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In multitarget tracking problems based on finite point process

models of targets and measurements, it is known that the distri-

bution of the Bayes posterior point process is a ratio of functional

derivatives of a joint probability generating functional. It is shown

here that these functional derivatives can be found by evaluating or-

dinary derivatives. The method is exact, not approximate. Several

examples are presented, including multisensor target tracking and

extended-target tracking. The method is well suited to the needs of

particle filter implementations.
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1. INTRODUCTION

This paper shows that functional derivatives of the

probability generating functional (PGFL) of a finite

point process can be calculated using ordinary deriva-

tives. The result is new, and it is potentially useful

to the class of Bayesian multitarget tracking problems

that is based on finite point process models for targets

and measurements. In this class, the distribution of the

Bayes posterior multitarget process is a ratio of func-

tional derivatives of the joint measurement-target PGFL.

In some problems evaluating the functional derivatives

is only a tedious task, but in other problems the num-

ber of terms in the derivatives is prohibitively large and

limits practical applications of the method.

The proof is straightforward–we reduce the PGFL

to an ordinary function that is conceptually straightfor-

ward to differentiate. This function is called a secular

function to emphasize that it is an “ordinary” function

and not a functional. Existing symbolic software pack-

ages can be used to differentiate the secular function,

a fact that is potentially of practical importance since

software for functional differentiation of the PGFL does

not seem to be available. The methods of this paper use

the established theory of PGFLs and their functional

derivatives.

The proposed methods are compatible with particle,

or sequential Monte Carlo (SMC), filter implementa-

tions. The basic strategy is to embed symbolic differ-

entiation software in the production code and evaluate

the symbolic derivatives of the secular functions at the

points of the particle filter. One of the purposes of this

paper is to show that this is a theoretically feasible strat-

egy. Its practical utility is outside the scope of the paper.

Two tracking applications where functional differen-

tiation causes serious difficulties are discussed. One is

multisensor target tracking [9]. The other is extended-

target tracking problems in which targets can produce

more than one measurement [8, 11]. The secular func-

tions for both problems are derived.

Functional differentiation of the PGFL is the result

of a double limit. A theoretical question naturally arises,

“Can these limits be interchanged?” The answer is,

“Yes, for the problems of interest here.” This result

seems to be new. It gives a better understanding of

PGFLs and their relationship to classical probability

generating functions (PGFs).

Section II speaks of the PGFL as an encoding of the

multitarget tracking problem and functional differenti-

ation of the PGFL as the decoding algorithm. Section

III gives a simple example of the method we use to

reduce PGFLs to secular functions. Section IV proves

that for the class of PGFLs of interest in this paper,

ordinary derivatives of secular functions are identical to

functional derivatives of PGFLs. Section V gives sev-

eral examples of secular functions, including those for

multisensor and extended-target tracking problems. Sec-

tion VI discusses finite differences and series expansion
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methods for approximating secular functions. Section

VII gives conclusions.

2. FINITE POINT PROCESSES AND PGFLS

The grand canonical ensemble is defined to be the

set of all finite lists of points in a given space. A

random variable whose outcomes are in this ensemble

is called a finite point process. When the space is

continuous (i.e., it has no discrete elements) and the

probability distribution is orderly (i.e., the underlying

Borel measure has no atoms), realizations of the finite

point process cannot have repeated elements, that is,

the outcomes of the finite point process are sets with

probability one.

Some familiarity is assumed with the definitions and

properties of finite point processes such as given in

[1, 3, 10, 12]. Such familiarity should include PGFLs,

which are defined in [10] as an expectation of a ran-

dom product with respect to a probability distribution

over the grand canonical ensemble. Finally, readers are

assumed to be familiar with the application of PGFLs to

multitarget tracking, for which see [7] or the comparison

paper [13].

In applications of finite point processes to Bayesian

multitarget tracking, the joint measurement-target PGFL

“encodes” the over-all probability structure of the prob-

lem. The measurement-to-target/clutter assignments are

assumed unknown in this paper, so the probabilistic

structure is inherently combinatorial. The PGFL of the

Bayes posterior process is derived from the joint PGFL

by conditioning on the measurement set.

To find the Bayes posterior probability of a given

event, it is necessary to “decode” its PGFL. Decoding

is equivalent to functional differentiation of the PGFL.

Differentiation is straightforward in principle, but it

often has high computational complexity because large

numbers of different kinds of terms can appear in the

functional derivatives. Decoding the PGFL of the Bayes

posterior point process is the problem of interest in this

paper.

The primary purpose of the paper is to show that

functional derivatives of the PGFL are equivalent to or-

dinary derivatives of functions that are easily derived

from the PGFL. These functions are of independent in-

terest, so we refer to them as secular functions. Several

examples are given in Section V. The number of terms in

their derivatives is prohibitively large, so the symbolic

derivatives are not shown; however, the derivatives can

be found using widely available software. Many soft-

ware packages can be configured to evaluate the sym-

bolic derivative numerically at specified points–thus

avoiding the need for manually recoding. The secular

method is exact, not approximate.

