
Shooter Localization using

a Wireless Sensor Network

of Soldier-Worn Gunfire

Detection Systems

JEMIN GEORGE

LANCE M. KAPLAN

This paper addresses the problem of shooter localization using a

wireless sensor network of soldier-worn gunfire detection systems. If

the sensor is within the field of view of the shockwave generated by

the supersonic projectile, then using acoustic phenomena analysis,

the gunfire detection system can localize the source of the incom-

ing fire with respect to the sensor location. These relative solutions

from individual gunfire detection systems are relayed to the central

node, where they are fused to yield a highly accurate geo-rectified

solution, which is then relayed back to the soldiers for added sit-

uational awareness. Detailed formulation of the fusion methodol-

ogy presented here indicates that the multi-sensor fusion algorithm

for soldier-worn gunfire detection systems is essentially a weighted

nonlinear least-squares algorithm, which can easily be implemented

using the Gauss-Newton method. The performance analysis of the

proposed fusion algorithm through numerical simulations reveals

that the fused solution is much more accurate compared to the indi-

vidual best sensor solution and the simple averaged sensor solution.

Since the proposed fusion algorithm requires consistent weighting

of individual sensor solutions, a consistency-based weighting scheme

is introduced to tackle the lack of reliability among sensor provided

weights. Implementation of the proposed fusion scheme along with

the consistency-based weighting scheme on experimental data fur-

ther confirms the numerical results.
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1. INTRODUCTION

Highly accurate small-arms gunfire detection sys-

tems on individual soldiers are vital requirement for

added battlefield situational awareness and threat assess-

ment. Today, several acoustic shooter localization sys-

tems are commercially available [2, 7, 29]; an overview

of such systems can be found in [26]. A few exam-

ples of soldier-wearable shooter localization systems

include the Shoulder-Worn Acoustic Targeting System

(SWATS) by QinetiQ North America, Inc., Boomerang

Warrior-X by BBN Technologies, and PinPoint by

BioMimetic Systems. These Soldier-wearable Gunfire

Detection Systems (SW-GDSs) can provide a good level

of localization accuracy as long as the soldier is at

an ideal location relative to the shooter and the bul-

let trajectory. However, due to the dissipative nature

of acoustic signals, localization systems suffer severe

performance degradation as the distance to the shooter

and the bullet trajectory increases [22, 23, 28]. More-

over, when a relative solution, i.e., the shooter loca-

tion relative to the sensor, is transformed into a geo-

rectified solution using a magnetometer and GPS, the

solution often becomes unusable due to localization er-

rors. Geo-rectified solutions are necessary when dis-

playing hostile fire icons on a Command and Con-

trol Geographic Information System (C2 GIS) map dis-

play.

SW-GDSs use acoustic phenomena analysis of

small-arms fire to localize the source of incoming fire,

usually with a bearing and range relative to the user

[12]. Currently, the individual SW-GDSs operate sep-

arately and are not designed to exploit the sensor net-

work layout of all the soldiers within a Small Combat

Unit (SCU) to help increase accuracy. Researchers are

exploring some novel solutions that utilize the team as-

pect of these SCUs by exploiting all SW-GDSs in a

squad/platoon to increase detection rates and localiza-

tion accuracy [9, 10, 32]. Apart from soldier-wearable

systems, there exist several single-microphone as well

as microphone array-based sensor network approaches

to shooter localization [6, 15, 16, 19, 24]. Most of the

existing sensor fusion schemes for shooter localization

are centralized approaches where the individual sensor

measurements, such as time of arrival or angle of arrival

of the muzzle blast or the shockwave are combined to

yield a single estimate of the shooter position [5, 16,

19, 20, 32]. Here we consider a hierarchical approach

where the relative shooter position from the individual

sensors are fused to obtain a more accurate geo-rectified

shooter position. The proposed approach takes full ad-

vantage of the team aspect of a SCU to provide a fused

solution that would be more accurate and suitable for a

C2 GIS map display than the individual soldier’s solu-

tion. The objective here is to improve accuracy across

an entire SCU so even soldiers in non-ideal settings (out

of range, bad angle, etc.) can exploit the good solutions
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from their neighbors. Furthermore, the proposed hier-

archical approach would allow the individual sensors

to operate independently in an event of network fail-

ure.

The individual SW-GDS is composed of a passive

array of microphones that is able to localize a gunfire

event by measuring the direction of arrival for both

the acoustic wave generated by the muzzle blast and

the shockwave generated by the supersonic bullet [2, 7,

12, 23]. After detecting a gunfire, the individual sensors

report their solution along with their orientation and

GPS positions to a central node over a communication

network. At the central node, the individual sensor

solutions are fused along with the GPS positions to yield

a highly accurate, geo-rectified solution, which is then

relayed back to individual soldiers for added situational

awareness.

