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While multiple hypothesis tracking (MHT) is widely acknowl-

edged as an effective methodology for multi-target surveillance,

there is a challenge to manage effectively a potentially large number

of track hypotheses. Advanced single-stage track-while-fuse does not

always offer the best processing scheme. We study two instances

where multi-stage MHT processing is beneficial–dense target sce-

narios and complementary-sensor surveillance–and propose two

processing schemes for these challenges: track-break-fuse and track-

before-fuse, respectively. We provide simulation results demonstrat-

ing the advantages of these schemes over track-while-fuse. More gen-

erally, we argue that multi-stage MHT offers a powerful and flexible

paradigm to circumvent limitations in conventional MHT process-

ing.
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1. INTRODUCTION

A broad overview of approaches to data fusion is

provided in [1]. The most powerful current approach

to real-time, scan-based data fusion is multi-hypothesis

tracking (MHT), which was first introduced in the late

1970s [11] and made feasible in the mid-1980s with the

track-oriented approach [9]. A number of enhancements

to the basic approach have appeared over the years [1].

If contact measurement information is available at

the tracker output, one can think of a multi-target tracker

as a filter of sorts that discards spurious contacts and

associates the remaining ones through track labeling.

As such, tracking is a modular operator which, when

applied to contact-level data, takes as input singleton

(i.e. single-measurement) tracks. More generally, a mix

of track-level and contact-level feeds may be provided

to the tracker. Upstream track labels are preserved in

downstream processing, except in cases where discrep-

ancies are detected in downstream tracking. This tracker

modularity allows for arbitrarily complex multi-stage

data fusion architectures. This philosophy, combined

with the necessary software modularity, is the basis for

the multi-stage MHT approach that we consider in this

paper. We find that in some applications multi-stage

MHT processing outperforms single-stage MHT pro-

cessing.

In this paper, we introduce two multi-stage MHT

architectures and compare these to single-stage, track-

while-fuse processing. The first multi-stage architecture,

track-break-fuse, is computationally efficient without

sacrificing the tracking performance of track-while-fuse.

The second architecture, track-before-fuse, provides fur-

ther computational efficiency at the cost of some track-

ing performance. The track-while-fuse approach is in-

tractable when the application requires deep hypothe-

sis trees; conversely, both of the multi-stage MHT ap-

proaches that we introduce here identify a small set of

relevant association hypotheses, enabling deep hypoth-

esis trees.

The paper is organized as follows. In Section 2, we

provide a short introduction to standard (track-while-

fuse) track-oriented MHT, following closely on the for-

malism introduced in [9]. The multi-stage MHT archi-

tectures of interest, track-break-fuse and track-before-

fuse, are introduced in Section 3. In Section 4 we study

track-break-fuse for a challenging, slowly-crossing tar-

gets problem. In Section 5 we study track-before-fuse for

multi-sensor surveillance with complementary, multi-

scale sensors. Concluding remarks are in Section 6.

Early results on the multi-stage processing intro-

duced here are in [6] (track-break-fuse) and [3] (track-

before-fuse). A related MHT approach to track-before-

fuse is discussed in [4], which introduces group-tracking

logic to enable deep hypothesis trees. Additionally,

within the MHT framework, some techniques to hypoth-

esis management do exist, including K-best assignment

or hypothesis-clustering approaches [7, 10]. However,
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the difficulty is that one must maintain relevant track

hypotheses for significant time duration, and often the

top-scoring global hypotheses do not have sufficient di-

versity to insure that this is achieved. Hypothesis clus-

tering may only partially ameliorate the situation. Pos-

sibly, one might adopt a probabilistic data association

framework to address the problem, leveraging the ap-

proach introduced in [8].

2. TRACK-ORIENTED MULTIPLE HYPOTHESIS
TRACKING

A key challenge in multi-sensor multi-target tracking

is measurement origin uncertainty. That is, unlike a

classical nonlinear filtering problem, we do not know

how many objects are in the surveillance region, and

which measurements are to be associated. New objects

may be born in any given scan, and existing objects may

die.

