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Detecting and classifying anomalies for Maritime Situation
Awareness highly benefits from the combination of multiple sources,
correlating their output for detecting inconsistencies in vessels’ be-
haviour. Adequate uncertainty representation and processing are
crucial for this higher-level task where the operator analyses in-
formation in conjunction with background knowledge and context.
This paper addresses the problem of performance criteria identifi-
cation and definition for information fusion systems in their abil-
ity to handle uncertainty. In addition to the classical algorithmic
performances such as accuracy, computational cost or timeliness,
other aspects such as the interpretation, simplicity or expressiveness
need to be considered in the design of the technique for uncertainty
management for an improved synergy between the human and the
system. The Uncertainty Representation and Reasoning Evaluation
Framework (URREF) ontology aims at connecting these criteria to
other uncertainty-related concepts. In this paper, we dissect six clas-
sical Uncertainty Representation and Reasoning Techniques (UR-
RTs) in their basic form framed into three uncertainty models of
probability, belief functions and fuzzy sets, and addressing a fusion
problem for maritime anomaly detection. We introduce the Uncer-
tainty Supports as a means to capture what is the carrier of un-
certainty and distinguish between three types of supports, that are
single variables, sets of variables and uncertainty representations.
The latter type indeed captures second-order uncertainty. The dif-
ferent URRTs are qualitatively evaluated according to their expres-
siveness along the uncertainty supports, and quantitatively evalu-
ated according their accuracy and conclusiveness (uncertainty and
imprecision) when processing real AIS data with pseudo-synthetic
anomalies. This study illustrates a possible use of the URREF for
the assessment and comparison of uncertainty handling methods in
fusion systems. The framework provides solid basic foundations for
a formal assessment to guide further development and implemen-
tation of fusion schemes, as well as for the definition of associated
criteria and measures of performance.
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I. INTRODUCTION

In the field of Maritime Situation Awareness (MSA),

detecting and classifying vessels’ abnormal behaviour is

a challenging and crucial task at the core of the com-

pilation of the maritime picture [32, 31]. It requires not

only the extraction of relevant contextual patterns-of-life

information shaped for instance as maritime routes or

loitering areas [42], but also the real time monitoring

of the maritime traffic by a set of sensors mixing co-

operative self-identification systems (such as the Auto-

matic Identification System (AIS)) and non-cooperative

systems such as coastal radars or satellite imagery, to

overcome the possible spoofing of the AIS signal [44].

In many cases, intelligence information is of great help

to refine and guide the search in the huge amount of

data to be processed, filtered and analysed.

In order to take informed decisions, the operator

needs to get good quality information. Furthermore,

he/she needs to understand additional characteristics of

the provided information, including for instance, how

that information has been obtained, processed, or what

was the context of its creation. In particular, understand-

ing how an anomaly detector came up with an alert is

of great importance to the Vessel Traffic System (VTS)

operator. More specifically, the operator would bene-

fit from knowing which were the reference data used,

which were the sources processed, if the information

and associated uncertainty were obtained in objective

or subjective manner, whether the decision process con-

sidered the sources’ quality and how, if the contex-

tual information was considered in the decision, what

was the meaning of numerical output values express-

ing uncertainty, and what was the underlying logical

reasoning providing the answer. Second-order informa-

tion quality may also be highly valuable. For example,

probability maps about possible threats could be sup-

plemented by uncertainty assessments about the valid-

ity of the probability values, represented as intervals

or error estimations on algorithms performance. The

benefit of including these different information qual-

ity dimensions is twofold: on the one hand, they in-

crease the operator’s situation awareness and, on the

other hand, they improve trust in the use of the sys-

tem.

To characterise the outputs provided to operators by

some information system, the standard performance cri-

teria of algorithms such as precision, accuracy, False

Alarm Rate (FAR), Area Under the Receiver Oper-

ating Characteristic (ROC) curve (AUC), timeliness

or computational cost [1, 33, 11] may not be suffi-

cient and should be complemented by others to cover

the interaction of humans and systems. For instance,

some criteria such as explanation, adaptability, sim-

plicity, expressiveness could be considered as well.

The Evaluation of Techniques for Uncertainty Repre-

sentation (ETUR) working group of the International

Society of Information Fusion (ISIF) addresses since
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2011 the definition and articulation of assessment cri-

teria for uncertainty models and frameworks, uncer-

tainty types, uncertainty derivation, uncertainty nature

[8]. Outcomes of this work provide guidance for the

selection and design of adequate tools for reasoning

support, uncertainty traceability and understandability

(e.g., [5, 10, 43]). It is also a first step towards some

standardisation of the characterisation and assessment

of uncertainty management techniques and, by extent,

of fusion schemes.

Evaluating or comparing uncertainty calculi in the
absolute is not trivial task because these make differ-

ent fundamental assumptions about the nature and in-

terpretation of uncertainty they aim at representing or

processing (see for instance [29, 19]). Fundamental and

global formal evaluation and analysis have been in par-

ticular presented in [48, 55, 56, 17, 29, 52] and more

recently in [19]. For instance, probability, possibility

and fuzzy set theory are non comparable since they are

appropriate to deal with different types of uncertainty.

Rather than competitors, they appear to be “complemen-

tary theories of uncertainty that utilise distinct types of

uncertainty for expressing deficient information” [29].

Belief functions [47, 54] are “[: : :] aimed directly at
modeling incomplete evidence, but certainly not incom-

plete knowledge,” and designed to handle singular un-

certainty [47, 19]. Fusion rules have their own mean-

ing and application constraints as well. While being an

updating rule, Bayes’ rule is also widely used for fu-

sion purposes (e.g., [34, 7]). However, Bayes’ rule is

not applicable in case of probable knowledge, unan-

ticipated knowledge and introspective knowledge [15].

In Shafer’s view, Dempster’s rule is specifically dedi-

cated to combine uncertain and imprecise singular in-

formation, such as testimonies. Dempster’s rule should

also be applied only to independent and reliable sources

[47, 53]. It appears thus that rather than competitors the

different models for uncertainty representation and as-

sociated reasoning schemes are dedicated to different

problems and different types of information. As a step

toward a formal analysis of uncertainty representation

and reasoning techniques, the work presented in this pa-

per aims at bringing the comparisons and descriptions of

the classical uncertainty models under the Uncertainty

Representation and Reasoning Evaluation Framework

(URREF).

In this paper, we compare six (6) different ap-

proaches (hereafter called Uncertainty Representation

and Reasoning Techniques, URRTs) to combine pieces

of information from a set of heterogeneous sources

(hard and soft) as the core of a maritime anomaly de-

tector for route deviation. In complement to compar-

ative analyses (e.g., [26, 2]), this paper identifies ad-

ditional comparison elements which may have an im-

pact on the behaviour (and performances) of the fusion

schemes. The maritime anomaly detection problem is

first introduced in Section II, covering route extraction

and route association problems together with some as-

sociated uncertainty-related challenges. In Section III,

we briefly review the current state of the URREF on-

tology and introduce the uncertainty support as part of
possible refinement of the EXPRESSIVENESS criterion. Six

URRTs are introduced in Section IV as alternative ba-

sic fusion schemes to solve the above defined problem,

with an emphasis on the uncertainty representation. The

six URRTs are compared in Section V in a qualitative

way regarding their expressiveness (relatively to their

uncertainty support and imperfection type captured) but

also in a quantitative manner through more classical

but complementary quality criteria, processing a real

AIS dataset augmented with pseudo-synthetic anoma-

lies. We conclude in Section VI on future work and

further challenges to be addressed in the coming years

by the Evaluation of Techniques for Uncertainty Rep-

resentation working group.

II. MARITIME ANOMALY DETECTION

We illustrate the discussed methods via a real-world

example of maritime anomaly detection. Although a

unique definition of anomalies in the maritime domain

is not available yet, we here use the term “maritime

anomaly” to indicate a deviating behaviour from traf-

fic normalcy, which we learn from spatio-temporal data

of ships at sea. More specifically, the analysis of traf-

fic spatio-temporal data streams provided by the AIS, a

cooperative self-reporting system allows detecting and

characterising inconsistencies or ambiguities, which can

be ultimately transformed into usable and actionable

knowledge [40]. We briefly introduce in this section the

problem of route extraction, which builds the normalcy

models, in our case, traffic normalcy, in such a way that

these models can be further exploited for anomaly de-

tection. We then introduce the problem of associating a

vessel to a pre-defined route selected from the extracted

system of routes which represents the traffic normalcy

functional to the anomaly detection. We conclude this

section with some uncertainty challenges related to the

way we represent the maritime routes which affects the

maritime anomaly detection.

A. Route extraction

The Traffic Route Extraction and Anomaly Detec-

tion (TREAD) tool presented in [42] implements an

unsupervised classification approach which we here use

to derive a dictionary of the maritime traffic routes by

processing spatio-temporal data streams from terrestrial

and satellite AIS receivers. The analysis and synthe-

sis of the activity at sea as patterns of life is referred

to as maritime routes and summarises the normal mar-
itime traffic over a given period of time, a given area

and a specified set of employed sensors (or sources).

The AAP-6-2014 NATO glossary of terms defines a

route as “The prescribed course to be travelled from
a specific point of origin to a specific destination.” A
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TABLE I

Examples of source statements expressed by Á about different vessel attributes.