This paper presents a detailed account of our con-

tinuing effort in the field of shooter localization us-

ing a wireless sensor network, where the main goal is

to develop a fusion algorithm that would work well

(compared to the individual sensor solutions) across

all the off-the-shelf SW-GDSs and not tailored toward

any particular acoustic sensor [3, 9, 10, 13, 30]. Even

though the exact details of the measurement process in

an acoustic GDS is sensor dependent and may consid-

ered as proprietary, a brief description of the shooter

localization process is presented in Sections 2 and 3 for

completeness. Sections 2 and 3 are not intended to pro-

vide a detailed and comprehensive explanation of acous-

tic gunfire detection process; rather, they are presented

as a prologue to the fusion algorithm presented in Sec-

tion 4 and to point out that even with the most simplistic

measurement model, the fusion algorithm amounts to a

complex nonlinear optimization problem. Readers who

are interested in further details of the shooter localiza-

tion process are referred to [2], [23], and the references

within them.

The sensor fusion scheme presented here is a max-

imum likelihood approach and since here we consider

additive white Gaussian noise, the maximum likelihood

estimation problem can be posed as a weighted non-

linear least-squares problem. But due to the interde-

pendence between the latent parameters and the mea-

surement noise covariance, the weighted nonlinear least-

squares problem is not readily solvable considering the

practical limitations in processing time and capability.

Therefore, a variance versus bias trade-off study is con-

ducted to reduce the number of parameters in the opti-

mization problem. Furthermore, the SW-GDSs are de-

signed to provide confidence weights along with their

individual solutions. From analyzing the experimental

data, it was noticed that the weights provided by the

sensors are inconsistent with the individual solution

accuracy and therefore, a consistency-based weight-

ing scheme is provided. In summary, compared to the

existing literature, the four main contributions of this

manuscript are:

² A detailed formulation of the multi-sensor data fusion
scheme for a wireless network of SW-GDSs.

² A variance versus bias trade-off study to reduce the

number of parameters in the optimization problem for

the real-time implementation of the fusion algorithm.

² A consistency-based weighting scheme to tackle the

lack of reliability among the sensor provided weights.

² Experimental results and an in-depth analysis of data
obtained from implementing the proposed sensor fu-

sion algorithm for realistic sensor formation.

The structure of this paper is as follows: Sec-

tion 2 presents the measurement model for the soldier-

wearable acoustic sensor nodes. Section 3 presents the

localization algorithm that converts the sensor measure-

ments to a shooter position estimate. Details of the cen-

tral node data fusion and the corresponding nonlinear

least-squares problem are given in Section 4. Section 5

presents the results from numerical simulations and Sec-

tion 6 presents the results obtained from implementing

the fusion algorithm on experimental data. Finally, Sec-

tion 7 concludes the paper and discusses the current

research challenges.

2. SENSOR MODEL

Consider a SCU consisting of n individual soldiers

equipped with the SW-GDS. In order to set up the

problem and develop a sensor model, consider a sce-

nario where there is only one shooter and the SW-

GDS receives both the muzzle blast and shockwave.

The shooter or the target location and the soldier or the

ith sensor location are defined as T and Si, respectively.

For simplicity, the problem is formulated in R2, i.e.,
T ´ [Tx Ty]T 2R2 and Si ´ [Six Siy ]T 2 R2. Now define

the individual range, ri, and bearing, Ái, between the ith

sensor node and the target as

ri =
q
(Tx¡ Six)2 + (Ty ¡ Siy )2 (1)

Ái = arctan

μ
Ty ¡ Siy
Tx¡ Six

¶
§¼f¡1,0,1g

= 2arctan
(Ty ¡ Siy )q

(Tx¡ Six)2 + (Ty ¡ Siy )2 + (Tx¡ Six)
:

(2)

REMARK 1 For descriptional simplicity, we consider a

constant velocity bullet model while the sensors in real-

ity account for the decelerating bullet speed [2]. Since

we are mainly interested in developing an algorithm for

SW-GDS fusion as opposed to improving the individual

sensor capability, the simplified sensor model is pre-

sented only for completeness.

When a gun fires, the blast from the muzzle pro-

duces a spherical acoustic wave that can be heard in

any direction. The bullet travels at supersonic speeds
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Fig. 1. Geometry of the bullet trajectory and propagation of the muzzle blast and shockwave to the sensor node.

