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Researchers have extensively explored uncertainty issues in Low

Level Information Fusion (DFIG L0/L1 process levels) systems, and

predominately use probabilistic uncertainty representations. How-

ever, this prominence does not happen in High-Level Information

Fusion (HLIF) systems. One reason for this discrepancy is that

HLIF systems ingest a wider range of evidence, with its associated

uncertainties, and execute a broader scope of inferential reasoning

than LLIF systems. Researchers developed multiple techniques to

address these uncertainties and reasoning needs, but it is not clear

when and where in a specific fusion system a particular technique

should be applied. ISIF established the Evaluation of Technologies

for Uncertainty Reasoning Working Group (ETURWG) to provide

some clarity on this issue. As a first step, the ETURWG created the

Uncertainty Representation and Reasoning Evaluation Framework

(URREF). The framework formally represents concepts and cri-

teria needed to evaluate the uncertainty management capabilities

of HLIF systems. It provides 26 criteria for evaluating the effec-

tiveness and resource efficiency of a fusion system’s uncertainty

management capabilities. However, given the recency of the frame-

work and the complexity of the issues it addresses, practitioners

face difficulties in understanding where and how each criterion is

applicable across a general fusion process environment, including

a generic fusion system model. This paper’s primary contribution

is to address this gap by providing a discussion of the significant

application factors and considerations regarding the usage of the

framework, while providing examples of such usage in the process.
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1. INTRODUCTION
This paper describes the use of the Uncertainty Rep-

resentation and Reasoning Evaluation Framework (UR-

REF) in evaluating an information fusion system’s abil-

ity to appropriately handle the various uncertainties that

arise in the fusion process. Information fusion trans-

forms information from different sources and different

points in time into a unified representation that sup-

ports human or automated decision-making [8]. This

decision-making focus demands that information fusion

results are sound. Unfortunately, data sources used are

often “inconclusive, ambiguous, incomplete, unreliable

and dissonant” [59]. It is important to evaluate the dif-

ferent forms of uncertainty a fusion system has to deal

with, where and how they occur, and the impact they

have on the fusion processes and system outputs. The

URREF provides a set of uncertainty definitions and

evaluation criteria to support such an evaluation.

High Level Information Fusion (HLIF) is defined as

the situation (L2) and impact (L3) levels of the Data

Fusion and Information Group (DFIG) model [72], [5].

It is distinguished from L0/1, which is called Low Level

Information Fusion (LLIF). LLIF has been widely ex-

plored and issues of uncertainty determination and prop-

agation are extensively documented. It typically uses

crisp data from homogenous, credible sources. Classi-

cal probabilistic uncertainty representations with fixed

probabilities, rather than belief functions or imprecise

probabilities, predominate in LLIF [31]. HLIF involves

more complex environments, reasoning about complex

situations, with a diversity of entities and multiple rela-

tionships between those entities. HLIF uses more di-

verse information sources, with significant evidential

vagueness or ambiguity, and incompleteness and incon-

sistencies between evidence items. The credibility of in-

dividual sources may vary significantly. The community

has developed a range of techniques and models to ad-

dress these issues, but there is no consensus on how to

compare their effectiveness and system impacts.

The International Society for Information Fusion

(ISIF) chartered the Evaluation of Technologies for

Uncertainty Reasoning Working Group (ETURWG) to

provide a forum to collectively address this common

need in the ISIF community, coordinate with researchers

in the area, and evaluate techniques for assessing, man-

aging, and reducing uncertainty [25]. The group de-

veloped the Uncertainty Reasoning and Representation

Evaluation Framework (URREF) as a first step towards

sound evaluation of uncertainty representations in HLIF

systems. First documented in [13], the current ver-

sion and associated documentation can be found at the

ETURWG website.1 These criteria focus on evaluating

the effectiveness and resource efficiencies of the un-

certainty representation(s) within a fusion system. The

ETURWG does not expect URREF to identify a “silver

bullet” technique that will adequately address all the

1Use of an ontology editor such as Protégé suggested.
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Fig. 1. URREF Top-Level Model

significant relevant uncertainties in a fusion system’s

environment but will assist designers in incorporating

the appropriate range of techniques to meet their spe-

cific requirements.

This paper’s primary contribution is to provide a

discussion of the significant application factors and con-

siderations regarding the usage of the framework, while

providing examples of such usage in the process. Sec-

tion 2 highlights the URREF and provides the criteria.

Section 3 defines the key characteristics of the over-

all fusion process environment, including fusion system

model, that affect uncertainty representation. Section 4

maps the URREF evaluation criteria to this environment

and discusses how they are used to understand the un-

certainty representation capabilities of a fusion system.

2. THE URREF

Figure 1 shows the URREF’s top-level model. Un-

certainty Factor provide a core description of the type,

nature, derivation and models of the uncertainties that

can be found in the fusion process. The Fusion Process

includes the source, fusion system (in both a component

and process view) and evidence/information.2 These

will be the subjects of an uncertainty handling evalu-

ation. The Uncertainty Handling Criteria are measures

useful for evaluating how well a specific fusion process

handles its uncertainties. The ETURWG grounded the

URREF on earlier work done by the W3C Incubator

Group for Uncertainty Reasoning [47]. This work pro-

vides a basic framework of world/agent/sentence where

an agent makes a statement about some aspect of the

world using a logical sentence format. A logical sen-

tence is a statement stated precisely enough that it can be

assigned a truth value. This truth value may be binary,

qualitative or numerical. The ETURWG identified three

basic uncertainty characteristics: the nature, derivation

and type of uncertainty, described in Table 1.

Although uncertainty has been understood qualita-

tively since the Greek philosophers of the early 5th

Century BCE, an understanding of the different types

of uncertainty began with the development of quan-

titative probability, addressing randomness, started by

Fermat, Pascal and Huygens in the 17th century [3].

In 1921, Knight distinguished between problems with

known probabilities (which he called risk) from those

with unknown probabilities (called uncertainty–also

2This paper will use the terms evidence and information interchange-

ably.

TABLE 1

URREF Uncertainty Factors

Uncertainty
Nature

Uncertainty is either inherent in the
phenomenon expressed by the sentence or is
result of lack of knowledge about that

phenomenon.

Aleatory Uncertainty is inherent property of the world.

Epistemic Uncertainty from lack of complete knowledge

Uncertainty
Derivation

Uncertainty derivation refers to the way it can
be assessed. That is, how the uncertainty

metrics can be derived.

Objective Assessed in a formal way, e.g., via a repeatable

derivation process.

