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This paper presents procedures to calculate the probability that

the measurement or the track originating from an extraneous tar-

get will be (mis)associated with a target of interest for the cases of

Nearest Neighbor and Global association. For the measurement-to-

track (M2T) case, it is shown that these misassociation probabilities

depend, under certain assumptions, on a particular–covariance

weighted–norm of the difference between the targets’ predicted

measurements. For the Nearest Neighbor M2T association, the exact

solution, obtained for the case of equal track covariances, is based

on a noncentral chi-square distribution. An approximate solution is

also presented for the case of unequal track prediction covariances.

For the Global M2T association case an approximation is presented

for the case of “similar” track covariances. In the general case of

unequal track covariances where this approximation fails, a more

complicated but exact method based on the inversion of the charac-

teristic function is presented. The track-to-track (T2T) association

case involves correlated random variables for which the exact prob-

ability density function is very hard to obtain. Moment matching

approximations are used that provide very accurate results. The

theoretical results, confirmed by Monte Carlo simulations, quantify

the benefit of Global vs. Nearest Neighbor M2T association. These

results are applied to problems of single sensor as well as centralized

fusion architecture multiple sensor tracking.
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1. INTRODUCTION

This paper deals with the closed form misassocia-
tion probability formula for measurement-to-track as-
sociation (M2T) and track-to-track association (T2T).
The emphasis of this work is in closely spaced tar-
gets, which is much more prevalent in the real world
than association of clutter to target tracks. Thus clut-
ter is not considered in the sequel. In the first sections
we develop the procedure to calculate the probability
that the measurement associated by a likelihood based
assignment algorithm to a target of interest originates
from another (extraneous) target as a function of the
state estimates and covariances of the tracks. Both a
Nearest Neighbor1 (NN) as well as Global2 (G) assign-
ment are considered. An approximate procedure is de-
veloped for the T2T association, as a closed form of
the probability density function is very hard to find,
due to the existing correlation between the track esti-
mates. These closed form expressions should be useful
when the knowledge of the performance of a system
is to be quantified, for example, in the selection of a
radar given it accuracy and the expected scenarios it
could encounter. Also as in [6], it could be used to pre-
dict the number of measurements needed to achieve a
certain performance. The model used for the targets is
deterministic–they are located at a certain separation
distance in the measurement space, expressed in terms
of the track state estimates mapped into the measure-
ment space. The association problem3 was investigated
in [10] for a different model, namely, the targets were
assumed randomly distributed (i.i.d. uniform in a hyper-
ball of a sufficiently large radius). Extensive work on
the association of tracks from two sources, using kine-
matic, feature and classification information was done in
[14, 7]. In [9] a more complex T2TA problem account-
ing for registration errors and mismatch in the number
of tracks is considered. To obtain meaningful results, the
track model considered is simplistic, assuming isotropic
errors of the same variance. The model considered here
allows performance evaluation of association algorithms
under more realistic conditions, namely, with arbitrary
measurement prediction covariances and the results are
expressed in terms of the target separation distance.
Section 2 formulates the M2T association problem.

The calculation of the misassociation probability for a
Nearest Neighbor association is described in Section 3

1Strictly speaking, this is local NN because it considers the association
of only one measurement to a track at a time (see [1] Section 3.2),
and the measurement/track with smaller association cost is assigned
to it. The other measurement is associated to the remaining track.
2This considers simultaneously all the measurements and tracks so
the assignment is chosen as the association pair with overall smaller
cost, and, unlike the local NN, has a unique solution [11].
3Two-dimensional (2-D, also known as “single frame”), i.e., between
two lists–the list of measurements from the latest scan/frame and
the list of tracks. Association is called sometimes “correlation”; since
correlation has a well defined meaning in probability/statistics, we
will not use it for association.
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for the situation where the innovation covariances of the
two tracks are equal as well as a generalization for un-
equal innovation covariances case. Section 4 introduces
the Global association criterion, and the probabilities of
misassociation for the two innovation covariance cases
are obtained. The case of T2T association is considered
in Section 5. Simulation results presented in Section 6
compare the theoretical calculations with Monte Carlo
runs. Conclusions are presented in Section 7.

2. FORMULATION OF THE M2T ASSOCIATION
PROBLEM

The predicted measurements (at the current time,
not indicated for simplicity) for the two targets are
denoted as ẑi, with associated covariances Si, i= 1,2.
These covariances are detailed in the sequel.
The pdf of the measurement prediction from the

target of interest, designated as 1, is

p(z1) =N (z1; ẑ1,S1) (1)

while the pdf of the measurement prediction from the
extraneous target, designated as 2, is

p(z2) =N (z2; ẑ2,S2): (2)

It is assumed that the assignment algorithm, using
the likelihood function (or likelihood ratio) as a crite-
rion, will associate to target t the measurement whose
likelihood of having originated from target t is the
largest. The likelihood of measurement zi having origi-
nated from target t is given by the pdf of a measure-
ment originating from target (track) t–the predicted
measurement pdf–evaluated at zi, namely,

¤it = PDtN (zi; ẑt,Sit)
¢
=PDt j2¼Sitj¡1=2 exp[¡ 1

2 (zi¡ ẑt)0S¡1it (zi¡ ẑt)] (3)

where PDt is the detection probability of target t, and

Sit =HtPtH
0
t +Ri (4)

where Ht is the measurement matrix for track t and Ri
is the measurement noise covariance for zi. Since this
noise covariance can be a function of the SNR, it has
the index of the measurement. The likelihood ratio of
originating from this track vs. from (random) clutter is
this likelihood function divided by a constant, which
is the spatial density of the clutter, assumed Poisson
distributed [4].
Thus the index of the measurement that will be

associated with track t is [1]

i¤(t) = argmax
i
[PDtN (zi; ẑt,Sit)]

= argmin
i
[(zi¡ ẑt)0S¡1it (zi¡ ẑt) + ln j2¼Sitj]: (5)

Note that the target detection probability does not ap-
pear in the final expression above because all the like-

lihoods of association with track t have the same multi-
plier. In the case that the innovation covariance matrices
are equal4

Sit = St 8 i (6)

then the log of the determinant of the covariance matrix
in (5) is the same for all i and

i¤(t) = argmin
i
[(zi¡ ẑt)0S¡1t (zi¡ ẑt)]: (7)

Consequently, under assumption (6), for track 1 the
associated measurement report (AMR) will be the one
whose normalized (Mahalanobis) distance squared to ẑ1,
given by

D(z, ẑ1) = (z¡ ẑ1)0S¡11 (z¡ ẑ1) (8)

is the smallest. This amounts to a “local Nearest Neigh-
bor” (designated as NN) assignment. Therefore, the
misassociation event (MANN21 ) that the measurement
from target 2 is assigned to track 1 (which represents
target 1) occurs if

fMANN21 g
¢
=fD(z2, ẑ1)<D(z1, ẑ1)g: (9)

The analysis of misassociation in the case of a global
assignment (G) will be presented later.