For particle tracking filter implementations, we need

to evaluate the functional derivative of the PGFL for

every particle (point) in the current particle set. These

numerical values are used to update the particle weights,

and they are subsequently used to resample the particles

in the SMC update step. The same particle weights can

also be computed by evaluating the symbolic deriva-

tives of secular functions. This procedure is potentially

important for applications in which derivatives are too

difficult to find by hand; however, further discussion is

outside the scope of the paper.

3. ILLUSTRATIVE EXAMPLE

Secular functions are obtained from PGFLs by a

straightforward procedure. In this section we illustrate

the technique with an example not unlike what is en-

countered in tracking applications.

The PGF of a Poisson distributed random number

N ¸ 0 with mean ¸¸ 0 is given by F(s) = exp(¡¸+
¸s), where s is a complex-valued variable. Define the

functional I[g] =
R
Y
g(y)q(y)dy, where Y is a closed

and bounded subset of R2 and q(¢) is a continuously
differentiable probability density function (PDF) in the

interior of Y. The function g(¢) is assumed to be such
that jg(y)j · 1 for all y 2 Y and infinitely differentiable
in the interior of Y. Define the functional

ª [g] = F(I[g]) = exp

μ
¡¸+¸

Z
Y

g(y)q(y)dy

¶
: (1)

Note that ª[g] is the PGFL of the nonhomogeneous

Poisson point process on Y whose intensity function is

¸q(¢). Using the Calculus of Variations, let the variation
°(¢) be a bounded function on Y and infinitely differen-
tiable in the interior of Y. The functional derivative of

ª[g] with respect to the variation °(¢) is defined by
@ª

@°
[g]´ dª[g+®°]

d®

¯̄̄̄
®=0

= ¸

μZ
Y

°(y)q(y)dy

¶
exp

μ
¡¸+¸

Z
Y

g(y)q(y)dy

¶
:

(2)

Ordinary derivatives are denoted by “d” to distinguish

them from functional derivatives which are denoted by

“@.” Let c be an interior point of Y. Denote the Dirac

delta function at c by ±c(y). We will often refer to ±c(y)

as an “impulse” at the point c. Let °cn(y), n= 1,2, : : :,

denote a sequence of test functions for ±c(y). (General

discussions of test functions are widely available; see

the classic text [6].) There are many possible choices

for °cn(y). To be specific, we take °
c
n(y) to be the PDF of

a bivariate Gaussian random variable with mean c and

covariance matrix equal to the identity matrix scaled

by n¡2 that is truncated and normalized to integrate
to one on Y. Thus, °cn(y) is non-negative, infinitely

differentiable interior to Y, and is unimodal with a

maximum value occurring at the point c. The sequence

itself is not bounded. For such test sequences it is easy

to prove that

lim
n!1

Z
Y

q(y)°cn(y)dy = q(c): (3)
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Note that the integral in (3) is evaluated before taking

the limit. For each n, it follows from (2) that

@ª

@°cn
[g] = ¸

μZ
Y

°cn(y)q(y)dy

¶
exp

μ
¡¸+¸

Z
Y

g(y)q(y)dy

¶
:

(4)

The functional derivative of the PGFLª[g] with respect

to an impulse at c 2 Y is the limit of (4) as n!1. Thus,
using (3),

@ª

@c
[g]´ lim

n!1
@ª

@°cn
[g] = ¸q(c)exp

μ
¡¸+¸

Z
Y

g(y)q(y)dy

¶
:

(5)

Using (1), we define

J(®) = lim
n!1ª[g+®°

c
n]

= exp

μ
¡¸+¸

Z
Y

g(y)q(y)dy+¸®q(c)

¶
: (6)

The ordinary derivative J 0(0) is identical to (5). In this
paper we call J(¢) a secular function.
The example shows that the functional derivative of

the PGFL (1) at c is identical to the derivative of its

secular function (6) at zero. The next section shows that

the technique extends to more general problems.

4. SECULAR FUNCTIONS

Our goal is to present results of the kind needed for

tracking applications, not to give a general mathematical

treatment. We assume that F(s) =
P1
n=0Prfngsn is the

PGF of a discrete random variable with outcomes in the

non-negative integers, N. Thus, F(s) is analytic at the
origin in the complex s-plane, C. Because F(1) = 1, it
is analytic in a region that includes the closed unit disc.