Subjective Assessed via a subjective judgment. Even if one

uses formal methods for this assessment, if the

assessment involves subjective judgment, the

Uncertainty Derivation is subjective.

Uncertainty
Type

Underlying characteristics of the information
that make it uncertain.

Ambiguity Sentence has multiple possible interpretations

Vagueness No precise correspondence between terms in the

sentence and referents in the world

Randomness The information comes from a process whose

outcomes are non-deterministic.

Inconsistency No world exists that satisfies the sentence.

Incompleteness Occurs when information is missing.

a form of ignorance) [41]. The concepts of vague-

ness and ambiguity were given formal form by Black

in 1937 [4]. Since that time, numerous taxonomies

of uncertainty have been developed, both for general

use and for specific fields. Jousselme et al. reviewed

six taxonomies for potential application in fusion sys-

tems [35]. The two most comprehensive characteriza-

tions they identified were by Smithson [68] and by

Krause and Clark [43]. Both use the classic randomness

(probability)/vagueness/ambiguity classification. Smith-

son also included knowledge incompleteness and dis-

tortion as types of uncertainty. Distortion occurs when

biases/inaccuracies in one’s knowledge or when the

knowledge transformation process introduces confusion

in the knowledge [68]. Krause and Clark’s taxonomy

made two important distinctions. The first was between

uncertainty induced by the classic sources and uncer-

tainty induced by conflict. Second was the need to

distinguish between uncertainty in a single informa-

tion item and uncertainty in a set of information items.

Conflict (also called inconsistency) most often occurs

in an information set, although equivocation is iden-

tified as an internal conflict in a single item. Incom-

pleteness is also primarily a characteristic of a set, al-

though a single item may have missing information as

well [43].
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Fig. 2. Fusion Process Environment Model

Finally, the ETUWG identified the most common

uncertainty representations (models):

² Belief functions3
² Fuzzy methods
² Probabilistic methods
² Random set

² Rough set
Additional choices can be found in Khaleghi et al.

[40] or Castanedo [12]. The uncertainty handling cri-

teria and their definitions are given in Table 2 below.

The criteria are in four categories. Data criteria assess

how a fusion process’s design, including its uncertainty

model(s), address aspects of uncertainty in data, both

for individual items and for the collective set. Data Han-

dling criteria focus on the effect of the uncertainty rep-

resentation on explaining the reasoning used to create

the output, and to maintain a record of what data was

used in the process. Reasoning Criteria assess the over-

all approach to uncertainty handling in two areas:

² The correctness and consistency criteria assess the
effects on the system outputs.

² The remaining criteria assess the effects on the overall
system performance. These highlight the resource

demands made by an uncertainty handling approach.

Representation Criteria assess internal characteris-

tics of the uncertainty handling representation(s) and its

integration with the fusion process.

It is an irony that the literature on uncertainty has

a significant amount of ambiguity, redundant or over-

lapping terms, and conflicting definitions to describe

aspects of uncertainty. In identifying these criteria, the

ETURWG often had to select one term out of a range of

choices for that aspect of uncertainty. In this paper, we

generally do not attempt to identify synonymous terms

or conflicting meanings.

3. FUSION PROCESS ENVIRONMENT
To apply the URREF criteria, one needs a model of

the overall fusion process environment. We derived the

model in Figure 2 from the DFIG model [5]. The main

extension was to subsume the user in a larger group

3Belief functions encompass approaches derived from Evidential

Reasoning (Dempster-Shafer [62]). It includes Transferable Belief

Model [66], Dezert-Smarandache Theory (DSmT) [18], and Subjec-

tive Logic [33].

we call stakeholders, for reasons discussed below. This

section describes each component, providing the context

and key considerations for applying the URREF criteria.

3.1. Stakeholders/User

Any fusion system has a group of stakeholders, who

collectively have an influence on the design and oper-

ation of the fusion system. The focus, scope and ex-

tent of a fusion system is driven by stakeholders’ ob-

jectives, values and plans (collectively “stakeholders’

interests”). A key subset of this group are the system

users. These are the decision-makers, operators, and

analysts who are the primary interactors with the sys-

tem. Other stakeholders manage or influence aspects of

the fusion process. For example, many fusion system

users do not control the sources that provide evidence to

their system. They submit information requests to one

or more centralized management groups. Other stake-

holders may require that the fusion process maintain

records on how it created its outputs and the uncertain-

ties associated with it. For example, the law of armed

conflict requires a military commander to gather a rea-

sonable amount of information to determine whether the

target was a military objective and whether incidental

damages to non-military targets are proportionate [48].

Uncertainties in the gathered information are a consid-

eration in judging whether a commander acted properly.

For such a system, the military legal community (as a

stakeholder) may require that a fusion system be able

to identify and trace the uncertainties in the evidence

and how they were addressed in the fusion process to

support a judgment of the legality of a commander’s

planned actions.

3.2. World Segment of Interest

The world segment is those aspects of a “real” world

that stakeholders of the fusion system are interested in.

Their points of view define the world segment. A world

segment is defined as an area in the real world or cyber

domain and possibly a time frame of interest (Figure 3).

The stakeholders’ information needs define theworld

segments aspects of interest, including boundaries, key

characteristics and entities of interest along with their at-

tributes and relationships with other entities. In the same

ocean area, a fusion system supporting a naval comman-

der will focus on different entities than one supporting

biologists studying marine mammals. The entities in the

world segment generate observables, features detectable

and reported by some source. Some entities may have

a very limited set of observables, which may require a

very specific approach to detect and collect the observ-

able.

This is distilled into a world segment model using

an ontological structure [9]. Entities should be catego-

rized broadly, such as using Sowa’s ontological cate-

gories. This allows for both concrete and abstract en-

tities, with either time-stable (objects) or time vary-

ing (events) characteristics. It also allows for modeling
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TABLE 2

Uncertainty representation handling criteria
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Fig. 3. World Segment of Interest defined by stakeholders/users

needs and interest. Defines relevant observables,

entities/attributes/relationships (captured in an ontology) and key

dependencies that can infer new information

complex structures or situations, along with assigning

attributes like purpose to them [70]. The world segment

model generally becomes part of the fusion system, and

mismatches between the world and model can result in

significant errors and uncertainties. A key part of the

world segment model is the dependencies. These are

linkages between the attributes and relationships of en-

tities, both within an entity and between entities. They

have an “If A, then B” structure. The dependency be-

tween A and B is established from prior knowledge (in-

clude expert elicitation) or learned from collected evi-

dence. The core of HLIF reasoning hinges on depen-

dencies; when we have good reasons to believe A ex-

ists, then our understanding of B’s existence, attributes

or relationships change. Dependencies are expressed as

rules, clauses (for logic programs) or graphical models

(e.g. Bayesian networks, Markov networks).

