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In safety critical systems such as brake-by-wire, fault tolerance
is usually provided by virtue of having redundant sensors and
processing hardware. The redundant information provided by such
components should be properly fused to achieve a reliable estimate
of the safety critical variable that is sensed or processed by the
redundant sensors or hardware. Voting methods are well-known
solutions for this category of fusion problems. In this paper, a
new voting method, using a fuzzy system for decision-making, is
presented. The voted output of the proposed scheme is a weighted
average of the sensors signals where the weights are calculated based
on the antecedents and consequences of some fuzzy rules in a rule-
base. In a case study, we have tested the fuzzy voter along with the
well-known majority voting method for a by-wire brake pedal that
is equipped with a displacement sensor and two force sensors. Qur
experimental results show that the performance of the proposed
voting method is desirable in the presence of short circuits to ground
or supply, excessive noise and sensor drifts. Voting error (in terms
of mean square error) is reduced by 82% by the proposed fuzzy

voting method, compared to majority voting.
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1. INTRODUCTION

Brake-by-wire is a frontier technology that will al-
low many braking functions to switch to electronic ac-
tuation. Its deployment will lead to more effective and
safe braking systems, elimination of hydraulic technol-
ogy, release of space and reduction of maintenance.
Design and implementation of brake-by-wire systems
has recently attracted interest from researchers in au-
tomotive and control engineering [9-12, 17]. The gen-
eral architecture of a brake-by-wire system is shown (in
schematic form) in Fig. 1. The figure shows that a large
variety of sensors are utilised in a brake-by-wire sys-
tem and therefore their consistent operation is vital for
the functionality of such a system. To achieve a high
level of coherency amongst such a large collection of
sensors (mandated by the safety requirement of a brake
system), the use of sophisticated data fusion techniques
is unavoidable.
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Fig. 1. A schematic architecture of a brake-by-wire system.

A brake-by-wire system, by nature, is a safety criti-
cal system and therefore fault tolerance is a vitally im-
portant characteristic of this system. As a result, a brake-
by-wire system is designed in such way that many of its
essential information would be derived from a variety
of sources (sensors) and be handled by more than the
bare necessity hardware. Three main types of redun-
dancy usually exist in a brake-by-wire system:

1) Redundant sensors in safety critical components
such as the brake pedal in Fig. 1.

2) Redundant copies of some signals that are of par-
ticular safety importance such as displacement and force
measurements of the brake pedal copied by multiple
processors in the pedal interface unit in Fig. 1.

3) Redundant hardware to perform important pro-
cessing tasks such as multiple processors for the elec-
tronic controller unit (ECU) in Fig. 1.
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Reliability, fault tolerance and accuracy are the main
targeted outcomes of the fusion techniques that should
be developed especially for redundancy resolution in-
side a brake-by-wire system. In order to utilise the exist-
ing redundancy, voting algorithms need to be evaluated,
modified and adopted to meet the stringent requirements
of a brake-by-wire system.

Several well known voting algorithms have been
widely used in fault tolerant systems such as avionics
and railway systems [6—8, 13] and fault tolerant VLSI
circuits [4-6, 8, 13]. The n-input majority voter [1] pro-
duces a correct result if at least [(n + 1)/2] voter inputs
match each other. In cases of no majority, the voter gen-
erates an exception flag, which can be detected by the
system supervisor to move the system toward a safe
state. As an extended version of majority voter, plural-
ity voter [2] implements “m out of n” voting, where
m is less than a strict majority. Median voter is a mid-
value selection algorithm. Assuming an odd number of
redundant inputs, this algorithm successively eliminates
pairs of outlying values until a single result remains.
The weighted average voter [21], on the other hand,
calculates the weighted mean of its redundant input val-
ues. Parhami [16] examined the performance of differ-
ent voting techniques, in terms of their execution time,
and proposed efficient implementations of a variety of
algorithms.

