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In this paper we show that the standard definition of likelihood

function used in Bayesian inference simply and correctly handles

quantized measurements and imprecise likelihood functions. Some

recent papers have stated or implied that methods involving random

sets, fuzzy membership functions, generalized likelihood functions,
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likelihood functions and quantized measurements. While it is true

that one can use these methods, in the spirit of Occam’s razor, we

feel the simplest correct solution is the best.
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1 INTRODUCTION

Some recent papers have stated or implied that meth-

ods involving random sets, fuzzy membership func-

tions, generalized likelihood functions, or Dempster-

Shafer concepts are required to handle quantized mea-

surements and imprecise likelihood functions. In par-

ticular, reference [3] considers the problem of con-

structing likelihood functions for quantized measure-

ments and proposes that these types of measurements

require a generalization of the standard notion of like-

lihood function that involves the use of random sets,

concepts from fuzzy logic and Dempster-Shafer theory,

as well as generalized or imprecise likelihood functions.

Similarly, reference [4] presents examples of problems

where the author claims that imprecise likelihood func-

tions (a generalization of standard likelihood functions)

are required.

The purpose of this paper is to show that the standard

concept of likelihood function as defined in [1] or [6]

is sufficient to solve the problems presented in [3] and

[4] in an easy and straightforward manner. This is an

important point because in the spirit of Occam’s razor,

we believe the simplest correct solution to a problem

is the best one. Simplicity allows readers to clearly

understand the nature of the problem and its solution. It

facilitates the use of a concept in applications and makes

it easier to extend it to more challenging problems. It

enables progress.

This suggests the following question which we

pose but do not presume to answer here: What situ-

ations involving quantized measurements or imprecise

likelihood functions require the use of alternate, non-

Bayesian models of uncertainty?

Section 2 of this paper presents the standard Bayesian

inference formulation. Section 3 shows how this for-

mulation can be used to handle the quantized measure-

ment examples presented in [3]. Section 4 shows that

the examples given in [4] can be readily handled us-

ing standard Bayesian likelihood functions and that a

generalization to imprecise likelihood functions is not

required for these examples.

Reference [2] investigates the problem of tracking

a target with quantized measurements. The authors as-

sume a Gaussian motion model for the target and de-

velop an approximate Minimum Mean Squared Error

(MMSE) solution. They provide a numerical algorithm

for obtaining this solution. This is very impressive work,

and one must admire the authors for the cleverness of

their solution. However, the solution is complex and

does require many special assumptions. In contrast to

this we present in Section 5 a particle filter approach

to solving this problem with standard Bayesian likeli-

hood functions that is very simple and general. One is

not constrained to Gaussian motion models or measure-

ment errors. It is straight-forward to incorporate a wide

variety of types of measurements and motion models.

We present an example to illustrate this approach.
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2 BAYESIAN INFERENCE FORMULATION

In order to clarify what we mean by a standard

Bayesian approach, we give the formulation of the basic

Bayesian inference problem that is presented in [6] and

is consistent with that in [1].

There is an unknown parameter £ that we wish to

estimate. There is a prior distribution p0 on £ such that

p0(μ) = Prf£ = μg (1)

where Pr indicates either probability or probability den-

sity as appropriate. We obtain a measurement Z from a

sensor. The measurement is viewed as a random vari-

able whose distribution depends on μ. We define the
likelihood function

l(z j μ) = PrfZ = z j£ = μg: (2)

If we receive a measurement Z = z, we compute the
posterior distribution

p1(μ j Z = z) =
l(z j μ)p0(μ)R
l(z j μ0)p0(μ0)dμ0

(3)

where integration is replaced by summation if the dis-

tribution on £ is discrete.

Note, when we use the term likelihood function to

describe (2), we mean the function l(z j ¢) obtained by
holding the measurement z fixed and letting the param-
eter μ vary. l(z j ¢) need not be a probability (density)
function. It may integrate to a number different than 1.