A system may have multiple world segments within

it (e.g. a global health epidemic system may be divided

into regions or countries) or it may have multiple system

copies, each with a different world segment. A system

may also be deployable and load different world seg-

ments models as needed.

3.3. Source and Evidence

A source gathers observables and transforms them

into evidence on some aspect of a world segment,

through new observation or analysis of previously col-

lected data (Figure 4). Source here means a specific

mode of accessing data (e.g. panchromatic imagery,

communications intercept, seismic detection, human re-

porting, database searches, etc.). When humans are part

of the source process, at least some of the functions

in Figure 4 are done mentally. Some source systems

Fig. 4. Source process model

are multi-mode (e.g. radar with both Synthetic Aperture

Radar and Surface Moving Target Indication modes) or

multi-sensor (e.g. imaging and signals intercept on the

same platform). Uncertainty should be assessed for each

mode. A source may be dedicated to a specific fusion

system or provide data to multiple fusion systems. A

source may perform L0 fusion of observable samples

(e.g. SAR change detection) using either internally gen-

erated data or integrating externally provided data. A

source system may also conduct Level 1 fusion, using

either self-generated or externally provided evidence.

When data from those different sources are fused, the

overall fusion process must be aware of this to avoid

multiple counting of the same evidence.

A common source differentiator is the hard/soft dis-

tinction, which aligns with the URREF Uncertainty

Derivation criterion of objectively or subjectively de-

rived evidence. Technical sensors are considered to pro-

vide hard or objective evidence, based on a repeatable

derivation process. They generally provide consistent

data with little possibility of source-generated untruth-

fulness, bias or deception. Evidence developed from

human reporting is considered soft or subjective, with

issues of source credibility, including deception; signif-

icant use of vague or ambiguous terms, or inconsistent

application of terms between individual human sources

[37]. The distinction is useful but benefits from be-

ing refined. Many sources have a machine/human part-

nership, where the extraction of useful information is

done by humans. Imagery and communications inter-

cepts sources are two examples. Such sources are gen-

erally classified as hard sources. In classifying a source

as hard or soft, there are at least four considerations:

² Degree of calibration. Almost all technical sources
undergo some type of calibration prior to employ-

ment, to ensure a level of accuracy and consistency.

For some sources, human data exploiters undergo

training to provide a level of consistency across dif-

ferent individuals. This consistency may not be tight

as for a technical source.

² Use of source quality standards and reporting reviews
prior to evidence release.

² Source recording. If the source maintains a record
of the data that generated the evidence, it can be

ASSESSING UNCERTAINTY HANDLING REPRESENTATIONS OF HLIF SYSTEMS WITH URREF 183



TABLE 3

Classes of Evidence

Unequivocal

testimony

Statement from a source (written, verbal)

Equivocal

testimony

Hedged source statement (“I think I saw: : : .”)

Tangible Evidence that may be physically examined: e.g.

objects, documents, images, recordings

Missing

evidence

Evidence one expects to find but does not.

Accepted facts Statements whose truthfulness as evidence is not

questioned (e.g. gold has a higher density than

iron).

reviewed in cases where there are questions about the

evidence.

² Source quality improvement efforts to identify and
correct deficiencies, adjusting their accuracy and

credibility over time.

Each source has its own characteristics that define

how it gathers and processes its data. The source model

describes, to some level of detail, how the source gathers

and processes its data. An accurate model for each

type of source is necessary for doing an uncertainty

assessment on that source.

Sources generate evidence that is used in the fu-

sion process. Evidence can be expressed using logical

sentences with an uncertain truth value (which include

“100% true” and “0% true”). Evidence can take a vari-

ety of forms. Table 3 provides a classification scheme

[61]. Testimony is a statement made by a source. The

statement may be based on direct observation, or on sec-

ondhand sourcing/hearsay. The statement may be either

unequivocal (“It is the case that: : :”) or equivocal (“I
think that: : : .”, “I’m not positive, but: : :”). An equivocal
assertion may include a reason for the equivocation (“It

was dark, but I’m pretty sure I saw: : :”). Opinion is a
form of equivocal testimony. It is defined as “A view

or judgement formed about something, not necessarily

based on fact or knowledge” or “A statement of ad-

vice by an expert on a professional matter.” [53]. The

key here is whether an opinion statement comes from

a competent and knowledgeable source, able to support

that statement. Expert judgment is a form of opinion

that is a valid form of evidence. Missing evidence is

not negative evidence, which is evidence that something

does not exist at a point in time one is interested in. In

some cases, missing evidence can be significant. For

example, evidence intentionally destroyed can have a

negative connotation for the destroyer.

Evidence may be at any level of the DFIG model,

and it does not have to come from a process that moves

sequentially through the levels. While sensor-derived

data goes through L0 processing, human derived data

often does not (although some may go through a form

of preprocessing, such as summation or statistical pro-

cessing). Evidence, especially from human or communi-

cations intercept sources, can also be about relationships

between entities, situation or structure identification, or

intentions (specific plans and objectives).

3.4. Fusion System

Understanding how to apply the URREF criteria to

a HLIF process benefits from a generic system fusion

model allows aligning the criteria with fusion system

processes/components. After initially exploring the lit-

erature, we established these model requirements:

² Identifies key functions within a fusion process.
² Maps the flow between the functions, including feed-
back and reevaluation requests.

² Allows varying human/machine divisions of effort.
² Is not bound to a specific uncertainty representation
or fusion methodology.

² Uses general domain-independent terminology.
According to Salerno, over 30 fusion process mod-

els had been proposed by 2002 [58]. Several teams have

reviewed selected subsets, including Esteban et al. [24],

Bedworth and O’Brien [2], Whitney, Posse and Lei [78]

and Roy et al. [57]. Foo and Ng published an updated

review in 2013 [26]. We found most of the models be-

fore 2005 very limited in their functional description.