There is no agreement checking in weighted average
and median voters [15]. Hence, they are not appropriate
for safety critical applications such as braking. In the
case of lack of majority agreement, majority voters
give no result in the output and instead a flag is set.
In a brake-by-wire system, however, “no result” is not
acceptable as the output of fusion. Instead, a status bit is
generated for each sensor.! If the sensors do not agree,
invalidity of the voter output will be deduced from the
status bits. Another problem with a majority voter is its
considerable output discontinuity in the event of long-
time disagreements [14, 18]. Latif-Shabgahi and his
colleagues tried to solve this problem by introducing
a smoothing voter in which an agreement-checking
threshold is adaptively set when the voter produces no
result. While their proposed method results in a lower
number of no result events in the output of the voter,
such events are not completely eliminated.

As an alternative solution for the problem, we pro-
pose to use the mean of agreeing sensors as the output
of a majority voter and use their median value if there is
no agreement. In this method that we call hard voting,
a status bit is set if the sensors agree, and reset if they
don’t. The main issue in this voting method is how to
set the geometric distance threshold [18] value by which
sensor agreement is checked. Due to sensor conversion
errors, there is almost always a distance between two
agreeing sensors of different types. Therefore, distance

IHenceforward, by sensor, a source of information is intended. It can
be a redundant sensor, a redundant signal or a redundant processor.

threshold should be large enough to prevent incorrect
decisions about sensor agreements in the presence of
sensor conversion errors. A large value for the distance
threshold in the hard voting method will, however, give
rise to late fault detection if the fault causes a grad-
ual change in the sensory signal. Such faulty gradual
changes in sensory signals usually happen because of
drifts, short circuits,”> and sensor noise that gradually
increases with temperature.

Genetic algorithms have also been applied for voting
[19]. This approach, however, is only efficient when
used with off-line calculations and in particular, for
cases when the population of redundant components is
large.

In this paper we propose a new voting method,
called soft voting (in contrast to its alternative, hard
voting), using a fuzzy logic paradigm. By using fuzzy
logic rule-base inference, a faulty sensor is gradually
removed from the output of our proposed soft voter.
Instead of status bits, a faultiness measure is defined
for each sensor that gradually increases in the event
of faults. Although fuzzy inference and fuzzy systems
have been utilised for sensor fusion in drive-by-wire
applications, they have been employed merely to gen-
erate control commands or signal estimates for control
and estimation applications in drive-by-wire technology
[3, 20].

The fuzzy voter introduced in this paper is novel in
the sense that it actually realises an adaptive weighted
averaging mechanism for voting in which the weights
are intelligently determined by the fuzzy inference en-
gine. This inference engine is designed in such a way
that faulty sensors are automatically detected based on
the geometric distance between their outputs and other
sensory measurements. As such distances grow, the
weights corresponding to faulty sensors gradually de-
crease toward zero. To our knowledge, fuzzy systems
have not been applied for voting in such a scheme.

For voting applications in systems with redundant
sensors (or information sources), our proposed soft
voter has the following advantages compared to other
existing methods: Firstly, it does not output “no result.”
Secondly, it is capable of early detection and rejection
of faulty sensors. Thirdly, its noise tolerance is higher
than existing methods (due to the automatic fault de-
tection and noise rejection phenomenon realised by the
fuzzy inference machine). In addition, the output of our
proposed voter does not suddenly jump or fall in case
of signal short-circuits, and finally its computational
complexity is comparable with simple voting methods
like majority voters (particularly for a small number of
sensors). These advantages all together make the pro-
posed voter significantly efficient for real-time voting
in redundant multi-sensor systems. We emphasize that
most of the many voting techniques in the current lit-

2The RC filters that are connected to the inputs of ADCs (analog to
digital converters) cause a gradual change in sensory signals when a
short circuit happens.
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erature have been designed for voting on multiple deci-
sions (equivalent to fusion in decision or symbol level)
while the method proposed in this paper and the meth-
ods reviewed in this section are applicable to voting on
redundant signals i.e., the cases involving signal-level
fusion.

We introduce our soft voting method in Section 2.
Implementation of a soft voter for fusion of the redun-
dant information provided by three sensors of a brake
pedal is presented in Section 3. Then comparative exper-
imental results of hard and soft voting methods on real
sensory data will also be given in this section. Among
the voting methods reviewed in this paper, hard voting is
the closest to the proposed fuzzy voter in a sense that it
is also a weighted-averaging voter but the weights have
binary values and jump to zero in the case of a faulty
sensor. Our soft voter is capable of early detection of
faulty sensors and makes the weights gradually decrease
toward zero in case of such faults. Due to their similarity
and their meaningful difference, the fuzzy soft voter and
the hard voter have been compared in Section 3 as a fair
comparison. Section 4 concludes this paper. Although
our method has been implemented and experimented
for fusion of redundant safety critical components in a
brake-by-wire system, the general scheme of our pro-
posed fuzzy voter, explained in Section 2, can be applied
to fuse redundant information in any application with
safety critical issues and fault tolerance requirements.

