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Particle filtering is a very popular method for nonlinear/non-

Gaussian state estimation, however, implementation of particle fil-

ters (PFs) with a high state dimension in real-time is a very challeng-

ing practical task because the computation is prohibitive. Parallel

& distributed (P&D) computing is a natural way to deal with the

computational challenges of PF methods in order to make them

practical for large scale problems, such as multitarget multisensor

tracking. This paper presents results on development, implementa-

tion and performance evaluation of computationally efficient paral-

lel algorithms for particle and particle flow filters (PFFs) utilizing

a Graphics Processing Unit (GPU) as a parallel computing envi-

ronment. Proposed are state-of-the-art parallel PF and PFF imple-

mentations which are optimized for GPU architecture and capa-

bilities. The proposed algorithms are applied and tested, via sim-

ulation, for tracking multiple targets using a pixelized sensor, and

for a high-dimensional nonlinear density estimation problem. It is

demonstrated by the obtained simulation results that the proposed

parallel GPU implementations can greatly accelerate the compu-

tation of both PFs and PFFs, and thereby bring them closer to

practical applications.
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I. INTRODUCTION

For more than two decades now, particle filter-

ing [1] has become the most popular approach for

nonlinear/non-Gaussian state estimation problems. Par-

ticle filters (PFs) have found numerous applications in

areas that involve nonlinear filtering of noisy signals

(data) [2], most notably in target tracking, e.g., [3].

However, while the literature reporting capabilities of

PFs to solve hard nonlinear estimation problems from

different application areas is abundant, most practical

implementations are limited to small-scale problems

with low dimensional state vectors, such as single tar-

get tracking. Implementation of high dimensional PFs

in real-time for large-scale problems is still quite chal-

lenging. Parallel & distributed (P&D) computing is a

natural way to overcome/mitigate this limitation. De-

velopment of P&D algorithms and architectures that

fully exploit the spatial and temporal concurrency of

the computations is a great potential to make PFs (and

density-based nonlinear filtering, in general) practical

for large scale problems, such as multitarget multisensor

tracking. Considerable research effort has been going on

along this direction, e.g., [4]—[15].

In recent years a new class of nonlinear filters

has been gaining momentum–the particle flow fil-

ters (PFFs), proposed by Daum & Huang [16]—[22],

which overcome the well known problem of particle

degeneracy of the PFs (and other, e.g., deterministic

sampling methods for density-based nonlinear filter-

ing [23]) caused by the pointwise multiplication of the

Bayes rule. The method for samples’ update is deter-

ministic and is conceptually based on a natural ho-

motopy relating the prior and posterior filter densities

which induces a flow of the samples from the prior

density towards a set of samples from the posterior. A

flow of each particle from prior to posterior is governed

by a flow equation–an ordinary differential equation

(ODE)–which in general satisfies a linear partial DE

(PDE) with constant coefficients. This PDE is central

in this approach. While a numerical integration of the

PDE is prohibitive for real-time computation, the good

news is that for some special distributions, e.g. Gaus-

sian and exponential families it is analytically tractable.

The explicit solution for (unnormalized) Gaussian prior

and likelihood, referred to as the exact PFF [19] is

straightforward to implement and fast for computation.

Plenty of simulation results have been reported by the

authors of the PF method, e.g., [18], [21], [22], show-

ing that PFFs can outperform other nonlinear filters in

computation and accuracy for difficult nonlinear prob-

lems. Another nice property of the PFFs is that they are

essentially “embarassingly” parallel–(almost) all com-

putations are independent and can be conducted in a

parallel/distrubuted manner as opposed to PFs where

resampling is a bottleneck. This makes PFFs even more

attractive and promising for P&D computing. It also

motivated us to pursue parallel implementations of PFF
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TABLE I

Generic SIS/R PF Algorithm [26]

² Importance Sampling (IS)
– For i= 1, : : : ,N̄

Draw a sample (particle): x̄i
k
» ¼(xk j xik¡1,zk)

Evaluate importance weights

w̄i
k
= wi

k¡1
p(zk j xik)p(xik j xik¡1)
¼(xi

k
j xi
k¡1,z

k)

– For i= 1, : : : ,N̄

Normalize importance weights: wi
k
=

w̄i
kPN̄

j=1
w̄
j

k

² Resampling (R)
– Effective sample size estimation: N̂eff =

1PN

j=1
(w
j

k
)2

– If N̂eff < Nth

Sample from fx̄j
k
,w
j

k
gN
j=1

to obtain

a new sample set

n
xi
k
= x̄

ji
k
,wi
k
=
1

N

oN
i=1

and make a quantitative performance evaluation and

comparison with parallel PF algorithms studied by us

before [11]—[13].

At present, there are many types of parallel hard-

ware available such as multicore processors, field-

programmable gate arrays (FPGAs), computer clusters,

and graphics processing units (GPUs). A GPU is a sin-

gle instruction multiple data (SIMD) parallel processor

intended originally to meet the demands of computa-

tionally intensive tasks for real-time high-resolution 3D-

graphics. Nowadays, GPUs are highly parallel multicore

systems that can process very efficiently large blocks of

data in parallel [24]. For highly parallelizable algorithms

GPUs are becoming more efficient than the sequential

central processing unit (CPU) [10]. On the other hand,

GPUs are easily accessible and inexpensive–most new

personal computers have GPU card. Hence, GPUs offer

an attractive opportunity for speeding up PFs and PFFs

for real-time applications.

In this paper we present results on development, im-

plementation and performance evaluation of computa-

tionally efficient parallel algorithms for particle and par-

ticle flow filters by utilizing a Graphics Processing Unit

(GPU) as a parallel computing environment. Proposed

are state-of-the-art parallel PF and PFF implementa-

tions which are optimized for GPU architecture and

capabilities. The proposed algorithms are applied and

tested, via simulation, for tracking multiple targets us-

ing a pixelized sensor (up to 20 targets), and for a high-

dimensional nonlinear density estimation problem (up

to 40-dimensional state vector). Comprehensive simu-

lation results are presented which illustrate that the pro-

posed parallel GPU implementations can greatly accel-

erate the computation of both PF and PFF, and thereby

bring them closer to practical applications.