These included Pau’s Model [55], Intelligence Cycle

model [2], Thomopoulos’ model [74], JDL model [30],

Dasarathy model [16], Waterfall model [2], Extended

OODA loop [63], Omnibus model [2] and the Gen-

eral Data Fusion Architecture [11]. Although they also

had limited functional details, models that incorporated

humans as part of the fusion process included the Vi-

sual Data-Fusion model [39], JDL level 5 [7], Ends-

ley’s situation awareness model [22], [23] and Lam-

bert’s Unified Data Fusion Model [44]. Four models

published between 2002 and 2016 included significant

details about their functions, shown in Figure 5. They

were by Salerno [58], Steinberg [71], Lambert [45] and

García, Snidaro, and Llinas [27]. There is a high degree

of commonality in the functions described. All have

some form of data ingest function that performs ref-

erence base alignment and semantic (ontological) regis-

tration. Some models explicitly depicted entity extrac-

tion from unstructured information sources (e.g. free

text reporting). García et al.’s model was the only one

to explicitly depict an uncertainty characterization pro-

cess, while Steinberg’s model discussed it in the text de-

scribing the model. Salerno’s model explicitly depicted

a number of information development activities to sup-

port the overall fusion process, including

² Data mining activities, including link analysis, pattern
learning and pattern matching.

² Model development support, including pattern iden-
tification and model generation. Models may be built

ahead of time, or created from the data stream.
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Fig. 5. Functional process/component elements of four major fusion system models

The other three models call out these functions as

data association. For example, at level 2 HLIF, Steinberg

model focused on finding and estimating relationships

in the data, expressed as possible hypotheses. This

is done by three subfunctions: hypotheses generation,

hypotheses evaluation and hypotheses selection.

All four models had state estimation or state mod-

eling. For HLIF, this process can use a variety of tech-

niques, including link analysis, graph matching, tem-

plating methods, belief networks, compositional meth-

ods for model detection and development, and various

algorithmic techniques [71].

Lambert’s model differed from the others in using

state transitions as a focusing element. This concept ex-

tends the idea of a Kalman filter to observing, predicting

and updating state data, including tracking which sce-

nario is being executed (L3 fusion) [45].

Because of differences between soft and hard sen-

sors García et al.’s model have data from each type flow

through a distinct path designed for the characteristics

of that data [27]. They also explicitly include the use

of context information. In the last five years, there has

been significant work done on incorporating contextual

information such as map data, weather, and procedural

data (e.g. traffic rules, doctrinal concepts, patterns of

life, hierarchies) for HLIF. Such non-sensor information

can be used to both constrain and explain behaviors seen

in sensor data [27] [67] [69].

To identify where to apply the various criteria, we

merged these four models together to create the generic

fusion system model shown in Figure 6. Based on our

criteria, we realized that we needed to explicitly include

several processes that one or more models discussed in

their text but did not include in their visual model. The

model assumes that input data may be L1, L2 or L3 data,

including contextual data. The model has eight basic

processes. Many source systems transmit free text re-

ports, not structured text. Some form of entity and rela-

tionship extraction is required to transform those reports

into machine-understandable data. The Data Extrac-
tion/Alignment/Registration process does this, including
named entity recognition, coreference resolution, rela-

tionship extraction, and event extraction [56]. It also

aligns the incoming data to a common reference base

and ontological structure, appropriate for follow-on use.

If the data is already structured according to an under-

stood ontology, then this process is unnecessary.

For incoming evidence, Source Uncertainty manages
all aspects of source uncertainty, as described in section

4.3. The Data Store captures all incoming evidence for
access by the various processes. This includes both cur-

rent and historical source evidence and reference infor-

mation such as maps and equipment capability records.
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Fig. 6. HLIF fusion system model

An important aspect of this model is that not all the

information is assumed to be in an immediately usable

form for high level fusion processing in the State Esti-

mation module. Data Association provides one or more
services in which some or all of evidence, include con-

text information, undergo to have the appropriate in-

formation extracted from them. For example, a fusion

reasoning process may require relationship information.

But the raw level 2 data may be a series of people as-

sociation data, which must be combined into a social

network analysis to reveal the full extent of the rela-

tionships. A key distinction between LLIF and HLIF

is the significantly broader range of information in a

HLIF, requiring a diverse set of data association pro-

cesses to create that information [58], [24], [14], [71].

These processes can be implemented via middleware

services [69].

Fusion Management involves all activities necessary
to marshal information for the various fusion processing

components and to sequence the fusion processes. This

function can use multiple schemes to arrange the infor-

mation to best provide insights into potential reason-

ing arguments and output hypotheses. It also identifies

what additional information is needed to in the fusion

process, and requests it [60].

The State Estimation process is the core of the fusion
process. This process can take one or both of two forms.

In less complex HLIF systems, it takes some form of

direct symbolic reasoning, often a model-based process.

To account for the uncertainty in the data and process,

current models often take the form of Bayesian net-

works [71], [15], [46], although alternative approaches

have been proposed using graphical belief models [1]

and general-purpose graphical modeling using a vari-

ety of uncertainty techniques [64]. For more complex

situation assessments, such as forensic reconstruction,

the reasoning management process is a meta process,

responsible for constructing the model used to provide

the response. As such, there is a close interaction be-

tween reasoning management and output management.

The seventh process is Output Management. This
process maintains the active hypotheses under consider-

ation. It provides the output interpretation process (how

did system arrive at this conclusion) and the traceability

function (what evidence and functions did it use). It also

is involved in generating hypotheses and in the pruning

of hypotheses [32], [49].

The final process is the User Interface, which pro-
vides the information output and accepts user queries.

4. UNCERTAINTY ASSESSMENT

This section describes where and how the URREF

criteria in Section 2 are applied to the process described

in Section 3. The focus is on HLIF systems, but the cri-

teria can also be applied to Level 0/1 systems as well.

They do not cover the fusion management process levels

(L4/5/6). These criteria guide fusion system develop-

ers and assessors through a comprehensive assessment

of how well their uncertainty representations addresses

the uncertainties both embedded in the evidence and

generated by the fusion system’s processes. Of the 26

criteria, thirteen can be specified as quantitative uncer-

tainty measures, while the other thirteen are qualitative

measures.

4.1. Stakeholder/User Uncertainty Tolerance
Assessment

Identifying the stakeholders’ concerns should drive

the overall system uncertainty assessment. The first

need is to understand their sensitivities to different kinds

of uncertainties in the system. This focuses the main ar-

eas of evaluation, including the relative importance of

different types of uncertainty. A second consideration is

the uncertainty–system effects trade-off of addressing

the various uncertainties via different uncertainty han-

dling representations. Collectively, this information will

focus and scope the uncertainty handling assessment.