We assume that for each sensor scan, contact-level

(or detection-level) data are available, in the sense that

signal processing techniques are applied to raw sensor

data yielding contacts for which the detection and lo-

calization statistics are known. We are interested in a

scan-based (or real-time) approach that, perhaps with

some delay, yields an estimate of the number of objects

and corresponding object state estimates at any time.

Several approaches to contact-level scan-based

tracking exist. In this section, we employ a hybrid-

state formalism to describe the track-oriented multiple-

hypothesis tracking approach. Our approach follows

closely the one introduced in [9]. We assume Poisson

distributed births at each scan with mean ¸b, Poisson
distributed false returns with mean ¸fa, object detection
probability pd, object death or termination probability
pÂ at each scan. (We neglect the time-dependent nature
of birth and death probabilities as would ensue from an

underlying continuous-time formulation, and we neglect

as well inter-scan birth and death events.)

We have a sequence of sets of contacts Zk = (Z1, : : : ,
Zk), and we wish to estimate the state history X

k for all

objects present in the surveillance region. Xk is com-
pact notation that represents the state trajectories of tar-

gets that exist over the time sequence (t1, : : : , tk). Note
that each target may exist for a subset of these times,

with a single birth and a single death occurrence i.e.

targets do not reappear. We introduce the auxiliary dis-

crete state history qk that represents a full interpretation
of all contact data: which contacts are false, how the

object-originated ones are to be associated, and when

objects are born and die. There are two fundamental

assumptions of note. The first is that there are no tar-

get births in the absence of a corresponding detection,

i.e. we do not reason over new, undetected objects. The

second is that there is at most one contact per object per

scan.

We are interested in the probability distribution

p(Xk j Zk) for object state histories given data. This

quantity can be obtained by conditioning over all pos-

sible auxiliary states histories qk.

p(Xk j Zk) =
X
qk

p(Xk,qk j Zk)

=
X
qk

p(Xk j Zk,qk)p(qk j Zk): (1)

A pure MMSE approach would yield the following:

X̂MMSE(Z
k) = E[Xk j Zk]
=
X
qk

E[Xk j Zk,qk]p(qk j Zk): (2)

The track-oriented MHT approach is a mixed

MMSE/MAP one, whereby we identify the MAP es-

timate for the auxiliary state history qk, and identify
the corresponding MMSE estimate for the object state

history Xk conditioned on the estimate for qk.

X̂(Zk) = X̂MMSE(Z
k, q̂k) (3)

q̂k = q̂MAP(Z
k) = argmax

qk
p(qk j Zk): (4)

Each feasible qk corresponds to a global hypoth-
esis. (The set of global hypotheses is generally con-

strained via measurement gating and hypothesis genera-

tion logic.) We are interested in a recursive and computa-

tionally efficient expression for p(qk j Zk) that lends itself
to functional optimization without the need for explicit

enumeration of global hypotheses. We do so through

repeated use of Bayes’ rule. Note that, for notational

simplicity, we use p(¢) for both probability density and
probability mass functions. Also, as discussed in Sec-

tion 2, the normalizing constant ck does not impact MAP
estimation.

p(qk j Zk) = p(Zk j Zk¡1,qk)p(qk j Zk¡1)
ck

=
p(Zk j Zk¡1,qk)p(qk j Zk¡1,qk¡1)p(qk¡1 j Zk¡1)

ck

(5)

ck = p(Zk j Zk¡1)

=
X
qk

p(Zk j Zk¡1,qk)p(qk j Zk¡1): (6)

Recall that we assume that in each scan the number

of target births is Poisson distributed with mean ¸b,
the number of false returns is Poisson distributed with

mean ¸fa, targets die with probability pÂ, and targets are
detected with probability pd. The recursive expression
(5) involves two factors that we consider in turn, with

the discrete state probability one first. It will be useful

to introduce the aggregate variable Ãk (consistent with
the approach in [9]) that accounts for the number of

detections d for the ¿ existing tracks, the number of
track deaths Â, the number of new tracks b, and the
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number of false returns r¡ d¡ b, where r is the number
of contacts in the current scan.