The paper is organized as follows. Sect. II provides

background information on basic particle & particle

flow filtering, and GPU concepts, needed for the rest

of the paper. Sect. III proposes parallel PF and PFF al-

gorithms, optimized for GPU implementation. Sect. IV

presents application of the parallel GPU PFs for track-

ing multiple ground targets with a pixelized sensor by a

Joint Multitarget Probability Density (JMPD) algorithm

and analyzes their performance based on the obtained

simulation results. Sect. V presents implementation and

performance evaluation/comparison of parallel PF vs.

PFF over a high dimensional density estimation prob-

lem. Sect. VI provides a summary and conclusions.

This paper is an outgrowth of our previous confer-

ence papers [13] and [14], wherein some preliminary

parts of this paper have been presented. However the

presentation for this journal paper has been unified, im-

proved, and extended with significant new results, e.g.,

the enhanced parallel PF presented in Sect. III-B and its

performance evaluation in Sect IV-B.2.

II. BACKGROUND

This section outlines very briefly the computational

procedures of the generic Particle Filter (PF) and the

Exact Particle Flow Filter (PFF), and provides some

basic GPU computing concepts, needed for the rest of

the paper. Parallelization of the filtering algorithms and

their GPU implementation are discussed in Section III.

A. Bayesian Recursive Filter

Let fxkgk=1,2,::: be a vector valued discrete-time

Markov process with state transition probability density

function (pdf) p(xk j xk¡1), and fzkgk=1,2,::: be another
process, stochastically related to fxkgk=1,2,::: through the
likelihood p(zk j xk). xk and zk are the state and the
measurement, respectively, and p(xk j xk¡1) and p(zk j
xk) are the state and measurement models. The exact

Bayesian recursive filter (BRF) provides the posterior

density p(xk j zk) via the following prediction-update
scheme [25]:

p(xk¡1 j zk¡1)! p(xk j zk¡1)! p(xk j zk) (1)

given p(x0) and measurements z
k = fz1, : : : ,zkg.

B. Generic Particle Filter

In particle filtering the pdfs are represented approx-

imately through a set of random samples (particles) and

the BRF (1) is performed directly on these samples.

Most PFs are based on two principal components: se-

quential importance sampling (SIS) and resampling (R)

as given in Table I [26].

The importance distribution ¼(¢) must contain the
support of the posterior and is subject to design. One

possibility is to choose ¼ = p(xk j xik¡1) [1] which is
often referred to as the sampling importance resampling

(SIR) PF, or the bootstrap PF. Many other choices

are possible [2]. Resampling is in effect discarding of

samples that have small probability and concentrating

on samples that are more probable. The resampling

step is critical in every implementation of PF because
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TABLE II

Gaussian Exact Particle Flow Algorithm

² Particle Prediction
– For i= 1, : : : ,N̄

Draw a predicted particle: x̄i
k
» p(xk j xik¡1)² Particle Update

– Compute predicted estimate x̄k , its error covariance P,

and linearized measurement model matrix H

– Compute parameters of flow velocity (exact computation):

A(¸) =¡ 1
2
PH 0(¸HPH 0+R)¡1H

b(¸) = (I+2¸A)[(I+¸A)PH 0R¡1zk +Ax̄k]
– For i= 1, : : : ,N

Solve the particle flow ODE
dx

d¸
= f(x,¸) = A(¸)x+ b(¸)

for ¸ 2 [0 1] with initial condition x(0) = x̄i
k
;

Let xi
k
:= x(1).

without it the variance of the particles weights quickly

increases leading to inference degradation.

C. Gaussian Exact Particle Flow Filter

In this paper we limit our consideration to the Gaus-

sian Exact PFF [19]. We summarize one time-step,

k¡ 1! k, of the algorithm in Table II.

First, note that the prior and posterior at each time-

step k are also represented through samples: fx̄ikgN̄i=1 and
fxikgNi=1, respectively. In Table II we give the prediction
step in terms of random sampling (as in the bootstrap

PF) which amounts to passing each particle from the

posterior through the stochastic state dynamic model.

However the prediction sampling need not be random

in general–the prior can be approximated by determin-

istic samples as well, e.g., based on optimal Dirac mix-

ture approximations [27]. In our GPU implementation

we use random sampling but deterministic sampling for

prediction is of further interest for future implementa-

tion because generating random numbers by GPU is not

straightforward and may introduce some latency.

Second, the computation of the state prediction esti-

mate x̄k, error covariance matrix P̄k, and linearized mea-

surement model Hk is not explicitly given because it

can be done in different ways, e.g., x̄k and P̄k can be

computed as the sample mean an covariance of the par-

ticles and then Hk can be obtained via linearization of

the measurement model about x̄k, or the computation

can be done via EKF/UKF equations.

Third, the flow velocity parameters A(¸), b(¸) are

common for all particles and, therefore, their computa-

tion is given outside the for-loop for solving the ODE
in Table II. However, in a parallel computer implemen-

tation this is not necessarily the fastest arrangement–

Assuming each “processor” is dedicated to one particle

or a groups of particles (as in our GPU-implementation,

discussed in Sect. III), it could be better to compute

A(¸), b(¸) for each particle (as if within the particles’

for-loop) or group of particles in parallel, and thus

Fig. 1. Nvidia GPU Architecture [28]

eliminate the time for transferring data among “proces-

sors.”

D. GPU & CUDA Computing

A typical GPU is a collection of multiprocessors

(MPs) where each of them has several scalar processors

(SP), also referred to as cores [28]. At any given clock

cycle, each SP executes the same program (one or a

set of instructions) on different data by following the

single instruction/program multiple data (SIMD/SPMD)

models. Each SP has access to different memory levels.

Fig. 1 gives a simplified illustration of the architecture

of Nvidia GPU, where SM stands for shared memory,

and IU–for instruction unit. This type of architecture

is ideally suited to data-parallel computation since large

quantities of data can be loaded into shared memory for

the cores to process in parallel.