4.2. World Segment Uncertainty Assessment

A fusion system uncertainty evaluation assesses the

world segment to understand two important items:

² The uncertainties inherent in the observables.
² The uncertainties in the world segment model.
Uncertainties exist as variability in the world seg-

ment’s observables and can propagate to the accuracy

and precision of the collecting source. One needs to
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know the types and nature of these uncertainties. For

any fusion system assessment, one must assume the

world segment has a factual state. It is possible that

the ground truth of that state may never be completely

known, but it must be estimable well-enough to conduct

meaningful assessments on the overall performance of

a fusion system. The key component here is the world

segment model. This model is a central part of fusion

system, used both in data association and state estima-

tion. Any model is an abstraction of a reality, and the fit

with reality is imperfect. The key question is whether

the fit is good enough. This is part of an overall as-

sessment of the suitability and acceptability of a fu-

sion system. For the uncertainty assessment, the primary

question is whether the world segment model incorpo-

rates the key uncertainties inherent in the world seg-

ment. These will propagate through the source and into

the fusion model, affecting both the correctness of the

output and the demands placed on the fusion system’s

resources to address those uncertainties [17].

Second, epistemic uncertainties exist in world seg-

ment model and affect both the fusion system’s out-

put’s correctness and consistency criteria and the data

input’s relevance criterion. In addition, limits on the ex-

pressiveness of the world segment model can induce

uncertainty. The three characteristics are dependency

uncertainty, higher order uncertainty and relational un-

certainty. Dependency uncertainty occurs when there is

significant doubt about the existence of or strength of

the dependency between two or more world segment el-

ements. This is a problem encountered during the model

building effort. While the exact degree of dependency is

often uncertain, the issue here is when is the uncertainty

significant enough to affect the outcome (often detected

by a sensitivity analysis). This leads to epistemic uncer-

tainty because one does not know whether the model

should include the dependency, or what strength value

should be assigned to dependencies that are possible but

not required (e.g. a probabilistic dependency). Higher

order uncertainty is when one has significant doubt

about the quantification values assigned in the model.

All uncertainty representations require some form of

quantification (e.g. basic probability assignments, mem-

bership functions). It is very possible to have uncertain-

ties about the specific quantification scheme. This also

leads to an epistemic uncertainty about the outcomes.

Relational uncertainties occur in world segment models

that allow for a varying number of entities and rela-

tionships. If so, then sources may make mistakes in as-

signing observables to entities. The evidence, including

extracted information, will then have relational uncer-

tainties. This can also occur in the fusion system when

associating multiple evidence from different sources, or

from the same source at different time periods. These

are also a significant form of epistemic uncertainty in

HLIF systems. There are five types of relational uncer-

tainty:

Fig. 7. Source errors and distortions combine with the uncertainty

in the observables to create relevance, quality and credibility

uncertainty

² Existence uncertainty for a key relationship or en-
tity [28].

² Reference uncertainty is a dependency between two
entities, but which specific entity has the dependency

is uncertain (from a choice of several possible enti-

ties) [28].

² Type uncertainty is when one has determined the ex-
istence of an entity, but its reference class is uncer-

tain [42].

² Identity uncertainty occurs when one is not certain
if an entity is a new instance or one that has been

previously identified [54].

² Number uncertainty occurs when the number of pos-
sible entities varies in a specific situation [52].

The primary effects of these uncertainties are seen

when comparing the outputs of the fusion system to

ground truth estimates in the world segment. This will

be taken up in Section 4.4.2.

4.3. Source Uncertainty Assessment

Source uncertainty assessment focuses on the un-

certainty in the evidence. The source ingests the vari-

ability, vagueness and ambiguity inherent in the ob-

servable. In the process, it often reduces the effects

of variability, but can add uncertainty via process

errors/distortions/limitations, especially for human-

involved sources (Figure 7). For example, vagueness

occurs when the source cannot apply a quantitative

value to the observable. The discussion below follows

Schum’s classic work on evidence analysis and effects

in probabilistic reasoning [59]. There are two basic

questions when assessing uncertainties regarding evi-

dence from a source:

² Is it relevant to the issues of interest to the fusion
system’s users?

² Is the evidence right?
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Fig. 8. Robbery Scenario

We use the example in Figure 8 to illustrate applying

the criteria. John is accused of committing a robbery. If

he did so, he would not have been at home when it oc-

curred. If he did not do it, then he may or may not have

been at home. This makes knowledge of John’s where-

abouts relevant to whether he committed the crime. A

useful definition of relevance comes from the US Rules

of Evidence [76]:

“Evidence is relevant if:

(a) it has any tendency to make a fact more or less

probable than it would be without the evidence; and

(b) the fact is of consequence in determining the

action.”

Relevance measures the force of an item of evidence

on some intermediate or final output of reasoning pro-

cess. Probabilistically, relevance means that for a spe-

cific hypothesis H and any information E that could

affect the belief in that hypothesis:

Relevance
def
= P(H)<> P(H j E) (1)

Relevance, as force of evidence, is always condi-

tional on a particular hypothesis. It is not an inherent

source characteristic. But we introduce it here because

source uncertainty can modify the force of the evidence,

sometimes in surprising ways. Relevance assumes a

piece of evidence is true. There are several relevance

measures in the literature [21]. The Bayes factor is one

measure of the force of evidence:

Relevance =
P(E jH)
P(E j H̄) , (H̄)is the complement of H

(2)

In Figure 8, we have a testimonial statement from Mike

that he saw John at home at the robbery. Is his statement

right? This is assessed by the Credibility and Quality

criteria.

Credibility assesses the source’s ability to under-

stand the information in the observables. Although

Credibility is most applicable to human sources, there

are elements that may occur with technical sources. It

TABLE 4

Credibility measures

Credibility

Objectivity uo(Source Understood State j Competence, Bias)
Observational

Sensitivity

uos(Source Understood State j
Environment, sensor factors)

Self Confidence usc(Source Understood State j
Source Equivocation)

has three subcriteria: Objectivity, Observational Sensi-

tivity, and Self Confidence. Table 4 provides mathe-

matical measures for each, where u is a general un-
certainty measure which assigns a value between 0 to

1. This measure represents common measures of un-

certainty (probability, belief, fuzzy or possibility mea-

sures). These measures represent a dependency, where

“j” is “Given” or “If”, modeling “If B, then A.” If ux
is a probability measure where A and B have discrete

states, “j” becomes the conditioning operator, and ux is
measured via a conditional probability table on A and

B’s states (e.g. a confusion matrix). Observe that these

measures focus on what the source understands from

the observable, not what it reports. Objectivity has two

elements: competence and bias. Competence addresses

two areas. One, did the source have the access and abil-

ity to observe what the source reported? Ability in this

case refers to the source’s general capabilities. Two, in

the case where the source is providing an opinion, does

the source has the competence and data necessary to

make the judgment expressed in the opinion. Incompe-

tent sources cannot make an objective statement. Bias is

any source characteristic that affects the source’s abil-

ity to objectively understand the received data and in-

fluences them to ignore or misinterpret the data. Both

human and technical bias are well-documented in the

literature. Both can be hard to detect, especially if one

is not looking for them. Bias can also be dependent on

what is being reported on.

