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In this paper, a hidden Markov model (HMM)-based dynamic
sensor scheduling problem is formulated, and solved using infor-
mation gain and rollout concepts to overcome the computational
intractability of the dynamic programming recursion. The problem
involves dynamically sequencing a set of sensors to monitor mul-
tiples tasks, which are modeled as multiple HMMs with multiple
emission matrices corresponding to each of the sensors. The dy-
namic sequencing problem is to minimize the sum of sensor usage
costs and the task state estimation error costs. The rollout infor-
mation gain algorithm proposed herein employs the information
gain heuristic as the base algorithm to solve the dynamic sensor
sequencing problem. The information gain heuristic selects the best
sensor assignment at each time epoch that maximizes the sum of
information gains per unit sensor usage cost, subject to the assign-
ment constraints that at most one sensor can be assigned to a HMM
and that at most one HMM can be assigned to a sensor. The roll-
out strategy involves combining the information gain heuristic with
the Jonker-Volgenant-Castañ _on (JVC) assignment algorithm and a
modified Murty’s algorithm to compute the ·-best assignments at
each decision epoch of rollout. The capabilities of the rollout infor-
mation gain algorithm are illustrated using a hypothetical scenario
to monitor intelligence, surveillance, and reconnaissance (ISR) ac-
tivities in multiple fishing villages and refugee camps for the pres-
ence of weapons and terrorists or refugees.
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1. INTRODUCTION

Complex applications involving threat detection,
such as multi-target tracking and unmanned aerial vehi-
cles for surveillance in remote or hostile environments,
include heterogeneous sensors, which trade off perfor-
mance (e.g., detection, identification, and tracking ac-
curacies) versus the sensor usage cost (e.g., power and
bandwidth consumption, distance traveled, risk of ex-
posure, deployment requirements). The objective of dy-
namic sensor scheduling is to judiciously allocate sens-
ing resources to exploit the individual sensors’ capa-
bilities, while minimizing their usage cost. As an ex-
ample, consider a target identification scenario where
an incoming aircraft needs to be identified as an en-
emy or a friendly target using active or passive sen-
sors available at a surveillance station [16]. This sce-
nario requires sensor scheduling because active sensors
(e.g., radar) tend to reveal clues about the location of
the surveillance station to a potential enemy aircraft,
whereas the more stealthy passive sensors tend to be
inaccurate [16]. Thus, in this case, the sensor scheduling
algorithm needs to trade-off accuracy versus risk of ex-
posure. As another example, unmanned aerial vehicles
(UAVs) are preferred assets for monitoring nearly all
the intelligence, surveillance, and reconnaissance (ISR)
activities; however, they cannot be deployed in large
numbers due to their limited availability. Thus, astute
allocation of scarce resources is a major issue in sensor
scheduling.
In this paper, we consider the sensor scheduling

problem faced by an ISR officer of an expeditionary
strike group (ESG) in coordinating the use of surveil-
lance assets (sensors) to improve situational awareness
[14]. An ESG provides a flexible Navy-Marine force,
capable of tailoring itself to a wide variety of missions.
An important ESG mission involves dealing with asym-
metric threats, such as terrorist groups who carry out
attacks while trying to avoid direct confrontation. Ter-
rorist groups are elusive, secretive, amorphously struc-
tured and decentralized entities that often appear uncon-
nected. This stealthy behavior makes it very difficult to
predict when and where they will strike. Moreover, the
increased geographical range and unpredictable nature
of this behavior require effective allocation and appro-
priate scheduling of sensors to achieve mission objec-
tives. Effectively performing the ISR activities is a key
step to gain situational awareness, which, in turn, en-
ables the allocation of resources for the interdiction of
potential threats.
We model the asymmetric threats using hidden

Markov models, because these activities are concealed
and their true states can only be inferred through the
observations obtained using various ISR sensors. A pat-
tern of these observations and its dynamic evolution
over time provides the information base for inferring
a potential realization of a threat [25]. Performing the
ISR activities requires multiple sensors to provide ob-
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servations needed for accurately estimating the status
of suspicious activities. The available sensors are lim-
ited in number, and possess different attributes requiring
judicious sensor allocation over time. Therefore, an ef-
fective scheduling of ISR sensors over time is essential
for accurate situation assessment and to the success of
the overall mission.

1.1. Previous Work

The dynamic sensor scheduling problem, which
has been widely studied in the area of target track-
ing (e.g., [8], [28]), is to solve a sequential stochastic
optimization problem that seeks to minimize the ex-
pected scheduling cost under a given set of resource
constraints over time [8]. For linear Gaussian state space
systems, one can obtain an analytic solution for the
posterior distribution of system state given sensor mea-
surements, and a scheduling sequence via a Kalman
filter [18]. Shakeri et al. [24] formulated the sensor
scheduling problem subject to a fixed total budget and
the cost of individual sensor varying inversely with
its measurement variance. They obtained the optimal
measurement variance distribution that minimizes the
trace of a weighted sum of the estimation error co-
variance matrices of a discrete-time vector stochastic
process, when the auto-correlation matrix of the pro-
cess is given. The study showed that the problem can
be transformed into an optimization problem with lin-
ear equality and inequality constraints. In the special
case of a linear finite-dimensional stochastic system,
they showed that the problem can be formulated as
an optimal control problem, where the gradient and
Hessian of the objective function with respect to the
sensor accuracy parameters can be derived via a two-
point boundary value problem. The resulting optimiza-
tion problem was solved via a projected Newton Method
[4], [24].
In [26], Singh et al. provided a summary of previ-

ous research on sensor scheduling for tracking targets,
whose dynamics are modeled by linear Gauss-Markov
processes. They formulated the sensor scheduling prob-
lem as one of minimizing the variance of the estima-
tion error of hidden states of a continuous-time HMM
with respect to a given action sequence [26]. The au-
thors proposed a stochastic gradient algorithm to de-
termine the optimal schedule for the HMM. Another
effort, related to our work, using a discrete HMM frame-
work was considered by Krishnamurthy in [16]. Here,
the author proposed a stochastic dynamic programming
(DP) framework to solve the sensor scheduling prob-
lem for a single HMM, which is intractable for all
but simple HMMs with a few states (e.g., at most 15
states).
Sub-optimal approaches, based on information-theo-