Fig. 2. Muzzle blast and shockwave field of view.

and produces an acoustic shockwave that emanates as

a cone from the trajectory of the bullet. Because the

bullet is traveling faster than the speed of sound, the

shockwave arrives at the sensor node before the wave

from the muzzle blast [19], which we simply refer to

as the muzzle blast. Figure 1 illustrates the geometry of

the shockwave and the muzzle blast for the ith sensor

node when the orientation of the bullet trajectory is !

with respect to the horizontal axis. As the bullet pushes

air, it creates an impulse wave. The wavefront is a cone

whose angle μ with respect to the trajectory is

μ = arcsin

μ
1

m

¶
(3)

where m is the Mach number [8]. The Mach number is

assumed to be known since the typical Mach number for

sniper ammunition is m= 2.1 Since the Mach number

directly influences the range (distance from the sensor to

the shooter) estimates, uncertainty in bullet speed may

be treated as a range estimation error.

1http://www.chuckhawks.com/rifle ballistics table.htm.

As indicated in Fig. 1, the angle Ái indicates the

direction of arrival (DOA) of the muzzle blast, and

'i indicates the DOA of the shockwave. The muzzle

blast DOA2 is measured counter-clockwise such that

0· Ái · 2¼. For a more detailed description of the

scenario, please refer to [12]. Figure 2 indicates the

field of view (FOV) for both the muzzle blast and the

shockwave. Note that the FOV of the muzzle blast is 2¼,

i.e., omnidirectional, and the FOV for the shockwave

is ¼¡ 2μ. SW-GDS receives the shockwave only if the
muzzle blast DOA is within the bounds

¼=2+ μ+! < Ái < 3¼=2¡ μ+!: (4)

Now, the DOA angle for the shockwave can be writ-

ten as

'i =

8<:¡
¼

2
¡ μ+!, if ¼+! < Ái <

3¼

2
¡ μ+!

¼

2
+ μ+!, if

¼

2
+ μ+! < Ái < ¼+!

:

(5)

The first case, ¼+! < Ái < (3¼=2)¡ μ+!, corresponds

to the scenario where the sensor is located above the bul-

let trajectory and the second case, (¼=2)+ μ+! < Ái <

¼+!, corresponds to the scenario where the sensor is

located below the bullet trajectory (as shown in Fig. 1).

The case where Ái = ¼+! corresponds to the scenario

when the sensor is located on the bullet trajectory and

we do not consider such a scenario here. If Ái is outside

the bounds given in (4), then the sensor node only re-

ceives the muzzle blast as it is outside the FOV of the

shockwave.

Under the assumptions that the bullet maintains a

constant velocity over its trajectory, the time difference

of arrival (TDOA) between the shockwave and the

muzzle blast can be written as [2]

¿i =
ri
c
[1¡ cos jÁi¡'ij], 8Ái 6= 'i (6)

2Equation (2) yields ¡¼ · Ái · ¼. Thus ¼ must be added to Ái to
obtain a positive Ái if Ái < 0.
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where c indicates the speed of sound. Utilizing (5),

the bullet trajectory angle, !, can be obtained from the

shockwave DOA angle. Though this paper assumes that

the bullet speed is constant over its trajectory, others

have proposed localization algorithms [1], [14], [19]

that employ more realistic bullet speed models at the

expense of computational efficiency.

When the sensor node is within the FOV of the

shockwave, the three available measurements are the

two DOA angles and the TDOA between the muzzle

blast and the shockwave, i.e.,

Á̂i = h1(T,Si,!) + ´Á (7a)

'̂i = h2(T,Si,!) + ´' (7b)

¿̂i = h3(T,Si,!) + ´¿ (7c)

where h1(¢) is given in (2), h2(¢) is given in (5), and h3(¢)
is given in (6). The measurement noise is assumed to

be zero mean Gaussian white noise, i.e., ´Á »N (0,¾2Á),
´' »N (0,¾2') and ´¿ »N (0,¾2¿ ). Actually, it is has been
shown that, with the high signal-to-noise ratio, a maxi-

mum likelihood DOA estimator is unbiased and its es-

timates approximately follow a Gaussian distribution

[21, 25]. Here (7) represents the measurement equations

and after receiving these measurements, the processing

capability internal to the individual SW-GDS converts

these measurement into shooter location estimates. It is

important to note that the typical SW-GDS is equipped

with a magnetometer to obtain the orientation of the

sensor and thus the DOA measurements are reported in

a global reference frame as shown in Fig. 1. Thus, it

is not necessary to report the individual sensor orien-

tation to the central node, unless the DOA is given in

a local sensor reference frame. Furthermore, assuming

the magnetometer measurement errors are Gaussian, the

uncertainty associated with the sensor orientation can be

simply added to the DOA uncertainty.

3. DATA FUSION AT SENSOR NODE LEVEL

Let Ẑi denote the individual sensor level estimates

on the target bearing, range, and bullet trajectory, i.e.,

Ẑi = [Á̂i r̂i !̂i]. Data fusion at the sensor node involves

calculating these individual estimates based on the three

sensor measurements.