3. NEAREST NEIGHBOR M2T MISASSOCIATION

3.1. Equal Innovation Covariances

This section evaluates the probability of misassoci-
ation of the NN assignment technique which considers
tracks independently under a simplifying assumption.
Assuming that

z1 »N (ẑ1,S1) (10)

the pdf of D(z1, ẑ1) is chi-square with nz (dimension of
z) degrees of freedom (d.o.f.), to be denoted as

pD(z1,ẑ1)(x) = Â
2
nz
(x): (11)

To obtain the pdf of the “competition,” D(z2, ẑ1), it is
rewritten as

D(z2, ẑ1) = (z2¡ ẑ1)0S¡11 (z2¡ ẑ1)
= (z2¡ ẑ2 + ẑ2¡ ẑ1)0S¡11 (z2¡ ẑ2 + ẑ2¡ ẑ1):

(12)

Note that the above contains, in addition to the deter-
ministic quantity ẑ2¡ ẑ1, the difference z2¡ ẑ2. The lat-
ter is random with covariance S2, but the quadratic form
in (12) contains the matrix S1.
As shown below, the pdf of (12) is noncentral chi-

square if the matrix in the quadratic form is the covari-
ance of z2¡ ẑ2. Consequently, it will be first assumed

4This holds approximately when a single sensor tracks two close
targets.

114 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 2, NO. 2 DECEMBER 2007



that5

S1 = S2 = S: (13)

Using the Cholesky decomposition of S¡1

S¡1 = (S¡1=2)0S¡1=2 (14)

one can rewrite (12) as

D(z2, ẑ1) = [S
¡1=2(z2¡ ẑ2)+ S¡1=2(ẑ2¡ ẑ1)]0

£ [S¡1=2(z2¡ ẑ2)+ S¡1=2(ẑ2¡ ẑ1)]:
(15)

Denoting the nz-vector

»21
¢
=[S¡1=2(z2¡ ẑ2)+ S¡1=2(ẑ2¡ ẑ1)] (16)

the distance (15) is its norm squared, i.e.,

D(z2, ẑ1) = »
0
21»21 =

nzX
i=1

(»21(i))
2: (17)

Since
cov[»21] = S

¡1=2S(S¡1=2)0 = I (18)

the components »21(i) of »21 are independent Gaussian
random variables with nonzero means and unity vari-
ance. Thus

»21(i)»N (»̄21(i),1), i= 1, : : : ,nz: (19)

where »̄21(i) it the i-th element of [S
¡1=2(ẑ2¡ ẑ1)], i=

1, : : : ,nz.
Consequently [15], the pdf of (17) is noncentral chi-

square with nz d.o.f. and non-centrality parameter

¸=
nzX
1

([S¡1=2(ẑ2¡ ẑ1)]i)2

= [S¡1=2(ẑ2¡ ẑ1)]0[S¡1=2(ẑ2¡ ẑ1)]
= (ẑ2¡ ẑ1)0S¡1(ẑ2¡ ẑ1): (20)

This pdf is denoted as

pD(z2,ẑ1)(x) = Â
2
nz ,¸(x): (21)

The cumulative distribution function (cdf) correspond-
ing to the above will be denoted as X2nz ,¸(x) and a routine
for its evaluation (to be needed below) is available from
[5].
The probability of the misassociation event (9) is

then given by

PMANN21 = PfD(z2, ẑ1)<D(z1, ẑ1)g

=
Z 1

0
PfD(z2, ẑ1)< xgpD(z1,ẑ1)(x)dx

=
Z 1

0
X2nz ,¸(x)Â

2
nz
(x)dx: (22)

5For simplicity, the single indexing of covariances as in (1)—(2) is
used in the sequel.

3.2. Unequal Innovation Covariances

This section evaluates the probability of misassoci-
ation of the NN assignment technique which considers
tracks independently in the general case. While assump-
tion (13) is somewhat limiting, it is not unreasonable
to assume that two targets in the same neighborhood
have the same state estimation covariance. If (13) is not
satisfied, then (16) has to be replaced by

³21
¢
=[S¡1=21 (z2¡ ẑ2)+ S¡1=21 (ẑ2¡ ẑ1)] (23)

and

D(z2, ẑ1) = ³
0
21³21 =

nzX
i=1

(³21(i))
2: (24)

The covariance of (23) is

cov[³21] = S
¡1=2
1 S2S

¡1=2
1 6= I (25)

i.e., its components are not independent anymore and
(24) is not chi-square distributed. Consequently, one
cannot use anymore (22) to evaluate the probability of
the misassociation event (9).
In this case the exact distribution of (24) is needed.

However, this is not known because the covariance of
z2¡ ẑ2 is S2 but the norm is w.r.t. S1 6= S2. A moment
matching technique will be used to approximate its
distribution.
Considering only the zero-mean part of (23), its

norm squared is

D0(z2, ẑ1) = [S
¡1=2
1 (z2¡ ẑ2)]0[S¡1=21 (z2¡ ẑ2)] (26)

and its mean is

E[D0(z2, ẑ1)] = E[[S
¡1=2
1 (z2¡ ẑ2)]0[S¡1=21 (z2¡ ẑ2)]]

= tr[S¡11 S2]: (27)

Under the equal covariance assumption, the above
would have been equal to nz (the trace of the nz £ nz
identity matrix, as in (18)).
Based on the above observation, we will scale

D(z2, ẑ1) to match its mean to what it would have been
in the equal covariance case (i.e., nz) as follows

D¤(z2, ẑ1)
¢
=®21D(z2, ẑ1) (28)

where
®21

¢
=

nz
tr[S¡11 S2]

(29)

and will approximate the distribution of D¤(z2, ẑ1) as
noncentral chi-square with nz d.o.f. and noncentrality
parameter

¸¤ = ®21

nzX
i=1

([S¡1=21 (ẑ2¡ ẑ1)]i)2

= ®21(ẑ2¡ ẑ1)0S¡11 (ẑ2¡ ẑ1): (30)
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The probability of the misassociation event (9) is
then given by

PMANN21 = PfD(z2, ẑ1)<D(z1, ẑ1)g

= P
½
D¤(z2, ẑ1)
®21

<D(z1, ẑ1)
¾

=
Z 1

0
PfD¤(z2, ẑ1)< ®21xgpD(z1,ẑ1)(x)dx

=
Z 1

0
X2nz ,¸¤(®21x)Â

2
nz
(x)dx: (31)

Since the above is an approximation, its quality will
be evaluated via Monte Carlo runs in Section 6.

4. M2T MISASSOCIATION IN A GLOBAL
ASSIGNMENT

If a Global assignment [2] is used, then a misasso-
ciation (swap of measurements for two targets) occurs
if

D21 +D12 <D11 +D22 (32)

since, as in (5), the covariance determinants cancel.
This assumes the same noise covariances for the two
measurements and the same detection probabilities for
the two targets. The evaluation of the probability of this
event is done next. Note that the distance term D(zi, ẑj)
is now noted as Dij , for simplicity. No “gating” [1]
(i.e., infinite gating threshold) is assumed because it
would require truncated pdfs, which would complicate
the analysis and would make little difference in the
results because the gates are, typically, above 99%.
The inequality (32) is rewritten so that the random

variables in it (z1, z2) are each on one side only, namely,

D21¡D22 <D11¡D12: (33)

The l.h.s. of the above is

D21¡D22 = (z2¡ ẑ1)0S¡11 (z2¡ ẑ1)¡ (z2¡ ẑ2)0S¡12 (z2¡ ẑ2)
= z02(S

¡1
1 ¡ S¡12 )z2¡ z02S¡11 ẑ1¡ ẑ01S¡11 z2

+ z02S
¡1
2 ẑ2 + ẑ

0
2S
¡1
2 z2 + ẑ

0
1S
¡1
1 ẑ1¡ ẑ02S¡12 ẑ2: (34)

As before, this equation should be analyzed for the case
of equal covariances, where cancelation of the first term
occurs, and for different covariances.