Attribute i Á Type of statement

SOG (knots) 10.3 Single measurement (precise and certain)

Type [Type1 Type2 Type3 Type4 Others] [0.2 0.1 0 0.7 0] Probability vector

Size “Big vessel” Natural language

TREAD route is then defined by a starting point and
an ending point, together with a subset of intermediate

waypoints, describing a physical path on a portion of

the sea. If the area under surveillance is captured by a

big enough bounding box, the route starting and end-

ing points are the centroids of stationary areas, either

coastal areas such as ports, either offshore areas such

as islands, either offshore platforms, or open-sea areas

such as fishing areas. The TREAD algorithm first re-

constructs the single-vessel trajectories by linking the

vessels’ contacts and then clusters the trajectories fol-

lowed by vessels into groups having the same starting

and ending points. Each of these clusters represents

a maritime route. The average path along a route is

called synthetic route. The basic uncertainty around this
path is computed using the trajectories of all the ves-

sels which transited along that route in the given time

window.

While only temporal streams of positional informa-

tion is processed to extract the set of maritime routes,

they can be further characterised by additional attributes

representing the traffic of vessels composing it, such

as speed, type or heading distributions. The associated

uncertainty characterisation of the route along these at-

tributes can be more or less complex, ranging from sim-

ple average values, to added variance parameters, to his-

tograms, to estimated complete probability distributions,

to sets of distributions (see Section II-C). The maritime

traffic, and thus the set of routes, may be influenced by

meteorological conditions (some areas may be avoided),

season, economical context (ships may decide their des-

tination based on the current stock market linked to their

cargo) or areas of conflict. Also, in order to derive the

average path (i.e., synthetic route) from the route cluster

an extent parameter is included in the TREAD algorithm

which allows adjusting the search range radius dynam-

ically, thus enhancing the computation of intermediate

waypoints while still avoiding issues such as land cross-

ing.

The set of routes summarises thus some kinematic

patterns of life of vessels over a given period of time

and region, possibly layered by specific vessel types

(e.g. fishing vessels, tankers, passenger vessels). This

synthetic information and associated uncertainty char-

acterises part of the context or background knowledge

for the problem of route association and detection of

anomalies at sea. It provides a reference or normalcy
against which the current vessel contacts will be com-

pared, and the anomalies detected.

B. The route association problem

A route deviation detector is to be designed to

help the Vessel Traffic System (VTS) operator to (1)

associate vessels to existing routes (and possibly predict

their destination), and (2) detect abnormal behaviours to

be further investigated.

We consider a vessel V observed by a series of het-
erogeneous sources S = fs1, : : : ,sNg such as a coastal
radar and its associated tracker, a SAR (Synthetic Aper-

ture Radar) image with associated either ATR (Auto-

matic Target Recognition) algorithm or a human ana-

lyst, a visible camera operated by a human analyst, the

AIS information sent by the vessel itself or some intel-

ligence source. Let A be the set of features of interest,

either observed and thus about which information is ei-

ther provided by or extracted by some sources of S, or
to be inferred. For solving our problem of route asso-

ciation, we consider attributes such as the position (lat-

itude, longitude), Course Over Ground (COG), Speed

Over Ground (SOG), Type, Length, and also the mar-

itime route followed by the vessel. Let denote by A
the set of features of interest, by X the set of uncer-

tain variables corresponding to features of A, by Xi
the variable of X corresponding to feature i 2 A and

by U a subset of variables of X . We further denote by
−i the domain of definition of Xi containing the set of
its possible values, by xi 2 −i a singleton of −i and by
Ai μ −i a subset of −i. Let − be the corresponding space,
defined as the Cartesian product of the −i correspond-
ing to vessel features of interest at a given timestamp

t. Also, xt = fÁ(Xi,s, t)g(i2A,s2S) denotes a set of infor-
mation items jointly provided by some sources from S
about some features in A at a specific instant in time t.
This notation of information item encompasses the gen-

eral case where sources provide some uncertainty about

their statement and thus Á denotes a source statement
either as a single measurement (precise and certain), ei-

ther as a probability vector (expressing some uncertainty

interpreted as provided by the source itself), either as a

natural language expression (possibly vague), etc. Ta-

ble I lists some examples. In the specific case of precise

and certain measurements defined over a scale of real

numbers, xt would simply be a vector of real values
of −. For the purpose of the discussion in this paper,
we consider that each feature estimation is provided by

a single source (while in general several sources may

provide information about the same feature). Moreover,

we focus on the fusion of all (singular) observations

obtained at the same instant in time t. Thus for the sake
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of simplicity of the exposure, the index t and s will
be omitted, and information items will be denoted sim-

ply by Á(Xi) or Ái. Uncertainty about state transitions
xt! xt+1 will be considered in further extension of this
work.

Let −R = fR0,R1, : : : ,RKg be the finite set of possi-
ble routes followed by the vessel V for the given area
of interest, where Rk for k = 1, : : : ,K is a pre-computed

route and R0 represents “none of the K routes”: Rk, for
k = 1, : : : ,K, is the label to be output by the fusion pro-
cess corresponding to the event “The vessel V follows
route Rk” and R0 is a rejection class corresponding to the
vessel following no specific pre-computed route. This

class gathers the events of “The vessel is physically off-

route,” “The vessel is in the reverse traffic on the route,”

“The speed is not compatible with the route followed,”

“The type of the vessel is not compatible with the route

followed,” representing some Maritime Situational In-

dicators of possible interest to the VTS operator. In the

following, we consider a quite simple reasoning scheme

according to which an anomaly is detected based on a

joint assessment (fusion) of the 5 features of Position,

COG, SOG, Length, Type provided by the AIS report

of the vessel and describing the route. Other said, the

behaviour of a vessel V is detected as being abnormal
if the set of its estimated features is not compatible with
any existing route. Compared to [40], the nature of the

anomaly will not be specified. However, identifying the

features which contribute the most to the disbelief to-

ward any of the routes would provide information about

the nature of the anomaly.

For convenience, we partition − into the observa-

tion space, say −o and decision space −R. The fusion
scheme to be designed aims thus at establishing a map-

ping ª :−o!−R such that R̂ =ª(x) is the route la-
bel assigned to V represented by x (at time t). The
underlying reasoning is that any observed feature at t
combined with possible background knowledge con-

tributes to a global belief (disbelief) that V is follow-

ing a pre-established route from −R. Indeed, if all the
observed (measured) features match the corresponding

feature values of a specific existing route, then the cor-

responding route label is assigned to the vessel. If some

“inconsistency” or “conflict” exists between the set of

observed features and the routes features (e.g. if the dis-

tance between x and each of the Rk is too high, or if the
set of compatible routes according to the speed does

not match the equivalent set according to the type) then

V is assigned to no route and an anomaly is reported

(label R0).
The same set of pieces of information would then

be used for two purposes:

(1) Associating a vessel to route, under the assumption

that the sources are reliable and

(2) detecting anomalies, under the assumption that an

inconsistency among the set of estimated features

would reveal a possible behaviour of interest.

Fig. 1. Historical route prototypes extracted via the TREAD

algorithm [42] in the area between La Spezia and Livorno, Italy,

from AIS data (Jan 1—Feb 20 2013).

However, on the one hand, information is inherently

imperfect (incomplete or imprecise, uncertain, gradual,

granular [19]–See Section III-B) and on the other hand

inconsistencies may arise either from sources limita-

tions (e.g. gaps in or weak coverage of sensors, limited

reasoning abilities, storage limitations, false detections

or identifications), and lack of reliability in general) or

malevolent behaviour of the vessel such as deception.

The appropriate detection and identification of anoma-

lies highly relies on the technique for fusing the differ-

ent pieces of information and detecting inconsistencies,

which include the handling of uncertainty.

C. Uncertainty in Maritime Anomaly Detection

Figure 1 illustrates the set of maritime routes pre-

viously extracted with TREAD algorithm [42] from a

large number of AIS contacts for the area between La

Spezia and Livorno in Italy. The used AIS data are part

of a reference dataset published at CMRE [41].

As computed by TREAD, a maritime route is a clus-

ter of vessel detections (positions from AIS contacts)

with label Rk and identifies the geographical area where
vessels have been observed travelling between a pre-

defined entry point and exit point in the past tempo-

ral window. From this set of contacts (cluster) several

synthetic representations can be extracted more or less

complex, more or less rich, more or less precise. As an

example, each route is represented in a synthetic way

by a series of intermediate waypoints with associated
average headings. Additional features characterising the

traffic can be further extracted such as the distribution

of speed, length and type of vessels traveling on this

route. As a matter of fact, routes are, by nature, un-

certain objects and the characterisation and representa-

tion of their uncertainty is of primary importance for
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TABLE II

Dictionary of routes and examples of simple associated uncertainty representations

Route Label Synthetic route r(k) Traffic information statistics

R¡Origin¡ to¡Destin POSITION § width [km] COG§STD SOG [KNOTS] LENGTH [M] TYPE [FREQUENCY]

R1 R PO 1 to PO 2 fWPg(1)§ 2:77 297§ 85± N (10,4) [80 : 100];[260 : 300] [0:8 0:1 0 0 0:1]

R2 R PO 2 to PO 1 fWPg(2)§ 3:01 140§ 49± N (11,4) [0 : 130];[250 : 300] [0:37 0:13 0 0 0:5]

R3 R PO 2 to EX 27 fWPg(3)§ 1:19 185§ 11± N (12,2) [120 : 250] [0:75 0 0 0 0:25]

R4 R PO 2 to EX 4 fWPg(4)§ 2:86 221§ 31± N (15,4) [100 : 200];[260 : 350] [0:97 0 0 0 0:03]

R5 R PO 2 to EX 5 fWPg(5)§ 5:08 209§ 19± N (11,1) [100 : 300];[200 : 210] [1 0 0 0 0]

R6 R PO 1 to EX 5 fWPg(6)§ 1:91 255§ 18± N (13,4) [0 : 25];[110 : 300] [0:82 0:09 0 0:09 0]

R7 R PO 1 to EX 14 fWPg(7)§ 1:25 210§ 90± (N (10,2);N (18,2)) [50 : 100];[120 : 200] [0:93 0 0 0:07 0]

R8 R PO 1 to EX 8 fWPg(8)§ 0:86 225§ 14± (N (11,2);N (19,2)) [100 : 150];[190 : 240] [0:38 0:24 0 0:38 0]

R9 R PO 1 to PO 18 fWPg(9)§ 0:98 244§ 21± N (11,3) not reported [0 0 0 1 0]

Fig. 2. An example of multi-dimensional uncertainty representation

for Route R6 with label R PO 1 to EX 5 reported in Table II.

a proper use of this information for the anomaly de-

tection task. Figure 2 gives an example of how some

dimensions of uncertainty for a specific route can be

represented: top panel–the geographical displacements

of vessel positions with respect to the synthetic (av-

erage) route; middle left panel–distribution of COGs;

middle right panel–distribution of SOGs; bottom left

panel–distribution of ship length; middle right panel–

frequency of types of the ships which transited along

that route in the given time window).