Using (5), the bullet trajectory angle, !, can be ob-

tained from the shockwave DOA measurements. Thus,

the observations on the trajectory angle can be written as

!̂i = !+ ´': (8)

Now the likelihood function, p(!̂i j T,Si,!), can be writ-
ten as

p(!̂i j T,Si,!) =N (!,¾2'):
From (6), the range can be written in terms of the

TDOA as

ri =
c¿i

[1¡ cos jÁi¡'ij]
: (9)

The observation of ri may be written as

r̂i =
c¿̂i

[1¡ cos jÁ̂i¡ '̂ij]
: (10)

Using the first-order Taylor series, the range measure-

ment can be approximated as

r̂i ¼
c¿i

[1¡ cos jÁi ¡'ij]

+

·
c

[1¡ cos jÁi¡'ij]
¡ c¿i sin jÁi¡'ij
[1¡ cos jÁi ¡'ij]2

¸·
´¿

´Á'

¸
= ri+H(T,Si,!)´r

where

´r =

·
´¿

´Á'

¸
, ´Á' »N (0,¾2Á+¾2')

and

H(T,Si,!) =

·
c

[1¡ cos jÁi¡'ij]
¡ c¿i sin jÁi¡'ij
[1¡ cos jÁi¡'ij]2

¸
:

Now the likelihood p(r̂i j T,Si,!) can be approximated as
p(r̂i j T,Si,!)¼N (ri,¾2r (T,Si,!))

where the variance ¾2r (T,Si,!) can be written as

¾2r (T,Si,!) =H(T,Si,!)

·
¾2¿ 0

0 ¾2Á+¾
2
'

¸
HT(T,Si,!):

(11)

Thus, the likelihood function p(Ẑi j T,Si,!) can be ap-
proximated as

p(Ẑi j T,Si,!)¼N (¹Zi ,§Zi) (12)

where

¹Zi =

264Áiri
!

375 , §Zi =

264¾
2
Á 0 0

0 ¾2r (T,Si,!) 0

0 0 ¾2'

375 :
It is assumed that a GPS receiver is used to obtain an

accurate positioning on each sensor. Thus, the position

observation on the sensors are given as

Ŝi =

·
Six

Siy

¸
+

·
vix

viy

¸
(13)

where the noise terms are assumed to be zero mean

Gaussian white, i.e., vix »N (0,¾2ix) and viy »N (0,¾2iy ).
Now the GPS measurement likelihood function may be

written as

p(Ŝi j Si)»N
Ã·
Six

Siy

¸
,

"
¾2ix 0

0 ¾2iy

#!
´N (¹Si ,§Si ):

(14)

Assumption 1 Without loss of generality, it can be

assumed that the GPS observations on sensor posi-

tion are independent of target location, observations on
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target location, and the projectile trajectory informa-

tion, i.e.,

p(Ŝi j Si) = p(Ŝi j T,Si,!) = p(Ŝi j Ẑi,T,Si,!):
Based on Assumption 1, the joint probability

p(Ẑi, Ŝi j T,Si,!) can be calculated as
p(Ẑi, Ŝi j T,Si,!) = p(Ŝi j Ẑi,T,Si,!)p(Ẑi j T,Si,!):

(15)

Substituting (12) and (14), the above joint likelihood

can be written as

p(Ẑi, Ŝi j T,Si,!)¼N (¹Si ,§Si)N (¹Zi ,§Zi ): (16)

Now for a sensor located in the FOV of the shock-

wave, the target location can be estimated as

T̂xi = Ŝix + r̂i cos(Á̂i) (17)

T̂yi = Ŝiy + r̂i sin(Á̂i): (18)

When the sensor is located outside the shockwave FOV,

the only estimate would be the bearing angle. After in-

dividual estimates are obtained at the sensor node level,

the measured information is transmitted to a central

node where it is fused to obtain a more accurate estimate

of shooter location.

4. DATA FUSION AT THE CENTRAL NODE

While sensors in the FOV of the muzzle blast and

the shockwave yield a range, bearing, and trajectory

angle estimates, the gunfire detection systems outside

the FOV of the shockwave yield a muzzle blast DOA.

Also, GPS measurements are available on each sensor

locations. At the central node, this information from the

individual sensor nodes is fused to obtain an accurate

estimate of the shooter location, bullet trajectory angle,

and sensor locations.