Let Y be a closed and bounded subset of the Euclidean

space Rd, d ¸ 1. The function q : Y!R is assumed to
be a PDF on Y and continuously differentiable at interior

points of Y except possibly for jump discontinuities

of the kind that occur, e.g., by truncating a Gaussian

distribution. The function g : Y!R is assumed to be

such that jg(y)j · 1 for all y 2 Y. The functional ª [g]
is defined as in the example, that is,

ª [g] = F

μZ
Y

g(y)q(y)dy

¶
: (7)

Let the variation ° : Y!R be bounded, i.e., for some

number B, j°(y)j · B <1 for all y 2 Y. Then ª[g+
®°], considered as a function of the complex variable ®,

is analytic in an open neighborhood of the origin, i.e.,

in the open disc j®j< r where r is sufficiently small.
The functional derivative of ª [g] with respect to ° is

defined by

@ª

@°
[g] =

dª[g+®°]

d®

¯̄̄̄
®=0

: (8)

Substituting (7) into (8) gives, by direct calculation,

@ª

@°
[g] = F(1)

μZ
Y

g(y)q(y)dy

¶Z
Y

q(y)°(y)dy, (9)

where F(1)(¢) denotes the ordinary first derivative of F(¢).
We seek the functional derivative of ª[g] with re-

spect to an impulse at the point c 2 Y. As in the example,
let °cn(y), n= 1,2, : : :, denote a sequence of test functions

for the Dirac delta function ±c(y) at c 2 Y. Test func-
tions are bounded, so the functional derivative of ª[g]

with respect to a given test function is well-defined. The

functional derivative of ª[g] with respect to an impulse

at c is defined by the limit

@ª

@c
[g]´ lim

n!1
@ª

@°cn
[g]

= F(1)
μZ

Y

g(y)q(y)dy

¶
lim
n!1

Z
Y

q(y)°cn(y)dy

= F(1)
μZ

Y

h(y)q(y)dy

¶
q(c): (10)

Using the same test sequence, the secular function

corresponding to ª [g] is defined by

J(®;c) = lim
n!1ª[g+®°

c
n]

= lim
n!1F

μZ
Y

g(y)q(y)dy+®

Z
Y

°cn(y)q(y)dy

¶
= F

μZ
Y

g(y)q(y)dy+®q(c)

¶
: (11)

Taking the limit inside the argument of F(¢) is justified
by analyticity. Note that J depends implicitly on g. The

derivative of J with respect to ® evaluated at zero is

dJ

d®
(0;c) =

d

d®
J(®;c)

¯̄̄̄
®=0

= F(1)
μZ

Y

g(y)q(y)dy

¶
q(c):

(12)

Comparing (12) and (10) shows that

@ª

@c
[g] =

dJ

d®
(0;c): (13)

Thus, the functional derivative of ª is identical to the

ordinary derivative of its secular function J .

The result (13) does not alter the theory of PGFLs

and their functional derivatives. It does, however, show

that functional derivatives of the PGFL can be replaced

by ordinary derivatives of the secular function. This

means that many functions of interest in tracking ap-

plications (e.g., intensity and pair-correlation) can be

found by differentiating the secular function of the

PGFL.

The functional derivative of the PGFL is a double

limit. The above results show that the order in which
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these limits are taken can be interchanged. Informally,

lim
n!1 lim®!0

dª [g+®°cn]

d®

=
@ª

@c
[g]

=
dJ

d®
(0;c) = lim

®!0
lim
n!1

dª [g+®°cn]

d®
: (14)

4.1. Extensions for Multivariate PGFs and
Cross-Derivatives

The basic result (13) extends to more general func-

tions and functionals. Suppose that

ª [g] = F

μZ
Y

g(y)q1(y)dy, : : : ,

Z
Y

g(y)qk(y)dy

¶
, (15)

where F(s1, : : : ,sk), k ¸ 1, is the multivariate PGF of a
random vector of integers with outcomes in Nk. Hence,
F(¢) is analytic at the origin 0= (0, : : : ,0) 2 Ck. The
functions qi : Y!R, i= 1, : : : ,k, are assumed to be con-
tinuously differentiable PDFs on Y except possibly for

jump discontinuities. As before, let c be interior to Y,

and let °cn(y), n= 1,2, : : :, be a test sequence for ±c(y).

The secular function of ª[g] is defined to be

J(®;c) = lim
n!1ª[g+®°

c
n]

= lim
n!1F

μZ
Y

(g(y)+®°cn(y))q1(y)dy, : : : ,Z
Y

(g(y)+®°cn(y))qk(y)dy

¶
= F

μZ
Y

g(y)q1(y)dy+®q1(c), : : : ,Z
Y

g(y)qk(y)dy+®qk(c)

¶
:

The ordinary derivative is

dJ

d®
(0;c) =

dJ

d®

¯̄̄̄
®=0

=

kX
`=1

F
(1)
`

μZ
Y

g(y)q1(y)dy, : : : ,Z
Y

g(y)qk(y)dy

¶
q`(c),

(16)

where F(1)` (¢) denotes the (ordinary) first derivative of
F(¢) with respect to argument `. Direct calculation of the
functional derivative of ª[g] with respect to an impulse

at c shows that it is identical to the right hand side of

(16). Thus, (14) holds for PGFLs of the form (15).