Table II lists several examples of simple uncertain

representations for the different routes in the derived

dictionary and illustrates how this multi-dimensional

uncertainty of the routes can be encoded in a compact

way.1

For instance, each route Rk may be represented by
a prototype r(k) corresponding to the mean or most fre-

1The field ‘TYPE’ in Table II corresponds to the following encoding:

[T1 T2 T3 T4 T5]=[Cargo Tanker Fishing Passenger Others]

quent trajectory of the cluster. Those features are precise
and certain values to which some imprecision or uncer-
tainty can be added for a richer representation, based
on the statistical information from the raw AIS mes-

sages which contain many additional fields of interest.

The route width w(k) is defined as the maximum of the

distances of each route point (i.e., vessel positions as-

sociated to the route) to the closest waypoint on the

synthetic route. It defines an area where the transited

vessels have been observed in the past.

The statistics extracted from the raw AIS dataset

may serve two purposes: On the one hand, they can

be used as the basic ingredient for the generic uncer-

tainty representation captured by the route objects and,

on the other hand, they are possibly transferred to ex-

press some uncertainty about new singular measure-

ments. The histograms of the different features (SOG,

COG, Length, Type) can be further interpreted as like-

lihood functions p(Xi = x j Rk) (see Section IV-C) and
approximated by different models. For instance, the dis-

tribution of the speed variable XS for Route R1 can

defined by the couple (s̄1;¾
(s)
1 ) representing the mean

and standard deviation of speed values estimated on the

training dataset used to build R1. With the additional
assumption of a Gaussian (normal) model, these two

parameters would completely define one estimation of

a probability distribution for XS . A Mixture-of-Gaussian
(MoG) model could be used for the conditional likeli-

hoods of the SPEED and LENGTH for instance, as well as

more sophisticated techniques of joint density estima-

tion, or models of dynamics of vessels, considering as

well the interaction between speed and position (e.g.,

[46, 38]).

However in some cases, the amount of data (e.g.,

number of trajectories) building the cluster may not be

large enough to estimate reliable distributions and con-

sidering second-order uncertainty could be appropriate

(see Sections IV-E and IV-F). Also some AIS fields,

especially the ones entered manually, are often missing

or miss-spelled. For instance, the destination may not

be specified or may not be valid, the Estimated Time of

Arrival (ETA) may not be updated. The positional and
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Fig. 3. Excerpt of the URREF ontology for the EVALUATIONCRITERION classes. UNCERTAINTYTYPE can be used to refine the EXPRESSIVENESS

criterion. Displayed with the Protégé software [39]. The full and last version of the ontology is available at

eturwg.c4i.gmu.edu/files/ontologies/URREF.owl. (a) Top-level concepts of the URREF ontology. (b) URREF EVALUATIONCRITERION class

with subclasses. EXPRESSIVENESS is a subclass of UNCERTAINTYREPRESENTATIONCRITERION. PRECISION and ACCURACY are subclasses of

DATAQUALITYCRITERION.

kinematic information being automatically sent is more

reliable but can suffer from incompleteness to due a lack

of coverage of the AIS receivers resulting in missing

reports for a certain period of time. The non-reception

of the AIS signal may arise as well from an intentional

manipulation, either simply to conceal some activity ei-

ther legal (e.g., fishing) or illegal (e.g., smuggling), or to

keep hidden from pirates. Finally, the AIS signal can be

spoofed for instance shifting the positional information

to another area, or by modifying the MMSI or IMO

identifier of the vessel for instance [44]. Previous stud-

ies have demonstrated that roughly 5% of AIS data is

generally inconsistent (see e.g. [35]).

The consideration of these different imperfections of

information is crucial in the design of maritime anomaly

detection solutions. However, it requires a prior proper

understanding of the origins of uncertainty, of the kinds

of imperfection, of the type of information (be it rele-

vant to a population of situations or to a single one–

generic or singular) to provide a meaningful solution

and to properly interpret the estimates output by the

algorithms and made available to the user. In the fol-

lowing we provide a brief overview of the URREF on-

tology which aims at capturing assessment criteria on

the one hand, and relevant uncertainty-related concepts

that impact the solution assessment on the other hand.

III. THE UNCERTAINTY REPRESENTATION AND
REASONING EVALUATION FRAMEWORK
(URREF)

The URREF ontology [8] identifies, defines and

links uncertainty-related concepts which come into play

when evaluating the uncertainty representation and rea-

soning approaches underlying information fusion

schemes. As the work is still on-going and some ele-

ments are currently under discussion within the ETUR

group, this section only provides a partial description

of the ontology focusing on the concepts relevant to

this paper. The reader is referred to the ETUR working

group collaboration website for an up-to-date descrip-

tion of the URREF ontology.2

The top level concept THING (see Figure 3(a)) con-

tains concepts such as UNCERTAINTYNATURE (epistemic

vs aleatory), UNCERTAINTYTYPE, UNCERTAINTYTHEORY

(mathematical framework), UNCERTAINTYDERIVATION (ob-

jective vs subjective), SOURCE (of information),

EVALUATIONSUBJECT and associated EVALUATIONCRITER-

ION. The EVALUATIONCRITERION class is further split into

DATACRITERIA, DATAHANDLINGCRITERION, REPRESENTA-

TIONCRITERION and REASONINGCRITERION classes (see Fig-

ure 3(b)).

A. Evaluation subjects
Evaluation subjects are the elements composing the

URRT which assessment through the URREF is mean-

ingful [25]. An evaluation subject is any item which can

be compared and evaluated through the URREF ontol-

ogy according to a series of corresponding criteria. The

uncertainty representation process (that we denote here

by h) corresponds to the abstraction process of mod-
elling [9] and aims at capturing the uncertainty (i.e. im-

perfection) arising from (in particular but not only):

2eturwg.c4i.gmu.edu/files/ontologies/URREF.owl
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² the measurements, including the links between the
variables, the mapping from the measurement space

to the decision space, and finally the uncertainty over

the decision space, including the route definition (i.e.,

the normalcy definition);

² the source quality, either provided by the source itself
(i.e., self-confidence) which expresses some doubt

about the estimated value or testimony provided, or

estimated by the algorithm designer (or user) based

on past experience with the source (i.e., reliability). If

we relate reliability to the ability of the source to con-

sistently provide correct outputs, then self-confidence

and reliability differ in the sense that the source may

have a low confidence in its declaration (singular in-

formation) while being still highly reliable (generic

information), or being highly confident while being

always wrong (low reliability).

The uncertainty representation is assessed by the

REPRESENTATIONCRITERION of the URREF ontology.

The fusion method builds a series of uncertainty

functions over the space −, that we split for conve-
nience between the measurement and decision spaces,

i.e. − =−o£−R, and involves at least one instance of
the following elements: (1) a combination function ½
acting over (possibly some subsets of) −, (2) a mapping
function g from −o to −R, and (3) a decision mapping
l from an uncertainty function over −R to a singleton
of −R.
The Atomic Decision Procedure (ADP) underlying

the fusion method ª is thus composed of the elements

fh,g,½, lg. The scheme ª before decision (l), outputs an
uncertainty function over −R representing some belief
degrees we may have at time t regarding the different
hypotheses of −R, based on a set of pieces of infor-
mation (either singular measurements received by the

sources at t or generic information extracted from his-

torical data or background knowledge and can formally

be denoted as:

ª(Á(U,S)) = Á(XR,ª ) (1)

where U μ X , S μ S and Á is an information item

provided by S over U. Equation (1) expresses that ª
processes some pieces of information defined over a

subset U of variables from X , provided by a subset
S of sources S and including some uncertainty, and
outputs another piece of information defined over −R,
then provided by Ã as a source. As we will illustrate
in Section IV, the order of the elements of ª is not

fixed, since the fusion operation ½ can be performed
within different subsets of − or −o (e.g., URRT#1,
URRT#2, URRT#3) or solely within −R (e.g., URRT#4,
URRT#6), the fusion can occur after the decision step

(e.g., majority vote in classifier combination), etc. The

reasoning scheme is assessed by the REASONINGCRITERIA

of the URREF ontology.

B. Information deficiencies

In the current state of the URREF ontology, some in-

formation quality dimensions are covered by the UNCER-

TAINTYTYPE class (Ambiguity, Incompleteness, Vague-

ness, Randomness, Inconsistency). Alternative categori-

sations of information deficiencies could be considered

instead, such as either Smets’ structured thesaurus of

imperfection of information [51], either Klir and Yuan’s

typology [30], or the typology of defects of information

of Dubois and Prade [19]. In this paper, we will refer

to the later one, and following the authors we will dis-

tinguish between the four information defects of incom-
pleteness (or yet imprecision), uncertainty, graduality,
and granularity.

² Imprecision–Refers a set of possible values, regard-
less how they have been obtained: The bigger the size

of the set, the higher the imprecision. It represents the

inability of the source to provide a single value or to

discriminate between several values. Imprecision is

interpreted as a type of incompleteness as it arises

from a lack of information. For instance, the state-

ment “The vessel is following either route R1 or R2”
is imprecise and provides only incomplete informa-

tion not allowing to answer the question “What is the

route followed by the vessel?”.