Based on Assumption 1, the joint likelihood func-

tion associated with each sensor is given in (15). Let

S1:n = fS1,S2, : : : ,Sng, Ẑ1:n = fẐ1, Ẑ2, : : : , Ẑng, and Ŝ1:n =
fŜ1, Ŝ2, : : : , Ŝng, where n indicates the number of sensors.
Since the measurement errors for the sensor nodes are

independent of each other, the joint conditional density

p(Ẑ1:n, Ŝ1:n j T,S1:n,!) can be defined as

p(Ẑ1:n, Ŝ1:n j T,S1:n,!) =
nY
i=1

p(Ẑi, Ŝi j T,Si,!):

(19)

In the maximum likelihood estimation approach con-

sidered here, estimates of the sensor locations, shooter

location, and bullet trajectory angle are obtained so that

the joint log-likelihood function is maximized, i.e.,

max
T,S1:n ,!

lnfp(Ẑ1:n, Ŝ1:n j T,S1:n,!)g

) max
T,S1:n,!

nX
i=1

lnfp(Ẑi, Ŝi j T,Si,!)g: (20)

Based on the results given in the previous section, the

criteria for the maximum likelihood estimation can be

written as

max
T,S1:n,!

nX
i=1

[lnfN (¹Zi ,§Zi )g+ lnfN (¹Si ,§Si )g]:

(21)

Note that the density N (¹Zi ,§Zi ) may be written as

N (¹Zi ,§Zi ) =
1pj2¼§Zi j exp

½
¡1
2
(Ẑi ¡¹Zi )T§¡1Zi (Ẑi¡¹Zi )

¾
(22)

where ¹Zi and §Zi are the same quantities given in
(12) if the sensor is within the FOV of the shockwave

and

¹Zi = Ái = h1(T,Si,!), §Zi = ¾
2
Á

if the sensor is outside the FOV of the shockwave. The

density N (¹Si ,§Si ) is given as

N (¹Si ,§Si ) =
1pj2¼§Si j exp

½
¡1
2
(Ŝi¡¹Si )T§¡1Si (Ŝi ¡¹Si )

¾
(23)

where

¹Si =

·
Six

Siy

¸
, §Si =

"
¾2ix 0

0 ¾2iy

#
:

After substituting (22) and (23) into (21), the maximum

likelihood criteria may be written as

min
T,S1:n,!

nX
i=1

h
1
2
(Ẑi¡¹Zi )T§¡1Zi (Ẑi¡¹Zi )

+ 1
2
(Ŝi¡¹Si)T§¡1Si (Ŝi¡¹Si )

+ ln
nq

j2¼§Zi j
o
+ ln

nq
j2¼§Si j

oi
:

(24)

Note that the term, lnf
q
j2¼§Zi jg, in above equation is

present due to the fact that §Zi is a function of T, S, and

!. The last term, lnf
q
j2¼§Si jg can be ignored since §Si

is a known constant matrix. Since §Zi is assumed to be

a diagonal matrix, (24) can be rewritten as

min
T,S1:n,!

nX
i=1

[ ln(¾ri ) +
1
2
(Ẑi¡¹Zi )T§¡1Zi (Ẑi¡¹Zi )

+ 1
2
(Ŝi¡¹Si )T§¡1Si (Ŝi¡¹Si )]: (25)

Apart from the initial term, ln(¾r), the optimization

problem given in (25) is similar to that used in the

weighted nonlinear least-squares. Thus, the maximum

likelihood approach presented here is similar to the

weighted nonlinear least-squares estimation.

There exists no closed form solution to the nonlinear

least-squares optimization problem given in (25) and

therefore a numerical approach must be used. A few
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common approaches to solve the nonlinear least-squares

problem include the Gauss-Newton method, Nelder-

Mead simplex method, and Levenberg-Marquardt meth-

od [4]. Almost all these approaches are iterative meth-

ods that require an initial approximation to the unknown

parameters and provide successively better approxima-

tions. The iterative process is repeated until the param-

eters do not change to within specified limits. Here we

mainly utilize the Gauss-Newton method for solving

the nonlinear least-squares problem given in (25). The

main advantage of the Gauss-Newton method is that it

exhibits a “quadratic convergence,” which, simply put,

means that the uncertainty in the parameters after p+1

iterations is proportional to the square of the uncertainty

after p iterations. Once these uncertainties begin to get

small, they decrease quite rapidly. An additional advan-

tage of the Gauss-Newton method is that it only requires

calculating the first-order derivatives. Even though one

of the major problems with the Gauss-Newton method

is that it sometimes diverges if the initial approximation

is too far from truth, in the sensor fusion applications,

the Gauss-Newton method can be easily initialized us-

ing the median of the individual sensor solutions.

4.1. Parameter Reduction

One of the major problems with the real-time im-

plementation of the proposed fusion scheme is that it is

a (2n+3)¡D problem and its dimensionality increases
as the number of sensors increases. Given in this sub-

section is an analysis that will help to reduce the dimen-

sionality of the optimization problem.

Most of the SW-GDSs currently available are de-

signed so that they provide the shooter location relative

to the sensor location. Moreover, some sensors also pro-

vide the weights or the confidence numbers that indi-

cate the estimated accuracy level of the relative solution.