We use the notation l in place of the more usual p to
emphasize this point.

3 QUANTIZED MEASUREMENTS

Reference [3] sought to illustrated the necessity of its

approach by presenting examples of performing infer-

ence using quantized measurements. In this section, we

use the same examples to show that standard likelihood

functions and the Bayesian inference process as given

in (1)—(3) provide a straight-forward and correct way

of incorporating quantized measurements into Bayesian

inference. No generalization is required, and no exten-

sions of the standard Bayesian probability concepts are

needed.

In the digital voltmeter example given in [3], mea-

surements are taken by a digital voltmeter that provides

voltage readings to two decimal places. From the digital

voltmeter measurement, we wish to estimate the actual

voltage £. Let p0 be the prior on £. We consider three
cases, measurements without noise, measurements with

noise, and measurements where the quantization is un-

known.

3.1 Quantized Measurements without noise–known
quantization

If there is no noise added to the actual voltage,

then any voltage in the interval (199:975,199:985] will
produce a measurement of 199.98. The measurement

space is a discrete set of points on the real line of the

form j£ 0:0 where j is an integer such that ¡1< j <
1. Any voltage in the set

Sj = (j£0:01¡ 0:005,j£ 0:01+0:005] (4)

will produce a measurement Z = j£0:01. From the

definition of likelihood function in (2), we have

l(j£ 0:01 j μ) = PrfZ = j£ 0:01 j μg

=

½
1 if μ 2 Sj
0 otherwise.

(5)

For notational convenience, we shall use Z = j for the
measurement and l(j j μ) for the likelihood function
in (5).

The posterior on the actual voltage £ is com-

puted by,

p1(μ j Z = j) =
l(j j μ)p0(μ)R
l(j j μ0)p0(μ0)dμ0

=

8<:
p0(μ)R

Sj
p0(μ

0)dμ0
if μ 2 Sj

0 otherwise.

(6)

3.2 Quantized Measurements with Noise–Known
Quantization

In this example we suppose the received voltage r
at the digital voltmeter is the true voltage μ plus noise
". Specifically, the true voltage is μ+ " where " has the
density function

f(y) = Prf"= yg for ¡1< y <1:
The digital voltmeter produces measurements to two

decimal places as above. In this case the likelihood

function becomes

l(j j μ) = PrfZ = j j μg
= Prfj£ 0:01¡ 0:005< μ+ "

· j£ 0:01+0:005g
= Prfj£ 0:01¡ μ¡0:005< "

· j£ 0:01¡ μ+0:005g

=

Z j£0:01¡μ+0:005

j£0:01¡μ¡0:005
f(y)dy: (7)

and the posterior distribution on £ given the measure-

ment Z = j is

p1(μ j Z = j) =
p0(μ)l(j j μ)R
p0(μ

0)l(j j μ0)dμ0

=
p0(μ)

R j£0:01¡μ+0:005
j£0:01¡μ+0:005 f(y)dyR

p0(μ
0)
³R j£0:01¡μ0+0:005

j£0:01¡μ0¡0:005 f(y)dy
´
dμ0

As an example, let us consider the situation where

f(y) = ´(y,0,¾2)
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where ´(¢,0,¾2) is the probability density function for
the normal distribution with mean 0 and variance ¾2.
The notation ´(¢,0,¾2) is used to indicate the function
of one variable obtained by fixing the values of the 2nd

and 3rd variables at 0 and ¾2. We use a similar notation
for a function of two variables when we wish to fix the

value of one of the variables. Let

©(z,¾2) =

Z z

¡1
´(y,0,¾2)dy for ¡1< z <1: (8)

Then the likelihood function l(j j μ) in (7) becomes
l(j j μ) = ©(j£ 0:01¡ μ+0:005,¾2)

¡©(j£ 0:01¡ μ¡ 0:005,¾2): (9)