4.1. Global Assignment Misassociation with Equal
Innovation Covariances

When both covariances are equal,6 the quadratic
term in (34) vanishes, thus the distribution of D21¡D22

6A similar approach has been taken in [10] assuming, however, ran-
dom location of the targets according to a spatial Poisson process. In
our case the probability of error is a function of a normalized distance
between the targets.

is Gaussian since

D21¡D22 =¡2(ẑ1¡ ẑ2)0S¡1z2 + ẑ01S¡1ẑ1¡ ẑ02S¡1ẑ2
¢
=c0z2 + b

¢
=¢21: (35)

Similarly, the term D11¡D12 can be written as
D11¡D12 =¡2(ẑ1¡ ẑ2)0S¡1z1 + ẑ01S¡1ẑ1¡ ẑ02S¡1ẑ2

¢
=c0z1 + b

¢
=¢12: (36)

Note that these two Gaussian random variables (RV)
are independent because each depends on only one
of the measurements. Thus, as they are Gaussian and
independent, their difference¢21¡¢12 is also Gaussian
¢21¡¢12 »N (2(ẑ1¡ ẑ2)0S¡1(ẑ1¡ ẑ2),8(ẑ1¡ ẑ2)0S¡1(ẑ1¡ ẑ2))

(37)

so the probability of the misassociation event MAG21,12 =
f¢21 <¢12g can be calculated in terms of the cumula-
tive density function © of a standard Normal random
variable as

PMAG21,12 = Pf¢21¡¢12 < 0g

= P
½
¢21¡¢12¡ 2(ẑ1¡ ẑ2)0S¡1(ẑ1¡ ẑ2)

[8(ẑ1¡ ẑ2)0S¡1(ẑ1¡ ẑ2)]1=2

<
¡2(ẑ1¡ ẑ2)0S¡1(ẑ1¡ ẑ2)
[8(ẑ1¡ ẑ2)0S¡1(ẑ1¡ ẑ2)]1=2

¾

=©

Ã
¡
·
(ẑ1¡ ẑ2)0S¡1(ẑ1¡ ẑ2)

2

¸1=2!
: (38)

4.2. Global Assignment Misassociation with Unequal
Innovation Covariances

In the case that the covariances are different, the
quadratic term in (34) does not vanish. Its contribution is
higher when the covariance matrices are very different.
Thus two approaches to approximate the distribution
of the difference will be investigated. The first one
approximates the distribution as a noncentral chi-square,
using the first two moments, and is expected to provide
better results when the quadratic term dominates and
has positive eigenvalues. The other approach is to fit
a Gaussian with matched mean and variance, and is
expected to work better when the contribution of the
quadratic term is small.

4.2.1. Moment matching approaches
For the first approach, denote

A21
¢
=S¡11 ¡ S¡12 (39)

b21
¢
=S¡11 ẑ1¡ S¡12 ẑ2 (40)

c21
¢
= ẑ01S

¡1
1 ẑ1¡ ẑ02S¡12 ẑ2 (41)
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one has, by completing the quadratic form

D21¡D22 = z02A21z2¡ z02b21¡ b021z2 + c21
= (z2¡A¡121 b21)0A21(z2¡A¡121 b21)
¡b021A¡121 b21 + c21: (42)

Using the following notation

d21
¢
=¡b021A¡121 b21 + c21 (43)

G21
¢
=(z2¡A¡121 b21)0A21(z2¡A¡121 b21) (44)

expression (34) becomes

D21¡D22 =G21 + d21: (45)

Note that (44) can be rewritten as

G21
¢
=(z2¡ ẑ2 + ẑ2¡A¡121 b21)0A21(z2¡ ẑ2 + ẑ2¡A¡121 b21)

(46)

which would be exactly noncentral chi-square dis-
tributed if the matrix in the quadratic form would have
been the covariance of z2. As in (28), define

G¤21
¢
=¯21G21 (47)

where
¯21

¢
=

nz
tr(A21S2)

: (48)

Then, G¤21 is approximately (by moment matching) non-
central chi-square distributed with nz d.o.f. and noncen-
trality parameter

¸¤21
¢
=¯21(ẑ2¡A¡121 b21)0A21(ẑ2¡A¡121 b21): (49)

This is written as

G¤21 » Â2nz ,¸¤21 : (50)

A similar definition yields G¤12, which is the negative
of the r.h.s. of (33). The pdf of G¤12 is the same as in
(50) with the indices 1 and 2 switched. Furthermore,
G¤21 and G

¤
12 are independent.

The misassociation event for a Global assignment
between tracks 1 and 2 is thus

MAG21,12 =
½
G¤21
¯21

+ d21 <¡
·
G¤12
¯12

+ d12

¸¾
: (51)

The probability of the above is then obtained as

PMAG
21,12

=

Z 1

0

X2nz ,¸¤21

·
¡¯21

μ
x

¯12
+ d12 + d21

¶¸
Â2nz ,¸¤12

(x)dx:

(52)

Note from (43) that d12 =¡d21 and thus (52) becomes

PMAG21,12 =
Z 1

0
X2nz ,¸¤21

·
¡¯21
¯12
x

¸
Â2nz ,¸¤12

(x)dx: (53)

For the second approach, the mean and variance

of the differences7 ¢2
¢
=D21¡D22 and ¢1

¢
=D11¡D12

are required to approximate their distributions by a
Gaussian pdfs. From (42) we have that D21¡D22 is a
quadratic expression in z2, and similarly for D11¡D12,
thus

¢2 =D21¡D22 = z02A21z2¡ 2b21z2 + c21 (54)

¢1 =D11¡D12 = z01A21z1¡ 2b21z1 + c21: (55)

Note that the above two RVs are independent. Using
the results in the appendix showing the variance of a
quadratic form, one has (approximately)

¢i »N (¹i,¾2i ) (56)
where

¹i = tr(A21Si)+ ẑ
0
iA21ẑi¡ 2b021ẑi+ c21 (57)

¾2i = 2tr(A21SiA21Si) +4[A21ẑi¡ b21]0Si[A21ẑi¡ b21]:
(58)

As in Section 4.1, these two Gaussian random vari-
ables are independent, so the misassociation probability
can be calculated in terms of the cumulative density
function © of a standard Normal random variable as

PMAG21,12 = Pf¢2¡¢1 < 0g

= P
½
¢2¡¢1¡¹2 +¹1
(¾21 +¾

2
2)
1=2

<
¹1¡¹2

(¾21 +¾
2
2)
1=2

¾

=©
μ

¹1¡¹2
(¾21 +¾

2
2)
1=2

¶
: (59)

4.2.2. Global assignment misassociation with unequal
innovation covariances–exact solution

The approximation methods of the previous sub-
section will be shown to work well when the covari-
ances are not very different, that is, when the matrix
A21 = S

¡1
1 ¡ S¡12 has small eigenvalues compared to the

values of the element in b21. If this is not the case, some-
thing that happens when S1 greatly differs from S2, the
distribution of the quadratic form is not easy to approx-
imate, and a method to obtain the true distribution is
required.
In the following subsection a method to numerically

obtain the cdf of a noncentral quadratic function will be
delineated, following [8]. Analytical expressions have
been derived via a series representation, similarly to
[12], for the case of real Gaussian random variables,
but the convergence of such series is not assured, and
hence only the numerical integration method is pre-
sented.

