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Passive radar using Digital Audio/Video Broadcast (DAB/DVB)

signals with Orthogonal Frequency Division Multiplexing (OFDM)

must contend with measurements of range and range-rate only

(no, or very poor, angular information) and must deal with an

added and unwonted measurement-illuminator-target association.

But tracking systems using modified Joint Probabilistic Data As-

sociation (JPDA) filters and using particle filters have been sug-

gested and seem to work effectively to maintain tracks directly in the

Cartesian domain. In this correspondence, we present an alternative

Cartesian-domain tracking algorithm a version of the Probabilistic

Multi-Hypothesis Tracker (PMHT), to contend with the extra-list

data association in a natural way.
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I. INTRODUCTION

Passive Bistatic Radar (PBR), also known as Pas-

sive Coherent Location (PCL), uses illuminators of op-

portunity. Passive radar using signals in a single fre-

quency network modulated according to the Digital Au-

dio/Video Broadcasting (DAB/DVB) standards using

orthogonal frequency division multiplexing (OFDM)

has recently been of increasing interest. There has been

considerable research to develop tracking systems ad-

dressing its inherent difficulties [3]—[7], [10]—[13]; the

poor quality–or absence–of angular information, and

the lack of label of the transmitter on top of the usual

target/measurement association concerns.

First, there are algorithms using the Multi-Hypothe-

sis Tracker (MHT) [12], [13] addressing the com-

plexity problem from association ambiguities between

measurement, targets and illuminators by initially form-

ing two dimensional (measurement-target) hypotheses

in the two-dimensional range/Doppler domain. Tracking

is thence performed directly on target parameters by the

MHT without considering the association between mea-

surements and illuminators: the range/Doppler MHT ex-

tracts measurements and removes false alarms. Then,

de-ghosting is performed by evaluating likelihood prob-

abilities of possible data associations. When a Cartesian

track is confirmed, the remaining tracks from other pos-

sible associations are declared false and tracking starts

in the Cartesian domain.

This MHT approach is good but but is not without

issues. One is the appropriate motion model in range

and Doppler space: probably the target dynamics in the

Cartesian domain are known, the trajectories are not

easily described in a space of target parameters, because

the trajectories are related to illuminator/receiver/target

geometry and there is association ambiguity among

measurements, illuminators, and targets. And that is

another concern: the illuminator association is never

explicitly addressed.

Now, track maintenance algorithms that operate di-

rectly in Cartesian coordinates have been explored [4],

[5], one using modified Joint Probabilistic Data As-

sociation (JPDA) and another a particle filter. For the

former, in order to address the large number of three-

list hypotheses, a “super-target” idea was proposed; and

the particle filters work under the PMHT measurement

model that each measurement’s assignments are inde-

pendent of others’. These methods have also been ex-

amined downstream from an initiation approach (the

PMHTI method, suggested in [6]) that initiates tracks

in Cartesian coordinates.

In fact the PMHT seems to be an effective and

natural way to accommodate the data association with

the extra list (transmitters). So in this paper, we present

it: it is really very simple. This tracker, combined with

the initiation algorithm (the modified PMHTI method in

[6]), shows excellent performance in comparison with

the JPDA filter and particle filter.
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Section II explains what tracking in the Cartesian

domain involves. Section III presents the PMHT solu-

tion, as well as a brief summary of the modified ini-

tiation algorithm. There are results in Section IV. We

wish to note that although the motivating example is

DAB/DVB passive radar, the techniques here could ap-

ply to any multistatic system (e.g., sonar) with common

transmitter waveform. The common key ingredient is

the measurements’ lack of illuminator label.

II. MODEL

A. Process

We assume that there are multiple targets. For the

mth target the state

xm(ti) = [xm(ti), _xm(ti),ym(ti), _ym(ti),zm(ti), _zm(ti)]

is to be estimated, and comprises its location pm(ti) =
[xm(ti),ym(ti),zm(ti)]

T and velocity vm(ti) = [_xm(ti), _ym(ti),
_zm(ti)]

T.

Each target moves according to a model that makes

sense in the Cartesian1 domain, such as according to

kinematic dynamics or constant-speed turn. We assume

there are Mti targets at time ti, such that the goal is to

estimate ffxm(ti)g
Mti
m=1gTi=1. Track management (determi-

nation of Mti) is not the subject of this correspondence;

however, we suggest the techniques of [6] for initiation

(the more difficult component) and we later give some

suggestions for termination. We do not address track-

merging or -spawn.