p(qk j Zk¡1,qk¡1) = p(Ãk j Zk¡1,qk¡1)p(qk j Zk¡1,qk¡1,Ãk) (7)

p(Ãk j Zk¡1,qk¡1) =
½μ

¿

Â

¶
pÂÂ(1¡pÂ)¿¡Â

¾
¢
½μ

¿ ¡Â
d

¶
pdd(1¡pd)¿¡Â¡d

¾
¢
½
exp(¡¸b)pbd¸bb

b!

¾

¢
(
exp(¡¸fa)¸r¡d¡bfa

(r¡ d¡ b)!

)
(8)

p(qk j Zk¡1,qk¡1,Ãk) =
1μ

¿

Â

¶μ
¿ ¡Â
d

¶μ
r!

(r¡ d)!
¶μ

r¡ d
b

¶ : (9)

Substituting (8—9) into (7) and simplifying yields the

following.

p(qk j Zk¡1,qk¡1) =
½
exp(¡¸b¡¸fa)¸rfa

r!

¾
pÂÂ((1¡pÂ)(1¡pd))¿¡Â¡d

Ã
(1¡pÂ)pd

¸fa

!dÃ
pd¸b
¸fa

!b
: (10)

The first factor in (5) is given below, where Zk =
fzj ,1· j · rg, jJdj+ jJbj+ jJfaj= r, and the factors on
the R.H.S. are derived from filter innovations, filter ini-

tiations, and the false contact distribution (generally uni-

form over measurement space). For example, in the lin-

ear Gaussian case, fd(zj j Zk¡1,qk) is a Gaussian resid-
ual, i.e. it is the probability of observing zj given a se-
quence of preceding measurements. If there is no prior

information on the target, fb(zj j Zk¡1,qk) is generally
the value of the uniform density function over mea-

surement space. Similarly, ffa(zj j Zk¡1,qk) is as well
usually taken to be the value of the uniform density

function over measurement space, under the assump-

tion of uniformly distributed false returns. Note that the

expressions given here are general and allow for quite

general target and sensor models.

p(Zk j Zk¡1,qk) =
Y
j2Jd

fd(zj j Zk¡1,qk) ¢
Y
j2Jb

fb(zj j Zk¡1,qk)

¢
Y
j2Jfa

ffa(zj j Zk¡1,qk): (11)

Substituting (10—11) into (5) and simplifying results

in (12—13). This expression is the key enabler of track-

oriented MHT. In particular, it provides a recursive ex-

pression for p(qk j Zk) that consists of a number of fac-
tors that relate to its constituent local track hypotheses.

p(qk j Zk) = pÂÂ((1¡pÂ)(1¡pd))¿¡Â¡d
Y
j2Jd

·
(1¡pÂ)pdfd(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

¸Y
j2Jb

·
pd¸bfb(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

¸
p(qk¡1 j Zk¡1)

c̄k
(12)

c̄k =
ck½

exp(¡¸b ¡¸fa)
r!

¸rfa

¾Q
j2Jd[Jb[Jfa ffa(zj j Zk¡1,qk)

: (13)

An implicit reduction in the set of hypotheses in

(12—13) is that target births are assumed to occur only

in the presence of a detection (i.e. there is no reasoning

over un-detected births). Correspondingly, the factor

pd reduces the effective birth rate to pd¸b (though
surprisingly the factor is absent in [9]). Further, in the

first scan of data, it would be appropriate to replace

pd¸b by pd¸b=pÂ to account properly for the steady-state
expected number of targets. (More generally, target birth

and death parameters should reflect sensor scan rates,

as the underlying target process is defined in continuous

time.) Further reduction in the set of hypotheses is

generally achieved via measurement gating procedures

[1]. Finally, for a given track hypothesis, one usually

applies rule-based spawning of a missed detection or

termination hypothesis, but not both (e.g. only spawn

a missed detection hypothesis until a sufficiently-long

sequence of missed detection is reached).

