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Face localization is a face detection problem where the number
of people is known. We present a comparison between different
algorithms fusion methods dedicated to the localization of faces in
color images. Data to combine result from an appearance model
supported by an auto-associative network, an ellipse model based
on Generalized Hough Transform, and a skin color model. We intro-
duce and compare several fusion methods like the Bayesian classi-
fier with parametric or non-parametric technique, a fuzzy inference
system, and a weighted average. Given an input image, we compute
a kind of probability map on it using a sliding window. The face
position is then determined as the location of the absolute maximum
over this map. Improvement of basic detectors localization rates is

clearly shown and prevalence of the weighted average is reported.
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1. INTRODUCTION

Face detection in an image has become a very im-
portant issue for many applications such as biometric,
presence detection, video-conferencing, visiophony, in-
dexation, car driver monitoring, virtual reality, lips read-
ing, gaze tracking. Because of the high variability of the
pattern to be detected, face detection without any hy-
pothesis is a tough task [38]. Fixed camera and known
background, use of motion information [6], strong hy-
pothesis on the face location [20], scale or pose [33],
special background for an easy extraction of the sil-
houette [24] or special lighting conditions (reflected in-
frared [9] or thermal infrared [11]): face detection appli-
cations often start with making assumptions. The face
localization issue [4, 17, 20, 33] can be regarded as a
face detection problem knowing the number of faces
in the image. The location of the faces in the image—
position and extent—is searched. The face localization
issue is addressed in the present paper. It is not simpler
without additional assumption.

A wide variety of works have been reported in
face detection, much more than for face localization.
Structural and holistic approaches, common in Pattern
Recognition, are applied. Structural approaches try to
detect facial landmarks (eyes, mouth, nose, head con-
tour) and combines the results using models [3] or con-
stellation analysis [2]. [3] built a generic model of the
face through a joint distribution of parts (features mod-
els) positions. [12] brings a matching algorithm for pic-
torial structures (models of parts and connection be-
tween parts) applied to representation of an articulated
human body. In [37] a hierarchical knowledge-based
method finds face candidates at a low resolution and
verifies presence of eyes and mouth at a high resolu-
tion. [39] uses deformable templates using a radiomet-
rical model of eyes. For each facial feature, a statisti-
cal (GMM) model of Gabor filters responses is built in
[17]. Features are detected over the whole image, then
similarity with a constellation model is computed on a
scanning-window, resulting in a coarse face localization.
Then a cascade of two boosted SVM gives the accurate
location of the face. In [2] component classifiers (SVM)
are trained over selected parts of the face (bridge of the
nose, nose, eyebrows, eyes, cheek, mouth): a constella-
tions analysis performs face/non-face classification on
a scanning window at several scales. [4] implements
a similar approach at three scales with a skin/mouth
color segmentation pre-processing. SVM are also used
to model eyes and mouth in [33] at only one scale (cor-
responding to face’s size).

Holistic approaches of face detection process a sub-
image of the input image into a feature vector (mo-
mentum, projection, gray level, wavelet...). These ap-
proaches estimate the classifier parameters on a train-
ing set, usually using a boosting procedure. Parameters
can be weights of neural networks [16], [29], of weak
classifiers [36] as described in Section 6.3 or terms of
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a covariance matrix (statistical classifier) [34]. As in
many detection issues, it is almost impossible to de-
fine the opposite class, the non-face patterns, which
drives researchers to choose the model-based approach.
A model does not require counter examples [13], which
may seems an advantage but actually decreases classi-
fier efficiency: generalization in a high dimension space
(221 for 13 x 17 sub-images) is tough without knowing
where are the patterns that might be confused. Another
way is to design a combination of several detectors
(classifiers). [13] and [14] did it to perform face de-
tection. In [13] uses a conditional mixture of constraint
generative models (Diabolo see Section 4) trained on
different ranges of face orientation. Product and sum
rules are used in [14] to combine two detectors based on
edge orientation (edge orientation matching and Gener-
alized Hough Transform) and one based on gray levels
(Sparse Network of Winnows). Classifier combination
has also been used in character [27, 28] and face recog-
nition [7].

Our approach makes co-operate holistic and struc-
tural approaches: it is quite different but related to [14].
Generalization capability of a single classifier is limited,
especially in a high dimension space. A more reliable
decision can be obtained by combining output of sev-
eral experts [27]: the face localization issue is divided
in sub-problems easier to deal with. Various information
is extracted from the same image using different kind
of detectors. Some try to model global features while
the others concentrate on structural features. Each face
cues are searched by a relevant expert: elliptical shape,
global appearance and skin color. Cooperation between
experts exploits their complementarities and can also
handle conflicts between sources.

An auto-associator network appearance based model
and an ellipse detector are based on the image gradient’s
direction. A luminance-free skin color model is also im-
plemented. The combination of these three detectors is
done via various methods that are compared: Bayesian
classifier, fuzzy inference system and neural networks.

Section 2 describes the skin color model, Section 3
details the ellipse model, and Section 4 deals with the
appearance based model. Several combination strategies
are presented in Section 5. Comparison of the combina-
tions is detailed in Section 6 along with our experimen-
tal results and the contribution of the combination to the
face localization problem. The last section is devoted to
conclusions and prospects.

2. SKIN COLOR MODEL

Skin color classification aims at determining whether
a color pixel has the color of flesh or not. Such a classi-
fication should overcome difficulties like different skin
tones (white, pink, yellow, brown, black...) and scene
illuminations, and the fact that background pixels can
have the same color as a flesh type.
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2.1. Color Spaces Definition

Two color spaces are investigated for skin color clas-
sification: HSV and YCbCr. These spaces are com-
monly used [26] in image processing for they are
expected to be more robust to lighting condition by
separating chrominance (color information) and lumi-
nance (grayscale levels) information. In a video sig-
nal, color images encoding separates the luminance and
chrominance information: this way television standards
(NSTC, Pal, Secam) ensured backward compatibility
with black and white television. Chrominance is the
color information to be added to the grayscale informa-
tion to obtain a color image in red, green and blue pri-
mary colors. Chrominance information is widely used
for skin color classification as it is expected to be a com-
mon cue between different skin tones contrarly to the
luminance. Skin color classifiers based on chrominance
tend to be more robust to different lighting conditions.