² Uncertainty–Arises when an agent does not know
(or partially knows) if a proposition is true or false. It

can be expressed by a degree (or a set of degrees) of

confidence assigned to a specific (or set of) value(s) to

be “true.” Its nature can either correspond to a lack of

knowledge (epistemic uncertainty) or to the variabil-

ity of an underlying process (aleatory uncertainty).

When assigned by the source itself it corresponds to

“self-confidence.” Uncertainty can also be expressed

at the output of the fusion process itself with an equiv-

alent interpretation, meaning that the fusion process

does not provide a maximal confidence toward its out-

put. For instance, the probability distribution over the

set of possible types of vessels Ci as output by some
classifier can be interpreted as an uncertainty expres-

sion, i.e., expressing a set of (normalised) degrees of

confidence in the truth of the proposition “The vessel

is of class Ci.”
² Graduality (or gradualness)–Arises usually from lin-
guistic expressions and induces propositions with

some possible degrees of truth (i.e., non Boolean).

That kind of imperfection allows a proposition to be

more or less true or false. For instance, “The vessel

is fast” is a gradual information item, using the grad-
ual predicate “fast,” and is typically represented by
fuzzy sets. As we will illustrate later, “on-route” can

be considered as a gradual predicate making maritime

routes ill-defined objects.

² Granularity–Refers to the support over which the
proposition is defined, i.e. to the set of pre-established

possible values. Granularity refers to the partition

granules used in the definition of a set. For instance,
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the set −1 = fFISHING VESSEL;NOT FISHING VESSELg
describing exhaustively the types of vessels has a

rougher granularity than the set−2 = fFISHING VESSEL;
CARGOS;TANKERS;OTHERSg covering also exhaustively
the possible types of vessels. The change of granu-

larity is done through the operations of refinement or

coarsening (see for instance [47]).

Not a defect per se, we also consider the dimension
of “trueness” (vs falseness):

² Trueness–It is considered here as the criterion relat-
ing a piece of information (either input or output) to

truth or to some reference value. It is defined in [22]

as the “closeness of agreement between the expec-

tation of a test result or a measurement result and a

true value.” The notion of trueness covers two dif-

ferent aspects that are how close the results are to
truth, especially in case on measurements on contin-

uous scales or how frequently the results correspond
to truth, especially in case of nominal scales such as

output of classifiers.

Usually, on the one hand, imprecision (or precision)

and uncertainty (or certainty) are opposed [51]: “I’m

certain that the speed of the vessel is between 3 and

6 knots” (Imprecise but certain statement) versus “I’m

not certain that the speed of the vessel is 5 knots”

(Precise but uncertain statement). On the other hand,

precision and trueness are often associated in perfor-

mance assessment of systems, and are gathered under

the term accuracy in ISO 5725 [22], referring to a se-

ries of independent tests. The way these information

deficiencies relate to the concepts of UNCERTAINTYTYPE,

UNCERTAINTYDERIVATION and DATACRITERIA is still under

discussion within the ETUR working group and is not

addressed in this paper.

These five deficiencies (or imperfections) introduced

above will be used in the following to characterise both

input and output information of the fusion method. We

will denote in the following by ´ the imperfection to be
captured by the uncertainty representation process h.

C. Type of information

Following [19], we distinguish between generic and
singular information. Generic information refers to a
population of situations such as statistical models, phys-

ical rules, logical rules or commonsense knowledge. It

is a synthesis of previous knowledge. Singular infor-

mation is about the current state of the world such as

an observation, a testimony or a sensor measurement.

This distinction is similar to the one sometimes made

between knowledge and evidence: According to Pearl

(as cited in [16]) knowledge is understood as “judg-

ments about the general tendency of things to happen,”

whereas evidence refers to the description of a specific

situation.”

Therefore, as a matter of convention in this paper,

the notions of data, knowledge, evidence and informa-

tion are all covered by the single term information. This
is driven only by the need to avoid confusion between

the terms and by no means to deny any existence of

distinction between these notions. Consequently, “in-

complete knowledge,” “uncertain evidence,” “erroneous

data,” etc, are all covered by the general term “imperfect
information.”
Moreover, we reserve the term uncertainty to the def-

inition introduced in Section III-B. Indeed, uncertainty
may be used sometimes abusively to cover the different

types of imperfection (or information defects) as they all

induce some uncertainty in the decision maker’s mind.

Note that uncertainty is also considered as the dual of in-
formation as classically understood in the field of Gener-
alised Information Theory (GIT) [28]: To some increase

of information corresponds equivalent reduction of un-

certainty, as captured for instance by Shannon entropy

measure. Hence, instead of uncertainty, we rather use

the general terms of imperfect information, imperfection,
information defects, information deficiencies, uncertainty
being one of them.

D. Uncertainty theory

The UNCERTAINTYTHEORY class contains the mathe-

matical theories for the representing and reasoning with

uncertainty. It typically includes, but is not limited to,

probability theory, fuzzy set theory, possibility theory,

belief function theory, rough set theory, imprecise prob-

ability theory (see [19] for a survey). In the following,

we will consider the three mathematical frameworks of

probabilities, belief functions and fuzzy sets. Although

geometry is not traditionally considered as an uncer-

tainty theory, contrary to probabilities, belief functions

or fuzzy sets, we also provide in this section the de-

scription of distance measures together with some jus-

tifications for its consideration.

Let us denote by − a set of hypotheses which could

correspond either to the joint space (−o£−R), either to
the measurement space only −o, either to the decision
space only −R or to any other subset of it.
A Probability Mass Function (PMF) p satisfies the

following properties:

(p.1) p : −! [0;1]

(p.2)
P
x2− p(x) = 1

A probability measure P satisfies the following

properties:

(P.1) P : 2− ! [0;1]

(P.2) P(Ø) = 0 and P(−) = 1

(P.3) P(A) =
P
x2A p(x), 8Aμ − and p the PMF

(P.4) P(A[B) = P(A) +P(B) if A\B =Ø
We have that P(fxg) = p(x). The additivity property

(P.4) constrains in particular P(A)+P(Ā) = 1, if Ā de-
notes the negation (or complement) of A, i.e., Ā= −nA.
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A state of complete ignorance about the value of x is
usually represented by a uniform distribution over −
such that P(x) = 1=j−j, for all x 2−, where j:j denotes
the cardinality. The additivity property is what distin-

guishes probability measures from other non-additive

measures such as belief functions.

Dempster-Shafer theory, or evidence theory, or be-

lief function theory [12, 47], is often described as an

extension of probability theory in which the axiom of

additivity is relaxed for an axiom of sub-additivity on

belief functions. In other words, the underlying distri-

bution of a belief function is no longer defined over the

singletons of − but rather over its powerset 2− .

A Basic Probability (or Belief) Assignment (BPA or

BBA) is a function m such that

(m.1) m : 2− ! [0;1]

(m.2)
P
Aμ−m(A) = 1

(m.3) Closed-world assumption: m(Ø) = 0 OR Open-

world assumption: m(Ø) 6= 0
A belief function is a function Bel such that:

(Bel.1) Bel : 2− ! [0;1]

(Bel.2) Bel(Ø) = 0 and Bel(−) = 1

(Bel.3) Bel(A) =
P
BμAm(B), 8Aμ −.

(Bel.4) Bel(A[B)· Bel(A)+Bel(B) for all A,B μ −
such that A\B =Ø

A plausibility function is a function Pl such that:

(Pl.1) Pl : 2− ! [0;1]

(Pl.2) Pl(Ø) = 0 and Bel(−) = 1

(Pl.3) Pl(A) =
P
B\A6=Øm(B), 8Aμ −.

(Pl.4) Pl(A[B)¸ Pl(A) +Pl(B) for all A,B μ − such

that A\B =Ø
The belief function Bel and plausibility function Pl

are thus respectively sub-additive (Bel(A)+Bel(Ā)· 1)
and super-additive (Pl(A) +Pl(Ā)¸ 1). The uncertainty
functions Bel and Pl are dual of each others (Bel(A) =
1¡Pl(Ā)) and can be interpreted (under Dempster’s
statistical view [12]) as respectively lower and upper

bounds of an (unknown) probability of A: Bel(A)·
P(A)· Pl(A), 8Aμ −. The open-world assumption [54]
relaxes the exhaustivity of the original Dempster-Shafer

model, allowing the empty set to have a non-null mass.

That means that other hypotheses than the ones initially

considered in − can actually be true. It is interesting in

our practical case of route association as this empty set

would then act as a rejection class for “off-route” vessels

(see Section IV-F). Evidence theory “includes exten-

sions of probabilistic notions (conditioning, marginali-

sation) and set-theoretic notions (intersection, union, in-

clusion, etc.)” [13]. The conjunctive rule is based on the

intersection between sets (see (10)). A non-null mass to

the empty set denotes thus a conflict (or inconsistency)

between the two belief functions combined and may be

interpreted as an indicator to an anomaly. A state of

complete ignorance is represented by the vacuous BPA

m(−) = 1 (or equivalently by [Bel(A);Pl(A)] = [0;1] for
all Aμ −, A 6=Ø and A 6=−), which is distinct from the
uniform distribution.

A fuzzy set ¹ satisfies the following properties [57]:

(f.1) ¹ :−! [0;1]

(f.2) maxx ¹(x) = 1

(f.3) ¹(A[B) = max(¹(A),¹(B))
(f.4) ¹(A\B) = min(¹(A),¹(B))
Compared to probabilities and belief functions

which define degrees of belief regarding the occurrence

(or truth) of an event, being itself either true or false,

fuzzy sets define degrees of truth for events which are

thus allowed to be more or less true.