Figure 1 shows plots of the likelihood function in

(9) for Z = 10 and ¾2 = 0:0001, 0.0004, and 0.0016.
Reference [4] also presents a quantized measure-

ment example that the author claims requires the use

of imprecise likelihood functions. In fact one can pro-

duce the example in [4] and obtain Figure 1 in [4] if

he considers the case where the quantization has bin-

size 15 and the measurement Z = j indicates the interval
(15j,15(j+1)]. In this case the sets Sj in (4) become

Sj = (15j,15(j+1)],

and the likelihood function in (9) becomes

l(j j μ) =©(j£ (15+1)¡ μ,¾2)¡©(j£ 15¡ μ,¾2)

where μ plays the role of the variable z in [4].

3.3 Quantized Measurements when Quantization is
Unknown

In the case where the quantization is unknown, we

expand the state space on which we perform inference

to simultaneously estimate the voltage and the quanti-

zation. To illustrate how this is done within the conven-

tional Bayesian inference formalism, we consider the

case where there is no noise added to the voltage and the

quantized bins have a known and equal size. However,

we do not know the anchor point for the bins.

Following Example 1, we take the bin size to be

0.01. However we do not know the anchor point of the

bins. Specifically there is a unknown parameter ¢ such

that ¡0:005·¢· 0:005 and
Sj(¢) = (j£0:01¡ 0:005+¢,j£ 0:01+0:005+¢]:
The inference problem is to estimate both μ and ¢.
In classic Bayesian fashion, we impose a prior distri-

bution on (μ,¢) which represents our prior knowledge
(or uncertainty) about (μ,¢). As an example we suppose
that the priors on the two parameters are independent

and the joint density on (μ,¢) is given by

g0(μ,±) = p0(μ)q0(±)

for ¡1< μ <1 ¡ 0:005< ± · 0:005:

Fig. 1. Likelihood functions for j = 10 (0.1 volt reading on

voltmeter) when ¾2 = 0:0001, 0.0004, and 0.0016.

The likelihood function for the observation Z = j£
0:01 is

l(j j (μ,±)) = PrfZ = j£ 0:01 j (£,¢) = (μ,±)g

=

½
1 if μ 2 Sj(±)
0 otherwise.

Let g1 be the posterior joint density on (μ,¢) given
Z = j. Then

g1((μ,±) j Z = j)

=
l(j j (μ,±))p0(μ)q0(±)R 0:005

¡0:005
R
l(j j (μ0,±0))p0(μ0)q0(±0)dμ0d±0

=

8><>:
p0(μ)q0(±)R 0:005

¡0:005
R
Sj (±0)

p0(μ
0)q0(±0)dμ0d±0

for μ 2 Sj(±)

0 otherwise.

3.4 Alternate Quantization Models

Digital signal processing involves quantized mea-

surements. The effect of this quantization is sometimes

modeled as adding random and independent noise to

the measurements. This is discussed in [7] which notes

“It has been shown to be a valid model in cases of

high resolution quantization (small ¢relative to the sig-
nal strength) with smooth probability density functions.

However, additive noise behaviour is not always a valid

assumption, and care should be taken to avoid assuming

that this model always applies. In actuality, the quanti-

zation error: : : is deterministically related to the signal
rather than being independent of it.”

4 IMPRECISE LIKELIHOOD FUNCTIONS

In this section we show that the localization example

given in IV of [4] can be computed in a straight-
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forward way by standard Bayesian likelihood functions

without resorting to imprecise likelihood functions or

other generalizations of Bayesian inference.

For the convenience of the reader we reproduce the

description of the example given in [4].