RGB conversion to YCbCr is linear (see (1))

Y =0.299R + 0.587G + 0.114B
Cb=0.564B-Y) + 128
Cr=0.713(R-Y) + 128.

ey

Y channel is the luminance, Cb and Cr channels rep-
resent chrominance. We used the definition of [19], it
uses an RGB model that fits the phosphor emission
characteristics of older cathode ray tubes. Y, Cb and
Cr values range from O to 255. Variants of this defi-
nition that fit the phosphor emission characteristics of
newer tubes and other modern display equipment can
be found. YPbPr, YUYV, YIQ are same or similar color
spaces.

HSV space is a non-linear transformation of RGB
space (see (2)): colors are defined by hue (H channel),
saturation (S channel) and luminance (V channel)

V = max(R,G,B), = 255%
30% if V=R

H=1{302=R ;00 if V=G. )
302=S,120 if v=B

S ranges from O to 255, and represents the grayness
of the color: the lower the saturation of a color is the
more faded it appears (a monochrome color corresponds
to S =0). H values are defined modulo 180 from red
(H = 0) through yellow, green, cyan, blue, and magenta,
and returns to red (H = 180). Similar color spaces in-
clude HSB, HLS, and HIS.

2.2.  Skin Color Pixels Classification

A recent comparison of different skin color classi-
fication algorithms can be found in [26]. Linear [1, 5,
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TABLE I
Training and Validation Sets for Skin Segmentation

Dataset No. Images  Skin Pixels Non-Skin Pixels
Training 500 18.2 million 120.9 million
Test 550 23 million 136.6 million
TABLE II

Confusion Matrix of the CbCr Fixed Range Skin Classifier

Classification Class Skin Non-Skin
Skin 77% 23%
Non-skin 17% 83%

6] and Bayesian classifiers [21, 26] are proposed and
compared in the present paper.

1050 images of the ECU database described in Sec-
tion 6.1 are used for training and assessment of skin
segmentation methods presented in the following sub-
section.

Repartition of the two sets is summarized in Table 1.
These images are not used for face localization tests
(Section 6.2 and 6.3).

2.2.1. Rectangular Boundary in CbCr Plane

Linear classification uses a piecewise linear decision
boundary in the Cb-Cr plane. The following fixed-range
in Cb and in Cr is used to define skin color pixels:

Cb € [100 130] and Cre[135 165].

These thresholds were experimentally tuned using im-
ages with people. Skin being characterized by specific
chrominance information, the filter can be applied to
any ethnic skin color but our threshold is not universal
because the chrominance component is actually related
to the luminance value Y [18]. In poor or bright illu-
mination condition the filtered components are spurious
and in some cases no skin at all is filtered: this skin de-
tector is coarse but simple and we use it as a reference
for comparison with other skin classifiers.

This classifier results in a one point ROC curve (see
Fig. 3): Table II is the confusion matrix obtained over
the validation set.

2.2.2. Statistical Classifiers

The Bayesian decision rule is a popular method in
statistical pattern classification [10]. A color pixel X is
classified as a skin pixel if its likelihood ratio is higher
than a threshold:

P(X | skin)

— =T (3)
P(X | non-skin)

P(X | skin) and P(X | non-skin) are the conditional prob-
ability density functions (denoted pdf in this paper) of

Look-up table
H

Likelihood ratio table
from training set

Skin color
probability

Skin pixels
filtered

Fig. 1. Back project of the histogram ratio.

respectively skin and non-skin color. 7 is the decision
threshold. A given 7 value results in a confusion matrix:
ROC curve of the classifier is obtained by varying the
threshold 7.

The computation of the pdfs is done using the his-
togram technique. In [31] face color is tracked using
this technique. Statistical repartition of skin pixels in
HS plane (or CbCr plane) is calculated in a 2D his-
togram. Scaling the histogram results in P(X | skin).
Same operation is done with non-skin pixels to evaluate
P(X | non-skin).

Ratio of the two histogram results in a likelihood
ratio table [31]: skin probability of a color pixel featured
by (H, S) values is then computed by look-up table.
Back projecting the histogram ratio onto the HSV (or
YCbCr) image results in a skin color probability image
as shown in Fig. 1.

H and S channels (respectively Cb and Cr channels)
feed the 2D skin and non skin histograms. 32 bins
per channel are allocated. [21] found that 32 bins are
optimal whereas [26] concludes that larger histogram
leads to finer pdfs estimation and better performances
when training samples are sufficient. As explained in
[26], when training set is not large enough, a larger
histogram results in a noisier pdf compared to a smaller
histogram size. Subsampling their original training set,
they found that the 256-bin histogram is more sensitive
to the number of training samples compared to the
32-bin histogram. And even with a huge sample number
the larger histogram is just a few percent more efficient
than a 32-bin histogram, justifying our choice.

In Fig. 2 it appears that skin and non-skin pixels are
pretty well-separated in the HS plane. On the opposite,
skin and non-skin pixel distributions in CbCr plane are
clearly overlapping. Therefore model the non-skin dis-
tribution brings poor improvement in HS plane and dra-
matically increases classification performance in CbCr
plane as shown by the ROC curves plotted in Fig. 3.