Geometric distances are not an uncertainty model

per se. However, they are at the basis of the computation
of trueness, precision or accuracy in measurement data

(e.g. [22]) which all convey notions of uncertainty.

Moreover, pattern matching techniques (see Sections

IV-A and IV-B) rely on distances computation. Finally,

uncertainty may be derived from distance measures

as the farther to a route the vessel, the higher our

uncertainty that it follows that route (see Section IV-D).

For these reasons we include here the basic properties

of distance measures.

A (metric) distance function d satisfies the following
properties:

(d.1) d :−£−! [0;1]

(d.2) 0· d(x1,x2)· 1
(d.3) d(x1,x2) = d(x2,x1)

(d.4) d(x,x) = 0

(d.5) d(x1,x2) = 0) x1 = x2
(d.6) d(x1,x2)· d(x1,x3)+ d(x3,x2)
All these properties define metric distances, but re-

laxing some of them lead to weaker forms of distances

such as pseudo-metrics or semi-metrics. The properties

of the functions introduced here correspond to some

desirable behaviours of the uncertainty handling mod-

els within the fusion method to be designed. One of

the tasks of the designer is to identify and select the

uncertainty representation together with the associated

mathematical framework in order to meet the require-

ments of the expected underlying logic of the method.

To sum up, and referring to the basic information qual-

ity dimensions identified in Section III-B, probabilities

convey the notion uncertainty only, belief functions con-

vey both uncertainty and imprecision, while fuzzy sets

convey the notion of graduality which can be assessed

using distance measures.

E. Uncertainty supports

In order to refine the assessment of uncertainty rep-

resentations, we introduce the concept of uncertainty
support as an item about which some uncertainty (or
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TABLE III

Examples of pieces of information for different uncertainty supports and generic and singular information

Uncertainty Support Generic uncertainty (“0”) Singular uncertainty (“t”)

(us.1) Xi ´(Xi,s,0) ´(Xi,s, t)

Uncertainty about the type of vessels deduced
from past AIS records

Uncertainty about the type of a specific vessel, as
provided by an ATR classifying a SAR imagery

XR ´(XR ,s,0) ´(XR ,s, t)

Prior uncertainty about the routes followed Uncertainty about the route followed by the vessel at t

(us.2) (Xi,Xj) ´((Xi,Xj),s,0) ´((Xi,Xj),s, t)

Uncertainty linking type and speed of vessels, in general Uncertainty about the type of the vessel given the current
speed

(Xi,XR) ´((Xi,XR),s,0) ´((Xi,XR),s, t)

Uncertainty linking the speed and the route Uncertainty about the route followed by a specific vessel at t
given its speed

(us.3) ´(:,0) ´(´(:,s2,0),s1,0) ´(´(:,s2,0),s1, t)

Uncertainty about the prior distribution over the routes as
lower and upper bounds

Uncertainty at t about the routes previously extracted

´(:, t) ´(´(:,s2, t),s1,0) ´(´(:,s2, t),s1, t)

Uncertainty about the source s2 declaration provided at t
(e.g., prior reliability)

Uncertainty about the current source s2 statement itself
including some uncertainty

imperfection in general) needs to be captured and rep-

resented (in other words, what “we are uncertain about”)

and distinguish between:

(us.1) Individual states of the world as represented by
any single variable of X

(us.2) links between states as represented by subsets of
variables from X

(us.3) uncertainty expression ´ over the above supports
(us.1) or (us.2).

Supports (us.1) are a special case of (us.2). The

supports of type (us.3) correspond to abstract states

covering for instance uncertainty or imprecision about

a probability distribution, about a probabilistic model

linking several variables, etc. The joint distribution of

length and types of vessels can be itself the support

of some uncertainty or imprecision since its estimation

may not reflect the real distribution (due to a lack of

data for instance). This is a HIGHERORDERUNCERTAINTY

(i.e. second-order uncertainty), which a subclass of

EXPRESSIVENESS criteria captured in the URREF ontol-

ogy under the REPRESENTATIONCRITERION class (see Fig-

ure 3(b)). Advantages of considering second-order un-

certainty are for instance discussed in [45, 34, 7, 2]. One

of the purposes of the URREF is to analyse and capture

these features of second-order uncertainty.

Table III lists examples of uncertainty supports (for

both generic and singular information) together with the

notation and meaning.

The examples of uncertainty supports provided in

Table III are for two variables only, although these cover

any subsets of variables. To distinguish between generic

and singular information, we will use the indexes 0 and

t respectively to the corresponding uncertainty supports.

Moreover, we assign the symbol of the information

source s from which the imperfection has to be captured.
For instance:

´(XT,AIS dataset,0)

denotes the imperfection of the type of vessels observed

in the past pertaining to the AIS dataset of interest.

In Section V-A, the URRTs will be compared ac-

cording to their ability to capture the different imper-

fection types of our problem at hand as exemplified by

Table III.

F. Evaluation criteria

We will focus in Section V-A on the EXPRESSIVENESS

criterion of the REPRESENTATIONCRITERION class of the

URREF ontology. Expressiveness is defined as the

power of an uncertainty representation technique to

convey relevant aspects of a given fusion problem

[8]. The uncertainty supports are a “relevant aspect”

of the problem as they are able to convey the idea

of DEPENDENCY (between variables), HIGHER-ORDER UN-

CERTAINTY, (source) SELF-CONFIDENCE and extend to the

source’s reliability. Note that this assessment along

the expressiveness criterion is not be ordinal in the

sense that the methods are not be ordered accord-

ing to their expressiveness. It is rather a comparative

assessment where the methods are characterised ac-

cording to their expressiveness. Instead of establish-

ing some ranking of the URRTs, the expressiveness

assessment is aimed at improving the understanding

of the semantics of the different approaches. We fur-

ther expand the EXPRESSIVENESS criterion to cover the

ability of the URRTs to capture the different types
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of imperfection as defined in Section III-B.3 Figure

3(b) displays the EVALUATIONCRITERION class split into

REPRESENTATIONCRITERION, REASONINGCRITERION, DATACRITERION

and DATAHANDLINGCRITERION. EXPRESSIVENESS is a subclass

of REPRESENTATIONCRITERION, having itself other subclasses

such as HIGHERORDERUNCERTAINTY or DEPENDENCY.

Additionally inSectionV-B,wealsoassess theURRTs

globally on their outputs through the DATACRITERION-

QUALITY. Notions of TRUENESS (or Falseness),

IMPRECISION and UNCERTAINTY are quantitatively evalu-

ated when the fusion scheme solving the route associa-

tion problem is implemented processing real AIS data.

IV. UNCERTAINTY REPRESENTATION AND
REASONING TECHNIQUES
Six different uncertainty representation and reason-

ing techniques (URRTs) are presented below, as six in-

stantiations of the fusion scheme ª , to be further as-
sessed through the URREF. The URRTs presented here

are very basic and simple schemes far less complete

than the ones reported in the literature addressing the

problems of maritime anomaly detection or route as-

sociation. However, this deliberate simple exposure is

aimed at “dissecting” the underlying uncertainty repre-
sentation and reasoning, as a first step for comparison

and improved understanding.

A. URRT#1: Pattern matching–Euclidean
Intuitively, the closer the observed vessel under con-

sideration is to the centroid of the routes, the more likely

it is to belong to the route. A pattern matching approach

captures this basic reasoning. Prototype matching dif-

fers from template matching (such as 1-nearest neigh-

bour) in a way that a perfect match is not expected.

It provides better flexibility and allows some tolerance

to handle uncertainty. A standard pattern (prototype)

matching approach computes the Euclidean distances

between x and each of the routes of −R as:

d(E)(x,Rk) =
p
(x¡ r(k))0(x¡ r(k)) (2)

=

sX
i2A
(xi¡ r(k)i )2

where r(k) is the prototype corresponding to route Rk
(see Table II), defined in the feature space − and x0

is the transpose vector of x. The ith components of x
and r(k) are denoted by xi and r

(k)
i respectively. The

quantity (d(k)i )
2 = (xi¡ r(k)i )2 can be interpreted as an

inverse degree of match of the observation xi to the
equivalent prototypical element of Rk, that we denote

as r(k)i : The lower the square distance, the higher the
degree of membership of the vessel to that route. Let

us define by ¹(k)i the degree of membership of x to Rk
according its feature xi. Then, adopting a similarity view

3Note that this link between EXPRESSIVENESS and UNCERTAINTYTYPE

is not currently implemented in the URREF ontology and is at a stage

of proposal for inclusion.

of fuzzy sets [3, 18], ¹(k)i can be defined through d(k)i as,

for instance:

¹(k)i = exp(¡(d(k)i )2)
which tends toward 0 whenever the distance tends to-

ward infinity and equals to 1 if the distance is null.

Equation (2) can then be written as:

d(E)(x,Rk) =
s
¡
X
i2A
log(¹(k)i ) (3)

where ¹(k)i 2]0;1] is a normalised degree of member-
ship. Eq. (3) is a bisymmetrical continuous strictly

monotonous mean [6]. The fusion operator in (2) is a

sum (disjunction) which averages local dissimilarities

with Rk along the different features. It acts as a compro-
mise between min (conjunctive) and max (disjunctive)

operators.

We then consider the following decision rule:

R̂ =

½
argmink d

(E)(x,Rk) if d(E)(x,Rk)< ²1
R0 otherwise

(4)

where ²1 is a threshold to be set according to the opera-
tor’s needs or expectations, representing some tolerance

over the global distance over the 5 features. In practice,

²1 can be deduced from some aggregation of the in-

dividual thresholds ²i1 for each feature. This decision
rule allows some imprecision in the decision space as

it can lead to a set of possible routes, without identify-

ing a single one. An anomaly is detected if it does not

match any route. Many anomaly detection approaches

are based on distances computation as an implemen-

tation of the notion of “closeness to normalcy” (e.g.