4.1 Localization using RSS

Received signal strength (RSS) is often used for

localizing an emitting energy source although the source

level of the emitter is unknown. As an example, consider

the two-dimensional situation shown in Figure 2 where

the unknown source position X = (X1,X2) is located

inside the square defined by

5· X1 · 95; 5· X2 · 95, (10)

and the prior on distribution on (X1,X2) is uniform over

this square. The unknown source level A (in dB) of the

emitter has a uniform distribution on [25,65]. There are

12 receivers uniformly spaced on a circle of radius 50

centered at (50,50) as shown by the squares in Figure

2. The receivers are numbered in counter-clockwise

fashion starting with receiver 1 at the 3 o’clock position.

Let (xi1,x
i
2) be the location of the ith receiver.

For i= 1, : : : ,12, the measurement Zi of RSS at the

ith receiver satisfies the following equation

Zi = A¡ 10μi log(di(x)=d0)+ vi (11)

where

di(x) =
q
(xi1¡ x1)2 + (xi2¡ x2)2

is the distance from the location of the ith receiver to

the source given the source is located at x= (x1,x2),

μi is an unknown propagation loss factor where

2· μi · 4,
d0 = 10 is a reference distance,

vi has a Gaussian distribution with mean 0 and

variance 4,

vi is independent of vj for i 6= j.

4.1.1 Likelihood Function
Reference [4] does not provide an explicit formula

for the likelihood function employed in this example.

For our computations, we assume that μi is uniformly

distributed over [2:0,4:0] for each receiver and that μi
is independent of μj for i 6= j and obtain an explicit
likelihood function as follows.

Let ´04 be the density function for a Gaussian dis-

tribution with mean 0 and variance 4. Then

PrfZi = z j X = x,A= a, and μi = μg
= ´04(z¡ a+10μ log(di(x)=d0))

Fig. 2. Marginal distributions on position and source level.

and

l(z j x,a) = PrfZi = z j X = x,A= ag

=
1

2

Z 4

2

´04(z¡ a+10μ log(di(x)=d0))dμ

=

R 40log(di(x)=d0)
20log(di(x)=d0)

´04(z¡ a+ y)dy
20log(di(x)=d0)

=
©(z¡ a+40log(di(x)=d0),4)

20log(di(x)=d0)

¡ ©(z¡ a+20log(di(x)=d0),4)
20log(di(x)=d0)

(12)

is the likelihood for the measurement Zi = z given X = x
and A= a.

4.1.2 Results
Following [4] we simulated measurements at the 12

receivers using the model in (11) for a source located at

X = (30,60) with source level A= 35. We set μi = 2:3
for i= 1, : : : ,6 and μi = 3:5 for i = 7, : : : ,12. Using the
resulting measurements and the likelihood function in

(12), we computed the joint posterior distribution on

emitter position X and source level A. Figure 2 shows
the resulting marginals on X and A. For numerical con-
venience we computed the distributions on a grid that
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has 200 by 200 cells in position and 41 cells in source

level. We calculated the posterior probability in each of

these cells given the measurements from the 12 sensors.

The color bar next to the position marginal indicates

containment. The red region is the 50% containment

region (i.e., the region with the smallest number of cells

that contains 50% probability). The red plus orange re-

gion is the 86% containment region, and so on for the

yellow, green, and blue regions. Observe that the emit-

ter’s location (shown as a white dot in Figure 2) is close

to edge of the 50% containment region. The marginal

on source level is represented by a bar graph with the

height of the bar being equal to the posterior probabil-

ity in the cell containing the bar. The cells are 1 dB in

width. The actual source level, 35 dB, is in a reasonable

location in this distribution.

In order to test whether the above method produces

a good representation of the uncertainty in the posterior

estimate of the position X of the emitter, we followed

the approach of Section V in [4] and simulated 1000

sets of measurements at the 12 receivers. For each

replication of the simulation, we made an independent

draw for the value of μi from a uniform distribution

over [2:0,4:0] and computed the resulting measurement

Zi from (11) for i= 1, : : : ,12. The location of the emitter

and source level remained fixed at X = (30,60) and

A= 35 for all replications. For each replication, we

computed the marginal on emitter position as in Figure

2. To test whether the resulting distributions correctly

represent the uncertainty in the location of the emitter,

we computed the following Kolmogorov-Smirnov (KS)

graph.

