ford Aerospace Corporation. Typical silhouettes
of the best image of each class and other related infor-
mation about classes are listed in Table VI (see page
85).

Based on these 2545 FLIR images, Park and Sklan-
sky [30] proposed to extract 11 features® (or attributes/
criteria). These attributes are obtained as follows:

e The first seven (7) attributes are represented by Hu’s
[20] moments m;. These moments are invariant un-
der scaling (different zoom factors), rotation (differ-
ent look angles) and translation (silhouette not nec-
essarily centered). The moments m; are computed by
using the second and the third order moment formula,
let:

P = Y (=2 =",
(x,y)es
where (n + m) is the moment order; x (respectively y)
is the horizontal (respectively the vertical) coordinates
in the silhouette S; x and y are the coordinates of
the centroid of S. For instance, the first four (among
the seven attributes) Hu’s [20] invariant moments
(i =1...4) are given as follows:

—g, =my =r/B, where r = /[,y + 15, the radius of
gyration and B is the distance between the camera
and the ship.

_ (g9 — pop)® + 43

_g2 = m2 r4

_ o (e — 3p12)* + Bpigg — p130)*
—83=m3 = ’,6

_ o (pge + f12)* + (g + p130)°
8y =My = 70

A feature is an abstraction of the raw data in order to represent the
original information.

The seven Hu’s [20] invariant moments are noted
by g, =m; for i =1...7. It's worth noting that the
weakness of invariant features is that they contain
only information that deals with the general shape
of the ship and thereby they represent poorly the
other details of the observed object. To overcome this
disadvantage, Hu [20] proposed four other attributes
which provide more information details about ship;

e The last four (4) attributes represent the parameters
of an Auto Regressive (AR) Model. They were ex-
tracted by fitting an AR model to one-dimensional
sequence which represents the projection of a ship
image onto horizontal axis. Let 7(i),i = 1...N, denote
the sequence of the projected ship image sampled at
N equally spaced points. Based on these sequences,
an AR model is defined recursively by:

r(i) = Zﬂjr(i — ) + o+ /Be(i).
j=1

The above model expresses the projection r; (i =
1...N) as a linear combination of the previous pro-
jections (i —j) (j =1...m),” plus a bias o and the
error (i) associated with the model. The parameters
are estimated by a least square fit of the model to the
Qne—dimensional sequence (1),7(2),...,r(N). Thus, if
0, & and ﬁA denote the least squares estimates of 6, «
and g respectively, the four (4) AR parameters (m = 3,
N = 30) are presented as follows:

— g =0,i=1..3

a

—811 = %

Park and Sklansky [30] have shown that all AR pa-
rameters are invariant to rotation, translation and scal-
ing, so that they may be used as features for classifica-
tion purpose.

5. COMPUTATIONAL RESULTS

Only two NCD-based MCCs are implemented in
this work: PROAFTN classifier [3] and K-PIP classifier
[15]. This choice is justified by the two following facts.
The first one is that K-PIP classifier is an enhanced
version of the FBI classifier [31] (see [5]). Second, since
we want to experiment the effects of both concordance
and discordance concepts on classification results, TRI-
NOMEC classifier [23] is removed from our list.

In the ALM proposed in this paper, only thresholds
will be estimated for both PROAFTN and K-PIP clas-
sifiers:

—For PROAFTN classifier [3], we consider the upper
and the lower bounds of the interval [S}(b}),S7(b)],

the two preference thresholds p; (b and P; (b1 and

"Here m denotes the number of weight parameters.
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TABLE VI
Military Dataset Description

Class |  Class of ship N:I;‘ah;;:f Typical silhouette
1 Destroyer (D) 340
2 Container (CO) 455
3 Civilian Freighter (CF) 186
4 Replgl}l:li'::'lign??AOR) =l
s | e | g
6 Frigate (F) 279
7 Cruiser (CR) 239
8 | Guided st oGy | 208

the two veto thresholds v;(b,}(’) and v} (by) for j =
1...11,h=1...8and k=1...L;

—For K-PIP classifier® [15], we infer the indifference
threshold ¢”, the preference threshold p” and finally
the two veto thresholds Vin and vj+h forj=1...11 and
h=1...8.