2. PROPOSED SOFT VOTING METHOD

The block diagram of the proposed fuzzy voter for
fusion of redundant information is shown in Fig. 2. In
this diagram, n sources of information (redundant sen-
sors, signals or hardware) are called §,,S,,...,S,. Ini-
tially, low-pass filtering (to reduce the noise) and miss-
ing data handling (by using a multi-step ahead pre-
dictive filter [10, 11]) are performed on the raw sen-
sory data. Then the signals are converted to an inter-
nal representation, which is a common format for the
multi-source information. This conversion is required
because different types of information (e.g. position
data in millimetres and force information in Newton)
should be converted to their equivalent values in a com-
mon format (internal representation) so that they have
the same physical dimension before being compared
and fused by a voter. The converted signals denoted
by x,,x,,...,x, are processed by an agreement evalua-
tion block, resulting in n(n — 1)/2 metrics denoted by
{a[’j li=1,...,n—1; j=i+1,...,n}. In this block, the
agreement of each pair of signals is quantified by an
Euclidian distance measure. For example the agreement
of the two sensors S; and S is evaluated by the following
equation:

D

where x; and x; are the converted signals corresponding
with the sensors §; and S;. In the final step, the sensory

Q= |x; _xj|
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Fig. 2. Block diagram of the proposed fuzzy voter for fusion of
redundant sensory information.

data x,x,,...,x, and their agreement evaluations {Oéi,.,‘}
are passed on as inputs to a box that is responsible for
fusion by voting. This box is a fuzzy system, comprising
the common three subsystems i.e., fuzzification, a fuzzy
rule-base and defuzzification. The fuzzy system has
two outputs: a voted value as the main fusion output,
and n “faultiness measures” (instead of status bits) for
the sensors. Each faultiness measure is a quantitative
evaluation of voter’s belief in the faultiness of a sensor
in [0, 1], with a value of 1 for total belief.

A hard voter outputs a fused value and n status bits,
showing the occurrence of faults in the sensors. More
precisely, the hard voter does not need a fuzzy rule-base.
Instead, its outputs are determined based on the results
of comparing o, ; values with an agreement threshold.
For instance, in ‘the case of n = 3if a;, and a5 are
higher than the threshold (i.e., §; and S, do not agree
with each other; so do the pair of §; and §;) and «, ; is
lower than the threshold (i.e., S, and §; agree with each
other), then the hard voter will deduce that S, is faulty.
In this case, the fused output will be the average of S,
and S5 and the faultiness status bits will be 100 for §,
S, and S, respectively.

The agreement threshold is important in the voting
process. It is tuned based on the o, ; values in a nor-
mal working condition, when no sensor is faulty. They
should be greater than the maximum ¢ ; values in nor-
mal conditions, in such a way that conversion errors
don’t cause the voter to incorrectly assume that two sen-
sors disagree. However, if a sensor gradually deviates
from its true values because of sensor drifts or noise
or short circuits, then the large thresholds cause a long
delay in detection of the fault by a majority voter.

Our proposed soft voting method is mainly intended
to solve the problem of late fault detection, and to pre-
vent large discontinuities in the fusion output. Like any
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Fig. 3.

fuzzy system, o, ; inputs are fuzzified first. We define
three fuzzy sets of Large, Medium and Small agree-
ments by their membership functions. These definitions
are based on empirical maximum values of o, ;, derived
from measurements and conversions. In practice, we
collect some measurements from fine sensors and calcu-
late the «; ; values for each multi-sensory measurement.
In case of triangular membership functions, if the max-
imum of o ; values is o, then breaking points of the
Small fuzzy set are 0-1.7a,,,,, the breaking points of
the Medium fuzzy set are o,,—1.7a,,,,—2.30,,,, and
the breaking points of the Large fuzzy set are 1.7, —
2.3a,,,- Generally, the application experts can deter-
mine the proper levels of o ; set as breaking points for
Small, Medium and Large fuzzy sets. Based on the logic
of majority voting, each fuzzy rule in the rule-base de-
termines a voted output and n faultiness measures. For
example to vote three sensors, a typical fuzzy rule is
expressed as follows:

IF

S, and §, agreement is Small

AND S, and S; agreement is Large

AND S; and S, agreement is Small

THEN

The fused output is the average of S, and S,
AND §, faultiness is Large

AND S, faultiness is Small

AND §; faultiness is Small.