There are Ns illuminators, the sth being located at

xs = [xs,ys,zs]
T; and there is assumed a single receiver

at xr = [xr,yr,zr]
T. The receiver can for target m mea-

sure bistatic range °(ti) and range-rate _°(ti), which are

given by

°(xm(ti),xs) = kpm(ti)¡ xrk+ kpm(ti)¡ xsk (1)

_°(xm(ti),xs) =
(pm(ti)¡ xr)T ¢ vm(ti)

kpm(ti)¡ xrk
+
(pm(ti)¡ xs)T ¢ vm(ti)

kpm(ti)¡ xsk
(2)

in which s 2 f1, : : : ,Nsg. The generic observation vector
in the absence of noise is given by

hs(x(ti)) = (°(x(ti),xs), _°(x(ti),xs))
T: (3)

Hence, the measurement at time ti for target m and

involving illuminator s is

z(ti) = hs(xm(ti)) + ºm,s(ti) (4)

with ºm,s(ti) independent, zero-mean and Gaussian mea-

surement noises of covariance Rm,s(ti).

While (4) is a function of the target xm(ti) and trans-

mitter xs, the observations available to the tracker at time
t consist of a set fz(r)(ti)g with components unlabeled
as to m nor s–the uncertainty as to the transmitter s

1Since these models are well known, this short paper simply defers

to references, for example [1].

is a new visitor to the usual “measurement-origin un-

certainty” (MOU) model. On the other hand, a familiar

ingredient to MOU is that although all combinations of

s and m (that is: Ns£M elements) might be thought an

“original” set of measurements, but these are thinned

according to a Bernoulli process: each is retained with

probability Pd and else discarded. Another familiar in-

gredient is that the set of survivors be augmented by

a Poisson set of false alarms uniformly distributed in

range & range-rate.

The PMHT model [8], [16], [19] is different, and

will be described in detail in the next section. However,

its features are:

² that the model is not generative: that is, it is posterior
to knowing the number of measurements available;

² that the a priori association probabilities (of each
measurement having arisen from target m and due to

transmitter s) are independent for each measurement;

and

² that each target/transmitter pair be represented at most
once per time ti in the observation set is not enforced;

The model is not reflective of our passive-radar

physics; however, it is clear and unashamed, and it re-

sults in a feasible algorithm that works quite effectively.

III. THE PMHT

A. Description of the algorithm

When there are Ns illuminators
2 and M targets, at

each measurement time ti (i= 1,2, : : : ,T), a state of tar-

get m is denoted by xm(ti). XT is the collection of states

for all targets up to time T and ZT is the set of condition-

ally statistically independent measurements, in which

ZT = (Zt0 ,Zt1 , : : : ,ZtT ), where Zti = (z
(1)
ti ,z

(2)
ti , : : : ,z

(Nti )

ti )–

there are Nti measurements at time ti. In fact, we have:

² The statistically independent measurement-to-target
assignments are described by KT = (Kt0 , Kt1 , : : : ,KtT )
and Kti = (k(1)ti ,k(2)ti , : : : ,k

(Nti )

ti ) where 1· k(r)ti ·M de-

notes the index of the target assigned to the measure-

ment z(r)ti .

² The (again: statistically independent) measurement-
to-illuminator assignments–the new illuminator-to-

measurement association ambiguity–are denoted

LT= (Lt0 ,Lt1 , : : : ,LtT ), in which Lti= (l(1)ti , l(2)ti , : : : , l
(Nti )

ti )

and 1· l(r)ti ·Ns is the index of illuminator assigned
to the measurement z(r)ti .

The “usual” PMHT association model accommo-

dates more than one measurement being assigned to

each target, and that remains so here. But note also that

each target can further be associated with more than

one measurement for each illuminator. Physically this

is wrong; algorithmically it is a nice feature.