Compute Unified Device Architecture (CUDA) is a

parallel computing architecture developed by Nvidia as

a computing engine in GPUs. It allows access to the

virtual instruction set and memory of a GPU’s parallel

computational elements. By using CUDA the GPUs can

be used for computation like CPUs.

A detailed description of CUDA is given in [29]. The

MP model used in CUDA is called single-instruction

multiple-thread (SIMT). In SIMT, the MP maps each

thread to one SP core, and each thread executes inde-

pendently with its own instruction address and register

state. The MP creates, manages, and executes concur-

rent threads in hardware with no scheduling overhead.

The threads are logically organized in blocks and grids.

A block is a set of threads, while a grid is a set of blocks.

The sizes of the blocks and grids can be programmati-

cally controlled. To optimize an execution configuration

the first parameters to choose are the grid size (number

of blocks per grid) and block size (number of threads

per block). As a general guideline, provided by [29], the

primary concern is keeping the entire GPU busy–the
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number of blocks in a grid should be larger than the

number of multiprocessors so that all multiprocessors

have at least one block to execute, and there should be

multiple active blocks per multiprocessor so that blocks

which are not waiting for thread synchronization can

keep the hardware busy.

CUDA devices use several memory spaces, which

have different characteristics that reflect their distinct

usages in CUDA applications. These memory spaces

include global, local, shared, texture, constant, and reg-

isters. There is a 16 KB per thread limit on local mem-

ory, a total of 64 KB of constant memory, and a limit of

16 KB of shared memory, and either 8,192 or 16,384

32-bit registers per multiprocessor. Global, local, and

texture memory have the greatest access latency, fol-

lowed by constant memory, registers, and shared mem-

ory. Memory optimizations are key for performance.

The best way to maximize bandwidth is to use as much

fast-access memory and as little slow-access memory as

possible.

III. PARALLEL PF AND PFF IMPLEMENTATION ON
GPU

The general idea of implementing both particle al-

gorithms (PF and PFF) on GPU is to map (dedicate)

a thread to a particle and organize the algorithms in

terms of groups of particles, mapped correspondingly

to GPU blocks, in order to take advantage of the GPU

architecture. The key is to use the shared memory for

fast particle data communication within each block and

avoid/reduce communications between different blocks,

as much as possible. Optimizing any particular imple-

mentation is crucially dependent on the capabilities of

the available GPU hardware, as well as, on the filtering

problem dimension (size). For our application studies

this issue is discussed further in Sect. IV.

Other important issues arising in the GPU imple-

mentation for both filters are the cumulative summation

(needed for normalization and sample mean computa-

tion) and random number generation. The cumulative

sum can be implemented using a multipass scheme sim-

ilar to that of [10]. This multipass scheme is a stan-

dard method for parallelizing seemingly sequential al-

gorithms based on the scatter and gather principles. The

CURAND library [30] provides facilities to efficiently

generate high-quality pseudorandom and quasirandom

numbers. It is used to create several generators at the

same time. Each generator has a separate state and is

independent of all other generators.

A. Parallel PF

The computation for importance sampling is inde-

pendent across particles and can be executed in par-

allel without any data communication among particle-

dedicated processors (or threads). Parallelization of the

resampling part, however, is quite nontrivial because

generating a single resampled particle requires infor-

mation from all particles of the sample set. Thus, re-

sampling becomes a bottleneck in parallel implemen-

tations. Several parallel/distributed resampling schemes

have been already proposed and studied in the literature,

e.g., [4], [7]. In this paper we implement distributed

resampling with nonproportional allocation (RNA) [7].

Briefly, the idea is as follows (more details, including

some high level pseudocode, can be found in [7] and

our previous papers [11]—[13]).

Distributed RNA is a modification of the distributed

resampling with proportional allocation (RPA) which is

essentially based on stratified sampling [2]. The sam-

ple space is partitioned into several strata (groups)

and each stratum corresponds to a processing node

(PN)–mapped to a GPU block of threads in our GPU

implementation. Proportional allocation among strata

is used, which means that more samples are drawn

from the strata with larger weights. After the weights

of the strata are known, the number of particles that

each stratum replicates is calculated at a head pro-

cessing node (HN)–a dedicated block of threads in a

GPU implementation–using residual systematic resam-

pling, and this process is referred to as inter-resampling

since it treats the PNs as single particles. Finally, re-

sampling is performed inside the strata (at each PN,

in parallel) which is referred to as intra-resampling.

Therefore, the resampling algorithm is accelerated by

having an inner loop that can run in parallel on the

PNs (intra-resampling) with small centralized process-

ing (inter-resampling) at HN. RPA requires a compli-

cated scheme for particle routing. In the parallel RNA

particle routing is deterministic and planned in ad-

vance by the designer. The number of particles within a

group after resampling is fixed and equal to the number

of particles per group as opposed to the RPA where

this number is random (proportional to the weight of

the stratum). This introduces an extra approximation

in the resampling (in statistical sense) but allows to

execute resampling in parallel by each group (GPU

block).

In our implementation each group of particles, as

defined in RNA, is naturally mapped into a GPU block

as each particle of the group corresponds to a thread of

the block. Thus, in terms of the GPU architecture, the

importance sampling is thread-parallel while the intra-

resampling part is only block-parallel, and the inter-

resampling and weight normalization are centralized

(Table III). The centralized parts can be computed at the

CPU or at some of the blocks of the GPU (designated

as a head-node). Both options are implemented in our

simulation study, presented in Sect. IV.

B. Enhanced Parallel PF

A significantly enhanced alternative to the presented,

RNA-based, PPF is proposed based on the following

two reasons. First, each thread can access all particles’
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Fig. 2. Parallel Cumulative Sum

TABLE III

Parallel PF Algorithm for GPU

² Importance Sampling (IS)
– For i = 1, : : : ,N (Thread Parallel)

Sample: x̄i
k
» ¼(xk j xik¡1,zk)

Evaluate importance weights w̄i
k

– For i = 1, : : : ,N (Centralized)

Normalize importance weights: wi
k
=

w̄i
kPN̄

j=1
w̄
j

k

² Resampling (R)
fx̄j
k
,w
j

k
gN
j=1

)
n
xi
k
= x̄

ji
k
,wi
k
=
1

N

oN
i=1

– Inter Resampling (Centralized)

– Intra Resampling (Block Parallel)

information concurrently through the shared and de-

vice memory and, thus, replicating particles could be

parallelized in all threads. Second, the cumulative sum

of weights, which is key for resampling, can be also

executed in parallel in contrast to the generic (RNA-

based) PPF where it is done in a centralized man-

ner.