This rule explains what is logically expected as a
voting result if §; does not agree with the other two
sensors. The final defuzzified fusion output is calculated
as a weighted average of all possible expected outputs
by the following equation:

M
Fused Output = » ~(w,0,)

i=1

@)

M
2w
i=1

Brake pedal and its sensors in our case study.

where M is the number of rules in the rule-base, O; is
the fused output as it appears in the consequence of the
ith fuzzy rule and the weight w; is the product of mem-
bership values of the conjoined parts of the antecedent
of the rule. If the exemplar rule given above is the kth
fuzzy rule in the rule-base, then O, = (x, + x3)/2 where
x, and x; are the filtered sensory signals of S, and S;
after conversion to the internal representation, as shown
in Fig. 2. These weights smoothly change from O to 1 or
reverse, and the fused output is smoothly switched from
one vote to the other, hence the name soft voter. Sensor
faultiness measures are defuzzified into crisp outputs by
a fuzzy centroid method. In this method, a fuzzy number
is transformed to crisp by taking the centre of gravity of
its membership function. More precisely, if Y is a fuzzy
number with its membership functions determined
as uy(y), then the centroid crisp of Y is given as
below:
+00
y= / opy(a)da.

[o¢]

3. EXPERIMENTAL RESULTS

We implemented our fuzzy voter to fuse the redun-
dant information provided by three sensors mounted on
a brake-by-wire pedal. Two sensors measure the force
and the third sensor measures the pedal displacement.
Although the sensors are different, they are redundant
sources of information in the sense that they provide
measurements for the same quantity: driver’s brake de-
mand. A photograph of the brake pedal and its sensors
are displayed in Fig. 3.

As we have shown in the brake-by-wire diagram
in Fig. 1, the displacement and force signals are pre-
processed (low-pass filtering and missing data handling)
by fault tolerant processors in the pedal interface unit
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and then transferred to four wheels via a fault tolerant
communication bus (e.g. a LIN-bus). The processed
sensory data are also sent to an electronic control unit
(ECU) that includes a number of redundant processors
generating the high level braking commands, such as
anti-skid braking system (ABS), vehicle stability control
(VSCO) or traction control (TC).

In order to provide a reliable estimate for the driver’s
brake demand, pedal sensor data are voted in the ECU,
where the resulting brake demand is then fused with the
other vehicle sensor data (e.g. wheel speed or INS—
Inertial Navigation System—sensors like accelerome-
ters and gyros) to generate four final brake commands.
To activate the brake actuators, these commands are sent
to the local controllers in the four brake callipers via a
fault tolerant time-triggered communication network. If
for any reason the ECU is faulty then pedal sensory
data will be voted in the local controller of each wheel
unit, leading to generation of a brake response on each
wheel. The main purpose of voting is to detect sensor
faults (such as excessive noise, short circuits or sensor
drifts) and to remove the effects of faulty measurements
from the brake demand. In the presence of a fault or a
substantial level of noise in sensor signals, they will
not agree with each other. A voter should detect these
disagreements and use them to identify faulty sensors.
A hard voter simply discards faulty sensor data and out-
puts the average of agreeing sensors.