7Different notations are used than in Section 4.1 because their expres-
sions are different.
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The quadratic function of Gaussian random vari-
ables (42) is replicated here without subscripts for clar-
ity

Q(Z) = Z 0AZ +Z 0b+ b0Z + c

= (Z +A¡1b)0A(Z +A¡1b)¡ b0A¡1b+ c
(60)

where the N-vector Z is Gaussian

Z »N (¹,§): (61)

Neglecting the constant, (60) can be expressed as a
weighted sum of noncentral chi-square random vari-
ables by writing Z in terms of X »N (0,I)

Z =§1=2X+¹ (62)
as

Q(Z) = [X +§¡1=2(¹+A¡1b)]0[§1=2]0

£A§1=2[X +§¡1=2(¹+A¡1b)]

=
NX
k=1

¸kÂ
2
1,½2

k

(63)

where the matrix [§1=2]0A§1=2 has distinct eigenvalues
¸k and eigenvector matrix T, and

½
¢
=[½1 : : :½N]

0 = T§¡1=2(¹+A¡1b): (64)

The characteristic function of Q(Z) is

Á(t) =
NY
k=1

(1¡ 2i¸kt)¡1=2 exp
Ã
i
NX
r=1

½2r ¸rt

1¡ 2i¸rt

!
:

(65)
This function can be inverted as in [8], yielding

P(Q < q) =
1
2
¡ 1
¼

Z 1

0

sinμ(u)
u·(u)

du (66)

where

μ(u) =
1
2

NX
k=1

·
tan¡1(¸ku) +

½2k¸ku

1+¸2ku
2

¸
¡ qu
2

(67)

·(u) =
NY
k=1

(1+¸2ku
2)1=4 exp

Ã
1
2

NX
r=1

½2r ¸
2
r u
2

1+¸2r u2

!
:

(68)

Also the probability density function is obtained as

f(q) =
1
¼

Z 1

0

cosμ(u)
·(u)

du: (69)

These integrals can be truncated to some finite upper
limit since ·(u) is an increasing function in u, and the
integral is approximated using Simpson’s rule, follow-
ing the suggestions in [8].
Having both the pdf and cdf of the quadratic func-

tions, the exact probability of misassociation is obtained
as in the previous sections. While this characteristic

function based procedure is exact, unlike the moment
matching procedure from the previous subsection, it is
more costly. However, the moment matching procedure
is accurate enough in certain circumstances, to be spec-
ified in the next section.

5. FORMULATION OF THE T2T ASSOCIATION
PROBLEM

In this section we consider the case of two sensors
m,n, generating track estimates from two targets i,j.
The track estimate of target i generated by sensor m
after receiving the measurement at time k is noted as
x̂mi (k j k). Some authors [6, 13] have tried to obtain the
T2T misassociation probability, but without considering
the correlation of the estimation errors (due to the
common process noise [1]) and have also considered
only a single track, thus no global association results
have been reported.
In the case of Gaussian measurements, the log like-

lihood ratio for the common origin association consists
of two terms. One is the normalized distance squared
(NDS) and the other is a ratio of the determinant of
the innovation covariance matrix and the density ¹ex of
extraneous tracks [4]. In the case of tracks x̂nj (k j k) and
x̂mi (k j k) the NDS takes the form
Dmnij (k) = (x̂

m
i (k j k)¡ x̂nj (k j k))0[Tmnij (k)]¡1(x̂mi (k j k)¡ x̂nj (k j k))

(70)

where Tmnij (k) is the track difference covariance, which
will be given later.
The likelihood based association cost for tracks x̂nj

and x̂mi is the negative log likelihood ratio (NLLR)

Cmnij =Dmnij + ln(j2¼Tmnij j1=2=¹ex): (71)

The superscripts will be dropped when possible as
we are checking for association between tracks origi-
nated from sensors m and n only and not across time.
Also the time index k will be dropped, for brevity, thus
for example Tmnij (k) becomes Tij .

5.1. Nearest Neighbor T2T Association Criterion

Using the NLLR cost as a modified distance defi-
nition, the Nearest Neighbor (NN) misassociation event
(MANNij ) that the estimate of target i obtained by sen-
sor m is assigned to track j from sensor n instead of
being assigned to track i from sensor n, is defined by

fMANN21 g
¢
=fCij < Ciig: (72)

Consider each of these cost terms separately, and note
that each estimate can be expressed as its true value plus
the error term x̂mi (k j k) = xi(k) + x̃mi (k j k), where xi(k) is
the true state of target i (regardless of the sensor).
For the term Cii, i.e., the cost of associating the tracks

corresponding to target i obtained at the two sensors, the
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covariance matrix

Tii = Ef(x̃mi ¡ x̃ni )0(x̃mi ¡ x̃ni )g
= Ef(x̃mi )0x̃mi g+Ef(x̃ni )0x̃ni g
¡Ef(x̃mi )0x̃ni g¡Ef(x̃ni )0x̃mi g

= Pmi +P
n
i ¡Pmni ¡Pnmi (73)

is required.
The autocovariance terms are obtained from the es-

timation algorithm (a Kalman filter in our case) and the
crosscovariance is present due to the common process
noise. This crosscovariance terms can be obtained in an
iterative way [1] by the Lyapunov type equation

Pmni (k) = Ef(x̃mi )0x̃ni g
= [I¡Wm

i H
m
i ][FP

mn
i (k¡1)F 0+Q][I¡Wn

i H
n
i ]
0:

(74)

The distance term in the cost can then be written as

Dii = (xi+ x̃
m
i ¡ xi¡ x̃ni )0[Tii(k)]¡1(xi+ x̃mi ¡ xi¡ x̃ni )

= (x̃mi ¡ x̃ni )0[Tii(k)]¡1(x̃mi ¡ x̃ni ): (75)

This random variable has Â2 distribution, but its de-
pendence on the other distance term Dij (through x̃

m
i )

precludes the usage of the results obtained for the M2T
association.
The term Cij is the cost of associating track i ob-

tained from sensor m to the track j obtained by sensor n.
In this case the covariance matrix Tij is simply P

m
i +P

n
j ,

as the track errors are not correlated. Then, the distance
Dij can be written as

Dij = (xj + x̃
m
j ¡ xi¡ x̃ni )0[Tij(k)]¡1(xj + x̃mj ¡ xi¡ x̃ni )

= (x̃mi ¡ x̃nj ¡ c)0[Tij(k)]¡1(x̃mi ¡ x̃nj ¡ c) (76)

where c= xi¡ xj is the separation between tracks.
The exact probability of misassociation can be ob-

tained as

PMANNij = PfCij < Ciig
= PfDij ¡Dii+ °ij < 0g

=
Z
A
[(x̃mi ¡ x̃nj ¡ c)0[Tij(k)]¡1(x̃mi ¡ x̃nj ¡ c)