When implementing a cumulative weight sum on a

single processor, the time complexity is O(n) addition

operations for an array of length n. This is the minimum

number of additions required. A parallel algorithm is

presented in [31]. Fig. 2 shows the operation. The time

complexity is O(logn) if enough processors are avail-

able. This is fine for small arrays. In our application,

particle filter algorithms use large number of particles,

so large arrays are used.

We modify the PPF by using a parallel cumulative

weighted sum algorithm. The enhanced PPF algorithm

is shown in Table IV.

Additional illustration of the operation of the EPPF

is given in Fig. 3. Note that Step 3 can be done thread

parallel because all threads can access all cumulative

sums concurrently.

After optimizing the particle filter algorithm, the

main bottleneck left is the global memory access. To

better cover the global memory access latency and

improve overall efficiency, we should let each thread do

more computation. So we could let each thread process

two or four particles instead of one particle. Each thread

performs a sequential access of four particles and stores

Fig. 3. Illustration of the Enhanced GPU PF

TABLE IV

Enhanced PPF Algorithm for GPU

² Importance Sampling (IS)
– For i= 1, : : : ,N (Thread Parallel)

Sample: x̄i
k
» ¼(xk j xik¡1,zk)

Evaluate importance weights w̄i
k

² Unnormalized Cumulative Sum of Weights (UCSW)
– For j = 1, : : : ,N (Block Parallel)

c̄
j

k
= w̄1

k
+ ¢ ¢ ¢+ w̄j

k
Execute UCSW for each block

Execute UCSW for all blocks

Get all UCSWs

² Resampling (R)
– For i= 1, : : : ,N (Thread Parallel)

Normalize UCSW: ci
k
=

c̄i
kPN

j=1
c̄
j

k

Sample from fxj
k
gN
j=1

with fcjgNj=1 to obtain

a new sample set

n
xi
k
= x

ji
k
,wi
k
=
1

N

oN
i=1

them in registers. This method is more than twice as fast

as the code which only processes one particle at each

thread.

C. Parallel PFF

GPU parallelization of PFF is much easier than that

of the PF. It is apparent from Table II that the predic-

tion part and solving the ODE for each particle is in-

dependent across particles and can be executed com-

pletely in parallel by mapping a particle to a GPU

thread. For computing x̄k, Pk, Hk, and the flow veloc-

ity parameters A(¸), b(¸) there are different options be-

cause they are common for all particles. One way is to

have them computed by the CPU (“externally” to the

GPU) by a point estimator like EKF/UKF and sent to

each particle. Another way is to collect all predicted

particles in the CPU, compute sample mean x̄k, and

based on it, compute Pk, Hk, A(¸), b(¸) and send the

results to each particle. Involvement of the CPU im-

poses a communication time overhead (due to the need
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to access the slow memory), and does not take advan-

tage of the GPU block architecture. That is why, as

in the GPU-PF, we divide all particles in groups and

map each group to a GPU block wherein each parti-

cle corresponds to a thread. A predicted estimate x̄k,b
is computed for each block b, as the sample mean of

its particles, and based on it, flow velocity parame-

ters for this block are computed. Thus, even though

some extra approximation is incurred, any communi-

cation with the CPU and among different block is

avoided. An outline of the Parallel GPU PFF is shown in

Table V.

For computing a block x̄k,b we use the sample mean

of the particles within the block. Then Pk,b, Hk,b are

computed using the EKF equations, based on x̄k,b.

For numerical computation of the ith particle’s flow

ODE we use the finite difference forward Euler method

(as given in Table V), where L > 1 is an integer defining

the discretization step ¢¸= 1=L of the interval [0 1].

In accordance with the limitation of shared memory

(our device is 48K bytes/block), the number of particles

we include in each block is given in Table VIII. We also

use the same block sizes for the GPU-PF implementa-

tion.

Note that, except for the small block sample mean

part (which is block parallel), this GPU-PFF imple-

mentation is thread parallel as opposed to the GPU-

PF implementation (Table III) wherein a significant part

(the resampling) is only partially (block) parallel. This

clearly gives an explanation to the fact that the imple-

mented GPU-PFF is much faster than the GPU-PF for

the same number of particles, as seen in the simulation

results presented in Sect. V.

IV. SIMULATION STUDY I: GROUND MULTITARGET
TRACKING USING IMAGE SENSOR

The main purpose of this simulation is to evaluate

the computational feasibility and performance of the

GPU PPFs (given in Tables III & IV) for a realistic

target tracking scenario of high dimension. The parallel

algorithms developed and implemented are based on the

Joint Multitarget Probability Density (JMPD) algorithm

for multiple target tracking [32]—[37].

A. JMPD Tracking

1) Problem Formulation:
In the JMPD approach to multiple target tracking

the uncertainty about the number of targets present

in a surveillance region as well as their individual

states is represented by a single composite pdf. That

is, the state of all targets is described by a meta-target

state vector Xk = (x
1
k ,x

2
k , : : : ,x

T
k ) where x

i
k is the state of

target i= 1, : : : ,T. The number of targets at time k, Tk 2
[0,1,2, : : : ,1), is also assumed random. The posterior

TABLE V

Gaussian Exact Parallel PFF Algorithm

² Particle Prediction
– For i= 1, : : : ,N (Thread Parallel)

Sample: x̄i
k
» p(xk j xik¡1)² Particle Update

– For b = 1, : : : ,Nb (Block Parallel)

Compute x̄k,b , Pk,b , Hk,b , fk,b
– For i= 1, : : : ,N (Thread Parallel)