One cannot consider too large a set of scans be-

fore pruning or merging local (or track) hypotheses in

some fashion. A popular mechanism to control these

hypotheses is n-scan pruning. This amounts to solving
(4), generally by a relaxation approach to an integer

programming problem [4, 6, 11], followed by pruning

of all local hypotheses that differ from q̂k in the first
scan. This methodology is applied after each new scan
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of data are received, resulting in a fixed-delay solution

to the tracking problem.

Often, n-scan pruning is referred to as a maximum
likelihood (ML) approach to hypothesis management.

ML estimation is closely related to maximum a posteriori

(MAP) estimation. In particular, we have:

X̂MAP(y) = argmaxf(y j X)f(X) (14)

X̂ML(y) = argmaxf(y j X): (15)

Note that ML estimation is a non-Bayesian approach

as it does not rely on a prior distribution on X. ML
estimation can be interpreted as MAP estimation with a

uniform prior. In the track-oriented MHT setting, n-scan
pruning relies on a single parent global hypothesis, thus

the ML and MAP interpretations are both valid.

Once hypotheses are resolved, in principle one has

a state of object histories given by X̂(Zk). In practice, it
is common to apply track confirmation and termination

logic to all object histories [1]. A justification for this is

that it provides a mechanism to remove spurious tracks

induced by the sub-optimality inherent in practical MHT

implementations that include limited hypothesis gener-

ation and hypothesis pruning or merging.

Given the need for post-association track confirma-

tion and termination logic, a reasonable simplification

that is pursued in [5] is to employ equality constraints in

the data-association process, which amounts to account-

ing for all contact data in the resolved tracks. Spurious

tracks are subsequently removed in the track-extraction

stage.

3. MULTI-STAGE MHT

Multi-stage fusion as performed here has two defin-

ing characteristics that differ from many legacy systems

that exist today [1]. The first is that each tracker mod-

ule retains measurement-level information at the output.

That is, each module performs the following: it removes

large numbers of measurement data, and associates the

remaining measurements to form tracks over time. If

the tracker is working well and the data are of rea-

sonable quality, false measurements will largely be re-

moved and target-originated measurements will mostly

be maintained and associated into tracks that persist

over time with limited fragmentation. Since measure-

ment data are available at the tracker output, optimal

track fusion and state estimation is achievable in down-

stage tracker modules; the cost to achieve this perfor-

mance benefit is a slightly larger bandwidth requirement

between processing stages. The second defining char-

acteristic is that track fusion is achieved in a real-time,

scan-based manner. Often, track fusion is performed in a

post-processing batch mode that is not readily amenable

to real-time surveillance application [1].

The theoretical optimality of unified, batch and cen-

tralized approaches to fusion and tracking (track-while-

fuse) is at odds with a number of practical considera-

tions. Principally, in many surveillance settings optimal

Fig. 1. Track-while-fuse: single-stage processing.

processing algorithms are either not known, or are com-

putationally infeasible. Thus, improved performance of-

ten can be achieved with multi-stage processing that in-

volves simpler and less computationally intensive algo-

rithms than with centralized processing.

The multi-stage paradigm is seemingly at odds with

fundamental results in the nonlinear filtering and dis-

tributed detection literature [13]. However, this is not

actually the case. Rather, multi-stage approaches may

outperform single-stage ones for two reasons: (1) like all

trackers, single-stage tracking approaches are necessar-

ily sub-optimal as they must contend with measurement

origin uncertainty; and (2) measurement information is

carried to downstream stages of multi-stage processing.

As such, multi-stage processing as defined here is not

in fact an instance of distributed processing.