2We use the subscript s mostly to avoid confusion, but defensibly to

indicate the ground-station in the DVB/DAB network.
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In the usual case having only one kind of data as-

sociation ambiguities between measurements and tar-

gets, the PMHT uses the EM algorithm to maximize

p(XT j ZT) over XT [8], [9], [19], utilizing the quantity
Q(X(n+1)T j X(n)T )

´
X
KT
ln(p(X

(n+1)
T ,KT j ZT))p(KT j X(n)T ,ZT), (5)

instead of directly finding the MAP (maximum a pos-

teriori) estimate of XT

XMAP = argmax
XT
Efln(p(XT j ZT))g: (6)

At each iteration, the algorithm finds

X(n+1)T = argmax
X
(n+1)
T

Q(X(n+1)T j X(n)T ) (7)

achieving p(X(n+1)T j ZT)> p(X(n)T j ZT).
Generalizing this to the case having the additional

association ambiguities between measurements and il-

luminators, the quantity Q(X(n+1)T j X(n)T ) is
Q(X(n+1)T j X(n)T )´

X
KT ,LT

ln(p(X(n+1)T ,KT,LT j ZT))

£p(KT,LT j X(n)T ,ZT): (8)

Assuming P(k(r)ti =m) = ¼
k
m and P(l

(r)
ti = s) = ¼

l
s, the con-

ditional pdf for all measurements is as follows:

P(KT,LT j X(n)T ,ZT) =
TY
i=1

NtiY
r=1

!(n)ti,r (m,s) (9)

in which

!(n)ti,r (m,s)

=
¼km¼

l
sp(z

(r)
ti j k(r)ti =m, l(r)ti = s,x(n)m (ti))PM

p=1

PNs
q=1¼

k
p¼

l
qp(z

(r)
ti j k(r)ti = p, l(r)ti = q,x(n)p (ti))

:

(10)

It is noted that !(n)ti,r (m,s) denotes the posterior proba-

bility of measurement r being related to target m and

illuminator s at time ti at the nth EM iteration.

Now, we have

Q(X(n+1)T j X(n)T )
=
X
K,L
ln[p(X(n+1),K,L,ZT)p(K,L j X(n),ZT)] (11)

= ln

24 MY
q=1

(p(x(n+1)q (t1))

TY
i=2

p(x(n+1)q (ti) j x(n+1)q (ti¡1))

35
(12)

+

MtX
m=1

NsX
s=1

TX
i=1

NtiX
r=1

(!(n)ti,r (m,s) ln[¼
k
m¼

l
s]

+!(n)ti,r (m,s) ln[p(z
(r)
ti
j k(r)ti =m, l(r)ti = s,x(n+1)m (ti))])

so

rX(n+1)Q(X(n+1) j X(n)) (13)

=rX(n+1)
24ln

24 MY
q=1

(P(x(n+1)q (t1))

£
TY
i=2

P(x(n+1)q (ti) j x(n+1)q (ti¡1))

##

+
X
m,s

TX
i=1

rX(n+1)hs(x(n+1)m (ti))

£
24Ã Rm,s(ti)PNti

r=1!
(n)
ti ,r (m,s)

!¡1

£
0@ NtiX
r=1

!(n)ti,r (m,s)(z
(r)
ti )PNti

r=1!
(n)
ti,r (m,s)

¡hs(x(n+1)m (ti))

1A35
Similar to [19], r

X
(n+1)
T

Q(X(n+1)T j X(n)T ) is equal to the
gradient of logarithm of the joint “synthetic” Q-function

Q̃(X(n+1)T j X(n)T ) having no data association uncertainty
with synthetic measurement z̃m,s and synthetic measure-

ment covariance R̃m,s(ti). That is, we have

rX(n+1)Q(X(n+1)T j X(n)T ) =rX(n+1)
T

Q̃(X
(n+1)
T j X(n)T ) (14)

where

Q̃(X(n+1)T j X(n)T )

= ln

24 MY
q=1

(p(x(n+1)q (t1))

TY
i=2

p(x(n+1)q (ti) j x(n+1)q (ti¡ 1))
35

¡ 1
2

MtX
m=1

NsX
s=1

TX
i=1

[z̃ti (m,s)¡ hs(x(n+1)m (ti))]
T

£ R̃m,s(ti)¡1[z̃ti (m,s)¡ hs(x(n+1)m (ti))], (15)

we obtain

z̃m,s(ti) =

PNti
r=1!

(n)
ti,r (m,s)z

(r)
tiPNti

r=1!
(n)
ti,r (m,s)

(16)

R̃m,s(ti) =
Rm,s(ti)PNti

r=1!
(n)
ti,r (m,s)

(17)

The form of (15) reflects the nonlinearity of the mea-

surement model (4) by involving hs(x
(n+1)
m (ti)) explicitly.