Compute particle flow

x[0] = x̄
i
k

x[l+1] = x[l] +¢¸fb(x[l], l¢¸), l = 0, : : : ,L¡ 1
xi
k
= x[L]

distribution of interest1 is

p(Xk,Tk j Zk) = p(Xk j Tk,Zk)p(Tk j Zk)
where Zk = fZ1,Z2, : : : ,Zkg is the cumulative measure-
ment set of the surveillance region up to time k, and

Zl, l = 1, : : : ,k is the measurement set at time l. The

model of target state and number evolution over time

is given by p(Xk,Tk j Xk¡1,Tk¡1) and is referred to as the
kinematic prior. It includes models of target motion, tar-

get birth and death, and any additional prior information

on kinematics that may be available, e.g., terrain and

road maps. The measurement model over the surveil-

lance region is given by the likelihood P(Zk j Xk,Tk).
For the purpose of our implementation and perfor-

mance study we adopt the kinematic prior and measure-

ment models of [34].

2) Multitarget Model:
Each target i= 1, : : : ,T is assumed to follow a nearly

constant velocity motion model

xik = Fx
i
k¡1 +w

i
k (2)

where x= (x, _x,y, _y)0 is the state vector, w »N (0,Q) is
white process noise with given covariance, and

F = diag

½·
1 ¢

0 1

¸
,

·
1 ¢

0 1

¸¾
where ¢ is the sampling interval. To account for ma-

neuvers a mode variable can be also added [36]. The

number of target in this paper is considered constant

and known. Unknown number of targets using the tran-

sitional model of [36] is of interest for future work.

3) Sensor Model:
It is assumed that a pixelized sensor provides raw

(unthresholded) measurements data from the surveil-

lance region according to the following association-free

model [34] used often for track-before-detect (TBD)

problems. A sensor scan at time k consists of the

1Note that in this formulation the so-called “mixed labeling” [38] is

not addressed. It is assumed that no track extraction is needed and,

consequently, the ordering of xi within X is irrelevant as far as only

the density is of interest. In [34] this assumption is referred to as a

symmetry under permutation.
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outputs of M pixels (cells of the region), i.e., Z =

fz[1], : : : ,z[M]g2 where z[i] is the output of pixel i. The
likelihood P(Z j X,T) is given by

P(Z j X,T)/
Y
i2iX

pn[i](X)(z[i])

p0(z[i])
(3)

where iX is the set of all pixels that couple to X, n[i](X)

is the occupation number of pixel i (number of targets

from X that lie in i). The output z of each pixel is

assumed to follow the Rayleigh model

pn(z) =
z

1+n¸
exp

μ
¡ z2

2(1+ n¸)

¶
, n= 0,1,2, : : : (4)

where ¸ denotes the signal-to-noise ratio (SNR).

4) Particle Filter:
With the definition of the transitional density

p(Xk,Tk j Xk¡1,Tk¡1) and likelihood P(Zk j Xk,Tk) the so-
lution to the multitarget tracking problem formally boils

down to the BRF (1) and the standard SIS/R PF given

above can be applied. However, with large number

of target the computation requirements become pro-

hibitive. The first step to improve the efficiency of the

multitarget PF is to choose an appropriate importance

(proposal) distribution for sampling that takes into ac-

count the specifics of the multitarget problem. Along

with the SIR algorithm’s Kinematic Prior (KP) proposal

¼ = p(Xk,Tk j Xik¡1,Tik¡1), where i¡ particle index, [34]

suggested three more sophisticated schemes for choos-

ing the importance distribution for multitarget PF, re-

ferred to as Independent Partition (IP), Coupled Parti-

tion (CP), and Adaptive Partition (AP) [34]. The second

step is to parallelize as much as possible the resulting

multitarget algorithms. Next we propose parallel imple-

mentation of these schemes and incorporate them in the

parallel structures of the corresponding overall multitar-

get parallel algorithms.

5) JMPD Parallel PF:
In the JMPD SIR PF the proposal is just the kine-

matic prior and the IS step is completely decoupled with

respect to particles fXig. Consequently, both versions
of the above generic parallel PF (Tables III & IV) work

without any modification. The significantly more effi-

cient proposal schemes IP, CP, and AP of JMPD PF

have intrinsic coupling among particles introduced by

the dependence of the proposal on the current measure-

ment data. By more careful inspection, however, IP and

CP can be parallelized as given next.

Each particle i for Ti targets is X
i = (xi,1,xi,2, : : : ,xi,T

i
k )

and xi,j is referred to as a partition j of particle i.

The IS step of the JMPD with IP can be done as

follows:

A) For each partition j = 1, : : : ,Tik (in parallel)

x
ij
k ,w

ij
k = IP[fxijk¡1,wijk¡1gNi=1,Zk]

2Time index k is omitted here to lighten notation.

Fig. 4. Scenario with 20 Targets

B) For each particle 1 = 1, : : : ,N

Importance weights w̄ik = w
i
k¡1
p(Zk j Xik)
¦Tμ=1w

ij
k

where IP denotes the IP subroutine of [34] which prac-
tically implements the SIR algorithm for each partition.

The IS step of the JMPD with CP can be done simi-

larly, except for IP being replaced by a subroutine CP
which practically implements the known auxiliary SIR

particle filter [2] for each partition but only outputs one

resampled partition.

The local importance weights w
i,j
k are data depen-

dent and their inclusion in the calculation of importance

weights w̄ik amounts to improving the proposal ¼, i.e.,

bias the proposal towards the optimal importance den-

sity ¼(¢,Zk).
Part A) is integrated easily with the RNA resampling

scheme used in the PPF (Table III). Part B) can also be

computed at the head-node (at the CPU or at the GPU)

at the expense of an extra communication between head-

node and all threads, or it can be computed locally

at each thread but this incurs extra pairwise (thread-

to-thread) communication between all threads through

the device memory. The latter option is parallel but not

necessarily faster due to the communication overhead.

In our GPU implementation we use the former option–

compute B) at the head-node (implemented alternatively

at the GPU or at the GPU).