A systems representation of track-while-fuse, track-

break-fuse, and track-before-fuse is illustrated in Figs. 1—

3. Note that use of these architectures need not require

the availability of multi-sensor feeds: indeed our appli-

cation of track-break-fuse (Section 4) is in the context

of single-sensor surveillance.

In our two approaches to multi-stage MHT process-

ing, we first seek to identify relevant, target-originated

contact-level data from the high-rate sensor in a first

tracker processing stage. We are not particularly con-

cerned that multi-target interactions be handled prop-

erly. Indeed, the first-stage tracker need not be an MHT

module, though it is important that it perform hard data

association and that the module provide contact-level

data associated with tracks.

In many multi-sensor settings, one has high-rate sen-

sors (perhaps providing a scan every several seconds)

that provide detection information but without much

target feature information, if any. An example of this

is a surveillance radar. Additionally, one may have a

low-rate sensor (perhaps providing a scan every several

hours) that provides detection information with signifi-

cant target features, or attributes, besides kinematic in-

formation. An example of this is synthetic aperture radar

(SAR) imagery that may provide target dimensions or

target type. A standard single-stage processing architec-

ture is illustrated in Fig. 1.

In the track-break-fuse architecture (Fig. 2), track la-

bels are removed from the single-sensor tracks, and the

resulting contact-level data are fed to the second-stage

tracker along with the low-rate feature-rich contacts
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Fig. 2. Track-break-fuse: multi-stage processing with removal of

track labels after first tracker module.

from the second sensor (if available). With the track-

before-fuse architecture (Fig. 3), single-sensor tracks are

fed to the second-stage MHT module along with the

low-rate feature-rich contacts from the second sensor.

An important requirement for the track-before-fuse

architecture is to have track-breakage logic in the sec-

ond tracking module. Specifically, in instances in which

the first-stage tracking has incorrectly introduced a track

swap, subsequent feature information may identify that

a tracking error has occurred. We wish to recover grace-

fully from the error, without the time-rollback solution

that is operationally infeasible in large-scale surveil-

lance. Error identification is prevalent when the feature-

rich sensor has unambiguous target identification infor-

mation. Correspondingly, when an infeasible update to

a fused track is received, the fused track is terminated,

and each upstream track of which the fused track is

composed is subsequently treated as a new input track

and made available for fusion with other fused tracks

or for fused track initiation.

4. DENSE TARGET SCENARIOS AND THE
TRACK-BREAK-FUSE ARCHITECTURE

A fundamental difficulty in target tracking is multi-

target ambiguity, exhibited for example in a slowly-

crossing target scenario. We find that MHT process-

ing with large hypothesis tree depths improves track-

ing performance including a reduction of track swap

occurrences. However, this poses a significant process-

ing challenge as deep hypothesis trees are required. In-

deed, hypothesis trees must be deep enough and rich

enough so that the (local) track hypotheses associated

with crossing and non-crossing tracks are maintained

until ambiguities are resolved.

We will see that two-stage MHT processing with

a track-break-track architecture does not impact track-

ing performance, it provides a dramatic computational

benefit.

Fig. 3. Track-before-fuse: multi-stage processing with logical track

breakage as needed in second tracker module.

The track-break-track architecture includes a first

stage of tracking, followed by removal of all track la-

bel information and a second stage of MHT tracking

applied only to those contacts that are included in the

first-stage tracks. Thus, the first tracking stage can be

regarded as a filter that identifies target-originated con-

tacts. Multi-target association ambiguities are resolved

in the second stage. The motivation for this architecture

is that the first stage of processing can be executed quite

effectively with no or small hypothesis tree depth, while

the second stage requiring a larger hypothesis tree depth

contends with much less contact data. Thus, we expect

and find comparable performance to single-stage MHT

in crossing-target scenarios, but at significant computa-

tion savings.