If one’s taste leans towards the unscented Kalman fil-

ter (UKF) (e.g., [2]) this is useful. Perhaps it is more

familiar to write

Hm,s(ti) =rX(n)hs(x(n)m (ti)) (18)

suggesting that an extended Kalman filter (EKF) [1] can

be used within a Kalman smoother.
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Fig. 1. PMHT (tracking) algorithm to update the state and covariance of target m at time ti. If an EKF is used, z̃m,s(ti) in the third step

should be replaced by z̃m,s(ti)¡ [hs(x(n)m (ti))¡Hm,s(ti)x(n)m (ti)].

That is, an iterated (extended) Kalman smoother rou-

tine using “synthetic” measurements fz̃m,s(ti)gTi=1 and
corresponding covariances fR̃m,s(ti)gTi=1 from (16) and

(17) for each target m would be sufficient if there were

only one transmitter s=Ns = 1, although a full Carte-

sian track would problematic if there were only one

transmitter. To exploit the multi-sensor “triangulation”

necessary for Cartesian tracking it is necessary to fuse

data from multiple illuminators. There are various meth-

ods [8], [14], [15], [17] for this, and we adopt here that

using stacked synthetic measurements:

ẑm(ti) = [z̃
T
m,1(ti), z̃

T
m,2(ti), : : : , z̃

T
m,Ns
(ti)]

T (19)

Ĥm(ti) = diag[Hm,1(ti),Hm,2(ti), : : : ,Hm,Ns(ti)]

R̂m(ti) = diag[R̃m,1(ti), R̃m,2(ti), : : : , R̃m,Ns(ti)]

The algorithm is described in Figure 1. We note that

the PMHT is known sometimes to converge to a local

MAP (basically a lost track) [19]. In our study here we

have not suppressed this behavior; but it seems to be a

lesser problem for the PMHT than the additional data

association that vexes the other approaches.

In the following section we will compare this new

method to the modified JPDA and particle filter (PF)

approaches. Hence in the next two subsections we will

mention the track-management schemes used for this

comparison.

B. Initiation of tracks

To initiate tracks, we adopt the PMHTI method

presented in [6]. To decrease complexity caused by

the search for local maxima of p(Z j p) using all the
points obtained by the spherical-intersection method,

we modify the search step to use only the initialization

points having the highest likelihoods (rather than all the

points). We call this the modified PMHTI method in

Figure 2.

Here, a track is confirmed in the PMHT if the sum

of measurement weights is higher than a certain thresh-

old for three out of five consecutive scans, and the es-

timated covariance is smaller than a certain threshold.

The JPDA filter confirms a track if there is at least one

measurement within the target’s gate for three out of

five consecutive scans and the gate is smaller than a

certain threshold. The particle filter confirms temporary

tracks if there is at least one measurement in the vali-

dation region for three out of five consecutive scans.

C. Track Termination

Respectively, these use:

1) PMHT: In the PMHT, a track is called lost if

the sum of weights of measurements (i.e.,
P
s !

(n)
ti,r (m,s))

is less than a certain threshold for three out of five

consecutive scans, or the estimated covariance is larger

than a certain threshold.

2) JPDA using the Extend Kalman filter: The track

is declared lost if no measurement falls within the
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Fig. 2. Modified PMHTI (initiation) method:M is a set of 3-permutations of measurements and S is a set of 3-combinations of
illuminators. N1p and N

2
p are thresholds, and the position and velocity is denoted by p and v, respectively.

target’s gate [2] for three out of five consecutive scans

or the gate is larger than a certain threshold. When the

predicted measurement ẑ and the associated covariance

S are given, the measurement z is considered to be in

the validation region if (z¡ ẑ)TS¡1(z¡ ẑ)< °, where the
threshold ° denotes the gate size.

3) PF: The particle filter defines the validation re-

gion by using statistical distance in measurement space

[2], [18]: when ẑ is the converted measurement from

an estimated state and R is the measurement noise

covariance, the measurement z is defined as valid if

(z¡ ẑ)TR¡1(z¡ ẑ)< ° for threshold °. If there is no
measurement in the validation region for three out of

five consecutive scans, or every particle has negligible

weight caused by impoverishment/degeneracy of parti-

cles, the track is declared lost. It is noted that the particle

filter does not use the validation region to estimate the

state, unlike the JPDA.