It’s obvious that the dimensionality (or the num-
ber of parameters to infer) of the ALM for the above
two classifiers is not the same. For instance, in K-PIP
classifier there is only 352 parameters (4 x 11 x 8)
to estimate while in PROAFTN classifier there is
5280 parameters (6 x 11 x 8 x 10) to estimate if we

8In this computational experiment, the number K of K-PIP classifier
(see Table 1V) is fixed to 5.
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assume that each category is represented by only 10
profiles.

Since the criteria weights are not included in the
ALM, they are estimated by the Entropy method [43].
Hence, the more the criterion discriminates between
images the more it will be important. In the other
hand, the profiles of each category are identified by
using an improved version of K-Means algorithm.’
The number of profiles in each category is deter-
mined by a percentage of the total number of ob-
jects in this category. This percentage varies from
1% to 10%. Many others technical choices have been
made to implement the RCGA on which is based the

%In this improved version of K-means algorithm, we remove each
profile that forms an empty group.
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ALM:

—Four selection methods are implemented: (1) Rou-
lette Wheel Selection (RWS), (2) Stochastic Remain-
der Without Replacement Selection (SRWRS), (3)
Linear Rank based Selection (LRS) and (4) Tourna-
ment Selection (TS)!?;

—Five crossover operators are implemented: (1) Flat
Crossover (FC), (2) Arithmetical Crossover (AC),
(3) BLX-a Crossover (BLXC), (4) Extended Line
Crossover (ELC) and (5) Simple Crossover (SC)'?;

—Four mutation operators are implemented: (1) Ran-
dom Uniform Mutation (RUM), (2) Non Uniform
Mutation (NUM), (3) Muhlenbein Mutation (MM)
and (4) Gaussian Mutation (GM)'?;

—The crossover and mutation probabilities vary respec-
tively from 0.6 to 0.8 and from 0.05 to 0.1;

—The size of the generated populations varies from 30
to 80. Note that the initial population (or the set of
initial chromosomes) in generated at random. How-
ever, the random values of parameters that constitute
each chromosome are generated within specific inter-
vals. These intervals are determined based on some
statistical measures on the training dataset for each
class and each feature (some examples of these sta-
tistical measures are presented in Fig. 6). The aim of
these measures is to limit the variation domains of
the parameters and thereby to make easy the random
generation of the initial population;

—The maximum iteration number—fixed to 100—is
used as stopping criteria for the RCGA. In fact,
this number is not fixed at random. Indeed, by test-
ing many data splits, we have observed that—in
general—beyond 100 iterations the improvement of
the classification accuracy of the tested classifiers be-
comes insignificant regarding the computational ef-
fort (in time) provided to execute an additional itera-
tion;

—The method used for the evaluation of the classifica-
tion accuracy is a cross-validation method called re-
peated random sub-sampling validation. This tech-
nique randomly splits the initial dataset into training
and validation (or test) subsets. For each such split,
the classifier is retrained with the training subset and
validated (or tested) on the remaining subset. The re-
sults from each split are then averaged. Hence, ac-
cording to this cross-validation technique the military
dataset is randomly divided into two subsets: a train-
ing subset (which size varies from 50% to 70% of the
entire dataset) used to infer the values of NCD-based
MCC parameters and a test (or a validation) subset
(which size varies from 50% to 30% of the entire
dataset) used to evaluate the performance of the
different MCCs.!! Hence, for each MCC, 20 dif-

10To learn more about these evolutionary operators (crossover and
mutation) and methods (selection), we refer the reader to the work of
Herrera et al. [18].

"Note that each subdivision constitutes a partition of the entire
dataset, i.e. the union of the training subset and the test subset form
the entire dataset.

ferent random splits are generated to test its perfor-
mance.