Observational sensitivity complements objectivity

by noting when adjustments need to be made for

situation-specific differences. For example, descending

darkness near the time of the robbery could impair

Mike’s ability to correctly identify John. Technical sen-

sors can also suffer from transient environmental effects

that impair but not eliminate the ability to detect an ob-

servable. Self-confidence is the criterion that assesses

equivocal evidence. This is evidence where the source

specifically casts doubt on the accuracy of what it is

reporting. Human sources may use vague or nonspe-

cific phrases such as “It was getting dark, so I’m not

sure: : :” or “I think it was him.” Technical equivocation
occurs when a source reports using abnormal sensor

settings, system limitations or releasing below normal

quality standards. Both human and technical equivo-

cation affect the fusion system’s understanding of the
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TABLE 5

Quality measures

Quality

Accuracy uacc(Reported State jActual State)
Precision upre =

P
trials

Loss Function (Reported, Actual

Veracity uver(Reported State j Source Understood State)

source’s accuracy and requires an adjustment for that

specific evidence.

Quality recognizes that even trustworthy sources

makes mistakes. Quality has three subcriteria: Accuracy,

Precision and Veracity. Quality measures are in Table

5. In these measures, the focus is on what the source

reports.4

Accuracy assesses how close the reported informa-

tion is to what is true in the world segment. It recognizes

that no source is infallible. Whether technical or human,

there is always the possibility that a source makes a mis-

take, with no intention to do so. Confusion matrices,

Receiver Operating Characteristics, or Precision/Recall

are all measures of accuracy. The Precision criterion

complements Accuracy by assessing the degree of mea-

surement variability between repeated observations of

the same or similar entities under similar conditions.

It is a measure of the consistency of the observation.5

Precision is related to variability in the sensing environ-

ment, which can change a sensing measurement over

time. A source with low precision will vary significantly

more than a high precision source, decreasing the confi-

dence one may have in the evidence. Veracity measures

whether the source believes it is telling the truth (even

if the evidence statement itself is not true). As such,

Veracity is applicable to sources that have humans in a

significant judgment role.

The evidential force of a source report as a stand-

alone item depends on a function of its relevance, cred-

ibility and quality. The predominant understanding of

credibility and quality is that they reduce (discount) the

evidential force. But not always. Schum’s explorations

of the effects of veracity and credibility show that under

some circumstances, knowledge about credibility and

veracity factors can give more evidential force than the

evidence contents themselves [59].

Figure 9 extends the model in Figure 8 to demon-

strate this, giving two approaches to modeling veracity

effects. In both, the prior probability of John’s guilt is

10%. If John is guilty, he could not have been home at

the time of the robbery. If not guilty, there is still a 70%

4Which is why Veracity was classified as a quality criterion, not a

credibility criterion
5The term Precision has at least three different uses in uncertainty

discussions. The one given is the most common. Other uses include

the proportion of true positives out of the total items classified as

true in a confusion matrix (precision/recall), and the value of the least

significant digit in a measurement.

TABLE 6

Results of two different credibility models

Common data Guilty Not Guilty

Initial Belief (priors) 0.10 0.90

At Home–Yes 0 1

At Home–No 0.14 0.86

Single Thread

Truthful–Source “Seen” 0.02 0.98

Truthful–Source “Not Seen” 0.13 0.87

Liar–Source “Seen” 0.09 0.91

Liar–Source “Not Seen” 0.11 0.89

Multi-Thread (Mike may know John’s role in robbery)

Truthful–Source “Seen” 0.02 0.98

Truthful–Source “Not Seen” 0.13 0.87

Liar–Source “Seen” 0.17 0.83

Liar–Source “Not Seen” 0.06 0.94

chance he was not at home at the time of the robbery.

Finally, if Mike is a truthful witness, his accuracy is

95%.

Figure 9A gives a classical discounting approach,

using a single thread model. Here, the source Mike is a

suspected liar, and the probability of his evidence being

true in either case is assessed at 60%. In Figure 9B, one

suspects that Mike has some knowledge about whether

John committed the robbery, and that he is willing to

lie to protect John if John is guilty. If he has some

knowledge that John is not guilty, he will tell the truth

about what he observed (he will not risk perjury in this

case). If John did commit it, Mike has only a 60%

chance of telling the truth (we are not certain he will

lie). Because Mike’s statement has a dependency on

whether John is guilty or not, as well on whether John

was at home, this is a multi-thread model. Table 6 gives

the results of the two models. First, see the effect of

knowing for certain whether John was at home or not.

If he was, then he is not guilty. If he wasn’t, then the

probability that he is guilty increases from 10% to 14%.

Second, in both models, a truthful source has the

same result: 2% guilty if Mike says he saw John at

home, 13% if he says he did not. This is a dilution

of the 0%/14% result of John’s actual state and results

from the 95%/5% accuracy distribution. Now look at

the liar results. In the single thread model (Mike has

60% of telling the truth in any case), one sees a further

dilution of the relevance. It stays closer to the 10%

prior probability than the case where the source is

credible. But there is a surprise in the multi-thread case.

If Mike lies when he knows John committed the robbery

and says that he saw John at home, the probability

of being guilty climbs to 17%. This is opposite of

what happens in the truthful case. This is because
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Fig. 9. Simplified robbery scenario with a suspected lying witness

if we think that someone who has knowledge about

the ultimate hypothesis we are seeking will lie under

certain circumstances, then telling the lie increases our

probability of the ultimate hypothesis being true if the

lie is told. There are many subtleties like this in doing

source evidence assessments. See Schum [59] for an

in-depth discussion on this issue.

The bottom line is that all source uncertainty assess-

ment must determine to what these quality and credibil-

ity issues exist in their sources and select an uncertainty

model and associated representation that address all the

significant issues.

4.4. Fusion Model Uncertainty Assessment

Fusion model assessments focus on uncertainty rep-

resentation in three areas: input evidence, output infor-

mation, and the components of the fusion system. Fig-

ure 10 maps the URREF criteria in Section 2 to the

fusion model in section 3.