¡ (x̃mi ¡ x̃ni )0[Tii(k)]¡1(x̃mi ¡ x̃ni )+ °ij]
£p(x̃mi , x̃ni , x̃mj )dx̃mi dx̃ni dx̃mj (77)

where
A= ffx̃ni x̃mi x̃nj g : (Dij ¡Dii)< 0g (78)

and

°ij = ln(j2¼Tmnij j1=2=¹ex)¡ ln(j2¼Tmnij j1=2=¹ex)
= ln(jTmnij j1=2=jTmnii j1=2): (79)

The integration region A is very difficult to find, and
this does preclude the usage of (77) for the calculation
of the misassociation probability. Another approach is
to obtain the pdf of the cost difference, but the fact
that two of the estimates are correlated makes the exact
pdf calculation very complex. These are the reasons
that lead to the moment matching approach technique
described next.
As the distance formulas involve quadratic terms,

closed form first and second order moments can be
obtained, which depend only on the correlation matrices
involved. So, if we define

´1 =Dij ¡Dii+ °ij (80)

the first and second moments of ´1, ¹´1 and ¾
2
´1
, are

obtained using (133) and (134) in the appendix. These
moments are used to match both a Gaussian distribution
as well as a shifted chi-square distribution, to obtain
approximate misassociation probabilities.
The Gaussian approximation »1 ¼ ´1 follows by

defining
»1 »N (¹´1 ,¾2´1 ): (81)

Then the approximate misassociation probability is
given by

PGMANNij =©

Ã
¹´1
¾´1

!
(82)

where ©(¢) is the normal standard cumulative distribu-
tion function.
The chi-square approximation ³1 ¼ ´1 is based on

the definition of the random variable ³1 in terms of a
shifted chi-square random variable w with k degrees of
freedom

³1 = %1 +w (83)

where

%1 = ¹´1 ¡¾2´1=2 (84)

k = ¾2´1=2 (85)

and X2k (¢) is the cumulative distribution function for
a chi-square random variable with k degrees of free-
dom. Then the approximate misassociation probability
is given by

PÂ
2

MANNij
= X2k (%1): (86)

5.2. Global T2T Association Criterion

Similarly to the NN case, the misassociation event
MAGij that the estimate of target i and j obtained by sen-
sor m are respectively assigned using a global approach
to tracks j and i from sensor n instead of being assigned
to tracks i and j from sensor n, is defined by

fMAGg ¢=fCij +Cji < Cii+Cjjg: (87)

The exact probability of misassociation is again very
difficult to obtain, thus a moment matching approach
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to a Gaussian and a shifted chi-square random variable
will be used to obtain two approximations. Defining

´2 =Dij +Dji¡Dii¡Djj + ° (88)

where

° = ln(jTmnij j1=2jTmnji j1=2=(jTmnii j1=2jTmnjj j1=2)): (89)

The first and second moments of ´2, ¹´2 and ¾
2
´2
, are

obtained using (140) and (141) in the appendix.
The Gaussian approximation »2 ¼ ´2 is, as before,

»2 »N (¹´2 ,¾2´2 ) (90)

and this yields the approximate misassociation proba-
bility as

PNMAG =©

Ã
¹´2
¾´2

!
: (91)

where ©(¢) is the standard normal cumulative distribu-
tion function.
The chi-square approximation ³2 ¼ ´2 is also as be-

fore based on the definition of the random variable ³2
in terms of a shifted chi-square random variable & with
k degrees of freedom

³2 = %2 + & (92)
where

%2 = ¹´2 ¡¾2´2=2 (93)

k = ¾2´2=2: (94)

Denoting X2k (¢) to the cumulative distribution function
of a chi-square random variable with k degrees of
freedom, the approximate misassociation probability is
given by

PÂ
2

MAG
= X2k (%2): (95)

6. SIMULATION RESULTS

A number of cases with unequal covariances are
considered to compare the techniques for the Nearest
Neighbor of Section 3 to Monte Carlo results. As a
limiting case, the equal covariance situation is also
considered.
Two targets, moving in 3 dimensions, are consid-

ered. Their motion is modeled by a NCV (nearly con-
stant velocity) model [3] in each Cartesian coordinate
with Gaussian zero-mean white process noise with PSD
(power spectral density) q̃, uncorrelated across the co-
ordinates. Position measurements zs are obtained with
probability of detection one at sampling intervals of T
in spherical (“s”) coordinates (range, azimuth and ele-
vation) with additive Gaussian zero-mean white noise
with covariance

Rs = diag[¾
2
r , ¾

2
a , ¾

2
e ]: (96)

These measurements are converted into Cartesian
coordinates (“C”) in the standard manner, resulting in
zC , with covariance matrix (at a particular position xp
relative to the radar), denoted as RC(xp). The tracking
filter is then linear [3]. No clutter or false measurements
are considered in this work. In an actual tracking algo-
rithm the covariance of the converted measurements is
evaluated at the predicted position or at the measure-
ment itself, whichever is more accurate. Here the con-
verted measurement covariances (for the two targets)
will be evaluated at the predicted locations of the corre-
sponding measurements, ẑCt , t= 1,2, which will be also
a parameter of the evaluation to be carried out. These
predicted measurements will quantify the separation be-
tween the targets.
To simulate a case where the measurement covari-

ances are unequal, it is assumed that target t was ob-
served nt times, t= 1,2. These will yield the innova-
tion covariances St, t= 1,2 (in Cartesian coordinates,
denoted only with the target subscript for simplicity).
With the values of ẑCt , and St, t= 1,2, a random num-
ber generator will be used to generate the measure-
ments

zt »N (ẑCt ,St), t= 1,2: (97)

Let zt(j) denote the measurements in Monte Carlo
run j, j = 1, : : : ,N. Using these, denote the indicator
variable of the misassociation event (9) as

Â(j) =
½
1 if D(z2, ẑ1)<D(z1, ẑ1)

0 otherwise
(98)

where the distances D(z, ẑ) are defined in (12). The
theoretical probability that the above indicator will be
unity (i.e., a misassociation occurs) is given by (31), to
be denoted now as P.
Thus the test whether the theoretical probabi-

lity matches the outcomes (98) will be based on the sta-
tistic

P̂=
1
N

NX
j=1

Â(j) (99)

and, in order for P to be acceptable,8 one has to have
(see, e.g., [3], Sect. 2.6.4)

jP̂¡Pj< 2
r
P(1¡P)
N

(100)

or,

jP̂¡Pj< 2
s
P̂(1¡ P̂)
N

(101)

based on the 95% probability region.

8Both P̂ and P will be subscripted later by NN for the Nearest Neigh-
bor assignment misassociation and by G for the Global assignment.
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TABLE I
The M2T Misassociation Probabilities for Various Covariances and Separations (Scenario 1) for the Nearest Neighbor Method

n1 n2 S1=10
4 S2=10

4 c ± PMANN P̂MANN

1.202 ¡1:182 ¡0:011 1.202 ¡1:182 ¡0:012 .03 0.306 .490 .495
30 30 ¡1:182 1.202 ¡0:013 ¡1:182 1.202 ¡0:011 .1 1.019 .400 .400

¡0:011 ¡0:013 2.385 ¡0:012 ¡0:011 2.385 .3 3.058 .063 .065

1.202 ¡1:182 ¡0:011 1.372 ¡1:352 ¡0:039 .03 0.305 .450 .455
30 10 ¡1:182 1.202 ¡0:013 ¡1:352 1.374 ¡0:012 .1 1.017 .372 .369

¡0:011 ¡0:013 2.385 ¡0:039 ¡0:012 2.815 .3 3.051 .065 .058

1.202 ¡1:182 ¡0:011 1.810 ¡1:794 ¡0:085 .03 0.267 .322 .328
30 5 ¡1:182 1.202 ¡0:013 ¡1:794 1.845 ¡0:062 .1 0.892 .275 .273

¡0:011 ¡0:013 2.385 ¡0:085 ¡0:062 4.164 .3 2.675 .069 .066

Note: The minor differences between the covariances of the two targets for n1 = n2 = 30 are due to the fact that the conversions from
spherical to Cartesian coordinates of the measurement noise covariances (which amount to linearizations) were done at slightly different
points, (109) and (110), respectively.