The functional derivative with respect to impulses at

points y= fy1, : : : ,ymg, m¸ 0, is defined by

ªy[g]´
@m

@y1 ¢ ¢ ¢@ym
ª [g]: (17)

The points yi 2 Y are assumed distinct. Let °yin (y), n=
1,2, : : :, denote a test function sequence for the Dirac

delta function at yi. The secular function of (15) is

defined (cf. [10, Eqn. (4.11)] and (26)—(27) below) by

substituting a test sequence for a weighted train of Dirac

delta functions:

J(®;y) = lim
n!1ª

"
g(y) +

mX
i=1

®i°
yi
n (y)

#

= F

ÃZ
Y

g(y)q1(y)dy+

mX
i=1

®iq1(yi), : : : ,

Z
Y

g(y)qk(y)dy+

mX
i=1

®iqk(yi)

!
, (18)

where ®= (®1, : : : ,®m)
T 2 Rm. The secular function is

thus a function of the coefficient vector ® and depends
implicitly on the function g. It is easily seen that

ªy[g] = J®(0;y)´
dm

d®1 ¢ ¢ ¢d®m
J(®;y)

¯̄̄̄
®1=¢¢¢=®m=0

, (19)

where 0 denotes the zero vector. Thus, the functional
derivative of ª with respect to impulses at the points

y´ fy1, : : : ,ymg is identical to the first order mixed

derivative of the secular function. Such derivatives are

called cross-derivatives in the automatic differentiation

literature [5]. See Section VI for further comment on

this topic.

4.2. Secular Functions for Multivariate PGFLs

Joint PGFLs correspond to two or more finite point

processes defined on possibly different spaces. In track-

ing applications, for example, the joint PGFL can be the

joint measurement-target process on the measurement

space Y and the target space S. The discussion here is

limited to these processes. The PGFLª[g,h] is assumed

known. The extension to more than two processes is

straightforward.

Conditioned on the (distinct) measurements y=
fy1, : : : ,ymg, m¸ 0, the PGFL of the Bayes posterior

point process is the normalized functional derivative:

ª[h j y]´ ªy[g,h]jg(¢)=0
ªy[g,1]jg(¢)=0

=
ªy[0,h]

ªy[0,1]
, (20)

where the functional derivative with respect to impulses

at the points of y is

ªy[g,h]´
@m

@y1 ¢ ¢ ¢@ym
ª [g,h]: (21)

As a check, note that ª[1 j y] = 1 for all y. The nth
factorial moment of (20) is defined to be the functional

derivative with respect to impulses at the (distinct)

points x= fx1, : : : ,xng, n¸ 0; explicitly,

m[n](x1, : : : ,xn) =ªx[h j y]jh(¢)=1 ´
@n

@x1 ¢ ¢ ¢@xn
ª[1 j y]

=
ªyx[0,1]

ªy[0,1]
, (22)
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where

ªyx[g,h]´
@m

@y1 ¢ ¢ ¢@ym
@n

@x1 ¢ ¢ ¢@xn
ª[g,h]: (23)

Note that the nth factorial moment is a function of the

point x. For a careful definition of factorial moments,

see [10], the definitive text [3], or the recent paper [13].

The first factorial moment is commonly known as

the intensity function of the point process. In tracking

applications it is sometimes called the probability hy-

pothesis density (PHD). For n= 1, (22) can be written

in an interesting logarithmic form as

m[1](x1) =
@

@x1
logª[h j y]

¯̄̄̄
h(¢)=1

: (24)

Intuitively, the second factorial moment is a “two point”

intensity function. The pair correlation function for

x1 6= x2 is defined as the ratio

½(x1,x2) =
m[2](x1,x2)

m[1](x1)m[1](x2)
: (25)

From the independent sampling property of PPPs it

can be shown that m[2](x1,x2) =m[1](x1)m[1](x2), so that

½(x1,x2) = 1. A point process is said to be attractive

if ½(x1,x2)> 1 for all distinct points, and repulsive if

½(x1,x2)< 1.

The derivative of the PGFL is evaluated for the con-

stant functions g(¢) = 0 and h(¢) = 1 to find, respectively,
the event probabilities and factorial moments. For this

reason we employ the simultaneous perturbations (see

[10, Eqn. (4.11)])

g(y) =

mX
i=1

®i±yi (y), y 2 Y, (26)

h(s) = 1+

nX
j=1

¯j±xj (s), s 2 S, (27)

where ®= (®1, : : : ,®m) 2Rm and ¯ = (¯1, : : : ,¯n) 2 Rn.
The sums are defined to be zero for m= 0 and n= 0.