All algorithms in the ALM—ie. the RCGA,
PROAFTN and K-PIP classifiers—are coded in Visual
Basic (VB) and tested on a Pentium IV processor with
2.8 GHz and 512 Mb of RAM. The developed soft-
ware involves some visualization and statistical tools
on the entire, training and test datasets. For instance,
Fig. 6 presents some statistical measures on the training
dataset for each class and each attribute (or feature).

It’s important to underline that two prior works ([37]
and [30]) have used the same military dataset to test
the performance of four different classifiers: Dempster-
Shafer-based (DS) classifier, Modified-Bayes-based
(MB) classifier, K-Nearest Neighbors (K-NN) classifier
and Neural Net (NN) classifier. The results, expressed
in Average Identification Rate (AIR), obtained by these
works are presented in Table VII.

Note that the above works, i.e. Valin et al. (2006)
and Park and Sklansky (1990), use the repeated random
sub-sampling cross-validation method to evaluate the
classification accuracy of all their tested classifiers.
Valin et al. (2006) generate many random splits by using
Monte-Carlo runs'# whereas Park and Sklansky (1990)
generate only one random split.

The application of PROAFTN and K-PIP classifiers
on the military dataset provides the results presented re-
spectively in Tables VIII and IX. An example of screen
showing the application of the ALM for K-PIP classi-
fier is presented in Fig. 7. By observing Tables VIII and
IX, we conclude that both PROAFTN and K-PIP NCD-
based MCCs give, in general, good results: the AIR of
FROAFTN is 86.78% and the AIR of K-PIP is 80.69%.
Hence, these two MCCs have an AIR better than those
of MB and DS classifiers but worse than those of K-NN
and NN classifiers.

Some other comments may be made on the classifi-
cation results of both PROAFTN and K-PIP classifiers:

—The AIRs of both classifiers on the training and test
datasets are stable since they are situated around their
average (small standard deviation for both classifiers
and datasets). We can also use the coefficient of
variation (CV = (0z1rs/Xars)%)"° as measure of the
robustness (or the stability) of the obtained results.
For instance, the CV of the PROAFTN AIRs for the
test dataset is equal to CV = 1.65/86.78 = 1.9% (see
Table VIII) which is small.

—The AIRs obtained on the training and the test
datasets are too different for PROAFTN classifier (av-
erage range 7.04%), while these AIRs are nearly the
same for K-PIP classifier (average range 2.53%). We
believe that this is due both to the high number of

14The number of splits is not specified by these authors.

I5Note that more the CV is small the more the observations are homo-
geneous, i.e. that the observations are concentrated around the mean.
In this case we said that the mean is representative of its observations.
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TABLE VII
The Different Results of Prior Works on the Same Military Dataset
Papers MB classifier DS classifier K-NN classifier NN classifier
Valin et al. [37] 77.7% 74.5% 94.8%"? 92.7%
Park and Sklansky [30] ok 88.3%" *Ek

12In this work, the K-NN classifier is applied with K = 3 and by using an Euclidean distance weighted
by the inverse of the inter-categories covariance matrix.

13In this work, the K-NN classifier is applied with a simple Euclidean distance. The value of K that
produces the highest AIR is chosen among the values of K between 1 and 17.

parameters in PROAFTN classifier and to the over-
specification (or over-fitting) problem. This problem
occurs when the parameters of the classifier became
much specific to the data set from which they are
assessed. Hence, when these parameters are used to
classify another data set, the classification results
obtained on this latter will be much different from
those obtained on the first data set. Since PROAFTN
classifier use more parameters than K-PIP classifier,
the over-specification problem will be more apparent
with the former classifier;

—According to our computational experiments, all se-
lection methods and evolutionary operators (mutation

and crossover) seems to perform equally. However,
we have observed that, in general, the AIRs of both
MCCs increase when the population size increases;

—Some AIRs obtained by PROAFTN classifier for the

training dataset exceed the best AIR obtained by
all other classifiers (i.e. 94.8%). This is shows the
ability of this classifier to provide better results and
thereby we believe that it constitutes a promising
classifier which merits to be improved (see Section 6
for eventual improvements);