retic criteria, have been developed to overcome the
computational intractability of determining the optimal

sensor schedule. For a linear Gauss-Markov system,
Logothetis et al. [17] formulated the sensor schedul-
ing problem as one of determining a sequence of ac-
tive sensors to maximize the mutual information be-
tween the states of the unobserved dynamic process
and the observation process generated by the sen-
sors. In the context of sensor networks, Zhao et al.
[29] and Chu et al. [9] formulated the target track-
ing problem as a sequential Bayesian estimation prob-
lem, where the participants for sensor collaboration
are determined by minimizing an objective function
comprised of information utility, measured in terms of
entropy, Mahalanobis distance and the sensor usage
cost.
Rollout algorithms were first proposed for the ap-

proximate solution of dynamic programming recursions
by Bertsekas et al. in [5], [6]. They are a class of subop-
timal solution methods inspired by the policy iteration
of dynamic programming and the approximate policy
iteration of neuro-dynamic programming. The rollout
algorithm, combined with the information gain heuris-
tic (IG), was first proposed in our previous research
on sequential fault diagnosis [27], where the system
state is fixed (i.e., static), but unknown. In [27], we
showed that rollout strategy, which can be combined
with the one-step or multi-step look-ahead heuristic al-
gorithms as base algorithms, can solve test sequencing
problems in real-world systems with a higher compu-
tational efficiency than the optimal strategies, while be-
ing superior to those using the base algorithms only.
In order to coordinate multiple sensor resources to
track and discriminate targets modeled as continuous-
state HMMs, Schneider et al. [23] presented a roll-
out approach to approximate the dynamic program-
ming recursion using a cost-to-go function based on
feasible candidate scenarios. In contrast, our approach
employs discrete-state HMMs to model tasks and an
information gain heuristic to estimate the cost-to-go
function.
In this paper, two-dimensional assignment algo-

rithms, exemplified by the Jonker-Volgenant-Castañ _on
(JVC) [15] and the auction [2], [3], are used to obtain
an assignment for maximizing the sum of information
gains per unit sensor usage cost accrued by assigning
multiple sensors to multiple HMMs. The JVC and the
auction are the most efficient algorithms for solving the
two-dimensional (2-D) assignment problems. The JVC
algorithm is a primal-dual optimization method that in-
cludes an effective initialization of dual variables, and
an augmentation phase based on the Dijkstra’s shortest
path algorithm [11]. The auction algorithm, proposed
by Bertsekas et al. [2], [3], consists of a bidding phase
and an assignment phase, where an optimal assignment
is found by employing a coordinate descent method on
the dual function. However, scaling of the information
gain matrix is critical to the success of the auction algo-
rithm. The ·-best assignment algorithm, first proposed
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Fig. 1. Sensor scheduling problem for multiple HMMs.

by Murty [20], is independent of the algorithm cho-
sen for solving the assignment problem. This algorithm
ranks all the assignments in the order of decreasing ob-
jective function value by a clever partitioning of the
search space of feasible assignments. The computational
efficiency of Murty’s algorithm has been enhanced by
Cox et al. [10], Miller et al. [19], and Popp et al. [21],
where the ·-best assignment algorithm is used to rank
order assignment solutions for data association.

1.2. Scope and Organization of the Paper

This paper makes three novel contributions. First,
motivated by the intractability of DP recursion even for
a single HMM-based sensor scheduling problem [16]
and its success in sequential probing for fault diagnosis
[27], we propose a greedy heuristic algorithm based on
information gain per unit sensor usage cost. We derive
the information gain of a sensor for HMM models in
the predictor-corrector form of state estimation equa-
tions, which are ideally suited for on-line implementa-
tion. Second, we improve the information gain heuristic
algorithm by embedding it in a rollout algorithm to im-
prove its scheduling performance. This is accomplished
via the solution of a ·-best assignment algorithm. The
multiple HMM scheduling problems using the com-
bined rollout and assignment approach proposed herein
have not been considered in the literature. Finally, the
algorithms are applied to realistic ISR mission scenarios
arising in ESG missions.
The paper is organized as follows. In Section 2, the

multiple sensor scheduling problem is formulated. In
Section 3, the DP recursion is developed. In Section 4,
we present the rollout information gain heuristic algo-
rithm based on JVC and ·-best assignment algorithm.

We apply our solution approach to the ISR mission sce-
nario, and present its results in Section 5. Finally, Sec-
tion 6 concludes with a summary.

2. MULTIPLE HMM SENSOR SCHEDULING
PROBLEM

2.1. The Factorial Hidden Markov Model (FHMM) for
Dynamic Sensor Scheduling

Consider a scenario with N marginally independent
discrete HMMs evolving independently and coupled via
the observation process, as shown in Fig. 1. This model
is also known as FHMM in the machine learning lit-
erature [13]. However, our framework is valid for cou-
pled HMMs [7] and hierarchical HMMs [12] as well.
Suppose there are m sensors, and ¹(k)μ f1,2, : : : ,mg
are the set of available sensors at decision epoch k 2
f1,2, : : : ,Kg. We assume that at most a single sensor
out of available sensors, ¹(k), is assigned for observ-
ing the hidden state of a HMM at time epoch k. The
FHMM is parameterized by the set of transition proba-
bility matrices A(k), the set of emission matrices B(k),
and the set of initial probability vectors '. We assume
that the FHMM parameter sets ¤(k) = (A(k),B(k),')
(k = 1,2, : : : ,K), are known a priori; however, they could
also be estimated based on historical data using the
Baum-Welch algorithm [1].
The set of transition probability matrices of the

underlying Markov chains associated with the N HMMs
is given by A(k) = fA1(k), : : : ,Ar(k), : : : ,AN(k)g at time
epoch k, where Ar(k) denotes the transition probability
matrix of the rth HMM:

Ar(k) = [arij(k)] = [P(xr(k) = srj j xr(k¡ 1) = sri)],
i,j = 1,2, : : : ,nr (1)
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where xr(k) is the hidden state of rth HMM at time
epoch k. The hidden state xr(k) 2 fsri : i= 1,2, : : : ,nrg,
where nr is the number of states used for modeling the
rth HMM. We denote the subset of emission matrices,
corresponding to each of the m sensors associated with
the rth HMM, as Br(k) = fBr1(k), : : : ,Brq(k), : : : ,Brm(k)g
at time epoch k. The set of emission matrices for the
N HMMs is denoted by B(k) = fB1(k), : : : ,Br(k), : : : ,
BN(k)g. The observation, measured by sensor ur(k) = q
assigned to the rth HMM at time epoch k, is denoted
by yr(k) 2 fOr1(k), : : : ,OrL(q)(k)g, i.e., it belongs to one
of L(ur(k) = q) symbols. Evidently, the number of ob-
servation symbols L(q) can be a function of the sensors.
This models a realistic scenario in which different sen-
sors have different capabilities in generating different
observation symbols. If none of the sensors is assigned
to a HMM at a given epoch, we assume that the ob-
served symbol is null (Á). The probability of observ-
ing the symbol Orl(k) (l = 1,2, : : : ,L(q)) with the sen-
sor ur(k) = q assigned to the rth HMM, given the state
xr(k) = sri, denoted by brliq(k), is an element of the emis-
sion matrix, Brq(k). That is,

Brq(k) = [brliq(k)] = [P(yr(k) =Orl(k) j xr(k) = sri,ur(k) = q],
i= 1,2, : : : ,nr; l = 1,2, : : : ,L(q);

q= 1,2, : : : ,m; r = 1,2, : : : ,N: (2)

The key point here is that the observation yr(k) de-
pends upon the current state xr(k) and the selected
sensor ur(k) from among the available sensors at time
k. At time epoch k, we have, for each HMM (r =
1,2, : : : ,N), the information sets fYk¡1r ,Uk¡1r g, where
Yk¡1r = fyr(1), : : : ,yr(k¡1)g and Uk¡1r = fur(1), : : : ,
ur(k¡1)g, the previously observed symbols and the
sensor sequence used from time epoch t = 1 to time
epoch t= k¡ 1. Evidently, Y0r =U0r = Á. The initial
probability of the underlying Markov states of the rth
HMM at time t= 0 is denoted by

'
r
= ['ri = p(xr(0) = sri)],

i= 1,2, : : : ,nr; r = 1,2, : : : ,N: (3)

We denote the set of initial probability vectors of the N
HMMs as '= f'

1
, : : : ,'

r
, : : : ,'

N
g.

2.2. Dynamic Sensor Scheduling Cost

The sensor scheduling problem is the following:
How to find the policy to optimally allocate the m sen-
sors to the N HMMs from time epoch 1 to time epoch
K, based on fYk¡1,Uk¡1gKk=1, where (Yk¡1,Uk¡1) =
fYk¡1r ,Uk¡1r gNr=1, the information available to optimize
the sensor schedule at time epoch k. The sensor schedul-
ing cost function is a sum of sensor usage costs and
the state estimation errors over the planning horizon.
The information states ¦(k j k¡ 1) = f¼1(k j k¡ 1), : : : ,
¼r(k j k¡ 1), : : : ,¼N(k j k¡1)gT are sufficient statistics

to describe the current state of the N HMMs, where
¼r(k j k¡ 1) = f¼r1(k j k¡ 1), : : : ,¼rnr (k j k¡1)gT. Indeed,
the information state is the predicted probability
of the hidden state X(k) = fx1(k), : : : ,xr(k), : : : ,xN(k)gT
given the available information, fYk¡1,Uk¡1g, where
xr(k) = fsr1(k), : : : ,srnr (k)gT, i.e.,

¦(k j k¡ 1) = P(X(k) jYk¡1,Uk¡1) (4)

where P(X(k) jYk¡1,Uk¡1) = fP(x1(k) j Yk¡11 ,Uk¡11 ), : : : ,
P(xr(k) j Yk¡1r ,Uk¡1r ), : : : ,P(xN(k) j Yk¡1N ,Uk¡1N )gT. Let us
denote the sensor scheduling policy from time epoch 1
to time epoch K by » = f»(k)gKk=1. For a given policy,
the cumulative expected schedule cost from time epoch
1 to time epoch K, denoted by J» , is assumed to be of
the form:

J» = E

"
NX
r=1

"
¯frK(¼r(K j K)) +

K¡1X
k=0

¯frk(¼r(k j k))

+
KX
k=1

grk(ur(k),¼r(k j k¡1))
##

(5)

where ¼r(k j k) is the updated (corrected) informa-
tion state, frk(¼r(k j k)) is the state estimation error,
grk(ur(k),¼r(k j k¡ 1)) is the sensor cost of the rth
HMM, and ¯ is a positive scalar weight. Here, the ex-
pectation is over the stochastic realizations of measure-
ment sequences. Typical cost functions for the state es-
timation error are as follows:

frk(¼r(k j k)) = 1¡¼Tr (k j k)¼r(k j k), (6)

frk(¼r(k j k)) = 1¡ max
i2f1,:::,nrg

¼ri(k j k), (7)

frk(¼r(k j k)) = min
1·i·nr

nrX
j=1

¼rj(k j k)¸ij : (8)

The first criterion as given in (6) can be interpreted
as the L2-norm of the updated state estimation error;
the second criterion in (7) as the error probability of
a maximum a posteriori probability (MAP)-based de-
cision rule; while the third criterion in (8) as the ex-
pected cost of errors in estimating the information state.
In (8), ¸ij represents the cost of erroneously estimating
the hidden state as sri when the true state is srj . The
sensor cost grk(ur(k),¼r(k j k¡ 1)) is the sum of sen-
sor usage cost hrk(ur(k),¼r(k j k¡ 1)) and sensor travel
(movement) cost cm(ur(k)), i.e.,

grk(ur(k),¼r(k j k¡ 1))
= hrk(ur(k),¼r(k j k¡ 1))+ cm(ur(k)) (9)

where the sensor usage cost is given by

hrk(ur(k),¼r(k j k¡ 1)) =
nrX
i=1

crk(sri,ur(k))¼ri(k j k¡ 1)