B. Simulation Experiments & Results

Two simulation experiments were performed using

two different hardware computing platforms and paral-

lel algorithms tailored to each one of them, respectively.

Scenarios: For both experiments, the same tracking

scenarios were simulated. The parameters of these sce-

narios are as follows. The targets move in a 5000 m£
5000 m surveillance area. They have a nearly constant
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TABLE VI

Hardware Configuration 1

Model: Intel Core(TM)2 Duo

Clock Rate: 1.40 GHz
CPU

Memory: 2.0 G

Operating System: Windows 7

Model: NVIDIA GeForce 8400M GS

CUDA Driver: 3.20

Clock Rate: 0.80 GHz

GPU Cores: 2 (MP) x 8 (Cores/MP) = 16 (Cores)

Global Memory: 115M bytes

Constant Memory: 64K bytes

Shared Memory: 16K bytes/block

velocity motion, according to the state model (2) with

Q = diagf20,0:2,20,0:2g. The initial position and ve-
locity of each target, for each Cartesian coordinate x

and y are generated randomly from the uniform dis-

tributions U(0,5000) and U(¡10,10), respectively. The
sensor scans a fixed rectangular region of 50£ 50 pix-
els, where each pixel represents a 100 m£ 100 m area

on the ground plane. The sensor returns Rayleigh-

distributed measurements in each pixel, depending on

the number of targets that occupy the pixel according

to the measurement model (3). The sensor sampling in-

terval ¢= 1s and SNR ¸= 15. Scenarios with different

number of targets T were simulated. Fig. 4 shows a

realization of a scenario with T = 20.

1) Experiment 1:
a) Algorithms: Three PFs (CPU-CR, GPU-CR, and

GPU-DR)3 were implemented with different number of

particles for each scenario, as follows (see also Sect.

III-A).

² CPU-CR: CPU performs prediction (draw predicted

samples and calculate importance weights) and re-

sampling (using the residual systematic resampling

method [2]). This algorithm does not use GPU. It is

implemented just for comparison.

² GPU-CR: GPU (in parallel) performs importance

sampling and CPU performs centralized resampling.

² GPU-DR: Both IS & R are performed in parallel on

the GPU. DR is as described in Sect. III-A, Table III.

After the weights of the blocks are known, the num-

ber of particles that each block replicates is calculated

at CPU using residual systematic resampling (inter re-

sampling). Finally, intra-resampling is performed in-

side the block in parallel.

b) Computing Platform: The hardware used in this

experiment is presented in Table VI.

Note that there are 8 parallel pipelines and the

number of particles chosen À number of pipelines.

Also, the GPUs has a maximal texture size that limits

the number of particles that can be resampled as a single

unit (block).

3CR stands for Centralized Resampling and DR–for Distributed

Resampling

Fig. 5. Relative Times Spent in the Different Steps Using GPU-DR

Fig. 6. Computation Times of CR & DR

The code for all implementations is written in C++

and compiled using Visual C++ 2008.

c) Results & Comparison: Due to space limitation,

only the most representative results are reported.

First, Fig. 5 shows the computation times spent on

different parts of the PF algorithm in the GPU-DR

implementation. The resampling step incurs the highest

computational cost. Quantitatively, resampling is from

two to four times more costly (depending on the number

of particles) than importance sampling, and about 2.5

times than generating the estimates.

Second, Fig. 6 shows a comparison between the

times for resampling only (CR and DR) with different

number of particles. Even though DR is in parallel, the

improvement over CR is not significant because the

clock rate of GPU is much lower (almost two times)

than that of the CPU. Also, as the number of particles

increases the efficiency of DR decreases due to the

limited pipelines of GPU.

Next, Fig. 7 and Fig. 8 show the position time-

average root-mean square errors (TARMSE) and exe-

cution times of the three PF algorithms for 3 targets,

respectively. Fig. 9 and Fig. 10 are for 20 targets. Fig.

7 indicates that, for 3 targets, using slightly more than

60K particles (in all filters) is a reasonable choice for

practical purposes. For 20 targets, Fig. 9 indicates that

more than 130k particles are needed. These figures also
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Fig. 7. Position TARMSE; 3 Targets; 100 MC Runs

Fig. 8. Average Execution Time; 3 Targets; 100 MC Runs

illustrate that CPU-CR and GPU-CR are better than

GPU-DR in terms of accuracy (for the same number

of particles). This is clear because CR has better uti-

lization of particles than DR–the former implements

the resampling exactly as opposed to the latter which is

approximate.

On the other hand, Fig. 8 and Fig. 10 show the exe-

cution times for one computational cycle of the tracking

filter. Now the order of performance is reversed with

CPU-CR being considerably slower than both GPU-CR

and GPU-DR (which are close in computation times).

Quantitatively (based on all simulations with 130K par-

ticles), CPU-CR is about 30% slower than GPU-DR.

The fully centralized algorithm (CPU-CR) is the best

in terms of accuracy at a given number of particles but

its computation time is worst. The fully distributed al-

gorithm (GPU-DR) has shown the best running time

but its accuracy is the worst. The partially distributed

algorithm (GPU-CR), for the considered scenarios, has

shown a computation time close to that of the fully dis-

Fig. 9. Position TARMSE; 20 Targets; 100 MC Runs

Fig. 10. Average Execution Time; 20 Targets; 100 MC Runs

tributed (GPU-DR) and accuracy not much worse than

that of the fully centralized (CPU-CR). It appears that,

for the considered hardware configuration, the partially

distributed implementation may provide a reasonable

tradeoff between filter accuracy and computation time

as compared to the other two implementations.