—The AIR obtained by PROAFTN classifier is better

than that of K-PIP classifier since, for a specific cri-
terion, the first consider that the profiles of the same
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TABLE VIII
PROAFTN Results

Genetic Algorithm Crossover Step Mutation Step
Population size | Selection Method

Problems Training Database | Testdatabase Cross.Oper | Cross.Prob | Muta. Oper | Muta Prob
Problem 1 92,62% 86,23% 30 RWS FC 0,60 RUM 0,05
Problem 2 91,78% 85,03% 30 SRWRS AC 0,65 NUM 0,07
FProblem 3 94,33% 88,54% 30 LRS SC 0,70 MM 0,09
Problem 4 90,44% 85,09% 40 TS BLX 0,75 GM 0,10
Problem § 95,22% 89,67% 40 RWS ELC 0,80 RUM 0,05
Problem & 93,02% 84,88% 40 SRWRS FC 0,60 NUM 0,07
Problem 7 96,17% 88,98% 50 LRS ac 0,65 MM 0,09
Problem 8 94,01% 86,11% 50 15 SC 0,70 GM 0,10
Problem 3 93,28% 85,96% 50 RWS BLX 0,75 RUM 0,05
Problem 10 93,72% 86,31% 60 SRWRS ELC 0,80 NUM 0,07
Problem 11 95,12% 88,17% 60 LRS FC 0,60 MM 0,09
Problem 12 91,73% 84,39% 60 TS AC 0,65 GM 0,10
Problem 13 95,09% 87,81% 70 RWS sc 0,70 RUM 0,05
Problem 14 96,00% 89,42% 70 SRWRS BLX 0,75 NUM 0,07
Problem 15 93,08% 86,12% 70 LRS ELC 0,80 MM 0,09
Problem 16 94,65% 88,23% 70 15 FC 0,60 GM 0,10
Problem 17 95,00% 87,93% 80 RWS AC 0,65 RUM 0,05
Problem 18 93,75% 85,59% 80 SRWRS Sc 0,70 NUM 0,07
Problem 19 92,82% 85,07% 80 LRS BLX 0,75 MM 0,09
Problem 20 94,68% 86,12% 80 TS ELC 0,80 GM 0,10

category don’t have necessarily the same thresholds,
while the second assumes that the profiles of the same
category have identical thresholds. Hence, for a par-
ticular category and criterion, PROAFTN classifier
provides more thresholds to each profile (i.e. more
degree of freedom) than K-PIP classifier.

6. DISCUSSIONS AND CONCLUSIONS

In this paper, a classification methodology that com-
bines the advantages of multi-criteria decision analy-
sis and automated learning algorithms has been pro-
posed. This classification methodology uses some se-
lected NCD-based MCCs as aggregation models and an
IEA to assess the parameters values of these MCCs. To
understand the implementation of NCD-based MCCs,
we have proposed a generalized framework to explain
how these classifiers proceed to assign an object to a
given category. The strength of the MCCs could be
seen along three dimensions: (i) integration of sub-
jective information like the decision-maker knowledge
and preferences, (ii) rigorous manipulation of heteroge-
neous, conflicting and non commensurable information,

and (iii) easy to explain, and therefore are not black
boxes. The IEA is implemented using a mathematical
model that provides automatically the “optimal” values
of the NCD-based MCCs parameters. An ALM based
on RCGA has been proposed to approximate its “opti-
mal” solution and consequently to infer the parameters
values of these classifiers because the proposed model
could not be solved by classical optimization tools (e.g.
gradient algorithms and interior-point algorithms). The
proposed ALM overcomes some simplifications made
in prior works (e.g. [4]): both concordance and dis-
cordance concepts are taken into account, the criteria
weights are used in the computation of the membership
degree of an object to a pre-defined category and finally
each category may be characterized by many profiles.
A military dataset of 2545 Forward Looking Infra-
Red (FLIR) images representing eight different classes
of ships is used to test the performance of two NCD-
based MCCs (PROAFTN classifier [3] and K-PIP clas-
sifier [15] with respect four other classifiers (Dempster-
Shafer-based (DS) classifier, Modified-Bayes-based
(MB) classifier, K-Nearest Neighbors (k-NN) classifier
and Neural Net (NN) classifier). The computational re-
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TABLE IX
K-PIP Results