Therefore, the secular function corresponding to the

joint PGFL is

J(®,¯;y,x) =ª

24 mX
i=1

®i±yi (y),1+

nX
j=1

¯j±xj (s)

35 : (28)

The test function sequence forms of (26)—(28) are some-

what tedious, so we do not use them. (The result is

unchanged by using test sequence versions of these

expressions.) The methods of the previous subsection

show that the ordinary derivatives of J are identical to

the functional derivatives of ª ; explicitly,

J®¯(®,¯;y,x)j®=0,¯=0 ´ªyx[g,h]jg(¢)=0,h(¢)=1: (29)

Therefore, functional derivatives of the joint PGFL can

be replaced wherever they occur by ordinary derivatives

of its secular function.

Of particular interest is the first factorial moment, or

intensity, of the Bayes posterior point process. This is

the special case n= 1 of (24). Written in terms of the

secular function, with ¯ = ¯1 and x= x1,

m[1](x1) =
d

d¯1
logJ®(0,¯1;y,x1)

¯̄̄̄
¯1=0

: (30)

Recall that we evaluate the derivative at ¯1 = 0 because

(27) is a perturbation about h(s) = 1. The second fac-

torial moment of the Bayes posterior process is, from

(22) with n= 2,

m[2](x1,x2)´
1

J®(0,0;y,x)

d2

d¯1d¯2
J®(0,¯;y,x)

¯̄̄̄
¯1=¯2=0

,

(31)
where ¯ = (¯1,¯2) and x= (x1,x2).

5. EXAMPLES OF SECULAR FUNCTIONS

Example 1 starts with the joint PGFL of the single

sensor point target problem. The PHD intensity filter

is derived from the secular function of the PGFL of

the Bayes posterior point process. Time indexing in this

and the other examples is suppressed to simplify no-

tation. The pair-correlation function is derived in Ex-

ample 2. Secular functions have little to offer in these

examples because functional derivatives can be evalu-

ated by hand. The joint PGFLs for multisensor target

tracking and extended-target tracking are given in Ex-

amples 3 and 4, respectively. The corresponding sec-

ular functions are then derived. The functional deriva-

tives cannot be found by hand for these examples but

the ordinary derivatives of the secular functions can be

found using reliable and efficient software. These ex-

pressions are identical to the functional derivatives of

the PGFL.

5.1. Example 1: Secular Functions for the
PHD/Intensity Filter

The Bayes posterior point process is not a Poisson

point process (PPP). To close the Bayesian recursion,

the posterior process is approximated [7] by a PPP

whose intensity function is matched to the intensity, or

first moment, of the Bayes posterior process. Predicting

the intensity of this PPP approximation forward to the

current time gives a PPP with intensity f(s). After the

prediction step, the joint PGFL of the measurement-

target process is

ª[g,h] = exp

·
¡
Z
Y

¸(y)dy+

Z
Y

g(y)¸(y)dy¡
Z
S

f(s)ds

+

Z
S

h(s)f(s)ds¡
Z
S

h(s)PD(s)f(s)ds

+

Z
S

Z
Y

g(y)h(s)p(y j s)PD(s)f(s)dyds
¸
,

(32)
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where Y and S are the sensor measurement and tar-

get state spaces, respectively, ¸(y) is the intensity func-

tion of a PPP model for sensor clutter measurements,

PD(s) is the probability of detecting a target in state

s, and p(y j s) is the sensor measurement likelihood
function. The PGFL is defined for bounded functions

g : Y!R and h : S!R. The PGFL (32) depends on

many assumptions about target motion, target mea-

surement, the clutter process, and the measurement-to-

target assignments, to name only a few. These assump-

tions and the derivation of the PGFL are not given

here because we take the joint PGFL as our starting

point. Further details can be found in [7] and also

in [13].

The secular function is defined by (28). In the case

of the PGFL (32), this gives

J(®,¯;y,x)

=G0 exp

"
mX
i=1

®i

μ
¸(yi)+

Z
S

p(yi j s)PD(s)f(s)ds
¶

+

nX
j=1

¯j(1¡PD(xj))f(xj)

+

mX
i=1

nX
j=1

®i¯jp(yi j xj)PD(xj)f(xj)
35 ,
(33)

where

G0 = exp

·
¡
Z
Y

¸(y)dy¡
Z
S

f(s)PD(s)ds

¸
: (34)

Note that J(¢) is the exponential of a quadratic poly-
nomial in the components of the vectors ® and ¯. The

derivatives of J(¢) are straightforward to compute by
hand when minfm,ng is small.
The PGFL of the Bayes posterior point process is,

using (20),

ª[h] =
ªy[0,h]

ªy[0,1]
: (35)

The intensity function of this process is m[1](x1). It is

given in terms of the secular function by (30), where

the derivative J®(¢) is, from (33) with n= 1,

J®(0,¯1;y,x1)

= J(0,¯1;y,x1)

£
mY
i=1

μ
¸(yi) +

Z
S

h(s)p(yi j s)PD(s)f(s)ds

+¯1p(yi j x1)PD(x1)f(x1)
¶
: (36)

The derivative of the logarithm of (36) with respect to

¯1 evaluated at ¯1 = 0 is

m[1](x1)

=
1

J®(0,0;y,x1)

d

d¯1
J®(0,0;y,x1)

= (1¡PD(x1))f(x1) +
mX
i=1

p(yi j x1)PD(x1)f(x1)
¸(yi) +

R
S
p(yi j s)PD(s)f(s)ds

:

(37)

The expression (37) is the PHD filter information up-

date.