= cTk (ur(k))¼r(k j k¡1) (10)

36 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 3, NO. 1 JUNE 2008



and cTk (ur(k)) = fcrk(sr1,ur(k)),crk(sr2,ur(k)), : : : ,crk(srnr ,
ur(k))g is the usage cost of sensor ur(k) corresponding
to each of the states fsrignri=1. We also considered the
cost of moving a sensor, denoted by cm(ur(k)), from its
current location to the location of the task. This cost is
computed via a simplified travel cost model as

cm(ur(k)) =
k(ar,br)¡ (aur(k),bur(k))k2

v(ur(k))
w(ur(k))

(11)

where (ar,br) and (aur(k),bur(k)) denote the cartesian co-
ordinates of the task location (indexed by the HMM)
and the selected sensor ur(k) for monitoring the rth
HMM, respectively. Here, w(ur(k)) is a priority param-
eter that accounts for the scarcity of the sensor, v(ur(k))
denotes the velocity of the sensor (or the mobile plat-
form on which it is resident), and k ¢ k2 denotes the Eu-
clidean (2-) norm.

3. DYNAMIC PROGRAMMING ALGORITHMS FOR
OPTIMAL SOLUTION

The optimal solution to the sensor scheduling prob-
lem is to find the sensor assignment policy Ã¤ which
minimizes the sensor scheduling cost defined in (5). Let
us define a optimal cost-to-go function J¤(¦(k j k))as
follows:

J¤(¦(k j k))

= E

"
NX
r=1

"
¯frK(¼r(K j K)) +

K¡1X
l=k

¯frl(¼r(l j l))

+
KX
l=k

grl(Ã
¤
r (¦(l j l¡ 1)),¼r(l j l¡ 1))

##
(12)

where Ã¤r (¦(l j l¡ 1)) = u¤r (l) is the optimal sensor allo-
cated to rth HMM in the optimal policy. The optimal
cost-to-go function J¤(¦(k j k)) satisfies the dynamic
programming (DP) recursion:

J¤(¦(k j k))

= E

"
NX
r=1

[¯frk(¼r(k j k)) + grk(Ã¤r (¦(k j k¡ 1)),¼r(k j k¡ 1))]

+ J¤(¦(k+1 j k+1))
#

(13)

with the terminal condition J¤(¦(K j K)) =PN
r=1¯frK

¢ (¼r(K j K))+ grK(Ã¤r (¦(K j K ¡ 1)), ¼r(K j K ¡ 1)).
Hence, the optimal solution of (5) can be obtained us-
ing the dynamic programming (DP) technique; however,
the computational complexity is O(

QN
r=1D

(nr¡1)nLmK).
Here, D is the number of quantization levels used to

discretize the continuous-valued information probabil-
ity state, m is the number of sensors, K is the num-
ber of time epochs, N is the number of HMMs, nr is
the number of states of rth HMM, n=maxr2f1,2,:::,Ngnr,
L=maxr2f1,2,:::,Ng,q2f1,2,:::,mg(L(ur(:) = q)), and L(ur(:) =
q) is the number of observation symbols when sensor
q is allocated to the rth HMM at any epoch. The com-
putational complexity is intractable in both n and N.
This motivates us to investigate suboptimal algorithms
to solve the dynamic sensor scheduling problem. We
propose the rollout information gain (RIG) algorithm
with computational complexity of O(NnLm2K) per roll-
out, which is significantly lower than that for the DP
technique.

4. ROLLOUT STRATEGIES TO SOLVE SENSOR
SCHEDULING PROBLEM WITH MULTIPLE HMMS

4.1. Information Gain Heuristic as a Base Policy

Multiple HMM sensor scheduling involves two-
dimensional (2-D) assignment or a weighted bipartite
matching problem, where one set of nodes corresponds
to sensors and the other set to HMMs. When allocating
m sensors among N HMMs at each time epoch using
the information gain heuristic algorithm, one needs to
consider the m£N matrix of information gains for each
sensor-HMM pair, where the elements of qth row corre-
spond to information gains obtained by assigning sensor
q to each of the N HMMs, as shown in Fig. 2. The infor-
mation gain heuristic algorithm selects the best sensor
assignment at each time epoch k, ±¤(k), that maximizes
the sum of information gains per unit sensor usage cost,
subject to the assignment constraints that at most one
sensor can be assigned to a HMM and that at most
one HMM can be assigned to a sensor. The assignment
problem at time epoch k is (assuming without loss of
generality that m<N)1

±¤(k) = argmax
±(k)2»(k)

mX
q=1

NX
r=1

Iqr(¼r(k j k¡ 1),ur(k) = q)
grk(ur(k),¼r(k j k¡ 1))

±qr(k)

subject to
mX
q=1

±qr(k)· 1, r = 1,2, : : : ,N;

NX
r=1

±qr(k) = 1, q= 1,2, : : : ,m

(14)

where grk(ur(k),¼r(k j k¡ 1)) is the sensor usage cost
when it is assigned to the rth HMM as defined in (9),
and Iqr(¼r(k j k¡1),ur(k) = q) is the information gain

1This formulation can be extended to the case where multiple sensors
may be needed to estimate a HMM state or a single sensor can estimate
states of multiple HMMs. See [4].
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Fig. 2. Information gain matrix for multiple HMM-multiple sensor
case.

given by:

Iqr(¼r(k j k¡ 1),ur(k) = q)

=
nrX
i=1

¼ri(k j k¡ 1)
L(q)X
l=1

brliq(k) log2 brliq(k)

¡
L(q)X
l=1

Ã
nrX
i=1

brliq(k)¼ri(k j k¡ 1)
!