Assuming the non-skin pixel distribution is uniform,
the decision rule in (3) is simplified. A color pixel is
classified as skin color if

P(X | skin) > . C))
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Fig. 2. Skin, non-skin and ratio histogram in HS plane (first line)
and CbCr plane (last line): hot colors correspond to high values.
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Fig. 3. ROC of skin color classifier in HS space (a) and CbCr
space (b).

A classifier based on (4) uses the statistical repartition
of skin pixels regardless of non-skin pixels distribution.

Classification performance is represented with the
Receiver Operating Characteristic (ROC) curve: skin
segmentation performance for a given decision thresh-
old 7 is measured in terms of correct detection rate and
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false detection rate. Correct detection rate is the pro-
portion of skin pixels correctly classified whereas the
false detection rate is the proportion of non-skin pixels
classified as skin pixels. The ROC curve is obtained by
calculating these rates for all coherent 7 values.

ROC curve of the classification based on Cb-Cr
statistical models of skin and non skin (decision rule
(3)) color pixels is plotted in red in Fig. 3(b). Skin
classifier based on statistical repartition of skin color
pixels (decision rule (4)) in the Cb-Cr plane is plotted in
blue in the same figure. The CbCr fixed range classifier
ROC point is plotted in red.

ROC curve of CbCr skin model is highly irregular
whereas classification that use the likelihood ratio is
quite satisfactory compared to state of the art reported
by [26]. In [26] the best classification performance is
obtained by a Bayesian classifier (decision rule (3)) in
the RGB space with the histogram technique: for a false
detection rate of 10% a correct detection rate of 82%
is reached whereas our classifier correct detection rate
is 75% for the same false detection rate. Moreover it
appears that modeling the non-skin distribution in the
CbCr space is crucial: a classifier only based on the
statistical repartition of skin pixels is not really efficient
with a correct decision rate of 50% for 10% of false
detection.

In Fig. 3(a), ROC curve of the classifier that models
both skin and non-skin distributions in the H-S plane
is plotted in red. ROC curve of the classifier modeling
only the skin distribution in the H-S plane is plotted in
blue.

Modeling non-skin distribution in the HS plane only
brings a slight improvement of skin color classification
performance compared to a classification based on the
skin distribution alone. Moreover, modeling the non-
skin distribution is not a satisfying approach as non-skin
color cannot be defined: such a distribution completely
depends on the non-skin training database. ROC of
the likelihood ratio classifier in Cb-Cr plane is a bit
better than ROC of the classifier based on skin color
repartition in H-S plane but it is also more irregular and
requires to compute the non-skin pixel distribution in
the Cb-Cr plane.

Therefore, we selected the Bayesian classifier in HS
space based on the skin color repartition as our skin
detector for the multi-scale segmentation of the face in
Section 6.3.

The CbCr fixed range classifier is also used for
combiners comparison presented in Section 6.2 for its
simplicity.

2.3. Skin Detector

For combination purpose (Section 5) each sub-
window of the original image is featured by a single
value. A retinal approach is implemented after the skin
color pixels classification stage. A sliding window of
fixed size (13 x 17) scans the skin filtered image and
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Fig. 4. SkinMap: proportion of skin pixels array.
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Fig. 5. Four-quadrant inverse tangent and quantification of edge

orientation.

calculates the mean skin pixels probability at every po-
sition [32] as shown in Fig. 4.

The resulting array is named “SkinMap” and repre-
sents the face sub-image probability.

3. ELLIPSE DETECTOR BASED ON GENERALIZED
HOUGH TRANSFORM

3.1. Edge Orientation Field

Edge orientation information is processed by an
appearance-based model (so called Diabolo see Sec-
tion 4) and an ellipse detector (Generalized Hough
Transform).

Evaluation of the orientation of the gradient on
the edges requires a low pass filtering of the image:
see Fig. 5. Gradient field is estimated using Roberts
masks (2 x 2), so that horizontal gradient is calculated
by I, = Iferea ® [1 — 1] and vertical gradient with I, =
Ierea ® [1 —1].

Then the gradient magnitude = /72 +[7 is thresh-
old to define edge pixels. For the generalized Hough
transform, a global threshold is applied over the whole
input image. Orientations of these edge pixels are then

Threshold=12 g

N

Magnitude of the gradient Edge pixels (in black)

Fig. 6. Threshold of magnitude field defines edge pixels.

Number of faces
correctly localized
over 168 images

125 |
120 |
115 |
110 |
106 1
Magnitude threshold

100 | | | | } :
4 6 8 0 12 14 16 18

Fig. 7. Magnitude threshold to define edge is tuned to maximize
GHT performance over 168 images.

quantized on N = 36 values:
orien = round <2£ arctan2(/_, —Ix)> mod N (5)
T

where arctan?2 is the four-quadrant inverse tangent. This
function is depicted in Fig. 5 with an ellipse’s edge
orientation quantified on N = 8 values (Freeman chain
code) using (5).

For the Generalized Hough Transform edges are de-
fined as pixels with a magnitude greater than a threshold
equal to 12: see Fig. 6.

This threshold was tuned over 168 training images
containing only one person. This training corpus is
not overlapping with the test set used in Section 6.
For a given image, a Generalized Hough Transform is
computed (see next section) and the maximum of the
accumulator is defined as the location of the face. Using
ground truth we evaluate the number of faces correctly
localized versus threshold, see Fig. 7.

3.2. Ellipse Detector Based on Generalized Hough
Transform

The elliptical shape of the face is searched using
a Generalized Hough Transform: faces are modeled as
vertical ellipses with a specific eccentricity.
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Fig. 8. Generalized Hough Transform in case of an ellipse:
half-line votes accumulation.