Fig. 4 shows a block diagram of the pedal sensor
fusion scheme which is the revised version of the di-
agram shown in Fig. 2, for our experiments. S, and
S, are the two force sensors giving f; and f,, and S;
is the displacement sensor with its signal denoted by
x. Force is the quantity selected as the internal rep-
resentation for fusion of the three sensors. In other
words, the pedal displagement Asignal is converted to

equivalent force signals f; and f, to be compared with
the signals provided by the other two sensors. In or-
der to perform this conversion, a model is required to
mathematically relate the three signals x, f; and f,.
The passive push-return mechanism of the pedal can
be modelled with an ideal spring in parallel with a
damper, as shown in Fig. 5. The two force sensors are
located at the two ends of the paralleled spring and
damper model. Since the acceleration of pedal move-
ments is too small to be considered in the model, the
effect of the pedal mass is neglected. Thus, the two
force sensor measurements are very close and have
been simply labelled with f in Fig. 5 and the follow-
ing equations. Based on the simplified damper-spring
model, the following equation expresses the measured
force signals in terms of the measured displacement
signal:

f =kx +bx 3)

where k and b are the spring and damping factors,
respectively.
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Fig. 5. A simplified model of the pedal and its sensors.

In order to validate the model and estimate its pa-
rameters, we ran a number of experiments and collected
the three sensors measurements. In these experiments,
the pedal set was installed in a car and a driver used it
for different braking scenarios such as continuous soft
brakes, frequent push-release and panic brakes. Using
the collected sensory data, we examined the linearity
between force, displacement and velocity using a least
squares (LS) technique. More precisely, we utilised the
recorded signals f, x and dx/dt and obtained a LS esti-
mate of the parameters k and b in (3). This resulted in a
low correlation coefficient and large differellce between
the measured forces f and the force values f = kx + bx.
These results showed a poor linear relationship between
those quantities and a single linear model that would
describe the repeated experiments could not be found.
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fi(9) and £(0)

— £®
== £

Thus, a linear model for our spring and damper is not
sufficient and their nonlinearity should also be taken
into account. We examined a generalised version of the
above linear model (3):

=28 +gx). “

In order to find the proper mathematical form of
g, we examined the recorded force and displacement
data for the stationary pedal, i.e., the data samples
with almost zero velocity. Fig. 6 shows the force ver-
sus displacement plotted at the time instants when the
pedal is stationary. The very close distance between the
two static force signals confirms our assumption on
negligibility of the spring and damper masses. Fig. 6
also shows that g,(x) can be properly modelled by a
quadratic polynomial:

Flasjarmo = Ax* + Bx +C. 5)

This model complies with the fact that the spring
force substantially increases when it is compressed be-
yond a linear region. Using the recorded static data, we
achieved a LS estimate for the parameters A, B and C
in (5).

For the function g, in (4), another quadratic model
was chosen and its parameters were also estimated by
the LS technique. The viscous friction substantially
increases when the pedal speed rises beyond the linear
damper model, and this phenomenon is actually realised
by the quadratic model for g,. The models used for
conversion of displacement measurements to equivalent
force values are presented as follows:

fi=AX*+Bx+C, +D i +E (6)
f, = Ayx® + Byx + C, + D32 + E,x. (7)

2
x(t)

Fig. 6. Force signals versus displacement sensors at the time instants when the pedal is stationary.

The LS estimates of A; and A, are very close to
each other, and so are B, and B,, C; and C,, D,
and D,, and E; and E,. This validates our assumption
on negligibility of the effect of pedal mass and the
sufficiency of a first order dynamic model. As shown
in Fig. 4, after using the quadratic models, shown in
(6)—(7), with their estimated parameters to convert the
displacement sensor output to tAheir quuivalent force
signals, the four signals f;, f,, f; and f, can now be
utilised to evaluate the sensors agreement by calculating
ay,, a3 and a, 5 values. More precisely, the internal
representation of signals in Fig. 4 is the “force” quantity
and f; and f, are same as x; and x, in Fig. 2. Since
the displacement measurement x is converted to two
estimates f; and f, (to be compared with f; and f,), x5 in
Fig. 2 has two corresponding signals in Fig. 4: ]A‘l and j‘z.

These values along with the forces and converted
signals are then given to a fuzzy system where the agree-
ment values are fuzzified. Fig. 7 shows the definitions
of the fuzzy sets for fuzzification of agreement evalu-
ations. Because of the conversion errors, a-coordinates
of the break-points of the piece-wise linear member-
ship functions for a,; and « 5 are higher than the a-
coordinates of the break-points for a; ,. Since a lower
o, ; value means stronger agreement between S; and S,
the Large and Small fuzzy sets are associated with lower
and higher «; ; values, respectively. The resulting mem-
bership values are then used by a fuzzy rule-base for
fuzzy inference. In our case study, the rule-base con-
tains seven fuzzy rules as shown in Table I. The third
fuzzy rule is the same rule stated before in Section 2.
Based on the details given in Table I, the final fused
value for the driver’s brake demand is computed by (2)
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Fig. 7. Definition of three fuzzy sets for fuzzification of §; — S, agreement evaluation: Similar definitions apply to fuzzification of
agreement evaluations of §; —S; and §, — S5, however due to conversion errors the a-coordinates of the break-points {0.039,0.065,0.091}
change to higher values of {0.52,0.78,1.04}.