Genetic Algorithm e . Crossover Step Mutation Step
Population size | Selection Method

Problems Training batebase Test database Cross, Oper | Cross, Prob | Muta, Oper Muta, Prob
Problem 1 83,38% 80,63% 30 RWS FC 0,60 RUM 0,05
Problem 2 81,47% 79,84% 30 SRWRS AC 0,65 NUM 0,07
Problem 3 82,31% 80,89% 30 LRS sC 0,70 iy | 0,09
Problem 4 82,54% 79,58% 40 15 BLX 0,75 GM 0,10
Problem S 84,31% 81,03% 40 RWS ELC 0,80 RUM 0,05
Problem & 83,25% 80,22% 40 SRWRS FC 0,60 NUM 0,07
Problem 7 85,02% 82,41% 50 LRS AC 0,65 MM 0,09
Problem 8 84,59% 81,19% 50 15 SC 0,70 GM 0,10
Problem 9 83,69% 80,07% 50 RWS BLX 0,75 RUM 0,05
Problem 10 82,58% 80,97% 60 SRWRS ELC 0,80 NUM 0,07
Problem 11 85,17% 83,72% 60 LRS FC 0,60 MM 0,09
Problem 12 80,77% 78,61% 60 5 AC 0,65 GM 0,10
Problem 13 85,04% 82,51% 70 RWS sC 0,70 RUM 0,05
Problem 14 82,54% 79,91% 70 SRWRS BLX 0,75 NUM 0,07
Problem 15 84,00% 81,25% 70 LRS ELC 0,80 MM 0,09
Problem 16 80,87% 77,88% 70 15 FC 0,60 GM 0,10
Problem 17 83,36% 80,11% 80 RWS AC 0,65 RUM 0,05
Problem 18 82,43% 80,81% 80 SRWRS SC 0,70 NUM 0,07
Problem 19 85,65% 83,09% 80 LRS BLX 0,75 MV 0,09
Problem 20 81,47% 79,17% 80 15 ELC 0,80 GM 0,10

sults show that NCD-based MCCs provide AIRs bet-
ter than those provided by MB and DS classifiers but
worse than those obtained by K-NN and NN classi-
fiers. Although NCD-based MCCs don’t provide the
best AIRs in this application, we believe that they are
promising classifiers and merit to be further explored.
Note that NCD-based MCCs are not optimized for this
kind of dataset. In fact, if qualitative information and
human judgment are introduced, we are confident that
NCD-based MCCs will certainly outrank K-NN and NN
classifiers. Moreover, NCD-based MCCs are not black
boxes and all their results are automatically explained.

Many improvements could be made to enhance the
AlIRs of NCD-based MCCs like:

—Integrating the profiles and the criteria weights in the
ALM;

—Using other improved versions of K-Means algorithm
for the profile identification (e.g. Y-Means [13] or J-
Means [14]);

—Integrating the profile weights in the membership
degree computation;

—Combining the aggregation operators of different
NCD-based MCCs;

—Using the concept of specified classifier, i.e. for the
classification purpose we only use a subset of criteria
that discriminate more between objects;

—Implementing a parallel version of NCD-based MCCs
to reduce the computation time. For instance concor-
dance and discordance indices may be computed si-
multaneously;

—Since Genetic Algorithms (GAs) are inefficient to ex-
ploit local information of solutions in each popula-
tion, it will be benefit to integrate, in each iteration of
the GA, a local search strategy (e.g. steepest descent
strategy) to fine-tuning these solutions locally.

We uphold that cross fertilization of multi-criteria
decision analysis and information fusion concepts could
be beneficial to both domains. Multiple criteria classi-
fiers are designed to consider human in the loop and to
support human decision making.
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