The following values for the parameters of the prob-
lem were considered:

q̃= 5 m2=s3 (102)

T = 1 s (103)

¾r = 10 m (104)

¾a = ¾e = 1 mrad (105)

xp = [10
5 105 103]0 m (106)

n1 = 30 (107)

n2 = 5; 10; 30 (108)

ẑ1 = xp (109)

ẑ2 = xp+ c[10
2 102 102]0 m: (110)

In the above c is a coefficient that yields several sepa-
rations.
In Scenario 1 the same radar located at the origin

of the coordinate system is tracking both targets. In
Scenario 2, target 2 has been tracked (for n2 samples)
by another radar located at [2 ¢105,0,0]. In this case the
ellipsoids corresponding to the two covariance matrices
are approximately perpendicular.
A “normalized separation distance” between the two

targets, denoted as ±, is evaluated, following (16), ac-
cording to

±2
¢
=(ẑ2¡ ẑ1)0[S¡1=21 ]0S¡1=22 (ẑ2¡ ẑ1): (111)

This gives a measure of the closeness of the two targets
for the case of different innovation covariances.

6.1. M2T Misassociation with Nearest Neighbor
Assignment

Table I shows for the values of ni listed above, the
resulting covariances Si, and for the three separations,
defined by c= 0:03; 0:1; 0:3, the resulting normalized
separation distances, the theoretical PMANN (based on the
non-central Â2 distribution, presented in Section 4) as

well as the average P̂MANN from 1000 Monte Carlo runs.
In all cases the differences between these probabilities
is well within the limits given in (100) for N = 1000.
Therefore the theoretical misassociation probabilities
PMANN, as computed by the method presented in Sec-
tion 4, are remarkably accurate.
Note that for decreasing n2 the PMANN for equivalent

separation does also decrease. This seems counterintu-
itive, as larger number of measurements correspond to
having more information available at the tracker, and
thus a better (smaller) probability of misassociation is
expected. The reason for this phenomenon is in the rel-
ative size of the innovation covariance matrices. When
these are similar the chance of confusing the measure-
ments is high as the measurements from both targets are
within the same distance to any of tracks. Instead, if one
of the ellipsoids is larger than the other, the distance of
some of the measurements corresponding to this track
(the ones occurring outside the smaller ellipsoid) to the
center of the smaller covariance track will be larger, thus
making it harder to misassociate them.

6.2. M2T Misassociation with Global Assignment

Table II shows the comparison of Nearest Neighbor
association results with the approximate Global associ-
ation misassignment probability evaluation algorithms
from 4.2 (Gaussian fit and Â2 fit via moment matching)
with the results for Monte Carlo runs.
The Â2 fit for the Global assignment approach does

not work when the covariance matrices are very similar,
as the noncentrality parameter depends on the inverse of
the difference of these matrices. On the other hand, the
Gaussian fit method does give accurate results over all
the range of parameters, showing that for this Scenario
the linear term dominates over the quadratic.
For the case of Scenario 2, the covariance ellipses

S1 and S2 are quite different as a result of the location
of the sensors during the initial estimation periods. In
this case, prior to the current time when the association
is considered, sensor 1 has been tracking target 1 only
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TABLE II
The M2T Misassociation Probabilities for Various Covariances and

Separations using Both the Global and Nearest Neighbor
Approaches (Scenario 1)

n1 n2 c PMANN P̂MANN P̂MAG PN
MAG

PÂ
2

MAG

.03 .490 .495 .410 .416 N/A
30 30 .1 .400 .400 .235 .235 N/A

.3 .063 .065 .016 .015 N/A

.03 .450 .455 .401 .399 .126
30 10 .1 .372 .369 .230 .232 N/A

.3 .065 .058 .016 .015 N/A

.01 .322 .328 .316 .312 .312
30 5 .1 .275 .273 .224 .235 .231

.3 .069 .066 .029 .039 .032

TABLE III
The M2T Misassociation Probabilities for Various Covariances and Separations using the Global and Nearest Neighbor Approaches

(Scenario 2)

n1 n2 S1=10
4 S2=10

4 c P̂MANN P̂MAG Pchf
MAG

1.202 ¡1:182 ¡0:011 1.2027 ¡0:8072 ¡0:0126 .03 .169 .136 .134
30 30 ¡1:182 1.202 ¡0:013 ¡0:8072 1.2028 ¡0:0088 .1 .164 .130 .129

¡0:011 ¡0:013 2.385 ¡0:0126 ¡0:0088 2.3852 .3 .131 .103 .095

1.202 ¡1:182 ¡0:011 1.3724 ¡0:6369 ¡0:0395 .03 .118 .101 .100
30 10 ¡1:182 1.202 ¡0:013 ¡0:6369 1.3740 ¡0:0317 .1 .116 .097 .096

¡0:011 ¡0:013 2.385 ¡0:0395 ¡0:0317 2.8157 .3 .108 .086 .081

1.202 ¡1:182 ¡0:011 1.8106 ¡0:1957 ¡0:0853 .01 .070 .061 .062
30 5 ¡1:182 1.202 ¡0:013 ¡0:1957 1.8452 ¡0:0820 .1 .069 .060 .061

¡0:011 ¡0:013 2.385 ¡0:0853 ¡0:0820 4.1647 .3 .068 .059 .056

and sensor 2 has been tracking target 2 only because of
occlusion conditions. Then, after the initial estimation
periods, both targets are visible for sensor 1 and a
centralized fusion architecture [1] is assumed. The two
measurements of sensor 1 are to be associated with the
two tracks–one from sensor 1, the other from sensor 2.
Because of the different past “history” of these

tracks, the difference matrix A21 is no longer “close”
to zero, and in general it can have positive and nega-
tive eigenvalues,9 so the approximate algorithms for the
Global assignment from Section 4.2 give inaccurate val-
ues (for the Nearest Neighbor the evaluation algorithm
from Section 4 works well). Since the distribution of
such quadratic form is difficult to find, the characteris-
tic function based method of Section 4.2 is needed. The
results are shown in Table III.

6.3. T2T Misassociation Probabilities

Consider again Scenario 2, where two sensors (lo-
cal trackers) generate track estimates from two targets,
but now the estimation is done simultaneously by the
sensors, and the results transmitted to a fusion center.

9This scenario was devised to see if the evaluation technique works
for indefinite difference matrices.