2) Experiment 2:
a) Algorithms: Three PFs (CPU-CR, GPU-DR, and

GPU-DR (new)) were implemented with different num-

ber of particles for each scenario. CPU-CR and GPU-

DR were the same as described in Experiment 1. GPU-

DR (new) implemented the novel enhanced PPF pro-

posed in Sect. III-B

² GPU-DR (new): Both IS & R are performed in parallel
on the GPU. DR is as described for the enhanced PPF

in Table IV.

b) Computing Platform: The hardware used in this

experiment is presented in Table VII.

c) Results & Comparison: Here we evaluate the novel

EPPF proposed in Sect. III-B, Table IV in comparison
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TABLE VII

Hardware Configuration 2

Model: Intel(R) Core(TM) i5-3210M

Clock Rate: 2.50 GHz
CPU

Memory: 4.0 G

Operating System: Windows 7

Model: NVS 5400M

CUDA Driver: 5.0

Clock Rate: 0.95 GHz

GPU Cores: 2 (MP) x 48 (Cores/MP) = 96

Registers: 32K bytes/block

Constant Memory: 64K bytes

Shared Memory: 48K bytes/block

with CPU-CR and GPU-DR, described in Sect. III-A,

Table III.

Fig 11 shows the computation time of the CPU-

centralized resampling (cent.R), GPU-distributed re-

sampling with RNA (dist.R (RNA)) and our enhanced

algorithm (dist.R (new)). It is seen that for different

number of particles our updated algorithm has better

performance than that of the generic algorithms. The

new algorithm is up to 1.5 times faster than dist.R

(RNA). Fig. 12 shows relative times spent in the differ-

ent steps of three PF algorithms. The resampling step

of dist.R (new) has almost the same computational cost

as the step of importance sampling. It is a significant

improvement of the resampling step as compared with

cent.R and dist.R (RNA).

V. SIMULATION STUDY II: GPU PPF VS. PFF FOR
HIGH-DIMENSIONAL FILTERING PROBLEM

The purpose of this simulation study is to evaluate

and compare the performances of the GPU-accelerated

parallel PF (Table III) and PFF (Table V) for a high

dimensional nonlinear filtering problem.

A. Model

We consider nonlinear filtering for the following

model with cubic measurement nonlinearities4

xk+1 =©xk +wk (5)

zk =

2641 0 0

1 1 0

1 1 1

375
264x

3
k,1

x3k,2

x3k,3

375+ vk (6)

where k = 0,1, : : : is time index, xk = [xk,1 xk,2 : : : ,xk,d]
0

is the state vector of dimension d ¸ 3, © is a positive

definite transition matrix that is generated randomly

for each scenario in the simulation, wk »N (0,0:042Id)
and vk »N (0,1:02I3) are zero-mean Gaussian white

process and measurement noises, respectively, and the

4The target dynamics need not be nonlinear for the purpose of com-

parison because both nonlinear filters, PF and PFF, differ only in the

measurement update part.

Fig. 11. Computation Times of CR & DR

Fig. 12. Relative Times Spent in the Different Steps Using

GPU-DR

initial state vector x0 »N (0:8,25000Id) is randomly
generated.

Four scenarios with different state dimension (i.e.,

d = 10,20,30,40), each with different number of parti-

cles as specified in Table VIII, are simulated.

B. Algorithms

Implemented are the following four filter algorithms:

PFF-CPU, PFF-GPU, PF-CPU and PF-GPU where

CPU stands for a sequential implementation (needed for

the purposes of comparison). The hardware used in our

experiments is presented in Table VII. The code for all

implementations is written in C++ and compiled using

Visual C++ 2008. The particular configuration param-

eters of our GPU implementations are given in Table

VIII.

C. Performance Measures

In order to obtain statistically significant evaluation

of the performance metrics, R = 50 Monte Carlo (MC)

runs are performed for each scenario.

The filters’ estimation accuracy at each time step k is

measured in terms of the average dimension-free error

ek =
1

R

RX
r=1

e
(r)
k , (7)
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TABLE VIII

GPU Blocks’ Specification

Num of Particles = 1536 12288 49152 98304 196608 393216 786432 1572864

XDim = 10 Threads/Block = 256 6 48 192 384 768 1536 3072 6144

XDim = 20 Threads/Block = 128 12 96 384 768 1536 3072 6144 12288

XDim = 30 Threads/Block = 96 16 128 512 1024 2048 4096 8192 16384

XDim = 40 Threads/Block = 64 24 192 768 1536 3072 6144 12288 24576

where

e(r)k =
1

d
(x̂(r)k ¡ x(r)k )0(x̂(r)k ¡ x(r)k ) (8)

and x(r)k and x̂(r)k are the true and estimated state vectors,

respectively, in MC run r = 1,2, : : : ,R.

The filters’ overall accuracy is measured in terms of

the time-averaged error (TAE), defined as follows

"[m,n] =
1

n¡m+1
nX

k=m

ek (9)

where [m,n] is the time interval of averaging. TAE is

sometimes used in target tracking as a single measure of

“steady-state” filter accuracy. In the simulation m= 21,

n= 50.

The computational performance of all four filters is

measured in terms of average running time per one filter

time-step. The computational performance of the paral-

lel GPU filters is measured in terms of speedup with

respect to the corresponding CPU sequential filter, i.e.,

Speedup=
TCPU
TGPU

(10)

where TCPU and TGPU denote the average running time of

the filter (PF or PFF) on CPU and GPU, respectively.

The speedup characterizes the scalability of a parallel

algorithm.

D. Results

Fig. 13 shows the dimension-free error plots of the

filters5 with 10 dimensional state vectors and 800K par-

ticles. It illustrates that PFF-CPU is the best in terms of

accuracy (for the same number of particles), followed

by PFF-GPU, PF-CPU and PF-GPU. Very similar re-

sults were obtained for different state vector dimensions

(up to 40) and different number of particles. Based on

all results, the GPU versions of both PFF and PF are

apparently less accurate than their corresponding CPU

versions. This is because the parallel GPU versions are

actually approximations of the fully centralized CPU

versions. For the PF this approximation is in the resam-

pling step: it is global (uses all particles) in PF-CPU and

local (uses only the particles within a block) in PF-GPU.

A similar effect happens with the PFF: the computation

of x̄k in PFF-CPU is global (the sample mean of all

5EKF’s error plot is shown as a baseline only and is excluded from

further comparison.

Fig. 13. Dimension-Free Errors

particles), while the computation of x̄k,b in PFF-GPU is

local and consequently less accurate.