The gray level dynamic of the input image is first
linearly adjusted between 0 and 255. This operation
proved to be better than performing histogram equal-
ization. Orientation of the gradient over the whole gray
level image is then determined. Then a Generalized
Hough Transform (GHT) is performed on the resulting
orientation map: the HT constitutes a popular method
for extracting geometrical properties [10, 32]. When
the edge orientation is used and when it is applied to
non parametric curves, the HT becomes the General-
ized HT. Each edge pixel votes for all possible location
of the shape (actually for the location of the barycen-
tre). For ellipse detection, there is a simplified structure
for the GHT based on the geometrical properties of el-
lipses.

The method consists in casting votes for a half-line
starting at each boundary pixel M with an orientation
determined by the edge one. The method consists in
casting votes for a line through each boundary pixel
with an orientation indexed in a look-up table by the
edge orientation. We suppose that we know the orienta-
tion of the ellipse. So for each point M, a simple look-up
table specifies the angle between the tangent Mt (to the
boundary) and the radius MO (O is the centre of an el-
lipse passing through M). Faces are modeled as vertical
ellipses with a specific eccentricity so we can build up
our look-up table to cast votes from each edge pixel,
knowing its gradient orientation. Fig. 8 illustrates an
ellipse case: some half-lines are drawn. Each pixel of a
line increment a vote array which is the accumulation
of all lines votes.

Accumulator maximum corresponds in the image to
the position most likely to be the center of an upright
ellipse with a horizontal minor axis a = 8, and a vertical
major axis b = 10. Fig. 9 illustrates an example of such
an accumulation by Generalized Hough Transform in
case of a cluttered scene. Finally, the accumulator is
scanned with a 13 x 17 sliding window and at each
position a weighted average of the number of vote is

40 JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. I, NO. 1

Edge detection Accumulator HoughMap

(a) (b) ()

Fig. 9. Edge detection (a), Generalized Hough Transform
accumulator (b) computed over gradient orientation of the edge and
resulting HoughMap (c).

Elliptical ’
mask
Reconstruction
error

Diabolo
network

DiaboloMap

Fig. 10. DiaboloMap: array of reconstruction errors calculated at
all positions of the image.

calculated as shown in Fig. 9: the resulting array is
named “HoughMap.”

4.  APPEARANCE-BASED MODEL OF THE FACE

The Diabolo is an auto-associator network: its num-
ber of output equals its number of input. It is trained to
reconstruct an output identical to its input, and only face
examples constitute the training database. It implements
a specialized compression for its hidden layer has much
less units than input or output does. So a non-face im-
age should be badly compressed and the reconstruction
error (square root of the mean square error between the
input and the calculated output) would be higher than
for a face image. The Diabolo was successfully used for
handwritten character recognition [30], face detection
[13] and compression [8].

As represented in Fig. 10, reconstruction error is
computed on a fixed size window sliding over the entire
image. The resulting array is called “DiaboloMap”:
clear color correspond to small reconstruction error.

Diabolos we implemented have one hidden layer.
Hidden neurons have sigmoid activation function, and
output neurons have linear activation function, see
Fig. 11. The training set is made of face images (see
Table III). Faces are various in terms of pose, lighting
conditions and skin tones.
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Fig. 11. Architecture of a Diabolo: target is equal to input, training set is made of faces examples.

TABLE III

Training and Cross-Validation Sets of Diabolos

Set Training Cross-Validation

No face images 1602 178

The training database is divided into two sets: one
for neural networks training, one for the cross-validation
and assessment of the best architecture. The cross-
validation face samples are extracted from 167 images:
amongst these images, 126 images contain only one
person and are used as an assessment set to optimize
the inputs coding.

Face examples are used to learn parameters (weights)
of the neural networks. Training is done using a gra-
dient descent with adaptative learning rate stopped by
cross-validation. Gradient descent algorithm is a stan-
dard backpropagation in which the network weights are
moved along the negative of the gradient of the cost
function. The cost function implemented here is the sum
over training examples of the square reconstruction er-
ror between target and simulation (output calculated by
the MLP).

Networks are trained for pattern model: target is
equal to the input. Before training the MLP weights
must be initialized: a different initialization leads to
different weights, therefore to different networks. For a
given neural net architecture, several initializations must
be tested in order to avoid the network to fall in a local
minimum of the performance function different to its
global minima.

The Diabolo is fed with a specific coding of edges
orientation. Gradient field orientation is quantized on
N =36 values as defined in Section 3.1 by (5). Edges
are defined by a local magnitude threshold depending
on the search sub-window. The threshold is defined over
each 13 x 17 sub-windows of the input image, so that
20% of the pixels are then regarded as edge: an example
is given in Fig. 12.

A global threshold over the whole image (face +
background) would result in a strong smoothing of
the face. A local threshold keeps facial features visi-
ble when the sear window is over the face, but it also
emphasizes edges over non-face subwindow, which re-
sults in lot of false alarms if the face location is defined

- .
Ix
——">>
Smoothing
Gray scale
face image Tanerea —— Gradient orientation
— of the edge pixels
o over 36 directions
Iy

Fig. 12. Estimation of gradient field and edges orientation.

Icos
1 Elliptical
filter
\ - 2N 3
-7 |
- =
pess a
, /// =
Orientation - m - Subsampling
of the edges ! - ’ 13x17
) '-
Isin

Fig. 13. Training example pre-processing.

as location of the smallest reconstruction error of the
whole image (minimum of DiaboloMap).

Each pixel is described by two features (I, 1,):

I..(i,j) =cos(2r/N)-orien(i,j)) and I @G, j) =
sin((2w/N) - orien(i, j)) for the edge pixels, where orien
refer to (5); (0,0) is allocated to the non-edge pixels.
An elliptical mask filters the interior part of the face as
shown in Fig. 13.

We compared that coding with two others: feeding
the Diabolo with grayscale face image or with the
gradient field as illustrated in Fig. 14.

For the three selected input coding the best Diabolo
architecture (i.e. optimal number of hidden neuron) cor-
respond to the best face localization rate. Face localiza-
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Fig. 14. Other input coding: grayscale image (a) and gradient field
(b).