TABLE IV
The T2T Misassociation Probabilities for Different Track Accuracies

and Separations using Both the Global and Nearest Neighbor
Approaches

n1 n2 c PN
MANN

PÂ
2

MANN
P̂MANN PN

MAG
PÂ

2

MAG
P̂MAG

.01 .484 .553 .480 .464 .476 .464
10 10 .2 .236 .251 .225 .123 .112 .100

.4 .043 .026 .028 .073 .011 .015

.01 .345 .396 .321 .258 .269 .240
30 30 .2 .252 .274 .233 .162 .161 .149

.4 .116 .100 .096 .055 .035 .034

.01 .466 .542 .457 .344 .394 .339
10 50 .2 .344 .394 .339 .236 .244 .227

.4 .165 .161 .152 .066 .049 .052

The probability of misassocition is again parameterized
by the separation between the targets. In this case we
are not interested in the measurement-to-track associ-
ation (which is assumed to be done perfectly at each
sensor) but in the track-to-track association performed
at the fusion center. We consider that the local tracks are
based on different numbers of measurements, n1 for the
first sensor and n2 for the second, modeling different
times of target acquisition. The probability of detection
is considered to be 1.
Table IV shows the results obtained by the two

approximation methods for the cases of NN and global
association criteria. Also the misassociation probability
estimated from 1000 Monte Carlo runs is shown to
validate the results obtained.
It can be seen that for large target separation the

probability of misassociation goes to zero, as expected,
and that in this case the chi-square approximation is
very accurate, and much better than the normal approxi-
mation. For smaller separation, when the misassociation
probability is close to one half, the Gaussian approxi-
mation is better, although it may mismatch the real value
by up to a 10%. Overall both approximations provide
larger probabilities than the true one, so the lowest value
estimate should be used to guarantee an error below
10%.
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The advantage of using global assignment vs. near-
est neighbor is clear, unless the targets are so far apart
that it is obvious how to do the association, or so close
that no matter which method is used, the misassociation
probability is around 0.5.

7. CONCLUSIONS

For the M2T association problem, the probability
that the measurement from an extraneous target will be
(mis)associated with a target of interest by the (local)
Nearest Neighbor association was evaluated exactly for
the case of equal track prediction covariances and ap-
proximately for the case of unequal covariances. It was
shown that this misassociation probability depends on
a particular–covariance weighted–norm of the differ-
ence between the targets’ predicted measurements des-
ignated as the “separation” of the tracks. Numerical sim-
ulations confirm the accuracy of the solutions presented
for the misassociation probabilities.
For the Global association, in the case of very dis-

similar track covariances the approximation methods do
not work, and a characteristic function based method,
which is more expensive computationally but exact, was
presented with excellent results. The probability formu-
las derived as well as the Monte Carlo runs show the
benefit of the Global (G) vs. Nearest Neighbor (NN) as-
sociations, especially in the case of similar track covari-
ances. Future work will involve considering the multi-
frame or multidimensional association (MDA) case.
The T2T association problem is harder, and only

approximate results are presented, which nonetheless
provide accurate results for both global and NN associ-
ation criteria. The estimated probabilities are never off
by more than a 10% of the true value. It has been shown
that a chi-square matching of the statistic gives the best
results when the separation is large, and for the case of
smaller separations a Gaussian matching provides better
results.

APPENDIX A. MOMENT MATCHING OF
QUADRATIC FUNCTIONS: UNCORRELATED CASE

Consider the random variable defined by

v = u0Au+ b0u+ c (112)

where A is any real n£ n matrix, b is a real n£ 1 vector,
c is a real scalar and u is a Gaussian random vector

u»N (¹,§): (113)

Define the zero mean version of u as ũ= u¡¹, an
rewrite

v = (ũ+¹)0A(ũ+¹) +b0(ũ+¹) + c

= ũ0Aũ+ ũ0A¹+¹0Aũ+¹0A¹+ b0ũ+ b0¹+ c

= ũ0Aũ+ b̃0ũ+ c̃ (114)

where b̃ = A0¹+A¹+ b and c̃= ¹A0¹+ b0¹+ c The
mean value of v is

Efvg= v̄ = Efũ0Aũg+ b̃0Efũg+ c̃
= tr(A§) + c̃ (115)

where the expected value of a quadratic form is taken
from [3] Section 1.4.15 The variance of v is

Varfvg= Ef(v¡ v̄)2g= Ef(ũ0Aũ+ b̃0ũ¡ tr(A§))2g
= Efũ0Aũũ0Aũg+ b̃0Efũũ0gb̃+ tr(A§)2 +2Efũ0Aũ0ũ0gb̃
¡ 2Efũ0Aũgtr(A§)¡ 2b̃0Efũgtr(A§)

= tr(A§)2 +2tr(A§A§) + b̃0§b̃+ tr(A§)2¡ 2tr(A§)2

= 2tr(A§A§) + [(A+A0)¹+ b]0§[(A+A0)¹+ b]

(116)

where, as before, a compact expression for the fourth
moment of u is used, and the terms containing odd
powers of u are zero.

APPENDIX B. MOMENT MATCHING OF
QUADRATIC FUNCTIONS: CORRELATED CASE

Consider four random vectors x̂mi , x̂
n
i , x̂

m
j and x̂nj ,

Gaussian distributed26664
x̂mi

x̂ni

x̂mj

x̂nj

37775=
26664
x̃mi + xi
x̃ni + xi
x̃mj + xj
x̃nj + xj

37775

»N

0BBB@
26664
xi

xi

xj

xj

37775 ,
26664
Pmi Pmnii 0 0

Pnmii Pni 0 0

0 0 Pmj Pmnjj

0 0 Pnmjj Pnj

37775
1CCCA

the four possible distance terms are

Dij = (x̃
m
i ¡ x̃nj ¡ s)0[Pmi +Pnj ]¡1(x̃mi ¡ x̃nj ¡ s) (117)

Dji = (x̃
m
j ¡ x̃ni + s)0[Pmj +Pni ]¡1(x̃mj ¡ x̃ni + s) (118)

Dii = (x̃
m
i ¡ x̃ni )0[Pmi +Pni ¡Pmnii ¡Pnmii ]¡1(x̃mi ¡ x̃ni )

(119)

Djj = (x̃
m
j ¡ x̃nj )0[Pmj +Pnj ¡Pmnjj ¡Pnmjj ]¡1(x̃mj ¡ x̃nj )

(120)
where s= xj ¡ xi.
For convenience, define

M = [Pmi +P
n
j ]
¡1; N = [Pmi +P

n
i ¡Pmnii ¡Pnmii ]¡1

(121)

K = [Pmj +P
n
i ]
¡1; Q = [Pmj +P

n
j ¡Pmnjj ¡Pnmjj ]¡1:

(122)
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To obtain the first and second moments for the
difference of distances, the following tools are needed.
From [3], the moments for quadratic and quartic

zero mean Gaussian random vectors x»N (0,Rx) are
given by

Efx0W1xg= tr(W1Rx) (123)

Efx0W1xx0W2xg= tr(W1Rx)tr(W2Rx) +2tr(W1RxW2Rx):
(124)

If two zero mean Gaussian random vectors x and y
are correlated through Rxy, the vector y can be written
as

y = Rx+Tw (125)

where w »N (0,I) and
R = R0xyRx

¡1 (126)

T = (Ry¡R0xyRx¡1Rxy)1=2: (127)