TABLE I

The Fuzzy Rule-Base Utilised in for Sensor Fusion in our

Experiments with the Brake-by-Wire Pedal
(L = Large, M = Medium, S = Small)

Membership Values

== Small
== Medium
== Large

S 1 S2 S3

i ap ayy ap o, Faultiness Faultiness Faultiness

1 L L L J +f1 +f2+f'2 Small Small Small
4

2L s S # Small  Small  Large

3 S L S @ Large Small Small
2

4 S S L M Small Large Small
2

5L M M # Small  Small Medium

6 M L M M Medium ~ Small ~ Small
2

7 M M L fit+h Small  Medium  Small
2

with O; and w; given as below:
0= (fi +fi+ o+ 1)/
0,=(+1)/2
0, =(f, + /,)/2
0, =(f; +1)/2 (8)
05 = (f, + f,)/2
0= (f, + /,)/2
0, =(f, + /)/2.

wy = pplap)py () (ags),
wy = i (@) g (o) pig (o),
ws = pg(ap)py (ags)pg(as),
wy = pg(a)pg(any)py (o),
ws = pg ()i ()i (o),
We = iy ()t ()t (ry3),

Wo = [y (alz).“M (a23 )/LL(am)s
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Fig. 8. Fuzzy sets definition for defuzzification of sensor faultiness
measures.

In the consequences of the rules, the faultiness mea-
sures belong to one of the Small, Medium or Large
fuzzy sets with piece-wise linear membership functions
as shown in Fig. 8. The resulting faultiness measures
are defuzzified by the fuzzy centroid method.

In our validation experiments, we applied different
types of brake commands in various conditions such
as a continuous panic brake, short-time panic brakes,
short-time soft brakes, a continuous soft brake and so
on. Total length of each experiment was 110 s. Fig. 9
shows the signals of the three sensors recorded during
the validation experiments. S; and §, signals (pedal
force measurements) are very close to each other and
one of them is shown in Fig. 9. In this figure and
the next signal plots, the vertical coordinate units are
“volt,” as the filtered “electrical” measurement signals
and their fused measures have been plotted and all
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Fig. 9. Recorded sensory signals in normal (no fault) condition.

of them are proportional to the internal representation
quantity (force) with a constant factor. We then injected
several types of synthetic faults into S; during the time
interval [80,110] and used both the hard and the soft
(fuzzy) voting methods to fuse the sensor data. Fig. 10
shows the results when the S, signal is short-circuited
to supply. Because of the RC circuitry connected to the
input of analogue to digital converters (ADCs) the S,
signal does not suddenly jump to the supply voltage, but
rises gradually. Soft voting detects the fault and removes
the S, signal from voting process in a timely manner. We
also applied hard voting to detect the same fault. Fig. 11
shows the fused signal and its expected true values in
the time interval, starting 10 s before the short circuit
event. It is observed that the short circuit is detected
by hard voting after four seconds as the short circuit
starts at £ = 80 s but the deviation of the fused signal
from the true signal returns to almost zero at ¢ = 84 s.
During these four seconds the hard voter provides a

8§, and the fused value (Volt)
5- — . - =

4 — S, Signal
----- Fused Signal

60 80

100 120
Time(Sec)
Fig. 10. Soft voting result when S is short circuit and gradually
rises toward supply voltage.
Fused and True Signals (Hard Voting) (Volt)
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Fig. 11. Hard voting result when §, is short circuit and gradually

moves toward supply voltage.

wrong fused measurement. This is fairly dangerous and
unacceptable in a brake-by-wire application.