TABLE IV
Performances Versus Input Coding

Input Coding Gray Levels Gradient Field Orientations Coding

Localization 27% 18% 40%

rate

oL Diabolo
image
Fig. 15. Overview of the face localization system.

TABLE V
Training Set of Combiners

Class Face Non face

tion rate is evaluated over an assessment set: 126 images
from which the cross-validation set was extracted that
contain only one face. For each image a DiaboloMap
is built as in Fig. 10 and face location is defined as the
position of the minimum (smaller reconstruction error
over the whole image). Face localization performance of
the Diabolo fed with the three kind of inputs are given in
Table IV: gradient orientation coding reaches the higher
localization rate (40%), followed by the gray level cod-
ing of inputs (27%) and the gradient field (18%).

This comparison was done using a 21 x 27 retina
to build the DiaboloMaps. We also investigated 17 x 22
and 13 x 17 retina: for the selected pre-processing of the
training examples (see Fig. 13) the optimal retina size is
13 x 17. It is the best size for face localization purpose
and also for computational effort. Finally the optimal
Diabolo architecture is made of 290 inputs and outputs,
and 18 hidden neurons. Note the dimension reduction
from 442 (2 x 13 x 17 elements in I and [ ) to 290
due to the elliptical filtering of inputs.

Interior part of faces is used to train the network
using an elliptical mask to reduce border effects and
in order not to model the elliptical shape of the face.
The Diabolo is trained to model facial features: mouth
and eyes, mainly. This approach is different from a face
detector based on neural network which takes the face
contour into account: this enhances the face detection
rate. Our approach aims at compute face contour and
facial features separately. This way, redundant informa-
tion between the appearance-based model and the el-
lipse model are reduced.

5. COMBINATION OF THE SOURCES FOR FACE
LOCALIZATION PURPOSE

5.1. Overview of the Combination Approach

We have implemented three holistic detectors for a
color image, which result in three maps: DiaboloMap,
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No. Samples 19.579 482.783

HoughMap, and SkinMap. When each detector alone
failed to model facial features, the combination of the
three sources can achieve this task very well. The com-
bination can also handle conflicts between sources.

For that purpose, each detector map is linearly ad-
justed onto [—1 1]. Using the three detectors, a search
window at position (Z,j) in the original image is then
featured by I; ;= [HD S].

Several architectures exist for data fusion, we can
divide them into three kinds: serial (or sequential),
parallel and hybrid (mixing sequential and parallel,
with feed-back or interaction...). Our face localization
system has a parallel architecture (see Fig. 15).

Combination rules are various, depending on the
application: mean, weighted sum, product or maximum
of experts outputs, majority vote, fuzzy rules, neural
networks, or neuro-fuzzy inference for example.

Several algorithms have been proposed for combin-
ing our three detectors: parametric and non-parametric
combination strategies are described in this sub-section.
The next section is dedicated to their comparison.

Table V summarizes the number of face and non-
face samples used for training combiners: these data
were extracted from the cross-validation images used to
stop Diabolo training.

5.2. Bayesian Classifier: Parametric and
Non-Parametric Approaches

For combination purpose the input data of the
Bayesian classifier are the normalized response of our
three detectors. A sub-image featured by a 3D vector
X = [H D S] is classified as a face if

PX | face)

P(X | non-face) — ©

where P(X |face) and P(X | non-face) are respectively
the conditional probability density function (pdf) of the
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face and non-face class. 7 is the decision threshold
usually estimated over a training set. As the application
presented in this paper is face localization and not
face detection, no estimation of 7 was done. The face
location shall be the one that maximize the value of the
likelihood ratio (left hand side of (6)):

P(X | face)

Face location < max | —————— @)
P(X | non-face)

Parametric and non-parametric estimations of the class-
conditional pdf are implemented.

The histogram technique is a non-parametric method.

For each class a 3D histogram is computed using the
training examples. Due to the small amount of face ex-
amples, it has only five bins per dimension: 5 being
equal to 125, a mean of about 160 examples per bin is
available. We combine the two histograms obtained into
one histogram which bins values are the ratio of the bins
frequency of the two preceding histograms (face/non-
face). Resulting histogram values are then scaled into
[0 255]. When a test image is processed three maps
are calculated corresponding to our three face models
over a sliding search window at each position of the
image (see Fig. 15). For each position of the test image
a 3D vector is computed and a back-projection of the
histogram is done by a look-up table operation. This
back-project is the FusionMap illustrated in Fig. 15,
face location should correspond to the position of its
maximum value.

A parametric approach models both skin and non
skin class-conditional pdf by a unimodal Gaussians.
The face location is then defined as the position of the
maximum of the logarithm of the likelihood ratio:

(X - Mface)T271 (X - 1\_/Iface)

face
- - Tw—1 = —
- (X - Mnon—face) Enon—face(X - Mnon»face)

where the parameters of the Gaussian (X,M) are the
mean and covariance matrix of each class computed
over the training set. If X' = (H' D' S')7 is the ith
example out of N, of the face training set:

MNeaces

is the mean faces vector and

>.=x

face faces

1 Nraces T
Z (X' — Mface) (X' - Mface)

i=1

is the covariance matrix of the face class.

Other parametric functional forms of the pdf were
investigated. The simplest is a unimodal Gaussian of
the face class: this assumes that the non-face class is
uniformly distributed. In this case the face location is
defined as the maximum of the square Mahalanobis
distance to the mean center of face training examples.
Mixture of Gaussians were also tested but led to very
poor results. Due to the small amount of training data
available, this method is out of scope in this paper.