These confidence numbers can be used to weight the

measurements in the nonlinear least-squares estimation

problem given in (25). Thus, (25) can be rewritten as

min
T,S1:n

nX
i=1

[ 1
2
(Ẑi¡¹Zi )TWi(Ẑi¡¹Zi )
+ 1

2
(Ŝi¡¹Si )T§¡1Si (Ŝi¡¹Si)] (26)

where

Ẑi =

·
Á̂i

r̂i

¸

¹Zi =

2664
2arctan

(Ty ¡ Siy )q
(Tx¡ Six)2 + (Ty ¡ Siy )2 + (Tx¡ Six)q
(Tx¡ Six)2 + (Ty ¡ Siy )2

3775

Wi =

2664
1

¾2Ái
0

0
1

¾2ri

3775

Ŝi =

"
Ŝix

Ŝiy

#

¹Si =

·
Six

Siy

¸
:

Since the SW-GDS do not report the bullet trajectory,

!̂i is not included in Ẑi. Also,

§Si =

"
¾2ix 0

0 ¾2iy

#
is assumed to be a known matrix and Wis indicate

the weights reported by the sensors. The nonlinear

least-squares problem given in (26) is of dimension

2n+2. If the sensor reported GPS positions are taken as

absolute truth, then the nonlinear least-squares problem

given in (26) becomes two dimensional and it may be

rewritten as

min
T

nX
i=1

[ 1
2
(Ẑi¡¹Zi)TWi(Ẑi¡¹Zi)]: (27)

Note that the problem given in (26) involves estimating

more parameters compared to the problem in (27).

Thus, based on the arguments given in [11], it can be

shown that the Cramér-Rao lower bound for the latter is

always less than the lower bound for the former, i.e., the

problem in (26) yields higher variance for the shooter

location compared to the problem in (27). On the other

hand, the low dimensional problem in (27) yields biased

estimates since it considers the GPS measurements as

absolute truth. This bias grows as GPS errors increases.

For small errors, the bias is small so that (27) is more

accurate than (26) due to the lower variance. Once the

GPS errors exceed a threshold, the bias dominates and

(26) becomes more accurate. Simulations in the next

section help to determine this threshold.

4.2. Weighting Scheme

It is well known that the performance of the least-

squares problems given in (26) and (27) depends on

the weights associated with each measurements. The

fusion scheme presented earlier assumes that the sen-

sors are designed to provide these weights along with

its relative shooter position estimates. These weights

indicate the estimated accuracy level of the calculated

range and bearing. From analyzing the experimental

data, it was noticed that the weights provided by the

sensors are inconsistent with the relative solution ac-

curacy. This inconsistency is particularly visible in the

case of outliers. Using these inconsistent weights in the

fusion process would bias the fused solution toward an

outlier. Thus, we provide an ad hoc weighting scheme,

which is based on a consistency check, i.e., the weight

is selected based on how consistent a particular sensor

solution is to the rest of the relative solutions. Recently,

several consistency-function-based source localization
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algorithms have been proposed, which can provide ac-

curate solutions even if a large number of independent

outliers are present in a measurement set [17, 18, 31].

Here, the consistency check is conducted by compar-

ing the individual sensor solution to the fused solution

obtained by combining the remaining individual sensor

measurements. To this end, we first consider the en-

tire n measurement set and remove the particular sensor

measurement for which we would like to generate the

weight. Let Ẑ1:n indicate the set of all n sensor mea-

surements and Ẑ
fjg
1:n indicate the set of measurements

excluding the jth sensor measurement. Now we obtain

a fused solution, Tfjg, by combining the remaining n¡ 1
measurements, Ẑ

fjg
1:n , after equally weighting them, i.e.,

3

Tfjg =min
T

nX
i=1 i 6=j

1

2

0BB@
2664
2arctan

(Ty ¡ Siy )q
(Tx¡ Six)2 + (Ty ¡ Siy )2 + (Tx¡ Six)q
(Tx¡ Six)2 + (Ty ¡ Siy )2

3775¡ · Á̂ir̂i
¸1CCA

T ·
W11 W12

W12 W22

¸

£

0BB@
2664
2arctan

(Ty ¡ Siy )q
(Tx¡ Six)2 + (Ty ¡ Siy )2 + (Tx¡ Six)q
(Tx¡ Six)2 + (Ty ¡ Siy )2

3775¡ · Á̂ir̂i
¸1CCA (28)

where

W =

·
W11 W12

W12 W22

¸
is the weight matrix. After obtaining the fused solution,

it is then converted into relative range and bearing solu-

tions, rfjg and Áfjg, using the sensor GPS measurements.

·
Áfjg

rfjg

¸
=

2664
2arctan

(Ty ¡ Siy )q
(Tx¡ Six )2 + (Ty ¡ Siy )2 + (Tx¡ Six )q
(T
fjg
x ¡ Six )2 + (T

fjg
y ¡ Siy )2

3775 :
(29)

Now, the difference between the fused relative solution

and the measured relative solution is calculated.