Pedal sensors data may also drift due to temperature
variations during motor warm-up or cool-down periods.
Fig. 12 shows a linear drift of 1000 mV injected into
S, and the result of soft voting by which the drift is de-
tected and removed. On the other hand, the hard voting
method does not detect the drift, because the thresh-
old of agreement evaluation is larger than the 1000 mV
drift. Hard voting result is presented in Fig. 13. Faulti-
ness measures resulted from soft voting in the presence
of the linear drift in §; are also shown in Fig. 14. It is
observed that faultiness for S, is always large and fault-
iness for §, and §; are initially large but decrease while
the drift in S; grows. To examine the performance of the
proposed technique for a noisy signal, excessive noise
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S, and the fused value (Volt)
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Fig. 12.  Soft voting result when there is a linear drift in S .
Fused and True Signals (Hard Voting) (Volt)
3.5
— Fused Signal
—=—- True Signal
3
25
2
1.5
1 4
0.5
0 L L
0 20 40 60 80 100 120

Time(Sec)

Fig. 13. Hard voting result when there is a linear drift in §.

was injected into the S, signal as depicted in Fig. 15. As
shown in Fig. 16, soft voting has been able to effectively
detect and remove the noise from sensor fusion output,
and Fig. 17 shows that hard voting can not substantially
reduce the noise.

In order to compare the performance of the majority
(hard) voting method with our proposed soft voting
method quantitatively, we computed the mean square
error (MSE) for soft and hard voting methods in the
presence of various faults. Table II shows the result of
our error computation. Overall, the MSE was reduced
by 82% in soft voting compared to hard voting. That
is because of the early fault detection and removal
capability of the soft voter. Finally, it should be noted
that our proposed method is a voting method, i.e., we do
not expect it to detect a fault if it exists in the majority
of sensors (two or more sensors in our case study). For
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Fig. 14. Faultiness measures resulted by soft voting result in
presence of a linear driftin §,.
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5 . : r

il 1 1

20 40 éo 80
Time(Sec)

Fig. 15. §, signal in presence of excessive noise.

100 120

example if a short circuit happens for both S, and §,,
then both the hard and the soft voter will incorrectly
deduce that §; is faulty because it does not agree with
the other two sensors.

4. CONCLUSIONS

In this paper, we introduced a new method for
fusion of redundant sensory information in fault tolerant
systems with focus on a by-wire braking system. We
applied our method to fuse the redundant data provided
by two force sensors and one displacement sensor in a
by-wire brake pedal. Because of the sensor conversion
errors, sensor agreement thresholds in a majority voter
are so large that an unacceptable delay in fault detection
occurs. Our proposed soft voting method applies a fuzzy
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The fused value (Volt) TABLE 11 o
3- . . . . . - MSE Error for Pedal Sensor Fusion by Soft and Hard Voting in

Presence of Various Faults
L '\ ,‘ Injected Fault Hard Voter Soft Voter
i
‘ ‘ Gradually Short to Ground 0.1932 0.0367
| Gradually Short to Supply 0.1033 0.0272
3} ’\ Suddenly Short to Ground 0.2123 0.0298
(I J Suddenly Short to Supply 0.2099 0.0245
,\ J | Noise (Substantial SNR) 0.1277 0.0434
] ' Drift 0.2108 0.0269
[ Nel (Y Total MSE 1.0572 0.1885
| | [} I
Ml 110
| ‘ hr q l« | [ | ) )
SV | n* ‘,."J Pet ‘ is reduced by around 82% compared to a hard voting
i technique.
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Fig. 16. Soft voting result when in presence of excessive noise (1] A. Avizienis
ins.. The N-version approach to fault-tolerant software.
! IEEE Transactions on Software Engineering, 1 (1985), 1491—
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Fig. 17. Hard voting result when in presence of excessive noise
in §,.
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rule-base to perform voting. The fuzzy rules here are
designed in such a way that the voter output is smoothly
switched from one majority voted value to another in
case of a sensor fault. The proposed soft voter also gives
faultiness measures for all sensors.

The novel idea in our approach is that we calculate
the averaging weights as a normalised sum of prod-
ucts of membership values. The implementation of the
proposed technique is straightforward and its execution
is time efficient. As such, it is an appropriate solu-
tion for real-time and safety critical applications such
as brake-by-wire, where computational load and mem-
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are important issues. Experimental results show that our
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