M = Degree
of Results of
bershi
B " fuzzification
Msmal nigh
1 / N\
MhignlH) = 0.8
0 psmall(H) =01
t T H
Fig. 16. Membership functions of the class “H high” and
“H small”.
5.3. Fuzzy Inference System

A face sub-image should be featured by a small Di-
abolo reconstruction error D, a high number of GHT
votes H and a high proportion of skin pixels S. A classi-
cal set approach would define a threshold on each face
model values. Hy;,, = {H|H > thresh} the set of high
H (for instance) values and H,,, = {H|H < thresh}
the set of small H values would be separated by this
sharp boundary: a H value slightly under that threshold
is then considered as small which make little sense. The
fuzzy logic approach is more flexible by admitting par-
tial membership to a class [40]. It is also coherent with
natural language by introducing the degree of member-
ship of H value in the class “high” and “small”:

Hhigh = {H, :uhigh(H)} Hnan = {H, figman(HD }-

In Fig. 16 a value of H = 0.6 belongs the ‘“high”
class at 80% and the “small” class at 10%.

S value is the normalized proportion of skin in the
sub-image: as H, high values of S correspond to high
probability of the sub-image to contain a face. D value is
the normalized Diabolo reconstruction error: the smaller
it is, the higher is the probability of the sub-image to be
a face one. For these three sources, two class are defined
with respect to their value: high and small. As shown in
Fig. 16, the membership functions for these classes are
Gaussian functions centered respectively in +1 and —1.

To combine our three sources, a fuzzy inference sys-
tem of Mamdani type [22] was built. A fuzzy inference
system requires fuzzifying inputs, to formulate a set of
linguistic rules and logical operators, and to aggregate
results of the fuzzy rules. Three output class are defined
as fuzzy sets: non-face, unknown, and face patterns.

Each output set is defined by a Gaussian member-
ship function centered in O (non-face), +0.5 (unknown)
or +1 (face), as shown in Fig. 17.

Considering only the ellipse model (H value), a
simple statement can be formulated: if H is high then

and
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Fig. 17. Output fuzzy sets membership functions.
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Fig. 18. Implication method: “then” operation.

sub-image is a face. Consequent of this fuzzy rule
assigns a fuzzy set to the output which membership
function is a truncation of the “face” set depending on
the degree of support and according to the implication
method (i.e. the mathematical definition of “then”).
Degree of support in this particular statement only
involving H value is the degree of membership in the “H
high” class. The “then” operator results in a membership
function equal to the minimum between the degree of
support and the output fuzzy set membership function
(the green area in Fig. 18 showing the case of H = 0.6).

Finally a decision can be made out of the resulting
function by resolving a single value representing the
probability of the sub-image to be a face pattern. A
typical defuzzification method is the calculation of the
center of the area under the curve (centroid).

Now consider a statement with multi-part antece-
dent: if H is small or D is high or S is small then sub-
image is unknown. The “or” fuzzy operation is math-
ematically defined as maximum of the three calculated
degree of membership: this minimum is the degree of
support for the output “unknown” set. In Fig. 19 a sub-
image is featured by [H D S] = [0.6 0.8 — 0.2]: for each
source, a degree of membership is calculated. The “or”
operation resolves them to a single number: the higher
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Fig. 19. Application of fuzzy operator “or”.
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Fig. 20. Fuzzy inference diagram representing the rules.

value is kept as degree of support for the rule shaping
the “unknown” fuzzy set.

One rule by itself leads to a very poor localization
rate. We found experimentally that the three following
fuzzy rules are optimal for face localization purpose:

—if H is high and D is small and S is high then
sub-image is a face,

—if H is small or D is high or S is small then sub-
image is unknown,

—if H is small and D is high then sub-image is a
non-face.

The “and” operator is defined as the minimum of the
degrees of membership. The rules are given the same
weight, and order of the rules is unimportant as they
are evaluated in parallel as shown in Fig. 20.

One can notice that the skin detector is not taken
into account in the last rule: our skin color model is not
elaborated enough and this is also noted with a weighted
average combination (see next section).

Aggregation of the output fuzzy sets consists in
calculating a membership function as the maximum of
the three consequent membership functions calculated
before (see Fig. 21).

This membership function is finally defuzzified by
calculating the centroid of it, which provide a single
number: the probability that the input sub-image is a
face one.

This process is applied at all position of the original
image to construct the “fuzzy” FusionMap used to
define face location.
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Fig. 22. Combining the three detectors with a multi-layer
perceptron (MLP).

5.4. Weighted Average and Multilayer Perceptron

We investigate neural combination of the three face
models: the three sources are the inputs of the multi-
layer perceptron (MLP). The MLP hidden neurons have
sigmoid activation function, and the output neuron has
a linear activation function as described in Fig. 22.

The training database is divided in two set: one for
neural networks training, the other for assessment of the
best architecture. 12713 face examples and 341316 non-
face examples are used as training examples to learn pa-
rameters (weights) of the MLPs. Training is done using
a gradient descent with adaptative learning rate stopped
by cross-validation. The cost function implemented here
is the sum over training examples of the square differ-
ence between target and network output.

The network is trained for pattern classification:
target is +1 when the input [H D S] corresponds to
a face and —1 else. Before training the MLP weights
must be initialized: for a given neural net architecture
(i.e. number of hidden neurons), several initializations
are tested.

During the test phase the MLP output is a value of
the interval [—1 + 1]. Network output is calculated at
all location of the image, which produces the “neural”
FusionMap: face location is the position of the max-
imum of this map. The optimal MLP architectures is
searched over 50 images (not used during training)
containing only one face. MLPs with different num-
ber of hidden neurons, and different initialization of the
weights are trained then assessed over this set. This ex-
haustive search leads us to the conclusion that the best
architecture correspond to one output neuron. Actually,

a growing number of hidden cells do not dramatically
decreases the localization rate: for numbers of hidden
neurons less than 3 the rates are quite the same order.
The natural approach is to choose the simplest architec-
ture for the MLP. That is to say the best neural combi-
nation is a weighted average of the inputs:

FusionMap, ; = a.H, ; +b.D,; +c.S,;

where a = 0.2280, b = —0.2620, and ¢ = 0.1229.