For the nth replication, we started with the cell

containing the emitter (the one containing the point

(30,60)) and summed the probability in all cells hav-

ing probability greater than or equal to the probabil-

ity in the emitter cell. This produced a containment re-

gion and containment probability cn for n= 1, : : : ,1000.

Next we ordered the containment probabilities into a set

fĉn;n= 1, : : : ,1000g such that 0· ĉ1 · ĉ2 : : :· ĉ1000 ·
1. We then plotted the points (n=1000, ĉn) for n=

1, : : : ,1000. This plot is shown in blue in Figure 3 which

is the empirical distribution for the containment proba-

bility produced by the marginal distribution on position.

If the marginal distributions accurately represent the

uncertainty in emitter location, this distribution should

converge to the red straight line in Figure 3 as the num-

ber of replication increases to infinity. That is, the per-

centage of replications in which the target is inside the

p percent containment region should be p percent. One

can see that the empirical distribution is indeed a close

fit to the straight line indicating an accurate representa-

tion of the uncertainty in the marginal. One could per-

form a KS test to test the hypothesis that the empirical

distribution is the same except for sampling noise as the

Fig. 3. KS graph for marginal distribution on emitter location.

straight line. However, it is clear from Figure 3 that the

fit is very good.

To further test the accuracy of the marginal posterior

on location, we performed another set of 1000 replica-

tions similar to the ones above. For each of these repli-

cations, we made an independent draw from a uniform

distribution over the square defined by (10) for the lo-

cation of the emitter and an independent draw from a

uniform distribution over [25,65] for the source level.

As above, we made independent draws for the values

of μifor i= 1, : : :12. We then computed the KS graph
for the posterior marginal distribution on emitter loca-

tion. The result looked very similar to Figure 3 further

confirming the accuracy of these posterior distributions.

5 TRACKING MOVING TARGETS WITH QUANTIZED
MEASUREMENTS

The target considered in Section 4 is stationary.

One can also track moving targets using sensors with

quantized measurements. Since the measurements do

not satisfy the linear-Gaussian assumptions required for

a Kalman filter, we perform the tracking using a particle

filter as described in [5] or Chapter 3 of [6].

The general procedure is straightforward. The parti-

cles are motion updated to the time of a measurement.

The likelihood function for a quantized measurement is

applied to the weight of each particle to produce the

posterior distribution on target state. The particles are

resampled and then motion updated to the time of the

next measurement.

In particular, suppose that the target state distribution

at time t is represented by the set of particles

f(xn(t),wn(t)g for n= 1, : : : ,N
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where xn(t) is the state of the nth particle at time t and
wn is its probability. This set of particles represents a
discrete probability approximation to the distribution on

target state at the time t. Suppose we obtain a quantized
measurement Z = z. Let l(z j x) be the likelihood func-
tion for this measurement. The posterior distribution on

target state at time t is given by

f(xn(t),w̃n(t)g for n= 1, : : : ,N (13)

where

w̃n(t) =
l(z j xn(t))wn(t)PN
n0=1 l(z j xn0(t))wn0(t)

:

If the next measurement is received at time t0 > t,
the posterior particle filter representation in (13) can

be motion-updated to the time t0 to act as a proposal
distribution for the incorporation of the measurement

at time t0. The posterior in (13) is typically resampled
before the motion update is performed. If desired, other

proposal distributions can used to improve particle filter

performance as discussed in [5].

In the following example we consider an underwater

acoustic detection situation that goes beyond the quan-

tized measurement examples considered in [3]. In par-

ticular, the bins are unions of disjoint intervals. In this

example we employ a particle filter to track a moving

target.

5.1 Likelihood Function for Acoustic Detection

When a passive acoustic sensor is located in a deep

water region of the ocean, the sound propagation con-

ditions often produce detection areas that are disjoint.