We now study the percentage of success for the

crossing-target scenario, with track-while-fuse and track-

break-fuse architectures and a range of hypothesis tree

depths (n-scan). A key issue in this study is how we

define success in a way that captures successful tracking

through the target-crossing event. For the scenario of

interest, this is well-captured by requiring a track hold

or track PD that exceeds 75+% (note that in the case of

a track swap, tracks are classified as false.)

Key parameters in this simulation are the following:

² Target: angle of approach=22 deg; speed=76:5 m/s;
² Sensor: PD=0:7, FAR=10=scan; positional measure-
ment error standard deviation–1 m in both x and y;
scan rate = 1 Hz; number of scans = 150;

² Tracker: process noise = 10¡3 m2s¡3; initiation rule:
4-of-4; termination rule: 4 misses; association gate =

99%;

² Monte Carlo settings: 500 realizations of sensor data
are generated. For each, six track-while-fuse tracker

executions are performed (with n-scan from 0 to 5),

as well as six track-break-track executions (n-scan= 0
in first stage, n-scan from 0 to 5 in the second stage).

Fig. 4 illustrates execution timing results. As ex-

pected, for small n-scan values, centralized tracking
is faster. For larger n-scan values, track-break-track is
faster. Fig. 5 illustrates tracking performance. With

both tracking architectures, we find that there is in-

creased tracking performance with increasing hypothe-

sis depth, at the cost of increased execution time. We see
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Fig. 4. Tracker timing results as a function of architecture and n-scan setting.

Fig. 5. Tracking performance as a function of architecture and n-scan setting.

that track-break-fuse matches the performance of track-

while-fuse with significant computational savings.

An illustration of two tracker outputs for one run in

the simulation study is illustrated in Figs. 6—7. Fig. 6

illustrates the sensor footprint with false contacts (black

dots) and target-induced contacts (magenta dots). Target

trajectories are in magenta, track-while-fuse tracks are

in blue and red, indicating true and false tracks, respec-

tively. (Note that the track swap occurrence is classified

as a false track.) The (true) tracks resulting from track-

break-fuse processing (n-scan= 5) are in green.

5. MULTI-SENSOR SURVEILLANCE AND THE
TRACK-BEFORE-FUSE ARCHITECTURE

Fig. 8 illustrates the feature-aided tracking problem.

We consider a situation where a high revisit rate sen-

sor, e.g. surveillance radar, provides contact data to the

fusion center. A second sensor provides contact data

intermittently. Examples for the second sensor might

include a SAR imaging sensor, a passive signal intelli-

gence (SIGINT) sensor, or a passive transponder-based

sensor such as the automatic identification system (AIS)

in the maritime domain [12]. In the figure, target trajec-

tories are shown in black. Surveillance radar contacts

are shown in blue and black, for target detections and

false returns, respectively. Intermittent, feature-rich re-

turns are shown in red.

We consider again a target-crossing scenario. Sensor

1 has coverage of the entire surveillance region, while

sensor two has coverage over a subset of the region

that does not include the target-crossing event. The two

sensors have the same nominal revisit rate, but sensor 2

is intermittent due to the more limited coverage. Both

sensors provide positional measurements.

Sensor 2 is representative of a transponder-based

passive sensor, like AIS. As such, it has a high revisit

rate but intermittent coverage. While the detection prob-

ability is non-unity due to electromagnetic propagation

effects and measurement collision with the time-division

message allocation scheme [2], the false alarm rate is

zero. Consistent with AIS data, sensor two provides pre-

cise target identification information.

Simulation parameters are given in Table I. Note that

the track management criteria in the track-while-fuse and

1st stage of the multi-stage architectures differ slightly:

this is done to achieve comparable data rates, and is

required to account for intermittent coverage of sensor

2. The hypothesis tree depths in track-while-fuse and in

the 2nd stage of the multi-stage architectures are chosen

to be the same and sufficient to ensure good tracking
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Fig. 6. One realization of sensor data, with two tracker outputs.