¢ log2
Ã

nrX
i=1

brliq(k)¼ri(k j k¡ 1)
!
: (15)

The derivation of information gain equation is provided
in the Appendix. The formulation in (13) is an asym-
metric assignment problem, because none of the sen-
sors may be assigned to some HMMs, leading to null
observations at that time epoch for the corresponding
unassigned HMMs.
The Jonker-Volgenant-Castañ _on (JVC) and the auc-

tion are the most efficient algorithms for solving the
(2-D) assignment problems. The JVC algorithm [15]
is a primal-dual method that includes an effective ini-
tialization of dual variables, and an augmentation phase
based on the Dijkstra’s shortest path algorithm [11]. The
auction algorithm, proposed by Bertsekas et al. [2] [3],
consists of a bidding phase and an assignment phase,
where an optimal assignment is found by employing a
coordinate descent method on the dual function. How-
ever, scaling of the weight (in our case the information
gain per unit cost) matrix is critical to the success of the
auction algorithm.
The JVC algorithm is used here for finding the best

assignment of sensors among multiple HMMs at each
time epoch. Thus, in the multiple HMM case, the in-
formation gain heuristic algorithm can be implemented
using the following five steps (see Fig. 3 for IG heuristic
processing steps of a single (rth) HMM):2

Step 1 (State Prediction): Predict the informa-
tion state vector set ¦(k j k¡ 1) = f¼1(k j k¡ 1), : : : ,

2The information gain heuristic is derived in terms of predictor-
corrector form of discrete HMM equations. These are similar to
the dynamic Bayesian state estimation equations, when the HMM
states and observations are continuous. In the latter case, ¼r(k j k¡ 1)
¢
=p(xr(k) j Yk¡1r ,Uk¡1r ) and ¼r(k j k)

¢
=p(xr(k) j Ykr ,Ukr ) should be inter-

preted as probability density functions of system state. The predicted

¼r(k j k¡ 1), : : : ,¼N(k j k¡ 1)gT. Here, ¼r(k j k¡1) at
time epoch k is predicted using the current updated in-
formation state vector at time epoch (k¡ 1), ¼r(k¡ 1 j
k¡1), and the transition matrix Ar(k):
¼r(k j k¡1) = ATr (k)¼r(k¡ 1 j k¡1), 1· r ·N:

(16)

Here N is the number of HMMs being tracked and
¼r(k j k¡ 1) = f¼r1(k j k¡ 1), : : : ,¼rnr (k j k¡1)gT. Evi-
dently, the updated information state ¦(k¡ 1 j k¡ 1)
uses all the information available up to time epoch k¡ 1,
i.e., fYk¡1,Uk¡1g.
Step 2 (Generation of Information Gain Matrix):

We construct the matrix of information gains per unit
sensor cost for all sensor-HMM pairs,

Iqr(¼r(k j k¡ 1),ur(k) = q)
grk(ur(k),¼r(k j k¡ 1))

,

r = 1,2, : : : ,N; q= 1,2, : : : ,m:

Step 3 (Sensor Assignment): Select the best sensor
assignment ±¤(k) that maximizes the sum of information
gains in (14) using the JVC assignment algorithm.
Step 4 (Observation): The set of observations

fy1(k),y2(k), : : : ,yN(k)g at time epoch k are obtained us-
ing the sensor set ur(k) (r = 1,2, : : : ,N) based on the
emission probability matrices given in (2).
Step 5 (State Update): Obtain the updated informa-

tion state, ¼ri(k j k), by using the forward algorithm [22]
as follows:

¼ri(k j k) =
brliq¤(k)¼ri(k j k¡ 1)Pnr
j=1brljq¤(k)¼rj(k j k¡1)

(17)

where ¼ri(k j k) is the ith element of ¼r(k j k¡ 1) =
f¼r1(k j k¡ 1), : : : ,¼ri(k j k¡ 1), : : : ,¼rnr (k j k¡ 1)gT and
the brliq¤ is the (l, i) element of emission matrix Brq¤(k).
It is the probability of the symbol Orl(k) (l = 1,2, : : : ,
L(q)) when the sensor ur(k) = q¤ is assigned to the rth
HMM, given the state xr(k) = sri.

information state for the next time epoch k can be obtained as:

¼r(k j k¡ 1) =
Z
xr(k¡1)

p(xr(k) j xr(k¡ 1))¼r(k¡ 1 j k¡ 1)dxr(k¡ 1);

1· r ·N
Once the observation for selected sensor ur(k) is obtained, the updated
information state is:

¼r(k j k)

=
p(y

r
(k) j xr(k),ur(k) = q)R

xr(k)
p(y

r
(k) j xr(k),ur(k) = q)¼r(k j k¡ 1)dxr(k)

¼r(k j k¡ 1);

1· r ·N

Typically, these integrals are intractable. However, if we can obtain
analytical approximations to the above equations (e.g., Gaussian sum
approximation), information gain heuristic would still be a tractable
approach.
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Fig. 3. Information gain heuristic (IG) processing steps for rth HMM.

4.2. Rollout Algorithms

Rollout algorithms are a class of suboptimal meth-
ods which are capable of improving the effectiveness
of any given heuristic through sequential application.
This is due to the policy improvement mechanism of
the underlying policy iteration process [27]. They can
be viewed as a single step of the classical policy itera-
tion method, wherein we start from a given easily im-
plementable and computationally tractable policy, and
then try to improve on that policy using online learn-
ing and simulation. The attractive aspects of rollout al-
gorithms are simplicity, broad applicability, and suit-
ability for online implementation. The details of the
rollout algorithms are provided in [5], [6], [27]. In
our rollout framework, the information gain heuristic
is used as a base policy where optimal cost-to-go func-
tion J¤(¦(k+1 j k+1)) is approximated by the cost-to-
go function J(¦(k+1 j k+1)) of the information gain
heuristic. The rollout policy for approximating (13) can
be written in terms of Q-factor as follows:

±¤(k) = argmin
±i(k)2±(k)

Q(¦(k j k¡1),±i(k)), i= 1, : : : ,·

= argmin
±i(k)2±(k)

E

"
NX
r=1

[frk(¼r(k j k))

+grk(Ã
i
r(¦(k j k¡ 1)),¼r(k j k¡ 1))]

+ J(¦(k+1 j k+1))
#

(18)

where ±(k) = f±1(k), : : : ,±·(k)g are the ·-best assign-
ments used to reduce the search space, and Ãir(¦(k j
k¡ 1)) = uir(k) is the sensor assigned to monitor the rth
HMM in the ith-best assignment. The problem of com-
puting the ·-best assignments is solved by combining
the JVC algorithm with a modified Murty’s algorithm
[20], [10], [21]. However, the Q-factor driven by ith-
best assignment ±i(k) at time epoch k can not be com-

Fig. 4. Rollout information gain (RIG) algorithm coupled with
·-best assignment algorithm.

puted in closed-form. A straightforward approach for
computing the Q-factors is to use Monte Carlo simula-
tions for J(¦(k+1 j k+1)). Unfortunately, the method
suffers from increase in computational complexity. In
our paper, given information state vector ¦(k j k) at
time epoch k, we approximated J(¦(k+1 j k+1)) by
generating a single schedule trajectory computed from
the information gain heuristic starting from k+1 to K.
The rollout assignment is obtained by minimizing the
approximated Q-factor in (18) from the ·-best assign-
ments at time epoch k.
Fig. 4 graphically illustrates the RIG algorithm with

two rollouts at each time epoch. The pseudo code of the
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Fig. 5. Pseudo code for the rollout information gain (RIG) algorithm.

Fig. 6. Notional area for scenario development.

RIG algorithm using the ·-best assignment algorithm is
shown in Fig. 5.

5. COMPUTATIONAL RESULTS

5.1. A Hypothetical Mission Scenario

This scenario, motivated by ESG missions, involves
simultaneous monitoring of multiple geographically dis-
persed threat activities. Here, an ISR officer needs to
dynamically allocate sensors to monitor threats in a no-
tional area (e.g., fishing villages, refugee camps) that
involves primarily two fictitious countries, Asiland and
Bartola [14]. Asiland is an unstable state, where mar-
itime smugglers and anti-western terrorist groups have
supported the insurgent factions hostile to the govern-
ment of Bartola. Local terrorists and sea rovers use Asi-
land as a base. The scenario considers that nearly a
month ago, the northern shore of Asiland was struck
by a tsunami that destroyed several fishing villages
and caused enormous casualties. Large numbers of
Asiland citizens sought refuge in the south for help
and assistance. However, this exodus quickly drained
the resources of Asiland. Consequently, many Asiland

refugees began to move to fishing villages and refugee
camps in Bartola. Within a few days, insurgents and ter-
rorist factions in and around Asiland began to exploit
the situation, infiltrating their operations into Bartola
by disguising as refugees and smuggling weapons on-
board fishing boats and merchant ships. Bartola’s mili-
tary was overwhelmed by the massive influx of refugee
boats, as well as tracking the terrorist/insurgent’s ac-
tivities using these boats and ships for illegal transfers.
The government of Bartola sought help from the United
States to provide Humanitarian Assistance/Disaster Re-
lief (HA/DR) to Bartola and the organizations operating
relief activities within it. The ESG sensor assets are de-
ployed and begin to monitor strategically significant ar-
eas (e.g., major sea and air lanes as well as several major
ports, villages, refugee camps, roads, and cities/sites) as
shown in Fig. 6.

5.2. Single HMM Scenario: Monitoring a Fishing
Village

We consider a scenario where an ISR officer needs
to dynamically allocate sensors to monitor asymmet-
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Fig. 7. A fishing village scenario for sensor scheduling problem.

ric threat activities in the notional area. The problem
of monitoring the presence of terrorists and weapons
in a fishing village is modeled using a four-state
HMM. Activities such as the presence of terrorists and
weapons, and ascertaining the crowd demeanor (normal
or protesters or terrorists) are continually monitored us-
ing six sensors; labeled 1 through 6. As shown in Fig.
7, State 1 represents the normal state of the crowd in
the fishing village. In State 2, refugees move into the
village. Terrorists disguised as refugees arrive in the
village and they also smuggle weapons into the vil-
lage; this is modeled as State 3. In State 4, the weapons
and terrorists are prosecuted/pacified and the village
resumes normalcy, which is modeled by a transition
to State 1. We specify the transition probability ma-
trix, A(k), based on state transitions and time spent in
each state. In a discrete HMM model, the probabil-
ity of staying in state j for a duration d is given by
p(d) = (ajj)

d¡1(1¡ ajj), where the expected duration is
obtained from the following equations:

E[d] =
1X
d=1

d(ajj)
d¡1(1¡ ajj) =

1
(1¡ ajj)

: (19)

The self transition probability of state j is set by
substituting E[d] in (19) with the duration provided
by the scenario. The state transition probabilities de-
pend on how many links exist from state j to other
states. Suppose that state j has n state transitions and
state i is linked to state j, then the probability aji is
assumed to be given by aji = (1¡ ajj)=n. For simula-
tions, we set the weighted priority vector w(u(k)) in (11)
to be a vector of constants and ¯ is set to 10 in (5).
The velocities of the six sensors are set as vT(u(k)) =
[300,200,300,100,450,80]. The sensor usage costs in
(10) are selected as ck(u(k)) = f11,4,8,5,6,2g, where
for simplicity, each sensor usage cost vector is assumed
to be independent of state. We used ·= 6 for the RIG
algorithm. We assume that the initial probability dis-
tribution is known. The emission matrices are set by
considering the sensing capability of each sensor, which
are modeled by the probability of detection of the true
states of each HMM. In this simulation, we assume that
the observation capabilitities of a sensor decreases as
the sensor label increases and each sensor provides one
of four observation symbols at each time epoch k. The
planning horizon K = 15 is set by considering the sum
of expected durations as given in (19). Fig. 8 shows the
total scheduling cost averaged over 1000 Monte Carlo