One can notice the weight of the S input: as in the
preceding section, it is half the weight of Hough or
Diabolo response. This is due to the fact that the skin
color model is pretty coarse.

This weighted average is compared to a simple
average (same weight for the inputs: a=b=c=1) in
the next section.

6. EXPERIMENTAL RESULTS

In order to compare the combination strategies we
used the ECU face database [26]: we compare the face
localization rate of the algorithms on a test set of color
images not used during training. Each of these image
contains only one person, and the rectangle bounding
the face is the same size over the whole set. A face is
considered as correctly localized or not using the face
ground truth and verification of a human operator. A
correct localization of the face contains the eyes, the
mouth, and is well-centered on the face.

6.1. ECU Face Detection Database

The ECU face and skin detection database was cre-
ated in Edith Cowan University [26]. It has three sets of
images particularly useful in our study (see Fig. 23). The
first set is made of original color images. The second set
is the corresponding ground-truth location of the faces.
The third set is the ground-truth of skin pixels.

Almost all the images are taken from the Web, and
were selected to have a wide variety of illumination
conditions, background (mostly complex), face poses
(upright, pan, tilted) and skin tones. It is widely depicted
in [26].

Our test uses a set of 1353 images non overlapping
with the training and cross-validation corpus. Each test
image contains only one person.

6.2. Combiners Comparison

In the preceding section, different combination al-
gorithms have been proposed. They include Bayesian
classifier with parametric (unimodal Gaussian model
of face and non-face) and non parametric techniques
(histogram), fuzzy inference system, neural combina-
tion and weighted average.

It is important to outline the contribution of combi-
nation, and a reference for face localization rates.
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Sample from the ECU database: (a) original image, (b) face ground truth, (c) skin ground truth.

Fig. 23.

If we only consider the appearance-based model
alone, the face location is defined as the minimum of
Diabolo reconstruction error over the whole image, as
a face image should be better reconstructed than a non-
face image. Under this consideration, 656 faces out
of 1353 are correctly localized: the localization rate is
48.5%. Such a poor rate is explained in Section 4: the
Diabolo is trained on examples of the interior part of the
face, so we can see it as an eyes and mouth model. As an
eye or a mouth detector it results in many false alarms in
a cluttered scene [17]: non-face pattern is not compiled
in the Diabolo. Moreover, edges are defined over each
sub-window which makes appear patterns in a non-flat
sub-image. And even if the Diabolo response shows a
local minimum over the face area, lower minima can be
found in unexpected area of the image.

Using the ellipse model alone, the face location is
defined as the maximum number of vote given by the
Generalized Hough Transform: 903 faces are correctly
localized. In this case the face localization rate is higher:
67% . The GHT is a cumulative approach more efficient
than the appearance-based model. Missed faces of the
test set correspond to an ellipse localized in a complex
background with a lot of edge pixels from which a lot
of vote were forecast to the accumulator.

The Bayesian classifier with the histogram technique
reaches a rate of only 22%. That means that the face and
non-face distribution are strongly interleaved in the “H-
D-S” space (see Fig. 24). The fuzzy approach is more
efficient with a face localization rate of 72%; it brings
an improvement of 5% compared to the ellipse detector
alone.

A classification based on the modeling of the face
by a unimodal 3D Gaussian gives a poor 5% of success.
It means that the unimodal Gaussian center of the face
class is not far enough from the non-face examples (see
Fig. 25). When the three detectors respond strongly over
the face region, it results in a feature vector HDS close
to A=[1 —1 1] (area outlined by the red ellipse in
Fig. 24(a). On the opposite, a lot of non-face sub-image
are featured by a point close to point B=[—-11 — 1] in
HDS (blue ellipse in Fig. 24(b) which corresponds to
a non-face pattern for the three basics detectors. These
two points should be correctly classify with a high con-
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Faces distribution in HDS space

Diabolo

Non-face distribution in HDS space

Fig. 24. Faces (a) and non-faces (b) distributions in the HDS space.

fidence. But the face Gaussian center (Fig. 25) is at
an equal Euclidian distance to these points: even with
the covariance matrix of the face model it is not possi-
ble to discriminate samples from the two class. Results
dramatically change if we use discriminant classifica-
tion with both Gaussian distribution of face and non
face. Indeed unimodal 3D-Gaussian of face and non-
face Bayesian classification achieves 84%. The non-
face class Gaussian center is close to the non-face HDS
point clouds as we can see on Fig. 25.
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Fig. 25. Gaussian centers of the face and non-face distribution.
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Fig. 26. (a) HoughMap (b) DiaboloMap (c) SkinMap
(d) FusionMap and (e) the corresponding face localization on the
original image.

Anyway, compare to all these methods, the weighted
average performs the best. With a localization rate of
86% it outperforms all the other approach. In order to
measure the effect of the weights on the detection result,
a simple average (i.e. all weights equal 1) is performed.
With a rate of 80% it performs well too, but less than the
weighted average with the weights learned by gradient
descent.

Amongst the multiple classifier systems, linear com-
biners are the most frequently used: a recent study can
be found in [15] with a theoretical analysis based on the
framework of [35]: the analysis of linear combiners is
still a promising path of research.

Fig. 26 shows detectors response and their combi-
nation using the weighted average.

In the first example of Fig. 26, the ellipse detector
failed to locate correctly the face, while the combination
system did. In the second example, the SkinMap maxi-

Fig. 27. Multiple faces localization: the number of faces is
supposed to be known.

mum is very low (0.23), but the combination (weighted
average) brings a correct face location.