[11]). Semantic distances can also be used to assess the

different meanings between attributes (e.g. [4]).

B. URRT#2: Pattern matching–Mahalanobis

A modified version of the Euclidean pattern (proto-

type) matching scheme is obtained by using the Maha-

lanobis distance:

d(M)(x,Rk) =
p
(x¡ r(k))0§¡1(x¡ r(k)) (5)

where § is the covariance matrix of the random vec-

tor X associated to x, whose coordinates are r.v. Xis.
The superscript ¡1 denotes the inverse matrix. The ele-
ment ¾i,j of § is the covariance of Xi and Xj defined as
E(Xi,Xj)¡E(Xi)E(Xj) where E is the expectation op-
erator such that E(X) =

P
xp(X = x) for a discrete ran-

dom variable X. The same decision rule (4) than for the
Euclidean pattern matching is used. However, another

threshold ²2 must be used instead of ²1, based on the
covariance matrix.

As in (2), the fusion operator in (5) is a disjunction

but including weights which would discount the local

individual dissimilarities relatively to the variance of

their corresponding feature, and pairs of errors relatively

to their covariance.
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The Euclidean and Mahalanobis distances in (2) and

(5) are well suited to features defined over numerical

and continuous scales while they reduce to logical AND

for nominal variables such as the type. Better suitable

distance measures are usually used based on the aggre-

gation of individual for each feature, possibly using dif-

ferent definitions than the square difference (e.g. [21]).

Other distances such as the log-normal probability den-

sity (e.g. [1]) would account for the routes statistics as

well. Mahalanobis distance is used in [36] to associate

vessel tracks to maritime routes.

C. URRT#3: Probability-based–Bayesian

In the standard Bayesian approach to fusion, the

function p(X= x j Rk) represents the likelihood of ob-
serving a specific set of values x on a given route Rk,
and is usually derived from past observations used to

compute the routes. The different observations are com-

bined following Bayes’ rule:

P(Rk j x)/ p(Rk)
Y
i2A
p(xi j Rk), 8Rk 2−R (6)

under the assumption of independent and identically dis-
tributed observations. p(Rk) is some prior probability
that the vessel follows a specific route. The resulting

posterior probability P(Rk j x) represents some belief
that the route followed by the vessel of interest is Rk
given that we currently observe x. A normalisation fac-
tor ensures that a probability distribution is obtained.

Equation (6) is known as Naïve Bayes model in clas-

sification. This combination rule (6) can be written us-

ing the individual posterior probabilities as P(Rk j x)/
p(Rk)

¡(j−
R
j¡1)Q

i p(Rk j xi)p(xi). The decision rule is the
Maximum A Posteriori (MAP) probability:

R̂ =

½
argmaxk p(Rk j x) if p(Rk j x)> ²3

R0 otherwise
(7)

where ²3 is a threshold: if the posterior probability
is too uniformally distributed among the routes, then

no clear matching is detected and an anomaly is re-

turned. The Bayesian reasoning scheme is at the basis

of the Bayesian network approach proposed for instance

in [23].

The fusion operator is a conjunctive operator, i.e. the

product of individual likelihoods. It has the property of

decreasing very fast to 0 as the number of features to

be combined increases. Also, the result is exactly 0 if

only one likelihood is null.

D. URRT#4: Probability-based–Non-Bayesian

In a still probabilistic but non-Bayesian approach,

each measured feature is considered providing some

evidence about the membership of x to a given route Rk.
For instance, ps(Rk) = p(Rk j xs) is the contribution of
the speed observation to the membership of the vessel V
to Rk and is interpreted as the probability that V belongs

to Rk given (or according to) the estimated speed. Then,
the observations are aggregated by a weighted sum as:

p(Rk j x) =
X
i2A
®ip(Rk j xi), 8Rk 2 −R (8)

where ®i 2 [0,1] is a weight reflecting either the confi-
dence in the soft decision values computed by the in-

dividual sources, and possibly be deduced from p(xi),
or the relevance of the features to the fusion problem

(for instance, the position and heading may be given

a higher weight than the type). This rule is derived in

[27] from (6) under the assumption of uniform p(Rk).
Contrary to the Bayesian approach, the posteriors are

combined. The decision rule is then (7).

The fusion operator is a disjunctive operator, as in

(2) and (5), but probabilities are combined rather than

distances.

E. URRT#5: Transferable Belief Model (TBM)
model-based

The reasoning scheme considered here is the one

proposed in [45, 14] within the Transferable Belief

Model (TBM) framework and making use of the Gen-

eralised Bayes Theorem (GBT) [50] as the combination

rule, given by the following plausibility measure for a

subset of routes A:

Pl(A j x) = 1¡
Y
R
k
2A
(1¡Pl(x j Rk)), 8Aμ −R (9)

where Pl(A) =
P
A\B 6=Øm(B) is the plausibility of Aμ

−R, with m being a Basic Belief Assignment (see Sec-

tion III-D). Pl(A j x) is the conditional plausibility of A
and is interpreted as the maximum confidence that can

be assigned to A (i.e., that the route followed belongs
to the subset A) given that x has been observed. As
proposed in [45], Pl(x j Rk) is the least committed plau-
sibility function corresponding to the probabilistic like-

lihood function considered as the pignistic probability.

For a BBA m, the pignistic probability [49] is defined
for any singleton of −R as BetP(Rk) =

P
R
k
2Am(A)=jAj.

As introduced in Section III-D, pairs of plausibility and

belief values can be interpreted as intervals over the

probability of any subset of routes Aμ −R. However, if
we restrict to singletons only, (9) reduces to the prod-

uct of plausibility under the independence assumption.

The decision rule requires then two steps: (a) the trans-

formation of the Pl measure into a probability distribu-

tion over −R (e.g. the pignistic probability) such that (b)
the MAP rule (7) can be applied (with the appropriate

threshold).

The fusion operator is again a conjunctive operator

with similar properties than the ones described in Sec-

tion IV-C.

F. URRT#6: Belief functions–Database query

Similarly to the probabilistic non-Bayesian URRT#4,

each observed feature xi of x is assumed to provide
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some evidence about route Rk being followed by V. The
uncertainty is modeled by belief functions rather than

probabilities. Each observation xi is regarded as a query
to −R such that only the items (i.e. routes) satisfying
the associated criterion are retrieved, to form a set of

possible routes Ai according to xi. Ai is the subset of
routes satisfying the query xi:

Ai = fR 2 −R j xi 2−ig
For instance, A1 is the set of routes compliant with a
measured speed of 5 knots. The multivalued mapping

between the observation space − and decision space −R
assigns to any singleton of − a subset of −R. Let us
consider that some singular information about the ob-

servation xi under the form of a probability, provided

for instance by a classifier: p(T)(XT =Cargo) = 0:4 is
the probability that the observed vessel is a Cargo

type, as estimated based on current observations. Let

pT = [0:4 0:3 0 0:3 0]
0 be the uncertainty of the classifier

(source) expressed as a probability distribution about

the type of the vessel. This uncertainty is transferred

to the corresponding subsets of −R previously defined
by the multivalued mapping, defining thus a BBA mi
over −R, where the numerical weight mi(Ai) = pi(xi)
is interpreted as the degree of belief that can be as-

signed to Ai and to none other subset of Ai. Then,
ACargo = (R1,R2,R3,R4,R5) is the set of routes possibly
followed by cargo vessels and is assigned a weight of

0.4. Equivalently, ATanker = (R2,R3,R5) and m(ATanker) =
0:3 and APassenger = (R2,R5) and m(APassenger) = 0:3. This
multivalued mapping does not induce a probability dis-

tribution over −R but a BBA.
The resulting BBA m over −R is obtained by com-

bining the individual contributions of each feature by

the conjunctive rule, where weights are assigned to con-

junctions of sets of routes Ai and Aj:

m(A) =
X

A
i
\A

j
=A

mi(Ai)mj(Aj), 8Aμ −R (10)

The rule (10) defines a conjunctive fusion based on the

intersection between sets. The decision rule is similar to

(7) but considers the conflict measure as a criterion for

anomaly:

R̂ =

½
argmaxkBetP(Rk) if m(Ø)< ¯

R0 otherwise
(11)

where BetP is the pignistic transformation of m. The
quantity m(Ø) is the BBA of the empty set after combi-
nation and represents the global weight of conflict be-

tween all the sources (or features).

V. ASSESSMENT OF URRTS

We now characterise the different approaches previ-

ously described through the URREF and its associated

ontology, EXPRESSIVENESS, in Section V-A and output

QUALITY criteria in Section V-B.

A. Expressiveness assessment
Table IV summarises the comparative description of

the 6 URRTs presented in Section IV as candidate solu-

tions to the same problem of maritime route detection.

The expressiveness of the URRTs relatively to different

uncertainty supports identified in Section III-E is first

assessed in a binary way, so that an empty cell means

that the technique (as actually defined in the previous

section) does not account for the uncertainty on the cor-

responding support. The types of imperfection (gradu-
ality, uncertainty, imprecision) are mentioned in case the
URR technique captures them, together with the corre-

sponding notation. The granularity is kept constant for
all the methods and is just reported as the list of possible

values for all variables in the first rows. In the third part

of the table the reasoning schemes are compared along

their respective uncertainty representation, marginalisa-

tion, decision elements.

1) URRTs analysis:
The uncertainty supports introduced in Section III-

E are mentioned for each method in Table IV. We thus

refer the reader to Table IV for details on the uncertainty

supports about the URRTs analysis.