IV. SIMULATION

It is assumed that there are three targets, five illumi-

nators and one receiver, as in Figure 3. False measure-

ments are uniformly distributed with spatial density ¸ in

a surveillance region of volume V in range-/range-rate

space, while their number Á is Poisson. The measure-

ment noise follows a Gaussian distribution N (0,¾2°) for
range, and N (0,¾2_°) for range-rate. 100 Monte Carlo
runs are performed and 2,000 particles are used in the

particle filter. Track management is integral to the simu-

lation: no tracker has prior information as to the number

of targets. For the initiation method N1p = 50 and N
2
p = 3

are chosen (see Figure 2). The PMHT uses a sliding

batch (see [19]) of length 5.

A. Comparison in Terms of Target Number

We compare the PMHT to the modified JPDA filter

and the (bootstrap) particle filter [5], where in each case

the PMHTI method [6] is used for track initiation and

using track confirmation/termination as described ear-

lier. Trajectories from the previous simulation (pictured

in Figure 3) are used, but they begin at different times

and last for fewer than 60 scans in order to examine the

performance of track management. In this subsection,

the measurement noise standard deviation is ¾° = 20 m

and ¾ _° = 2 m/s.

The PMHT filter confirms and terminates tracks

remarkably well, regardless of the false alarm density

and the detection probability, as seen in Figures 4 and
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Fig. 3. Trajectories with three targets, five illuminators and one receiver. (a) Three dimensional space. (b) Projected in a two dimensional

space.

Fig. 4. Average number of confirmed tracks with low false alarm density (¸V = 1): the PMHT almost overlaps with the ground truth.

(a) JPDAF. (b) Particle Filter. (c) PMHT.

6, where the performance almost does not degrade for

the high false alarm density. Although the JPDA and

particle filters show good performance with a low false

alarm density, when the expected number of false alarms

is increased to four the termination of tracks in the

JPDA filter degrades (track confirmation is still quite

good) and the particle filter deteriorates according to

both measures.

As expected, the number of temporary tracks in

every tracker increases at higher false alarm rates, as

seen in Figures 5 and 7. It is also shown that this

number is strongly related to the number of confirmed

tracks. For example, since the particle filter does not

perform termination and confirmation especially well

in high clutter, there are more confirmed tracks and

fewer temporary ones compared to the other trackers in

Figures 6 and 7, since if more measurements are within

the validation region of the confirmed tracks there are

fewer measurements to initiate temporary tracks.

It is noted that the modifications to the termination

rule affect track confirmation, for example a stricter ter-

mination rule could terminate temporary tracks too eas-

ily before they are confirmed. When stricter termination

and confirmation rules are applied to these filters (e.g.,

two out of seven scans for termination and five out of

seven scans for confirmation), the performance of the

JPDA filter is severely degraded and the particle filter’s

performance is also worsened, especially at lower detec-

tion probabilities. In the PMHT filter, the threshold on

the sum of the weights is more influential on the perfor-

mance than the choice of termination/confirmation rules

and the appropriate threshold is also critical to show the

good performance.

We also note that in this simulation the PMHT, with

its simplified data association, does not require many

iterations to converge; while the JPDAF still needs to

evaluate all data association events and the particle filter

must update every particle’s weight. Hence, at least in

our experience, the PMHT is considerably faster than

the JPDA and particle filter approaches.

B. Comparison in Terms of Track Accuracy

We have carried out additional comparison of the

trackers via RMSE. In order to remove the effect of
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Fig. 5. Average number of temporary tracks with the low false alarm density (¸V = 1): the truth is the number of true tracks considered as

temporary tracks following the track confirmation rule. (a) JPDAF. (b) Particle Filter. (c) PMHT.

Fig. 6. Average number of confirmed tracks with high false alarm density (¸V = 4): the PMHT shows similar performance to the case

having low false alarm density, unlike other filters. (a) JPDAF. (b) Particle Filter. (c) PMHT.

Fig. 7. Average number of temporary tracks with high false alarm density (¸V = 4): the truth is the number of true tracks considered as

temporary tracks following the track confirmation rule. Due to the high false alarm density, the number of temporary tracks apparently

increases. (a) JPDAF. (b) Particle Filter. (c) PMHT.

the initiation algorithm, the initial p and velocity v are

generated from the position p0 and velocity v0 of ground

truth such that p= p0 +!1 and v= v0 +!2, where !i
follows Gaussian distribution N (0,¾2i ) with ¾1 = ¾° and
¾2 = 2¾ _°.