In the above ¥1=2 denotes the Cholesky factor of ¥, so
that ¥1=2(¥1=2)0 = ¥.
For the NN association case we are interested in the

moments of the difference d1 =Dij ¡Dii. In this case
the variables x̃mi and x̃

n
i are correlated, and can be related

as
x̃ni = Ax̃

m
i +Bw (128)

where w »N (0,I) and
A= (Pmnii )

0(Pmi )
¡1 (129)

B = (Pni ¡ (Pmnii )
0(Pmi )

¡1Pmnii )
1=2: (130)

Then we have

¹d1 = Ef(x̃
m
i ¡ x̃nj ¡ s)0M(x̃mi ¡ x̃nj ¡ s)¡ (x̃mi ¡ x̃ni )0N(x̃mi ¡ x̃ni )g

(131)

= Ef(x̃mi )0(M ¡N)x̃mi ¡ 2(x̃mi )0M(x̃nj + s) + (x̃nj )0Mx̃nj + s0Ms
¡ 2(x̃nj )0Ms+(x̃mi )0Nx̃ni ¡ (x̃ni )0Nx̃ni g (132)

= tr((M ¡N)Pmi )+ tr(MPnj )+ tr(2NAPmi )¡ tr(NPni ):
(133)

Define d̃1 = d1¡ s0Ms, so that cov(d1) = cov(d̃1) as s is
a constant. Then after some algebraic operations

Efd̃21g= Ef[(x̃mi ¡ x̃nj ¡ s)0M(x̃mi ¡ x̃nj ¡ s)
¡ (x̃mi ¡ x̃ni )0N(x̃mi ¡ x̃ni )¡ s0Ms]2g

= tr((M ¡N)Pmi )2 +2tr((M ¡N)Pmi (M ¡N)Pmi )
+ tr(MPnj )

2 +2tr(MPnj MP
n
j )

¡ tr(NPni )2 +2tr(NPni NPni ) +4tr(Mss0MPmi )
+ 4tr(NAPmi )tr(AN

0Pmi ) +8tr(NAP
m
i AN

0Pmi )

+ 4tr(NBB0NPmi ) + tr((M ¡N)Pmi )tr(MPnj )
+ 2tr((M ¡N)Pmi )tr(NAPmi ) +4tr((M ¡N)Pmi NAPmi )
¡ tr((M ¡N)Pmi )tr(ANAPmi )¡ tr((M ¡N)Pmi ANAPmi )

¡ tr((M ¡N)Pmi )tr((B0NB)m+2tr(MPnj )tr((NAPmi )
¡ tr(MPnj )tr(NPni )¡ 2tr(NAPmi )tr(A0NAPmi )
¡ 4tr(NAPmi A0NAPmi )¡ 2tr(NAPmi )tr(B0NB)
¡ 4tr(NBB0NAPmi ): (134)

For the global association case we are interested in
the moments of

d2 =Dij +Dji¡Dii¡Djj: (135)

In this case the vectors x̃mi and x̃ni are correlated
as before and (128) still holds. Also x̃mj and x̃nj are
correlated and can be related as

x̃nj = Cx̃
m
j +Dx (136)

where x»N (0,I) and
C = (Pmnjj )

0(Pmj )
¡1 (137)

D = chol(Pnj ¡ (Pmnjj )
0(Pmj )

¡1Pmnjj ): (138)

Then, the moments of interest are

¹d2 = Ef(x̃mi ¡ x̃nj ¡ s)0M(x̃mi ¡ x̃nj ¡ s)
+ (x̃mj ¡ x̃ni ¡ s)0K(x̃mj ¡ x̃ni ¡ s)
¡ (x̃mi ¡ x̃ni )0N(x̃mi ¡ x̃ni )¡ (x̃mj ¡ x̃nj )0Q(x̃mj ¡ x̃nj )g

(139)
= tr((M ¡N)Pmi ) + tr((M ¡Q)Pnj )
+ tr((K ¡N)Pni ) + tr((K ¡Q)Pmj )
+2tr(NAPmi ) +2tr(QCP

n
j ): (140)

Define d̃2 = d2¡ s0(M + k)s, so that cov(d2) = cov(d̃2)
as s is a constant. Then after some algebraic operations

Efd̃22g= tr((M ¡N)Pmi )2 +2tr((M ¡N)Pmi (M ¡N)Pmi )
+ tr((M ¡Q)Pnj )2 +2tr((M ¡Q)Pnj (M ¡Q)Pnj )
+ tr((N ¡C)Pni )2 +2tr((N ¡C)Pni (N ¡C)Pni )
+ tr((K ¡Q)Pmj )2 +2tr((K ¡Q)Pmj (K ¡Q)Pmj )
+ tr((¡2M)Pnj (¡2M)0Pmi ) + tr((¡2M)ss0(¡2M)0Pmi )
+ tr((2M)ss0(2M)0Pnj ) + tr((¡2K)Pni (¡2K)Pmj )
+ tr((¡2K)ss0(¡2K)Pmj ) + tr((¡2K)ss0(¡2K)Pni )
+ tr((2N)APmi )tr(A

0(2N)APmi )

+2tr((2N)APmi A
0(2N)APmi )+ tr((2N)BB

0(2N)0Pmi )

+ tr(RCPnj )tr(C
0R0Pnj ) +2tr(RCP

n
j C

0R0Pnj )

+ tr(RDD0R0Pnj ) + tr((M ¡N)Pmi )tr((M ¡Q)Pnj )
+ tr((M ¡N)Pmi )tr(A0(N ¡C)APmi )
+2tr((M ¡N)Pmi A0(N ¡C)APmi )
+ tr((M ¡N)Pmi )tr(B0(N ¡C)B)
+ tr((M ¡N)Pmi )tr((K ¡Q)Pmj )
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+ tr((M ¡N)Pmi )tr((2N)APmi )
+2tr((M ¡N)Pmi (2N)APmi )
+ tr((M ¡N)Pmi )tr(R0CPnj )
+ tr((M ¡Q)Pnj )tr((N ¡C)Pni )
+ tr((M ¡Q)Pnj )tr(C0(K ¡Q)CPnj )
+2tr((M ¡Q)Pnj C0(K ¡Q)CPnj )
+ tr((M ¡Q)Pnj )tr(D0(K ¡Q)D)
+ tr((M ¡Q)Pnj )tr((2N)APmi )
+ tr((M ¡Q)Pnj )tr(R0CPnj )
+2tr((M ¡Q)Pnj R0CPnj )
+ tr((N ¡C)Pni )tr((K ¡Q)Pmj )
+ tr(A0(N ¡C)APmi )tr((2N)APmi )
+2tr(A0(N ¡C)APmi (2N)APmi )
+ tr(B0(N ¡C)B)tr((2N)APmi )
+2tr(A0(N ¡C)BB0(2N)0Pmi )
+ tr((N ¡C)Pni )tr(R0CPnj )
+ tr((K ¡Q)Pmj )tr((2N)APmi )
+ tr(C0(K ¡Q)CPnj )tr(R0CPnj )
+2tr(C0(K ¡Q)CPnj R0CPnj )
+ tr(D0(K ¡Q)D)tr(R0CPnj )
+2tr(D0(K ¡Q)CPnj R0D)
+ tr((¡2M)Pnj C0(¡2K)APmi )
+ tr((¡2M)ss0(¡2K)0APmi )
¡ tr((2M)ss0(¡2K)CPnj )
+ tr((2N)APmi )tr(C

0RPnj ): (141)
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