URRT#1–We observe that the standard pattern

matching approach (URRT#1) does not account for

many uncertainty supports: The route representation is

considered as precise and certain since the prototypes

are defined by single values (either the mean, or the

mode for the type); the dependency between variables is

not considered, nor is the possible links between routes;

sources’ uncertainty (or self-confidence) about their sin-

gular declaration at t is not considered; sources’ relia-
bility is not represented, nor is any second-order un-

certainty. URRT#1 captures a single imperfection type

as a notion of graduality through a distance measure,
the route prototype being considered as a reference: the

distance to route can be interpreted as a degree of mem-

bership of x to Rk. From this generic information, a

singular imperfection is further derived as ´(XR, t) com-
bining with the observation of the vessel at t. The fusion
is performed through the distance definition by a sum

operator acting as an average of inverse of similarities

along the different features of A: The higher the local
similarities, the lower the global distance and the higher

the membership of x to Rk.
URRT#2–The extension of URRT#1 using the Ma-

halanobis distance as described by URRT#2, accounts

for both the spread of the routes along the different fea-

tures (through the individual standard deviations ¾is)
and the dependency between variables (through the co-

variances ¾i,js). The variance can be interpreted as a
measure of imprecision regarding Xi. The covariance de-
scribes how the variables vary with each other, measures

the dependency between them, and expresses then some

statistical uncertainty on the link between Xi and Xj .
Compared to URRT#1, URRT#2 considers some im-

perfection about the reference objects (the routes). Still,

170 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 2 DECEMBER 2018



TABLE VI

Expressiveness comparison of Uncertainty Representation and Reasoning Techniques based on Uncertainty Support.

there is no consideration of singular uncertainty about

the observations at t, excepted the graduality measured
by the distance to the prototype route.

URRT#3–As in URRT#1, the independence as-
sumption between variables applies to the Bayesian ap-

proach presented in URRT#3. No consideration for ei-

ther the source’s reliability nor self-confidence and the

measurement itself is assumed both certain and precise

by the source. Rather uncertainty is considered over
the mapping between − and −R where the likelihoods
p(xi j Rk) describe how likely it is to obtain some spe-

cific measurement given that the vessel follows route Rk.
Prior uncertainty about routes is explicitly considered by
p(Rk) which could be based on other contextual infor-
mation such as meteorological or seasonal. The fusion

is done through a product operator which has the draw-

back of decreasing very rapidly to 0 once one of the

likelihoods is very low. This rule is named “severe” for

that reason [27], since it is very sensible to one source’s

negative opinion. The product is a conjunctive operator

(corresponding to a logical AND) making the under-

lying assumption either that all the measurements are

correct, or that all the sources are reliable. Although

the independence assumption between features is in our

case wrong, this naive Bayesian fusion rule is however

shown to provide good (accurate) results. This can be

explained by the randomness of likelihood estimates,

the low variance mitigating the obvious bias [20]. In-

cluding the source’s reliability about measurements is a

direct extension of URRT#3 (see for instance [34]), as

well as considering the dependencies between variables.

The final assessment ´(XR, t) expresses some uncertainty
degree that the vessel is actually following route Rk.

URRT#4–In the probabilistic non-Bayesian ap-

proach of URRT#4, the individual probabilities are as-

sumed to provide local belief degrees toward each route.

They are summed up to give a global belief so that the

higher the belief degree according to each feature, the

higher the global belief. URRT#4 does not consider the

dependency between features. However, some notion of

source’s reliability can be captured by the weights !i
that can be derived from some likelihood measures ex-

tracted from a confusion matrix. This expresses some

second-order uncertainty about the source’s declaration
at t. The combination rule is a disjunction (logical OR)

and is known to be less sensitive to estimation errors

(unreliable sources), and to single source’s opinion [27]

making the approach more robust. This is a more cau-

tious rule to be used in case of less reliable sources.

URRT#5–URRT#5 may be seen as an extension of
URRT#3 within the TBM model, where non-additive

functions (i.e., plausibility functions) are used rather

than probabilities. The plausibility function Pl(x j Rk)
models some imprecision about the (assumed precise
but unknown) likelihood function p(x j Rk) (itself cap-
turing some uncertainty) used in URRT#3. Equation (9)
is obtained under the assumption of a vacuous prior on

−R, meaning that no prior uncertainty on routes is con-

sidered. The output of the GTB expressed by ´(XR, t)

being also a plausibility function, assigns plausibility

DISSECTING UNCERTAINTY HANDLING TECHNIQUES: ILLUSTRATION ON MARITIME ANOMALY DETECTION 171



values to subsets of routes and captures thus some impre-
cision over −R. ´(XR, t) defines then second-order uncer-
tainty by means of a couple belief-plausibility measure
expressing some uncertainty about the posterior event

(Rk j x). This second-order uncertainty is not considered
in the traditional Bayesian approach where the probabil-

ity estimations are considered certain. Other equivalent

approaches exist framed into imprecise probability or

robust Bayesian frameworks.

URRT#6–In URRT#6, the uncertainty output by
the sources about the measurement provided at t is
considered. Rather than a single (precise and certain)

measure, each source outputs a probability distribution

over the set of values of their respective feature which

induces as many multivalued mappings over −R when
querying the dictionary of routes. The multivalued map-

pings define some imprecision over the set of routes,
since to a single value in −i corresponds a subset A
of −R. The prior imperfection on the links within −
or between −i and −R is characterised as sets of routes
(imprecision) satisfying some criteria about the features.

This imprecision is further combined with the singular
uncertainty of the source at time t defining the resulting
BBA ´i(XR, t). The main characteristic of this scheme
is to deal with subsets of routes, in a qualitative way,

with an additional quantification. The explicit notion of

conflict is a way to detect inconsistencies between the
subsets of routes compatible with each feature. The fu-

sion is performed through a conjunctive rule, assuming

the independence between sources as well as totally re-

liable sources.

2) Interpretation:
The type of imperfection handled by URRT#1 and

URRT#2 is graduality meaning that the route is consid-

ered as an “ill-defined object,” with fuzzy boundaries,

to which vessels belong more or less. The distance mea-

sure provides an aggregated inverse degree of member-

ship of the vessel to a given route: If the distance is low

then the vessel belongs to the route with a high degree

of membership. Contrarily, the other methods (URRT#3

to URRT#6) express a “degree of belief” that the vessel

is following the route. This is a difference between a

binary event (URRT#3 to URRT#6) and a fuzzy event

(URRT#1 and URRT#2). This semantic aspect high-

lights the need for a clear semantics for the concept

of maritime route, whether it means either “following a
specific path and thus ending in a specific destination”

(binary event) or “being positioned on a portion of the

sea with ill-defined boundaries” (fuzzy event).

3) Enrichment of basic URRTs:
Each of the URRT above could be enriched to ac-

count for more uncertainty supports. As examples only,

the reliability of the sources is classically considered

in URRT#6 by introducing discounting (or reinforce-

ment) operations for belief functions such as described

in [37]. Also, the reasoning scheme of Equation (6) in

URRT#3 can be enriched by considering the reliability

of the sensors in providing accurate measurements, and

introducing factors p(Zi j Xi) where Zi is the measure-
ment provided by the source while the true value was

Xi, as proposed in [34] for instance. URRT#3 can be
easily implemented as a Bayesian network (e.g., [23])

where the dependency between variables is considered.

A Bayesian network has the advantage of a better trans-
parency in the reasoning for the user, which could also
be an interesting assessment criterion to be considered

in the URREF ontology. Moreover, the computational
cost is improved by local computations.

B. Output quality assessment
The qualitative analysis above is now complemented

by a quantitative analysis based on more standard cri-

teria. We provide below a series of possible criteria for

quantitative assessment of the six URRTs discussed in

this paper, that we implement to discover abnormal be-

haviours of vessels within a real AIS dataset comple-

mented by pseudo-synthetic anomalies.

1) Output criteria:
We consider the output quality criteria of TRUENESS

(or falseness), PRECISION (or imprecision) and CERTAINTY

(or uncertainty). The Trueness notion captures how

correct the results are after decision. To measure this

criterion we use the standard F̄ -score (or measure),
classically defined as:

Tru(ª) = F̄ (ª ) =
(1+¯2)TP

(1+¯2)TP+¯2FN +FP
(12)

where ¯ 2 [0;1] is a parameter weighting the two types
of errors, TP, FN and FP are the number of true

positives, false negatives and false positives respectively,

N is the number of negative samples and P is the

number of positive samples.

The IMPRECISION and UNCERTAINTY are assessed before
the final decision (labelling to a single route) is taken,

and quantify how much the URRT is non-specific and

uncertain before the labelling, respectively. They are

assessed through the Hartley measure and Shannon

entropy4:

Imp(ª ) =
1

log2(j−Rj)
log2(jAj) (13)

Unc(ª ) =¡ 1

log2(j−Rj)
X
R2−

R

p(R) log2(p(R)) (14)

where j:j denotes the cardinality of sets and p is the
probability distribution over the set of routes before de-

cision is taken. The equations above are normalised ver-

sions of the measures. In (13), A is the set of compatible
routes according to the corresponding decision criteria.

4In (14), the distances in URRT#1 and URRT#2 are transformed into

probability distributions over the set of routes, with thus a different

meaning. Shannon entropy may not be an adequate measure in this

case.
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Fig. 4. Examples of simulated anomalies starting from the real data in [41]: the blue track is the normal track derived from the trajectories

belonging to the subset of 8 routes, the red one is the synthetic anomalous track, reproducing a specific anomalous behaviour. (a) Positional

anomaly: shifted track. (b) Directional anomaly: reverse flow track. (c) Kinematic anomaly: high speed track.