5.2. Example 2. Pair-Correlation Function of the
Bayes Posterior Target Process

“Spooky action at a distance” [4] is a source of con-

cern using point process models for tracking indepen-

dent targets. One cause is nontrivial pair-correlation [1]

in the Bayes posterior process. It is shown in this exam-

ple that the Bayes posterior target process is repulsive

for all x1 and x2. This result was first derived in [2].

For Example 1 the second factorial moment is given

by the normalized second derivative (31) of the secular

function. The derivative J®(¢) is, using (33) with n= 2,
J®(0,¯;y,x)

= J(0,¯;y,x)
mY
i=1

0@¸(yi)+Z
S

h(s)p(yi j s)PD(s)f(s)ds

+

2X
j=1

¯jp(yi j xj)PD(xj)f(xj)
1A :
(38)

The first derivative of the logarithm of (38) with respect

to ¯`, `= 1,2, is

1

J®(0,¯;y,x)

d

d¯`
J®(0,¯;y,x)

= (1¡PD(x`))f(x`) +
mX
i=1

p(yi j x`)PD(x`)f(x`)
¸(yi)+

R
S
p(yi j s)PD(s)f(s)ds+

P2
j=1¯jp(yi j xj)PD(xj)f(xj)

: (39)
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Now let `= 1 in (39) and take the first derivative with

respect to ¯2. Setting ¯1 = ¯2 = 0, rearranging terms,

and substituting the first moment (37) evaluated at the

points x1 and x2 of x gives

1

J®(0,0;y,x)

d2

d¯1d¯2
J®(0,0;y,x)

=m[1](x1)m[1](x2)

¡
mX
i=1

p(yi j x1)PD(x1)f(x1)p(yi j x2)PD(x2)f(x2)¡
¸(yi)+

R
S
p(yi j s)PD(s)f(s)ds

¢2 :

(40)

From (31) the left hand side of (40) is seen to be the

second factorial moment of the PGFL (35) of the Bayes

posterior point process. Dividing by the product of first

factorial moments gives

½(x1,x2) = 1¡
1

m[1](x1)m[1](x2)

£
mX
i=1

p(yi j s1)PD(s1)f(s1)p(yi j s2)PD(s2)f(s2)¡
¸(yi) +

R
S
p(yi j s)PD(s)f(s)ds

¢2 :

(41)

It is evident that ½(x1,x2)< 1; therefore, the Bayes pos-

terior process is repulsive.

5.3. Example 3. Multisensor Multitarget Tracking
Filters

Let L¸ 1 sensors produce conditionally independent
measurements in the spaces Y`, `= 1, : : : ,L. Example 1

is the special case L= 1. The joint PGFL [9] can be

written explicitly as

ª [g1, : : : ,gL,h] = exp

Ã
¡

LX
`=1

Z
Y`
¸`(y)dy+

LX
`=1

Z
Y`
g`(y)¸`(y)dy¡

Z
S

f(s)ds

+

Z
S

h(s)f(s)

LY
`=1

μ
1¡PD`(s) +PD`(s)

Z
Y`
g`(y)p`(y j s)dy

¶
ds

!
, (42)

where the sensor likelihood functions and detection

probabilities are given by p`(y j s) and PD`(s), respec-
tively.

Let ®` = (®`i : i= 1, : : : ,m
`), `= 1, : : : ,L. The secular

function of (42) with respect to impulses at the sensor

measurements y` = fy`i : i= 1, : : : ,m`g, y`i 2 Y`, and at
target state x= x1 is found by substituting

g`(y) =

m`X
i=1

®`i ±y`
i
(y), y 2 Y`, `= 1, : : : ,L,

h(s) = 1+¯1±x1 (s): (43)

We do not discuss the pair-correlation function here,

so the perturbation of h requires only one term. The

logarithm of the secular function is

logJ(®1, : : : ,®L,¯1;y,x1)

=¡
LX
`=1

Z
Y`

¸`(y)dy+

LX
`=1

m`X
i=1

®`i ¸
`(y`i )¡

Z
S

f(s)ds

+

Z
S

f(s)

LY
`=1

0@1¡PD` (s) +PD` (s) m`X
i=1

®`i p
`(y`i j s)

1Ads

+¯1f(x1)

LY
`=1

0@1¡PD` (x1) +PD` (x1) m`X
i=1

®`i p
`(y`i j x1)

1A ,
(44)

where y= (y1, : : : ,yL). For n= 1 and L= 1, this expres-

sion is identical to (33).