For the measurement noise of ¾° = 20 m and ¾ _° =

2 m/s, the RMSE of the PMHT decreases over time,

while the other filters show the opposite tendency (with

the exception of the JPDA filter with Pd = 0:7), as seen

in Figures 8 and 9; presumably this follows from the

PMHT’s batch-optimization behavior. The performance

of the PMHT filter was found to be more sensitive to

the illuminator/receiver/target geometry than the other

filters. At this level of measurement noise, there was no

lost track. It is also noted that the RMSE of the second

target is very similar to the third target and is not shown

here.

When the range measurement noise is increased to

¾° = 100 m, the performance of the PMHT for the third

target is a little worse than the case having the low

measurement noise, but the RMSE of PMHT for the

first target with the low detection probability (Pd = 0:7)
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Fig. 8. RMSE for different detection probabilities with ¸V = 1 and low measurement noise (¾° = 20 m and ¾ _° = 2 m/s): the RMSE is less

than 150 m, and the RMSE of the PMHT decreases while the other filters increase, but it is sensitive to illuminator/receiver/target geometry.

(a) First Target. (b) Third Target.

Fig. 9. RMSE for different expected numbers of false alarms (¸V) with detection probability Pd = 0:99 and low measurement noise

(¾° = 20 m and ¾ _° = 2 m/s): the RMSE is less than 180 m and the high false alarm rate has a more profound effect on the PMHT than the

low detection probability. (a) First Target. (b) Third Target.

or the high expected number of false alarm (¸V = 10)

is clearly degraded more than other filters, as seen

in Figures 10 and 11. The tendency of the RMSE to

decrease over time for the PMHT is still present in this

case. The rate of track loss in the PMHT filter is less

than 2% with detection probability less than 0.8, while

there is no lost track in the JPDA filter for every case.

The track loss in the particle filter reaches 30% when

the detection probability is 0.7. Additionally, the JPDA

filter’s performance with the low detection probability

is better than the high detection probability as seen in

Figures 8 and 10, meaning that many measurements

degrade the data association rather than help. Further,

the performance of the JPDA filter seems unaffected by

a higher false alarm density, as seen in Figures 9 and

11. We note that tracker RMSE curves vary significantly

with geometry and other factors [5].

C. Discussion

There are separate results for comparisons in terms

of track management and in terms of track accuracy.

The former are clear and depend little on geometry nor

parameter settings: the PMHT is remarkably accurate

at determining the number of extant tracks. We have

shown typical examples of the latter that strongly imply

considerable preferability of the PMHT. But these re-

sults depend more on geometry and parameter settings,

and it can be difficult to distinguish a track that is being

lost from one that is merely bad. Nonetheless, on the

basis of these results and others–and also on our ob-

servation of computational needs–we confidently con-

tend that the PMHT approach (coupled with the PMHTI

for track initiation and simple rules for validation and

termination) is the way to go.

It is harder to be confident as to why. We offer the

following. All three of these algorithms are approxima-

tions. The “super-targets” in the JPDAF’s association

model are a convenience (plus its “memory” is only one

scan); the PMHT uses an “incorrect” assignment prior;

and the particle filter both uses a form of the PMHT

model and becomes exact only in the limit as the num-

ber of particles diverges. It seems that the PMHT’s price

(modeling) is worth the benefit (multiscan operation).
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Fig. 10. RMSE for different detection probabilities with high measurement noise (¾° = 100 m and ¾ _° = 2 m/s): the RMSE is less than

1,000 m. (a) First Target. (b) Third Target.

Fig. 11. RMSE for different expected numbers of false alarm (¸V) with high measurement noise (¾° = 100 m and ¾ _° = 2 m/s): the RMSE

is less than 1,400 m, and the PMHT filter is more affected by the high false alarm density than other filters. (a) First Target. (b) Third Target.

V. SUMMARY

The design of a passive radar system poaching

DAB/DVB signals is challenging, due both to the poor

quality of angular information and to the use of indistin-

guishable signals from multistatic transmitters–there is

an additional association ambiguity between measure-

ments and illuminators. A tracking system using the

PMHT to deal with the measurement-illuminator-target

association was here presented. This (modified) PMHT

was compared with a modified JPDA filter and parti-

cle filter. When these trackers are combined with the

PMHTI method for track-initiation, the PMHT shows

excellent performance compared to the other filters. In

terms of computational complexity, the PMHT filter is

in our experience faster as well.
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