2) Dataset of anomalous tracklets:
The six URRTs are tested on a reference data set

of AIS data developed at CMRE. The tracklet dataset

consists of raw positional data collected for research

purposes via the ground-based Automatic Identification

System (AIS) receiver located in Castellana (La Spezia—

Italy) owned by CMRE. The dataset contains the reports

of the vessels equipped with AIS transponders, which

were transiting over a section of the Northern Tyrrhe-

nian Sea framing La Spezia harbour during the time

period which goes from January 1st through February

20th 2013. The dataset contains both real tracklet data

(labelled as “normal tracklets”) and pseudo-synthetic

tracklet data (labelled as “anomalous tracklets”). The

original Castellana dataset [41] which has to be consid-

ered the source of the current dataset, is in the form of

terrestrial AIS (T-AIS).

Two classes are considered: Class R1 corresponds to
normal trajectory segments and Class R0 corresponds to
anomalous trajectory segments. The normal trajectory

segment of each evaluation trajectory is constructed by

first selecting a random tracklet from the set of normal

evaluation trajectories of a given length of 5 consecu-

tive points: 95 tracklets are extracted from the system

of pre-computed routes. Each route is decomposed into

single-vessel trajectories and then further divided into

tracklets of 5 consecutive points. The anomalous trajec-

tory segment of each evaluation trajectory is constructed

by first selecting a random tracklet from the set of nor-

mal evaluation trajectories of a given length of 5 points,

replicating it and then altering its features. More specif-

ically, a total of 275 anomalous tracklets were generated

as follows:

² Positional anomalies: 80 Off-route tracks were created
by shifting either the LONGITUDE or LATITUDE

sequence (of a given magnitude);

² Directional anomalies: 108 high-speed tracks were
created by increasing the initial instant speed of the

track and by using a Near-Constant-Velocity Model

to derive the new coordinates (LONGITUDE, LATI-

TUDE), given the observed reported course;

² Kinematic anomalies: 87 opposite-flow tracks were

created by changing the initial heading of the track

and by using a Near-Constant-Velocity Model to

derive the new coordinates (LONGITUDE, LATI-

TUDE), given the observed reported speed SOG.

Figures 4 shows examples of the three types of

simulated anomalous tracklets. As the traffic normalcy,

we considered a subset of 8 routes as displayed in

Figure 1.

3) Results and discussion:
We present here results of anomaly detection, thus

considering two classes only, R0 the class of anoma-
lous tracklets containing three kinds of anomalies as

described above and R1, the class of normal tracklets
belonging to the subset of 8 routes. Figure 5 displays the

output quality results on a spider (radar) graph, with the

three criteria of TRUENESS (F1-score), UNCERTAINTY (re-
verse entropy) and IMPRECISION (reverse non-specificity).

The best method is the one covering the widest area

in the graph. The ranges of the criteria are indicated

in brackets. The TRUENESS criterion as measured by F1
aggregates the TP and FN and hides thus the contri-

bution of each corresponding type of errors. Table V

expands the criterion of TRUENESS by displaying addi-

tional measures to the TPR, as the TNR, the F1, F2 and
F0:5 measures. While F1 assigns equal weights to false
negatives and true positives, F2 gives more emphasis on
false negatives and F0:5 attenuates the influence of false
negatives.

Through these criteria and associated performance

measures, we observe that URRT#1 provides excellent

results in terms of TRUENESS and PRECISION. That means

that URRT#1 was able to correctly detect the anoma-

lies and the on-route vessels. Moreover, before deci-

sion the set of compatible routes was minimum (a sin-

gleton). However, the entropy was quite high meaning

some UNCERTAINTY before decision. The extension of
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Fig. 5. Spider graph of three output quality criteria for the six URRTs.

TABLE V

Trueness measures for the six URRTs.

TPR TNR F1 F2 F0:5

URRT#1 1.00 1.00 1.00 1.00 1.00

URRT#2 1.00 0.91 0.88 0.95 0.83

URRT#3 1.00 0.64 0.66 0.83 0.55

URRT#4 0.21 0.97 0.33 0.25 0.48

URRT#5 1.00 0.64 0.66 0.83 0.55

URRT#6 0.77 0.76 0.62 0.70 0.56

URRT#1 to the Mahalanobis distance provides slightly

lower results in terms of TRUENESS though, especially

regarding the TNR (some anomalies have been missed)

as we can see in Table V. Indeed, it appears that con-

sidering the dependency between the attributes in the

observation space, although more correct than the naive

independence assumption under URRT#1, leads to a

slight decrease in the performances. In both URRT#1

and URRT#2, the uncertainty representation is based

on the distance of the tracklet to the routes, computed

by a Hausdorff distance. If the set of points of the track-

let belongs to the set of points of the routes, then the

distance will be very low, or null.

The Bayesian approach URRT#3 and its evidential

extension URRT#5 provide similar performance results.

Compared to the pattern matching approaches, the TPR

is still maximum while the TNR is only 60%. How-

ever the UNCERTAINTY is lower meaning that the deci-

sions could be taken with a quite high confidence. How-

ever, combined with the low TNR, this is not a desirable

behaviour as this apparent confidence of the algorithm

may be miss-interpreted by the decision maker. These

two approaches use the likelihoods extracted from the

routes’ statistics as a basis for uncertainty representa-

tion. No probability distribution estimation method was

applied and the likelihoods were simply extracted from

the histograms. The evidential approach based on the

Generalised Bayes Theorem (URRT#5) uses plausibility

functions instead of probabilistic likelihoods and allows

by that to account for some IMPRECISION on the probabil-

ity distributions. It is particularly interesting when the

amount of data available does not guarantee a reliable

estimation of the probability distribution. Indeed, as il-

lustrated in Table II, some routes are built upon only a

few trajectories and their uncertainty may be better rep-

resented by lower and upper bounds of unknown proba-

bility distributions (as provided by belief and plausibil-

ity measures respectively) or simply by crisp intervals.

The weighted average of probabilities (URRT#4)

provides the worse results along the three criteria, while

the TNR is actually better than most of the other ap-

proaches. From Table V, it appears that the bad perfor-

mance of URRT#4 is mainly due to a very low TPR

(around 20%). That means that on-route vessels are sel-

dom detected and wrongly detected as anomalies in-

stead. The disjunctive operator (+) averages the poste-

rior probabilities and a very low probability along one

feature (denoting an anomaly) would be diluted among

other higher probabilities. It would thus be more diffi-

cult to detect the directional and kinematic anomalies.

As mentioned previously, the disjunctive operator is a

rather cautious fusion operator, more suited to a con-

sensus. We should not however conclude that URRT#4

is not a good approach, as its strength is to be robust

to errors and unreliable sources, something that was not

reflected in our dataset.

The evidential approach using the conjunctive rule

(URRT#6) provides mediocre TPR and TNR while this

pair of values is actually better than all the approaches

expected the pattern matching ones. The UNCERTAINTY

and IMPRECISION are both quite high meaning that the

decision was taken with still a high hesitation. URRT#6
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is the only method which rejection criterion is based

on a measure of conflict (here Dempster’s conflict).

The conflict is represented by the empty set between

subsets of routes. The core of the reasoning relies thus

on the intersection of the subsets of routes compatible

with the features. In case this intersection is empty,

no route is actually detected as compatible and the

tracklet is classified as abnormal. The BBA was set to

represent the uncertainty originating from the source’s

quality, which acts as a discounting over the categorical

BBA of the set of compatible routes. However, in case

the source expresses some (lack of) SELF-CONFIDENCE

about its declaration, this singular uncertainty could be

considered as well with this approach.

Finally, note that all the URRTs but the URRT#6

rely on generic imperfection only. URRT#6 is the only
approach (again, as currently implemented) which ac-

counts for the uncertainty expressed at the current in-

stant in time t. All the other approaches rely on un-
certainty, imprecision or graduality derived from past

observations.

REMARK The results presented here should be read

as an instantiation of the exploitation of the URREF

mainly, as the application of such techniques to mar-

itime anomaly detection requires deeper work. In par-

ticular, the synthetic anomaly generation technique may

have a high impact on the results. The fact that the tech-

nique essentially shifts tracklets from their original po-

sition in the feature space may explain why the pattern

matching approaches provide better results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we dissected six (6) uncertainty and

reasoning techniques (URRTs) to information fusion

and proposed detailed description and comparison in

their ability to handle uncertainty, in representation and

fusion. We selected a variety of classical and simple

schemes from (or adapted from) the literature which

are all good candidates to solve the two problems

of maritime route association and anomaly detection.

We introduced the uncertainty support as an element
conveying uncertainty, which allowed to make clearer

which uncertainty is actually captured in the different

reasoning schemes. We distinguished between uncer-

tainty over individual variables or links between them,

as well as second-order uncertainty. We framed our

discussion within the Uncertainty Representation and

Reasoning Evaluation Framework (URREF) and illus-

trated that considered jointly with the type of informa-

tion either generic (from historical data or prior knowl-

edge) or singular (at the time of the observation), the

uncertainty support concept covers some elements of

EXPRESSIVENESS of the URREF ontology (DEPENDENCY,

HIGH-ORDER UNCERTAINTY, SELF-CONFIDENCE) and could

expand to other criteria such as RELIABILITY.

The implementation of the URRTs to detect anoma-

lies of a real AIS dataset allowed us to illustrate that

the expressiveness criterion should not be assessed in

isolation and that it is the joint assessment of the vari-

ous criteria that makes the URREF powerful. Indeed for

instance, a lack of expressiveness about the dependency

between variables may still provide a good overall ac-

curacy of the algorithm through some natural balance

process.

Rather than identifying a “winner” approach, the

comparison between the URRTs presented herein aimed

at highlighting the differences and possible complemen-
tarity in uncertainty representation and reasoning. The
approaches have been kept simple for a clearer under-

standing and in future works we will build upon this thin

characterisation of the basic techniques together with

the quality of the data available, taking advantage of

the diversity of the different approaches, to design an

efficient algorithm with easily interpretable results for

detecting the anomalies at sea.
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