Differentiating the secular function (44) with respect

to ®1, : : : ,®L and evaluating it for ®`i = 0 gives the sym-
bolic expression for the functional derivative at the point

x1 2 S. From (30), the symbolic derivative of the loga-

rithm of this expression evaluated at ¯1 = 0 gives the

exact numerical value of the intensity function at the

point x1. Except for trivial cases, these derivatives are

unsuited to manual differentiation because they have a

prohibitively large number of terms. Symbolic differen-

tiation packages can evaluate the required derivatives

in principle, at least for sufficiently small problems.

Nonetheless, regardless of the computer, these methods

will struggle for larger problems. (The potential of auto-

matic differentiation [5] to help in this problem remains

to be studied.)

5.4. Example 4. Extended-Targets and Multiple Sensors

The joint PGFL for extended-targets and L¸ 1 sen-
sors is

ª[g1, : : : ,gL,h]

= exp

Ã
¡

LX
`=1

Z
Y`

¸`(y)dy+

LX
`=1

Z
Y`

g`(y)¸`(y)dy

¡
Z
S

f(s)ds+

Z
S

h(s)f(s)

LY
`=1

ªD`[g` j s]ds
!
,

(45)
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where ªD`[g` j s] is the PGFL of the measurement

point process for a target at s 2 S. Let G`(z) denote
the generating function of the number ¿ ¸ 1 of target
measurements, conditioned on target detection. Thus

Pr`f¿ = 0g= 0 and

G`(z) =

¿`maxX
¿=1

Pr`f¿gz¿ , (46)

where z is the complex variable of the generating func-

tion and ¿`max ¸ 1 is the maximum number of measure-

ments that a target at s can produce in sensor `. Assum-

ing that targets generate i.i.d. measurements in sensor `

with PDF p`(¢ j s), the conditional measurement PGFL is

ªD`[g` j s] = 1¡PD`(s) +PD`(s)G`
μZ

Y`

g`(y)p`(y j s)dy
¶
:

(47)

For each s 2 S, ªD`[1 j s] = 1 since, by definition,

G`(1) = 1.

The special case of (45) for L= 1 and Poisson gen-

erating functions is discussed in [8] and the references

therein. The PGFL for L= 1 using a more general target

point process is given in [11].

Since targets can generate at most ¿`max measure-

ments, G`(z) is a polynomial of degree ¿`max. If ¿
`
max = 1,

targets generate at most one measurement with proba-

bility PD
`

(s), so G`(z)´ z and (45) reduces to the PGFL
(44) of Example 3. Another common model is that the

number of measurements is Poisson distributed with

mean ¹`, conditioned on at least one measurement, so

the generating function is G`(z) = (e¹`z ¡ 1)=(e¹` ¡ 1).
The joint PGFL for multiple sensors and multiple

target measurements is determined by substituting (47)

into (45). If only the intensity function is evaluated, the

perturbation of h is limited to one term, and the secular

function can be found using the same perturbations as

(43). The secular function of ª[g1, : : : ,gL,h] is then

logJ(®1, : : : ,®L,¯1;y,x1) =¡
LX
`=1

Z
Y`
¸`(y)dy+

LX
`=1

m`X
i=1

®`i ¸
`(y`i )¡

Z
S

f(s)ds

+

Z
S

f(s)

LY
`=1

0@1¡PD`(s)+PD`(s)G`
0@ m`X
i=1

®`i p
`(y`i j s)

1A1Ads
+¯1f(x1)

LY
`=1

0@1¡PD`(x1)+PD`(x1)G`
0@ m`X
i=1

®`i p
`(y`i j x1)

1A1A : (48)

Derivatives of the secular function can be found by dif-

ferentiating as needed under the integral sign (absolute

convergence holds). As in Example 3, the numerical

integrals can be calculated by summing the integrands

over the current particle set.

6. DERIVATIVES OF SECULAR FUNCTIONS

The natural way to use secular functions in most
applications is to find the exact symbolic derivatives
using a software package for ordinary differentiation.
Such software is often organized so that the symbolic
derivative can be evaluated numerically at specified
points, e.g., the particles in a particle filter, by exploiting
the internal software representation of the derivative.
This calculation bypasses the need to recode (or even
to examine) the symbolic expressions.
Automatic differentiation (AD) methods are rela-

tively new [5] techniques in which the numerical val-
ues of the symbolic derivative of a function are found
without finding the symbolic derivative. These are ex-
act methods (to machine precision), not approximations.
Moreover, the additional computational effort is propor-
tional to that of evaluating the function alone. AD meth-
ods are based on the chain rule. Their potential use for
tracking applications is outside the scope of the present
paper.
Alternatively, it may be worthwhile in some appli-

cations to consider classical numerical approximations
of the symbolic derivatives. Two such methods, finite
differences and Maclaurin series expansion, are briefly
considered in this section for computing the intensity
function.