4.4.1. Input Uncertainty Assessment Criteria
The input uncertainty assessment criteria can be di-

vided into two categories: criteria applicable to indi-

vidual evidence items and those for the collective set

of evidence. For individual evidence items, the criteria

are Credibility, Quality, and Assessment (an Expressive-

ness criterion). Credibility and Quality were discussed

in the previous section. Assessment evaluates whether

the fusion system can appropriately address the range

of uncertainty types in the evidence. Uncertainty types

identifies the basic uncertainty introduced by the world

segment uncertainties and the specific characteristics of

the source’s process. In the fusion model, the character-

istics of source evidence establish the uncertainty mod-

els needed for the source uncertainty, data association

and state estimation modules. For individual evidence

items, the source uncertainty module has the primary

responsibility, since it establishes the credibility and ve-

racity of each item.

In addition to uncertainty in the individual items of

evidence, there is also uncertainty associated with the

collective set of evidence. There are three criteria that

apply: Assessment, Relevance, and Weight of Evidence.

Assessment evaluates the fusion’s system’s ability to ad-

dress the uncertainty types of incompleteness and incon-

sistency. Incompleteness is missing data, either partial

(missing fields in a piece of evidence) or entirely. The

most likely causes often are lack of source resources

to obtain the evidence, observational problems in col-

lection (e.g. cloud obscured image) and failure to re-

quest the evidence. When missing data is not available

in time, the fusion process needs to be robust enough

to provide its best estimate without the data, and able

to identify what data was missing and its effects on the
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Fig. 10. Application of URREF evaluation criteria to different components of the generic fusion system model

output (see Traceability in section 4.4.2). Understanding

how the system provides default values is important in

these cases.

Inconsistency occurs when two or more inputs are

contrary (they support different outputs in the fusion

process) or contradictory. This is also called conflict and

is a common issue in fusion systems. Conflict generally

decreases the overall evidential force, as the conflicting

items favor different outcomes. Conflict also increases

uncertainty about source credibility and veracity, espe-

cially when one item of evidence favors an outcome sig-

nificantly different that the remaining relevant evidence

from different sources. Conflict has multiple causes, in-

cluding non-source-initiated deception, source credibil-

ity/veracity issues, world segment model mismatches,

and incomplete or uncertain model specification. Sub-

ject to available time, the desired approach is for the

fusion process to alert the users to conflicts and allow

them to conduct the necessary investigations to identify

and resolve the root cause of the conflict. If resolution

is not possible, then the system must be able to form a

judgment based on the credibility of the evidence. Con-

flict can result in a significant amount of uncertainty that

hinders decision making. Conflict modeling is usually

addressed via probabilistic [59] or a belief function-type

approach [62] [33] [36] [65].

Relevance, as an assessment of the force of an in-

dividual piece of true (from a credible and truth-telling

source) evidence, is often dependent upon the related

pieces of evidence. In many cases, evidence can be

synergistic, either positively or negatively; its force is

greater or lesser than its force when considered individ-

ually. Evidential relevance for additional like evidence

tends to decrease if the multiple items provide limited

or no additional new information. The synergy needs to

be accounted for in the modeling.

Weight of Evidence (WOE) is an assessment of

the totality of the available data and its effects on

the output of the fusion. It is a holistic measure. It

assesses the completeness of the evidence in supporting

the fusion system output. It involves both the input

evidence and the reasoning processes within the fusion

system. There are multiple approaches to establishing

the weight of evidence [77] [6]. Consider a physics

analogy–weight is a function of the force of gravity

and the mass of an object. Here, we will use effective

force of evidence. This force results from the collective

effects of Credibility and Quality on Relevance for each

piece of evidence.

WOE= f(Credibility, Quality, Relevance, Mass) (3)

The first three have already been discussed. Mass as

used here is a measure of the comprehensiveness of the

evidence–how many possible outputs are ruled out by

the data. This makes Mass more than a simple count of

how many items of evidence the system has. Rather,

it focuses on the reasoning process in the fusion. A

fusion process making a situation or impact assessment

works as much by eliminating possible outputs as by

supporting a specific output. Outputs that are neither

positively or negatively supported remain as doubt in
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the system. WOE is also a useful tool in explaining the

fusion system’s output results.

4.4.2. Fusion Outputs Uncertainty Assessment Criteria
The Reasoning criteria of Correctness and Consis-

tency are the core criteria for assessing uncertainty in

the fusion system’s output. How well the output mir-

rors the reality of the world segment it models is the

primary measure of goodness of a fusion system. This

makes output Correctness the central URREF criterion.

However, this criterion is different than the Accuracy

criterion for input information. Fusion system outputs

normally come with an uncertainty hedge. Most often,

this hedge is presented probabilistically–“There is a

90% chance this ship is the ship of interest.” If a Cor-

rectness measures does not account for the probabilistic

nature of the output, it will provide an incorrect view of

the system’s performance. Correctness can be assessed

quantitatively using scoring rules [51], [29]. The orig-

inal scoring rule is the Brier score. There are several

versions; the most common applies to cases where the

predicted outcome occurred or did not occur.

BS =
1

N

nX
i=1

(fi¡ ai)2 (4)

Where N is the total number of outputs for which both

a forecast probability (fi) and an actual outcome (ai) are
available [10].

Closely following is the Consistency criterion. There

are two considerations in this criterion:

² How repeatable are the results, when the same kind

of evidence is provided?

² How sensitive is the output to minor changes in the

input conditions?

Within the Brier score, there is a measure of the con-

sistency of the forecasts. This assesses whether some-

thing predicted to be true 80% time actually occurs 80%

of the time. It is also called reliability or calibration in

the literature. It is

1

N

JX
k=1

nk(fk ¡ ōk)2 (5)

Where N is the total number of outputs for which both

a forecast probability (fk) and an actual outcome are
available, J is the number of forecast probabilities (as-
sumed finite), nk is the number of forecast probabilities
in bin k, fk is the forecast probability of bin k, and is the
observed frequency of the outcomes predicted to occur

in bin k. Both fk and ōk are vector quantities.
As with the Accuracy criterion, in those cases where

there is no ground truth to establish a correct answer (in-

cluding a simulated ground truth), the reasoning process

can still be evaluated in terms of how its answers cor-

respond to a gold standard (e.g. SMEs, documentation,

etc.) [34].

In addition to providing the users with correct and

consistent outputs, users benefit from understanding

how and why the fusion system generated those out-

puts [74]. The data handling criteria of Interpretation

and Traceability qualitatively assess this capability. In-

terpretation is the ability of a fusion system to support a

coherent explanation of its conclusions. This is a sum-

mary explanation of the key evidence and reasoning

process that supports the output. It is a justification for

using the output in decision making. Interpretation can

be assessed in at least two ways:

² Operationally via a user/stakeholder assessment that
a representative range of output interpretations satisfy

their information needs.