More detailed overall accuracy comparison can be

made based on the plots in Fig. 14 (left) that show the

time-averaged dimension-free errors of the four filters

with different dimensions of the state vector versus

the number of particles. The differences in accuracy

are quite significant. In particular, PFF-GPU is several

orders of magnitude more accurate than both PF-GPU

and PF-CPU. Of course, PFF-GPU is less accurate than

PFF-CPU (for reasons explained above), but this does

not seem significant, given the fact (discussed next) that

the former is much faster than the latter.

The plots in Fig. 14 (right) show the average run-

ning times–the “prices” paid to achieve the accuracies

shown in the corresponding plots of Fig. 14 (left). With

the same number of particles, PFF-CPU is about 1.5—2

times faster than PF-CPU (depending on the number

of particles), and PFF-GPU is about 4—5 times faster

than PF-GPU. Table IX is provided for more accurate

comparison. Even though it might seem that PFF-CPU

requires more computation time per particle than PF-

CPU, it actually appears otherwise. PFF update includes

computing A(¸), b(¸) and solving the ODE via the Euler

scheme (Table V). Computing A, b is common for all

particles and independent from the number of particles

(except for x̄k). Therefore, for large number of parti-

cles it has insignificant contribution to the “per parti-

cle” computation time. The main portion of computa-

tion time per particle is spent on the ODE which is a

fairly simple and fast computation for small L. In the

simulation L= 10 and the time spent on it is up to twice
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Fig. 14. Time-Averaged Dimension-Free Error (left) & Running Time (right)

smaller than the time PF spends to draw a resampled

particle from a large set of particles using stratified sam-

pling. PFF with L= 5 and 20 was also run, but L= 10

was chosen as the best tradeoff between accuracy and

speed. For L= 20 the computation times of PFF-CPU

and PF-CPU are closer but the advantage of PFF in ac-

curacy increases. The time results regarding PFF-GPU

vs. PF-GPU are not surprising given the fact that PFF-

GPU is almost completely (thread) parallel while the

resampling of PF-GPU is only partially (block) parallel.

Fig. 15 illustrates the effect of the state dimension

on the running time with different number of particles

of both parallel filters: PF-GPU (left) and PFF-GPU

(right).

Fig. 16 shows the speedup of PF-GPU (left) and

PFF-GPU (right) with different state dimension and dif-

ferent number of particles. It appears that for both GPU

filters the speedup most often increases with the state di-

mension (for the same number of particles) which sup-

ports using GPU for highly dimensional problems. On

the other hand, the speedup for both GPU filters does

not seem to vary very significantly with the number of

particles (for the same state dimension). Finally, Fig.

17 compares the speedup of PF-GPU and PFF-GPU for
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TABLE IX

Running Time (s)

Num of Particles = 1536 12288 49152 98304 196608 393216 786432 1572864

PFF-CPU 0.0099 0.0792 0.3403 0.6682 1.2630 3.1733 5.0851 14.4671

PFF-GPU 0.0007 0.0054 0.0218 0.0439 0.1000 0.2187 0.4625 1.0493
XDim = 10

PF-CPU 0.0172 0.1418 0.5856 1.2602 2.5559 4.6397 9.1571 17.8682

PF-GPU 0.0034 0.0281 0.1129 0.2438 0.5337 1.0696 1.7700 5.5668

PFF-CPU 0.0218 0.1760 0.7338 1.5952 2.9421 6.6210 12.4409 24.9088

PFF-GPU 0.0014 0.0117 0.0469 0.0989 0.2175 0.4928 1.0343 1.7933
XDim = 20

PF-CPU 0.0382 0.3139 1.2319 2.5249 5.9612 10.6548 28.3821 50.8195

PF-GPU 0.0063 0.0513 0.2023 0.4362 0.9371 1.6812 3.5717 8.8979

PFF-CPU 0.0359 0.2925 1.1410 2.4776 5.4436 9.9433 18.9128 48.8515

PFF-GPU 0.0023 0.0181 0.0722 0.1464 0.2984 0.6978 1.4003 3.5066
XDim = 30

PF-CPU 0.0643 0.5213 2.2102 4.2976 8.4932 20.7041 35.0581 83.7303

PF-GPU 0.0092 0.0743 0.3132 0.5864 1.3253 2.9221 6.7780 9.8334

PFF-CPU 0.0520 0.4127 1.7799 3.7476 7.6032 14.2963 26.9597 64.0159

PFF-GPU 0.0033 0.0272 0.1092 0.2148 0.5102 0.8640 2.0259 4.4173
XDim = 40

PF-CPU 0.0947 0.7756 3.0457 6.1521 13.2333 26.1284 59.6716 103.0515

PF-GPU 0.0124 0.0996 0.4036 0.8578 1.7792 3.3625 9.2275 15.5961

Fig. 15. One-Step Running Time

Fig. 16. Speedup of PF & PFF

different number of particles (for state dimension 40).

PF-GPU provides a speedup of about six times with re-

spect to PF-CPU and PFF-GPU provides a speedup of

about fifteen times with respect to PF-CPU. PFF-GPU

outperforms PF-GPU more than two times in terms of

speedup due to its higher level of parallelization.
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Fig. 17. Speedup of PF vs. PFF

VI. SUMMARY & CONCLUSIONS

Three efficient parallel particle and particle flow fil-

ter implementations, optimized for GPU architecture,

have been proposed and studied. They have been ap-

plied and tested, via simulation, for tracking multi-

ple targets using a pixelized sensor, and for a high-

dimensional nonlinear density estimation problem.

Overall, the obtained simulation results have demon-

strated that using GPU can significantly accelerate the

computation of particle filters and particle flow filters

through parallelization of the computational algorithms

at a tolerable loss of accuracy, and thereby bring them

closer to practical applications.

Specifically:

² For the multitarget target tracking problem, the newly
proposed Enhanced PPF GPU implementation has

shown superior computational performance and the

same accuracy as compared to the previous (RNA-

based) PPF implementation.

² For the high-dimensional nonlinear estimation prob-
lem, the parallel particle flow filter has shown supe-

rior performance in comparison with the parallel par-

ticle filter implementation in both estimation accuracy

and computational efficiency.
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