To validate the face localization rate of the weighted
average combination, a second test was performed on
205 multiple faces images (non overlapping with the
training and cross-validation corpus) containing a total
of 482 faces. Number of people in each image is known
in a face localization approach.

In single face images, face location is defined as the
position of the maximum of FusionMap. In a N faces
image (N is supposed to be known in a localization
problem) the N highest maxima (with a sufficient dis-
tance to avoid overlapping detections) of FusionMap
correspond to the location of the faces. 396 faces are
correctly localized (82%). Some examples of correct lo-
calization are shown in Fig. 27.

For all tests of this sub-section the face size is also
supposed to be known: this information can be retrieved
if we know the distance between the person and the
camera. Videos available at [25] were particularly in-
teresting for this approach, showing people in front of
their computer: face size does not vary widely along the
image sequence.

The performance of the weighted average approach
at a known scale on video sequences was tested on three
videos sequences. In each image of the sequences only
one person is present. Fig. 28 gives examples of the
sequences, with the localization rates on each sequence.

6.3. Face Localization: Multiple Scale Approach

In the previous tests, face size is supposed to be
known: it is the case when distance between the person
and the camera is given. When this information is
unavailable, a multi-scale approach of the weighted
average combination is implemented. To localize faces
of various sizes a pyramid of images is produced: the
image is repeatedly subsampled with a classical [16, 36]
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Fig. 28. Examples of face localization by our system on videos
with the number of faces correctly localized. (a) Jamie sequence: 40
correct localization/43 images. (b) Ilkay sequence: 72 correct
localization/80 images. (c) Geoff sequence: 24 correct
localization/24 images.

Maximum
FusionMap:
- location (x.y)
- scale (w,h)

Fig. 29.

Images Pyramid to deal with face size.

scale factor of 1.2. For each scale a FusionMap is built
using a sliding window of a fixed size: face location
probabilities are then compared across the different
scales. Fig. 29 illustrates the images pyramid principle.

That multiscale approach is tested over 923 images
containing one person with a face width superior to
100 pixels, so that the number of scale to scan is less
than twelve. 537 faces are correctly localized: the face
localization rate is 58%. This rate is small compare to
state of the art face detector [36]. We used the Haar
face detector publicly available in [19]. A statistical
model of the face, made of a cascade of boosted tree
classifiers, is trained. The cascade is trained on face
and non-face examples of fixed size 24 x 24. A 24 x 24
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Fig. 30. A Haar-like feature is defined by its shape and its location
relative to the 24 x 24 sliding window.
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Fig. 31. Cascade of boosted classifiers.

sliding window scans the image and each sub-image
is classified as face or non-face. To deal with face
size the cascade is scaled with a factor of 1.2 by
scaling the coordinates of all rectangles of Haar-like
features. Hundreds of features are used as these shapes
are applied at different position in the 24 x 24 retina:
a feature is defined by its shape (including its size
depending on a scale factor that defines the expected
face size) and its location (see Fig. 30).

A simple decision tree classifier, referred to as
“weak” classifier, processes the feature value. A com-
plex classifier F, =sign(}_;_,c;f;) is iteratively com-
puted as a weighted sum of weak classifiers using a
boosting procedure. At each iteration a weak classifier
parameters are trained and a weight ¢; is assigned to
the weak classifier relatively to its error on the train-
ing set. The trained weak classifier is then added to the
sum and the training samples weights are updated in
order to emphasize the misclassified ones to train the
next weak classifier. Finally an attentional cascade is
implemented: it is a cascade of boosted classifiers with
increasing complexity. As shown in Fig. 31, the simplest
classifiers comes first and is intended to reject majority
of sub-window before calling more complex classifiers.

This face detector is robust to illumination condition
but hardly work when face is too slanted. Fig. 32
illustrates the limitation of the detector: in the first row
the face is correctly detected. In the second row the
face moved slightly from the previous position and is
not detected.

Localization rate measures a face localizer perfor-
mance: a false positive also correspond to a missed
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Fig. 32. Limits of the face detector.

face as only one location is searched in the image. A
face detector is evaluated by its ROC performance: at
least two scores are required, the detection rate (com-
plementary of the missed rate) and the false positive
rate. The cascaded face detector is more efficient than
the weighted average combination. It detects 713 faces
out of 923 (77%) with 78 false detections; 210 faces are
missed. It is, with [16] the state-of-the-art in face detec-
tion. Its multi-scale approach is more efficient that the
usual pyramid of images produced by down-sampling
the original image: it scales the Haar filters, so that the
search window contains a “high” resolution sub-image
whatever the scale considered. In 210 images (23%)
of the 923 test images, the face is missed. They corre-
spond to faces highly rotated (pan, tilt or roll rotation)
or occluded. On these particularly difficult images the
weighted average localizer performs quite well with 90
faces correctly localized out of 210 (43%). It appears
that our approach could be used as an alternative to
the Haar detector when it fails to detect anyone in the
scene. It potentially could decrease the missing rate
by 43%.

7. CONCLUSION AND PROSPECTS

This paper aimed to present a significant contribu-
tion to the image fusion task with application to face
localization. We have presented three different detec-
tors: skin color, auto-associative multi-layer perceptron,
and ellipse Hough Transform. We proposed three vari-
ous combination schemes and compare them: Bayesian
classifier, fuzzy logic and connexionist. An awesome
improvement of localization rate is brought by the two
last methods.

For the face detection/localization issue, several im-
provements are in progress: more sophisticated skin
color models like ellipsoidal threshold, Gaussian den-
sity functions or mixture of Gaussians [38]. A more ef-
ficient appearance-based model is also elaborated, based
on the Viola&Jones face detector [36]. For the combi-
nation part, it is not clear when and why a combination
method outperforms the others: quantitative and qualita-
tive investigations of classifiers output correlation effect
on combiners performance are under study.
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