Fig. 7. Close-up view of track-while-fuse processing (red, blue) and track-break-fuse processing (green).

performance given the gap in sensor 2 coverage. The

track break parameter is used to identify infeasible track

updates that initiate fused track termination in the track-

before-fuse architecture. The track classification metric

is relevant to performance evaluation, as it is used to

identify true tracks based on average localization error.

One scenario realization is illustrated in Figs. 9—

12. In this instance, track swap has occurred in single-

sensor (sensor 1) tracking. We see that single-stage

track-while-fuse architecture does not exhibit the swap,

nor does the multi-stage track-break-fuse architecture.

The track-before-fuse architecture recovers from the up-

stream track swap by fragmenting the fused tracks, un-

der the track-breakage logic described in Section 3.

As noted above, tracker performance evaluation re-

lies on a track classification step whereby those tracks
Fig. 8. A notional illustration of the feature-aided tracking

problem.
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TABLE I

Parameter Settings for the Simulation Study

Parameter Setting

Monte Carlo realizations 200

Scenario duration 150 sec

Target number 2

Target start locations (¡75 m,5 m),
(¡75 m,¡5 m)

Target velocities (until crossing) (1 m/s,¡0:067 m/s),
(1 m/s,0:067 m/s)

Target velocities (after crossing) (1 m/s,¡0:33 m/s),
(1 m/s,0:33 m/s)

Sensor 1 footprint (180 m)2

Sensor 1 scan rate 1 Hz

Sensor 1 detection probability 0.8

Sensor 1 false alarm rate per scan 20

Sensor 1 measurement error covariance

·
1 0

0 1

¸
m2

Sensor 2 footprint (180 m)2 minus central

swath, jxj< 5 m
Sensor 2 scan rate 1 Hz

Sensor 2 detection probability 0.8

Sensor 2 false alarm rate per scan 0

Sensor 2 measurement error covariance

·
1 0

0 1

¸
m2

Track filter process noise parameter 0:1 m2s¡3

Track filter prior velocity covariance
·
1 0

0 1

¸
m2s¡2

Track correlation gate 99%

Track break (2nd stage track-before-fuse) 99.99%

Track initiation (track-while-fuse) 3-of-4

Track initiation (1st stage

track-before-fuse & track-break-fuse)

4-of-4

Track kill (track-while-fuse) 6 misses

Track kill (1st stage track-before-fuse &

track-break-fuse)

4 misses

Track kill (2nd stage track-before-fuse &

track-break-fuse)

6 misses

N-scan (track-while-fuse) 10

N-scan (1st stage track-before-fuse &
track-break-fuse)

0

N-scan (2nd stage track-before-fuse &
track-break-fuse)

10

Track classification distance threshold 2 m

with sufficiently large average localization error with

respect to all target trajectories are classified as false;

otherwise, the closest target trajectory is identified. Sub-

TABLE II

Performance Results

Track-While-Fuse Track-Before-Fuse Track-Break-Fuse

PD 0.6067 0.9866 0.9861

FAR 23.40 22.07 42.35

FRAG 1.2229 2.1575 1.4175

ERROR 1.0348 1.061 0.9449

TIME 119.58 21.12 35.74

sequently, the following performance metrics are iden-

tified:

² Track hold (PD): ratio of total true track duration and
total trajectory duration;

² False track rate (FAR): average number of false

tracks [hr¡1];
² Track fragmentation (FRAG): average number of true
tracks per tracked target;

² Track localization error (ERROR): average positional
error between a true track and the corresponding

target trajectory [m];

² Tracker execution time (TIME): average tracker exe-
cution time on a DELL OPTIPLEX GX620 with Intel

Pentium D processor [sec]; note that 150 sec corre-

sponds to real-time processing.

Performance results for the three feature-aided track-

ing architectures of interest are in Table II. An assess-

ment of these results leads to the following conclusion:

² In terms of track detection performance (PD, FAR),
track-before-fuse outperforms both track-while-fuse

and track-break-fuse;

² In terms of track continuity (FRAG), the finding is
reversed: track-while-fuse and track-break-fuse outper-

form track-before-fuse;

² In terms of track accuracy (ERROR), the architectures
are comparable;

² In terms of track computational load (TIME), both
multi-stage architectures perform significantly better

than track-while-fuse.