Efjgr = (rfjg ¡ r̂j)2 (30)

E
fjg
Á = (Áfjg ¡ Á̂j)2: (31)

If the individual solution is very close to the fused

solution, then it is of high consistency and a large weight

is selected. Conversely, if the individual solution is far

from the fused solution, then it is of low consistency

and a low weight is selected. Thus, the weight are

3The arctangent formulation given in (28) is equivalent to the atan 2

function in Matlab and it has a range of [¡¼,¼].

obtained as

Wj =

26664
1

E
fjg
r

0

0
1

E
fjg
Á

37775 : (32)

This procedure is repeated n time so that a consistency-

based weight is obtained for the entire n-sensor mea-

surements.

5. NUMERICAL SIMULATIONS

This section presents numerical simulations to assess

the localization improvement due to the proposed fusion

algorithm. For the simulation scenario considered here,

we assume that there are five sensor nodes and the node

locations in meters are

S=

·
127 20 90 136 182

107 22 0 68 59

¸
:

For simplicity, we assume a constant velocity model
for the bullet. Thus, the Mach number is selected to
be m= 2 and the speed of sound is selected to be c=
342 m/sec. The measurement noise models are selected
as ¾ix = ¾iy = 5 m, ¾Á = ¾' = 4

±, and ¾¿ = 1 msec. Since
there exist several approaches to solve the nonlinear
least-squares problem, two different methods are used
to obtain solutions for both simulation scenarios. In
the first method, the optimization problem is solved
using the Gauss-Newton method [4] mentioned in the
previous section. The second approach uses the Nelder-
Simplex algorithm [27], i.e., the fminsearch function in
Matlab. Both algorithms are initialized using the median
of the sensor-reported shooter location.
For simulation, the shooter is assumed to be located

at T = [50 m 50 m]T and we select the bullet trajectory
to be ! = 30±. Figure 3 shows the first simulation sce-
nario. Due to the sensor locations, the second and the
third sensors do not receive the shockwave.

5.1. Simulation Results I

The simulation results presented in this subsection
corresponds to the results obtained from solving the
full dimensional problem given in (25), where the bullet
trajectory as well as the sensor locations are estimated
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Fig. 3. Simulation I Scenario.

Fig. 4. Simulation result I: Mean results from Monte Carlo runs.

along with the shooter location. In order to evaluate the

system performance, 1000 Monte Carlo simulations are

conducted for both the Gauss-Newton method and the

simplex algorithm. The mean shooter locations and the

associated error ellipses obtained from the Monte Carlo

simulations using the Gauss-Newton method are given

in Fig. 4. A separate plot is not provided for the results

obtained using the simplex algorithm since they are very

similar to those obtained for the Gauss-Newton method.

Figure 4 indicates that sensor five performs the worst

out of the three sensors within the shockwave FOV; this

is due to the fact that the localization accuracy is in-

versely proportional to the miss distance. Figure 4 also

indicates that the fused estimate is superior to the indi-

vidual sensor estimates, and the uncertainty associated

with the fused estimates is much less than the uncer-

tainty associated with the individual sensor estimates. It

seems that the orientation of the error ellipse depends

on what side of the trajectory the sensor is located. In

addition, the orientation of the error ellipse indicates

that the estimation error along the x and y directions

varies with the sensor location.

TABLE I

Simulation Result I: Shooter Location

Tx (m) Ty (m) RMSE (m)

Truth 50 50 –

Sensor 1 48.3513 47.2948 23.2870

Sensor 2 – – –

Sensor 3 – – –

Sensor 4 42.9248 50.2141 31.1132

Sensor 5 37.1197 52.0782 65.6542

Average 42.7986 49.8623 25.9660

Gauss-Newton 49.9066 49.9134 6.8639

Nedler-Simplex 50.0493 50.0588 6.9972

TABLE II

Simulation Result I: Bullet Trajectory

! (deg) RMSE (deg)

Truth 30 –

Sensor 1 30.0641 3.9690

Sensor 2 – –

Sensor 3 – –

Sensor 4 30.3402 3.9970

Sensor 5 29.9591 3.9029

Average 30.1211 2.2128

Gauss-Newton 30.1211 2.2128

Nedler-Simplex 30.1999 2.4674

TABLE III

Simulation Result I: Sensor Location RMSE

GPS (m) Gauss-Newton (m) Nedler-Simplex (m)

Sensor 1 7.0215 6.5453 6.5938

Sensor 2 7.0002 6.3195 6.3530

Sensor 3 7.0028 6.6513 6.6770

Sensor 4 7.1509 6.5259 6.6201

Sensor 5 7.0223 6.7883 6.8731

Table I summarizes the mean shooter location esti-

mate of the individual sensors and the fusion algorithms

over the Monte Carlo runs. The “average” estimate pre-

sented in Table I indicates the estimate obtained by

simply averaging the individual target estimates from

sensors one, four, and five. Table I also contains the

root-mean-square error (RMSE) associated with each

estimate. Based on the RMSE presented in Table I, one

can conclude that that fused estimates outperform the

individual sensors and the simple average estimate.