Fig. 8. Variation of the total scheduling cost with sensor accuracy
variable p.

runs. To assess the robustness of the algorithm, the cost
was obtained by varying the observation probability us-
ing the variable p. Here, Sensor 1 or Sensor 5 curves
indicate that a static schedule that employs Sensor 1 or
Sensor 5 for all time epochs is substantially worse than
a dynamic schedule. The rollout information gain algo-
rithm (RIG)-based sensor schedule has approximately
5—18% lower cost as compared to one using only the
information gain heuristic (IG); it also has ¼ 49% lower
cost as compared to a static schedule that employs
Sensor 5 throughout. The dual advantages of using the
RIG algorithm are that it significantly reduces the com-
plexity of dynamic programming, while improving the
accuracy over the base heuristic, viz., the information
gain heuristic (IG) algorithm.

5.3 Multiple HMM Scenario: Monitoring Multiple
Fishing Villages and Refugee Camps

In this scenario, we solve the problem of monitor-
ing multiple fishing villages (FVs) and refugee camps
(RCs) using multiple sensors. The problem of monitor-
ing for the presence of refugees, weapons, and learning
the crowd demeanor (normal or protesters or agitators or
terrorists) in FVs and RCs is modeled using 17 HMMs,
where their states are represented in a vector form (e.g.,
(refugees, weapons, crowd)), as shown in Fig. 9. For
example, (1,1,3) corresponds to the 16th state that indi-
cates that refugees, weapons, and terrorists are present.
Threat activities are continually monitored using a to-
tal of 17 sensors, which are comprised of 9 different
types, as described in Table I. The states of 10 FVs
and 7 RCs change dynamically by the departure and
entry of refugees, and terrorists/insurgents (disguised as
refugees). Fig. 10 shows the state transitions considered
in this scenario.
The schedule cost considered for this scenario is

given in (5), where sensor usage costs, ck(ur(k)), are
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Fig. 9. States used for modeling multiple HMM scenario.

set by evaluating a weighted sum of unit price of the
sensor and the crew required to operate the sensor. We
employed the state estimation error criterion, given in
(7). The cost of moving the sensors, cm(ur(k)), is set
based on the actual mobility of the sensors and the dis-
tance from the task, as listed in Table I. The emission
matrices are set by considering the sensing capability of
each sensor as well as allocation preferences and geo-
metrical constraints of sensing operations. If a sensor,
ur(k) = q, is irrelevant to monitoring a HMM (say, rth
HMM), the entries of the emission matrix, given in (2),
are set to uniform values, i.e., the emission matrix is a
doubly stochastic matrix. We assume that each sensor
provides one of the 16 observation symbols from the
scenario. We specify the transition probability matrices,
using the same process as that used in the single HMM
case. However, since the scenario does not provide in-

TABLE I
Setup of Usage Cost and Sensing Capability

formation on all the self-transition probabilities, the un-
defined self-transition probabilities are set to reasonable
values and the remaining transition probabilities in the
same row are uniformly distributed. For example, the
transition matrix of Glorisabay, A7, is set as shown in
Table II, based on the state transition sequence of Glo-
risabay as shown in Fig. 10.
Fig. 11 shows the assignment distributions over

1500 mission scenarios, each averaged over 50 Monte
Carlo runs. The value of ¯ is set as 40 in (5) and the
values of priority vector are set to a constant vector
as in the single HMM case. The assignment distribu-
tions of RIG algorithm are obtained using ·= 2-best
assignments. We assume that the initial probability dis-
tribution is known. The planning horizon K = 30 is set
by considering the sum of expected durations as given
in (19). Table III shows the state transitions and RIG-
based sensor assignments in Glorisabay FV. Note as-
signments of Sensor 8 for RCs and Sensor 1 for FVs.
The assignments are reasonable because Sensor 8 has
difficulty in sensing the operations in RCs (e.g., patrol
ships) and an ISR officer always assigns Sensor 1 to
RCs as a first priority. To model the sensing constraints
of Sensor 1 and Sensor 8 in the extreme case, the Sensor
1 emission matrix probabilities for FVs and the Sensor
8 emission matrix entries for RCs are distributed uni-
formly. The realization of assignment constraints by the
setup of emission matrix is shown in Fig. 11, where
columns correspond to sensors and rows correspond to
HMMs. The brightness represents the number of as-
signments of HMM-sensor pair. Fig. 12 shows the total
scheduling cost. The cost of assignment by distance was
obtained using sensor assignments to minimize the sum
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Fig. 10. States transitions of multiple fishing villages and refugee camps.

TABLE II
Transition Matrix A7 Set Up of a Fishing Village Glorisabay

of travelled distances. Sensor scheduling via the RIG al-
gorithm (·= 7) has approximately ¼ 2:1% lower cost as
compared to one using only the information gain heuris-
tic (IG) and ¼ 4% lower cost as compared to scheduling

by distance. The results also suggest that, while the RIG
algorithm in multiple HMM sensor scheduling problem
improves the performance of information gain heuris-
tic, it is less effectiveness when compared to a single
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Fig. 11. Assignment distribution of IG (·= 1) and RIG (·= 2).

TABLE III
State Transition and RIG Sensor Assignment in Fishing Village Glorisabay

HMM sensor scheduling problem. This is due to the as-
signment of all available sensors to multiple HMMs. In
addition, the differences in information gains, obtained
from the ·-best assignments, are much less than those
obtained from the ·-best sensors in the single HMM
case. However, the fact that RIG and IG have nearly
identical performance gives us confidence that the IG-
based sensor schedules are near-optimal.