For example, there may be good detection conditions

from the sensor’s location out to range 5 nm. This is

typically called the direct path region. In addition there

are often convergence zone regions at ranges of roughly

30 nm, 60 nm, and even farther out. A convergence zone

is a region where the acoustic rays converge and pro-

duce low propagation loss and increased detection prob-

ability for the sensor. Suppose the convergence zones

are 5 nm wide. It is often the case that the uncertainty

about the source level of a potential target means that

although one cannot calculate the detection probability

as a function of range, one does know that if a target

has been detected, it is in one of these zones. In this

case, a detection means that the target is in one of the

above range intervals, i.e., its range is in the union of

disjoint intervals

S = [0,5][ [27:5,32:5][ [57:5,62:5]: (14)

Generally one does not know the edges of the inter-

vals in S exactly. Depending on the source level of the
target and the ambient noise in the ocean, these areas

can be a bit larger or smaller than the nominal numbers

in (14). We will model this uncertainty with a likeli-

hood function that is similar to the one given in the

example in Section 3.2 with the exception that there is

only one bin corresponding to a detection, which we

denote by Z = 1. Specifically we let r denote the range
of the target and "i be mutually independent normally
distributed random variables with mean 0 and variance

¾2i for i= 1,2,3. Then the likelihood function ld for a
detection becomes

ld(1 j r) = PrfZ = 1 j target at range rg

= Pr

½
r · 5+ "1 or 27:5¡ "2 · r · 32:5+ "2

or 57:5¡ "3 · r · 62:5+ "3

¾

¼

8><>:
Prfr · 5+ "1g for 0· r · 20
Prf27:5¡ "2 · r · 32:5+ "2g for 20< r · 45
Prf57:5¡ "3 · r · 62:5+ "3g for 45< r <1:

(15)

The approximation in the last line is essentially an

equality if ¾2i < 4 for i= 1,2,3. In terms of © defined
in (8), the likelihood function in (15) becomes

ld(1 j r) =

8>>>>>><>>>>>>:

1¡©(r¡ 5,¾21) for 0· r · 20
minf1¡©(27:5¡ r,¾22),1¡©(r¡ 32:5,¾22)g

for 20< r · 45
minf1¡©(57:5¡ r,¾23),1¡©(r¡ 62:5,¾23)g

for 45< r <1:
(16)

Figure 4 shows the likelihood function ld(1 j ¢) when
¾2i = 0:5 for i= 1,2,3.

5.2 Acoustic Tracking Example

For this example we consider a target moving at

14 kn in a 70 nm by 70 nm square as shown in Figure

5. There are six sensors located at (0,0), (0,35), (0,70),

(70,0), (70,35), and (70,70). These are shown as white

dots in Figure 5. Each of these sensors has the detection

characteristics described in Section 5.1 and in particu-

lar has the detection likelihood function given by and

plotted in Figure 4. There is an independent detection

opportunity for each of these sensors every 5 minutes.

The detection opportunities occur simultaneously for all

sensors. Note that the detections produce range informa-

tion but no bearing information.

In order to show the coverage of the sensor field

over the 70 nm£70 nm square, we computed the sum

of the likelihood functions for the six sensors evaluated

at each point in the square. This sum yields the expected

number of sensors that can detect a target at each point

in the square. The results are color-coded and plotted

on the square in Figure 5. The color code is given by

the color bar on the right. Note, this is not a calculation

of the likelihood function resulting from the detections

at an opportunity time. That likelihood function is ob-

tained by pointwise multiplying the likelihood functions

for the sensors obtaining a detection at that time.

For the example, the target follows the track shown

in white in Figure 5 moving at a constant 14 kn from the
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Fig. 4. Likelihood function ld(1 j ¢) for accoustic detection in a
convergence zone environment.

bottom to the top of the figure. The maneuver occurs at

2.5 hours.