6.1. Method 1: Classical Finite Differences

In the examples of Section V the derivatives of the
secular function with respect to ¯1 evaluated at ¯1 = 0

can be evaluated easily for any ®= (®1, : : : ,®L) 2 RM ,
where M =m1 + ¢ ¢ ¢+mL is the total number of sensor
measurements. Complexity grows with the number of
derivatives with respect to ®. The intensity function of
the Bayes posterior point process is

m[1](x) =

μ
dM

d®1 ¢ ¢ ¢d®M
J 0(®,0)

¶
®1=¢¢¢=®M=0μ

dM

d®1 ¢ ¢ ¢d®M
J(®,0)

¶
®1=¢¢¢=®M=0

: (49)

The derivatives in (49) can be approximated by classical

finite differences.

For real valued functions U :RM !R, the (sym-
metric) finite difference approximation to the cross-

derivative of U at the origin (0, : : : ,0) 2 RM is
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dmU

dx1 ¢ ¢ ¢dxM
(0, : : : ,0)

»= 1

"1 ¢ ¢ ¢"M2M
1X

¾1,:::,¾M=0

(¡1)¾1+¢¢¢¾MU((¡1)¾1"1, : : : ,

(¡1)¾M "M), (50)

where the increments "j are suitably “small.” In words,

the sum is over all 2M combinations of signs f+1,¡1g.
The constant "1 ¢ ¢ ¢"M2M in (50) cancels out of the

ratio (49), leaving only the sums in numerator and

denominator. The alternating signs in the sum (50)

can lead to underflow for sufficiently small increments.

Underflow can be reduced by accumulating the positive

terms and negative terms separately and then taking the

difference.

The number of terms in the finite difference form

(50) is not impractical for small values of M. For values

up to, say, M = 10, the difficulties encountered can be

mitigated by fast multi-core computers. Whatever the

limiting value of M, it is ultimately necessary to restrict

the measurement space to one or more “windows” that

contain at most M measurements.

6.2. Method 2: Maclaurin Series Expansion

PGFLs and their secular functions encode combina-

torial information. Consequently, truncating any series

approximation to them can be equivalent to a combina-

torial constraint. Truncating the Maclaurin series after

the linear term is shown to be such a case this subsec-

tion.

The secular functions in the examples of Section V

have the form, for some choice of constant s and vector

c 2RM ,
J(®,¯1;y,x1) = c0 exp(c

T®+¼(®) +¯1¼(®;x1)), (51)

where the function ¼ :RM £ S!R and ¼(®)´ R
S
¼(®;s)

ds. Expanding the integrand ¼(®;x) in a Maclaurin se-
ries gives

¼(®;s)»= ¼(0;s) + [r¼(0;s)]T®
+ 1

2
®T[r2¼(0;s)]®+ ¢ ¢ ¢ , (52)

where r¼(0;s)´ (r¼`(0;s) : `= 1, : : : ,M) 2 RM and

r2¼(0;s) 2 RM £RM are the gradient and Hessian ma-

trix of ¼(®;s), respectively, evaluated at ®= 0 2 RM .
Substituting (52) into (51) and retaining only linear

terms gives the approximate secular function

J(®,¯1;y,x1)

»= c0 exp
μ
cT®+

Z
S

[r¼(0;s)]T®ds+¯1[¼(0;x1)

+[r¼(0;x1)]T®]
¶
: (53)

It follows from (30) that the intensity function is

m[1](x1) = ¼(0;x1)+

MX
`=1

r¼`(0;x1)
c`+

R
S
r¼`(0;s)ds

: (54)

A close examination of the expression (54) for, say, Ex-

ample 3, shows that truncating the Maclaurin series to

linear terms is tantamount to the combinatorial restric-

tion that a target generate at most one measurement in at

most one sensor. This constraint is not realistic in many

problems.

Truncating the Maclaurin series after the quadratic

or higher order term will result in different combinato-

rial restrictions, the nature of which is not studied here.

The derivatives of these higher order expansions can be

evaluated numerically for use in particle filter imple-

mentations to evaluate performance.

7. CONCLUSIONS

It is shown that functional derivatives of the PGFL

are equivalent to ordinary derivatives of secular func-

tions. Symbolic derivatives of secular functions can be

found with widely available software. The secular func-

tion technique yields exact, not approximate, values of

the functional derivatives of the PGFL. It lends itself to

particle filter implementations because particle weights

can be found by evaluating derivatives of the secular

function, not functional derivatives of the PGFL. Em-

bedding symbolic differentiation software in production

code is somewhat unorthodox, but well within modern

computing capabilities.
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