6. CONCLUSION

This paper formulated the sensor scheduling prob-
lem using HMM formalisms. The optimal solution of
the sensor scheduling problem via dynamic program-
ming (DP) is intractable for both single and multiple
HMM scheduling problems due to computational explo-
sion caused by the curse of dimensionality. To overcome
this, we proposed a RIG algorithm by combining rollout
concepts with the JVC and the ·-best assignment algo-

Fig. 12. Total scheduling cost of RIG, IG, and assignment by
distance.
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rithms. We illustrated its application on realistic mission
scenarios involving the monitoring of threat activities
in a fishing village modeled using a single HMM, and
multiple fishing villages and refugee camps modeled
using multiple HMMs.
Our work on HMM-based dynamic sensor schedul-

ing model assumed that the tasks are independent. In
practice, however, tasks may exhibit dependencies or
may have a hierarchical structure. We plan to develop
extensions to HMM-based sensor scheduling model to
handle dependencies and hierarchical structure among
tasks using coupled HMMs [7] and hierarchically struc-
tured HMMs [12]. In addition, we assumed that at most
one sensor is assigned to a HMM at each time epoch.
However, due to the various assignment constraints,
imposed by organizational structure, this assumption
may need to be relaxed. Finally, sensor scheduling is
a cooperative process among multiple decision mak-
ers. Auction-based algorithms may provide a mecha-
nism for implementing distributed and coordinated sen-
sor scheduling algorithms. We plan to pursue these ex-
tensions in the future.

APPENDIX

Let H(x) =¡Pi pi(x) log2pi(x) denote the entropy
of the state with a probability mass function fpi(x)g. Let
us derive the information gain defined in (14) obtained
by assigning a sensor ur(k) = q to rth HMM, where the
information state is defined in (15). The entropy of the
information state is:

H(¼r(k j k¡ 1)) =¡
nrX
i=1

¼ri(k j k¡ 1) log2¼ri(k j k¡ 1):

(20)
Recall that the joint entropy is given by:

H(x,u) =H(x) +H(u j x) =H(u) +H(x j u)
(21)

and mutual information (or information gain) is:

I(x,u) =H(x)¡H(x j u): (22)

=H(u)¡H(u j x): (23)

Using (21) and (22),

Iqr(¼r(k j k¡ 1),ur(k) = q)

=H(¼r(k j k¡ 1))¡H(¼r(k j k¡ 1) j ur(k) = q),
(24)

Iqr(¼r(k j k¡ 1),ur(k) = q)

=H(ur(k) = q)¡H(ur(k) = q j ¼r(k j k¡ 1))
(25)

where

H(ur(k) = q)

=¡
L(q)X
l=1

P(yr(k) =Orl(k) j Yk¡1r ,Uk¡1r ,ur(k) = q)

¢ log2P(yr(k) =Orl(k) j Yk¡1r ,Uk¡1r ,ur(k) = q)

(26)
and

P
¡
yr(k) =Orl(k) j Yk¡1r ,Uk¡1r ,ur(k) = q

¢
=

nrX
i=1

P(yr(k) =Orl(k),xr(k) = sri j Yk¡1r ,Uk¡1r ,ur(k) = q)

=
nrX
i=1

P(yr(k) =Orl(k) j xr(k) = sri,ur(k) = q)¼ri(k j k¡ 1)

=
nrX
i=1

brl iq(k)¼ri(k j k¡ 1): (27)

The conditional entropy of a random variable X, condi-
tioned on a random variable Y

H(X j Y) =
X
y

pY(y)H(X j Y = y): (28)

Using (26):

H(ur(k) = q j ¼r(k j k¡ 1))

=¡
nrX
i=1

¼ri(k j k¡ 1)
"
L(q)X
l=1

brl iq(k) log2 brl iq(k)

#
:

(29)

Using (24) and (27), the information gain is:

Iqr(¼r(k j k¡ 1),ur(k) = q)

=
nrX
i=1

¼ri(k j k¡ 1)
L(q)X
l=1

brl iq(k) log2 brl iq(k)

¡
L(q)X
l=1

Ã
nrX
i=1

brl iq(k)¼ri(k j k¡ 1)
!

¢ log2
Ã

nrX
i=1

brl iq(k)¼ri(k j k¡ 1)
!
: (30)

We can also derive the information gain using (23). In
this case,

H(¼r(k j k¡ 1))

=¡
nrX
i=1

¼ri(k j k¡ 1)log2¼ri(k j k¡ 1), (31)
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H(¼r(k j k¡ 1) j ur(k) = q)

=¡
L(q)X
l=1

P(yr(k) =Orl(k) j Yk¡1r ,ur(k) = q)

¢
nX
i=1

P(xr(k) = sri j Yk¡1r ,ur(k) = q,yr(k) =Orl(k))

¢ log2P(xr(k) = sri j Yk¡1r ,ur(k) = q,yr(k) =Orl(k)):

(32)

Using the forward algorithm [22],

P(xr(k) = sri j Yk¡1r ,ur(k) = q,yr(k) =Orl(k))

=
brl iq(k)¼ri(k j k¡1)Pnr
j=1brl j q(k)¼rj(k j k¡ 1)

(33)

and

P(yr(k) =Orl(k) j Yk¡1r ,ur(k) = q)

=
nrX
j=1

brl j q(k)¼rj(k j k¡ 1): (34)

Inserting (31) and (32) in (30), we get:

H(¼r(k j k¡ 1) j ur(k) = q)

=¡
L(q)X
l=1

nrX
i=1

brl iq(k)¼ri(k j k¡1)

¢ log2
brl iq(k)¼ri(k j k¡ 1)Pnr
j=1 brl j q(k)¼rj(k j k¡ 1)

=¡
nrX
i=1

¼ri(k j k¡ 1)
L(q)X
l=1

brl iq(k) log2brl iq(k)

¡
nrX
i=1

¼ri(k j k¡ 1) log2¼ri(k j k¡ 1)

+
L(q)X
l=1

Ã
nrX
i=1

brl iq(k)¼ri(k j k¡ 1)
!

¢ log2
Ã

nrX
i=1

brl iq(k)¼ri(k j k¡ 1)
!
: (35)

Since
PL(q)
l=1 brl iq(k) = 1 for i= 1,2, : : : ,nr, combining

(35) and (31) indeed gives (30).
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