Using the likelihood function in (16) and a particle

filter that is a minor modification of the one described

in Section 1.3 of [6], we estimated the track of this

moving target. We simulated detections as follows. At

each opportunity time, the simulation calculated the

range of the target from each sensor. A detection was

called with probability equal to the likelihood function

value at that range. Detections are independent from

sensor to sensor.

We used 25,000 particles. The particle paths were

initialized from the first sensor detection as follows. For

each particle, the range was randomly drawn from a

uniform distribution on the convergence zone intervals

with a Gaussian component having mean 0 and variance

0.5 nm added. The bearing from the sensor was chosen

uniformly over the interval 0 to 360 degrees. By doing

this we obtained 25,000 equally weighted independent

points from the posterior distribution on target position

given the first detection.

The initial speed for each particle was drawn from

a uniform distribution on the interval 2 to 30 kn. The

initial course was drawn from a uniform distribution

over the interval 0 to 360 degrees. The particles change

velocity according to an exponential distribution with

mean 0.5 hours. When a velocity change takes place, a

new velocity is chosen from a distribution that produces

Fig. 5. Sensor field and target track.

a mean change of 30 degrees in course and 2 kn in

speed. See Section 1.3.3 of [6] for the details of this

motion model.

Figures 6 and 7 show the filter output at 0.5 and

2.0 hours. In the figures, we show only a 500 point

sample of the particles in the figure. At 0.5 hours, the

distribution has two modes. By 2.0 hours the second

mode has disappeared, and the remaining particle cloud

is centered at the target’s location.

Figures 8 and 9 show the filter output at 3 hours and

5 hours. At 3 hours, just after the maneuver, the particle

distribution has spread out. By 5 hours it has condensed

around the position of the target.

This example shows two things. First that even com-

plicated quantized measurements can be represented by

standard likelihood functions, and second these likeli-

hood functions can be easily used in a particle filter to

track moving targets.

6 CONCLUSIONS

The examples have shown how to construct likeli-

hood functions for quantized measurements using the

standard Bayesian approach with standard likelihood

functions.

In Section 3, we showed that the quantized measure-

ment examples presented in [3] can be treated without

employing the notions of generalized likelihood func-

tions.

In Section 4 we have shown that the examples pre-

sented in [4] can be handled with standard Bayesian

likelihood functions without the extra complexity re-

quired for imprecise likelihood functions. If anything,

the results presented in Section 4.1.2 are somewhat bet-

ter than the ones obtained by the use of imprecise like-

lihood functions in [4].
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Fig. 6. Position marginal at 0.5 hr.

Fig. 7. Position marginal at 2.0 hr.

In Section 5, we have shown that quantized measure-

ments can be applied to moving target tracking prob-

lems using particle filters and likelihood functions for

the quantized measurements in a straightforward, stan-

dard Bayesian fashion.

The power of a likelihood function is that it converts

measurements from (almost) any measurement space

into a function on the target state space. This allows us

to incorporate the information in these measurements

into the posterior distribution on the target state space.

The examples given above illustrate this process with

quantized measurements, but the method is applicable

Fig. 8. Postion marginal at 3 hr.

Fig. 9. Postion marginal at 5 hr.

to wide range of types of measurements and sensors.

In particular, it is applicable to any measurement for

which one can compute a likelihood function using the

definition in (2). This is why likelihood functions are the

common currency of information in Bayesian inference.

The examples given above demonstrate this fact.

We have discussed above the virtues of using the

simplest solution to a problem. We would be remiss if

we did not also point out that there can be drawbacks

to unnecessary complexity. For example, if we employ

Dempster Shafer methods to handle quantized measure-

ments, then we will be limited in applications to finite
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discrete state spaces since there has been no satisfactory

extension of Dempster-Shafer theory to continuous state

spaces. Even if the state space is finite, the computations

involved with Dempster-Shafer methods grow exponen-

tially with the size of the state space which limits its

applicability to real problems.
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