Overall, we find that the track-while-fuse architecture

has good performance, but it is not scalable to large

hypothesis tree depths as would be required if the

feature-rich sensor has a very low revisit rate, or has

intermittent coverage with significant special gaps.

From a target-detection perspective, track-break-fuse

performs comparably to track-while-fuse. In the simula-

tion study, both track PD and track FAR are higher in

track-break-fuse, since the effective track-level receiver

operating characteristics (ROC) curve operating point

is different between the two architectures. Similarly, the

track fragmentation rate (FRAG) is roughly comparable.

We conclude that the two architectures yield comparable

tracking performance, but the track-break-fuse architec-

ture exhibits significant computational savings.

The track-before-fuse architecture exhibits better

target-detection performance than track-break-fuse. This
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Fig. 9. One scenario realization.

Fig. 10. Same realization as Fig. 9, with close-up on target

crossing. Single-sensor (red) tracks exhibit swapping;

track-before-fuse (green) exhibits track fragmentation after targets

enter region of sensor 2 (feature-rich) coverage; both

track-break-fuse (cyan) and track-while-fuse (black) are successful.

can be explained as follows: unlike track-break-fuse,

there is no need to reacquire track in the second pro-

cessing stage, since track associations are preserved. On

the other hand, its track fragmentation rate is worse than

that achieved with track-break-fuse, since first-stage as-

sociation errors, when detected, lead to track termina-

tion and correspondingly to an increase in the overall

fragmentation rate. As expected, the track-before-fuse

architecture is the most efficient from a computational

perspective.

To conclude, track-while-fuse is not scalable to large

scenarios and large hypothesis-tree depths. Two feasible

alternatives are track-break-fuse and track-before-fuse.

Depending on the application, one or the other of these

may be best.

6. CONCLUSIONS AND FUTURE DIRECTIONS

This paper proposes two multi-stage architectures

for challenging surveillance problems that include dense

Fig. 11. Same as Fig. 9, with track-before-fuse result on top overlay

(note fragmentation).

Fig. 12. Same realization as Fig. 9, with track-break-fuse result on

top overlay (similar to track-while-fuse, with no fragmentation).

target scenarios and multi-scale or intermittent multi-

sensor coverage. In single-sensor benchmarking, the

track-break-fuse architecture provides the same perfor-

mance as track-while-fuse but with significant compu-

tational savings. In multi-sensor benchmarking, both

multi-stage architectures achieve comparable track-level

detection, localization, and track-continuity perfor-

mance as single-stage, track-while-fuse processing.

However, both architectures do so with dramatically re-

duced execution times. Further, the multi-stage archi-

tectures are extensible to larger hypothesis tree depths,

while the single-stage architecture is not. The first multi-

stage architecture, track-before-fuse, has higher track

fragmentation than single-stage processing. The second

multi-stage architecture, track-break-fuse, achieves com-

parable track fragmentation as in single-stage process-

ing, at the cost of a small computational increase over

track-before-fuse.
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Future work will include analysis of an architec-

ture that includes some track breakage after first-stage

tracking, but less than the complete breakage prescribed

under the track-break-fuse architecture. As such, this

hybrid architecture should trade off the benefits of the

track-break-fuse architecture (limited sensitivity to first-

stage tracking errors) with those of the track-before-fuse

architecture (computational savings, particularly in sce-

narios where multi-target association ambiguities persist

for a long time).

Such a (hybrid) architecture would provide im-

proved surveillance performance and would be partic-

ularly applicable to large sensor surveillance networks,

where ambiguities may persist for a very large number

of sensor scans, thus providing a flexible architecture

for large-scale surveillance. The approach shares sim-

ilarities with [4] but without requiring group-tracking

logic.
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