² Developmentally via fusion system experts’ assess-

ment that the interpretation captures the essential in-

formation input into or created by the system

Traceability is a diagnostic capability allowing users

to follow the system’s processes. It assesses the ability

of a fusion system to provide an accurate and unbroken

historical record of its inputs and the chain of opera-

tions that led to its conclusions. It is useful when the

user wants an in-depth understanding of how the sys-

tem came to its conclusions, or when the user suspects

something is wrong or out of the ordinary in the output

and its interpretation and wants to investigate further.

Few fusion systems log intermediate results. But if the

system records all inputs, including user requests, and

the initial system states, and allows access to intermedi-

ate products during execution, system traceability can be

conducted off-line. Traceability also applies to knowing

exactly what evidence was used. Some sources occa-

sionally find they need to retract evidence that turns out

to be in error. Tracing what evidence items exist in one’s

data base supports this retraction process.

4.4.3. Effects of Fusion System Processing Uncertainty
Assessment Criteria

In assessing the uncertainty representation within

a fusion system, one must consider the overall ability

of the system in reducing the total uncertainty on the

reported outputs, the errors introduced by the fusion

process, and the cost and fusion limitations imposed by

the selected uncertainty representation approach. This

is an area where significant work is required to fully

understand where and how uncertainty is generated and

propagated through the various fusion processes.

4.4.3.1. Uncertainty reduction and introduction of
errors and uncertainty reduction

A fusion system is designed to reduce uncertainty by

integrating the evidence, using one piece of evidence to

reduce uncertainty in another. This requires (at least)

conditional independence between the evidences. That

is, the only dependencies between the evidence are

mediated by the output whose uncertainty one wants to

reduce. There are no other causes of correlation between
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the evidence items. With increasing efforts to increase

the degree of L1/L2 fusion at source systems, such

as the US Air Force’s Distributed Common Ground

System [75], It is important for fusion system designers

to understand the possibility of multiple counting of

common source evidence.

The fusion process can also introduce errors, which

can increase the uncertainty in the output. Common

errors are in the data extraction/alignment/registration

process through incorrect classification/assignments,

rounding, and misalignment [56] [20]. Information de-

velopment processes can introduce errors through mis-

association, misclassification, or unwarranted elimina-

tion of embedded uncertainty in the source evidence.

The uncertainty representational scheme used plays a

significant role in establishing the kinds of uncertain-

ties that can be assessed in the information development

process. For example, if the incoming data is heavily

ambiguous, but the process has no mechanism for rep-

resenting that ambiguity, the evidence output may be

specified as being more definitive than the data war-

rants. Fusion reasoning elements need to account for

possible accuracy, precision and veracity errors in ex-

tracted information [38]. For the reasoning processes,

expressiveness of the chosen representations is an im-

portant consideration. These are:

² Assessment: Establishes what kinds of uncertainties
can be addressed in the fusion system.

² Outcomes: Determines whether the outputs can in-
corporate the residuals of the types of uncertainties

in the input data and created by the fusion process.

² Configurality: Determines the range over which a
particular uncertainty representation needs to operate.

² Dependency: Determines whether the world segment
model and source models incorporate all the depen-

dencies necessary for the fusion model to correctly

represent the uncertainties in the world segment and

the sources.

² Higher order uncertainty: Determines if the uncer-
tainty representation can include uncertainty about

one’s uncertainties. This is especially the case for un-

certainty about probabilities that are used in reasoning

models.

4.4.3.2. Effects on Fusion System Resources
In addition to assessing the range of needed uncer-

tainty representation capabilities, there are a set of cri-

teria to evaluate the effects of the uncertainty represen-

tation capabilities on the resource costs and range of

capabilities for the fusion system. The first set of crite-

ria identify the effects of different uncertainty represen-

tation approaches on the design of the fusion system.

They are:

² Computational costs. Different representation

schemes have varying demands on the fusion sys-

tem’s computational resources. Truth-functional ap-

proaches of possibilistic representations or probabilis-

tic approaches that use canonical models [19] gen-

erally have the lowest cost, while random set ap-

proaches [50] have the highest. The computational

cost will also depend on whether exact or approxi-

mate techniques are used, which have their own ef-

fects on output uncertainty.

² Performance (sub criteria–throughput and timeli-

ness): Assesses the upper limit on system volume and

velocity, determining if the selected uncertainty rep-

resentation schemes significantly affect the ability of

the system to meet the users’ needs. These two sub-

criteria are intertwined with the computational cost

criteria.

² Scalability: Effect of the representation to scale the
model used. This is of especial interest when the

world segment model allows for a significantly vary-

ing number of entities with different relationships be-

tween them.

The second set look at the constraints the uncertainty

representation models place on the use of the system:

² Adaptability: Degree of change allowed to the con-
figuration of the uncertainty representation, allowing

it to model variations in the world segment or source

models.

² Compatibility: how well the representation allows

the use of common data standards within the do-

main within which the fusion system works (e.g.

STANAGS for NATO systems, NIST IT standards for

US systems, etc.).

² Knowledge handling: The effect of a particular un-
certainty representation on the fusion system’s infor-

mation management capabilities.

² Simplicity: the degree of complexity of the user in-
terface, especially with regards to the system’s output

explanation capabilities.

The assessment results on the effects on system re-

sources should be incorporated into a larger system per-

formance analysis. This enables a proper trade-off anal-

ysis between resource demand and uncertainty handling

representation with the context of the overall system re-

quirements.

5. CONCLUSION

This paper provided a broad examination of how

the URREF uncertainty handling criteria can be applied

to typical HLIF applications. We ground the discussion

with a Fusion Process Environment Model to identify

where the criteria should be applied. The application of

the Framework’s criteria to the evaluation of the uncer-

tainties and their representations in a fusion system is

shown from different perspectives. As noted, as an un-

certainty evaluation framework, URREF must be seen in
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its current state as a first output of an effort to better un-

derstand the representation and effects of uncertainties

in a HLIF system. As HLIF technologies advance, un-

derstanding and correctly addressing uncertainties will

play an important part. Based on the points raised in

this paper, we forecast two major directions for this

effort in the future. First, comprehensive quantitative

and qualitative comparisons among different represen-

tation approaches are important to better understand the

appropriate applicability of each approach and guide

HLIF developers in their design decisions. As proba-

bilistic, possibilistic, and evidential approaches evolve,

they gain new capabilities and provide new insights that

can be shared across approaches. Second, a deeper un-

derstanding of real-world fusion processes is required

to select and apply the most appropriate fusion models

and systems for each specific situation.
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