Table II contains the mean bullet trajectory angle

estimate obtained from the individual sensors and the

fusion algorithms over the Monte Carlo runs. Table II

also contains the RMSE associated with each trajectory

angle estimate. Note that the fused trajectory estimate

is simply the average of the individual sensor estimates

due to the way in which ! appears in (25).

Table III contains RMSE associated with the sensor

location estimates. The performance improvement in

sensor location estimate accuracy is moderate compared
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Fig. 5. Simulation result II: Mean results from Monte Carlo runs.

to the shooter location estimate accuracy since the GPS

measurements are fairly accurate to begin with. Also

note that the RMSE associated with the sensor location

estimate given in Table III is similar to that of the RMSE

associated with the fused shooter position estimate.

Based on the RMSE presented in Tables I, II, and III,

one can conclude that that fused estimates outperform

the individual sensors.

5.2. Simulation Result II

The simulation results presented in this subsection

corresponds to the results obtained from solving the

two-dimensional problem given in (27), where only the

shooter location is estimated. The mean shooter loca-

tions and the associated error ellipses obtained from

the Monte Carlo simulation using the Gauss-Newton

method are given in Fig. 5. Figure 5 indicates that the er-

ror ellipse obtained for the second simulation is smaller

compared to that obtained for the first simulation. Also

note that the increase in estimation accuracy is mostly

along the x-direction, i.e., east. This is due to the fact

that the initial error in x-direction is much larger com-

pared to that in y-direction (north). The RMSE asso-

ciated with the fused result in Fig. 5 is approximately

5.1771 m.

This performance improvement in the low-dimen-

sional problem is due to the very low GPS bias com-

pared to the shooter location estimation error. It can be

shown that, as the GPS accuracy decreases, the perfor-

mance degradation of the 2-D problem is much larger

compared to that of the full-dimensional problem. Fig-

ure 6 compares the RMSE for the shooter location for

both the 2-D problem given in (27) and the (2n+2)¡D
problem given in (26). This particular result is obtained

for the simulation scenario given in Fig. 3 using addi-

tive Gaussian white noise for measurement noise. Fig-

ure 6 indicates that for low GPS error of ¾x,y · 7 m,
the 2-D problem yields better accuracy compared to the

(2n+2)¡D problem. Moreover, for high GPS error of

Fig. 6. RMSE sensitivity plot for simulation one scenario.

¾x,y ¸ 7:5 m, taking the GPS measurements as absolute
truth and not accounting for the GPS error degrades the

shooter location accuracy.

6. EXPERIMENTAL RESULTS

This section presents the experimental results ob-

tained by implementing the fusion algorithm on gunfire

detection data, but first, the experimental setup used for

data collection is briefly explained. Experimental data

were obtained using several gunfire detection systems

provided by BioMimetic Systems.4 For data collection,

we used three soldier-wearable (SW) systems, three

unattended ground sensors (UGSs), and three vehicle-

mounted (VM) systems.

Each sensor unit had an interface unit attached, con-

sisting of an Atom processor netbook, an Enhanced Po-

sition Location and Reporting System (EPLRS) radio,

a GPS system, and an Li-145 battery. The netbook was

interfaced to the sensor through a custom driver, us-

ing serial communication over USB. A standard USB

to USB mini cable was used as the interface cable. The

netbook was used as a stand-in for the soldier computer;

the netbook has the same processor and was an inexpen-

sive substitute for testing. At the central node, the fusion

processor receives the solutions from individual sensors

via EPLRS radio. The central processor is also an Atom

processor netbook where the fusion algorithm combines

the individual solutions to obtain a fused solution. The

fused solution is then relayed back to individual sensors

via EPLRS radio. At the individual sensor nodes, GIS

map display is used to display the geo-rectified fused

solution.

Experiments were conducted for two sensor forma-

tions, the quad symmetric formation and the wedge

flank formation. Figure 7 contains the sensor layout for

both scenarios. The test pattern includes nine sensors,

4www.biomimetic-systems.com.
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Fig. 7. Sensor formation. (a) Quad symmetric formation. (b) Wedge flank formation.

TABLE IV

Shooter Locations

Shooter Position GPS-East (m) GPS-North (m)

Shooter Position 1 283309 4709539

Shooter Position 2 283270 4709567

Shooter Position 3 283337 4709632

three VM sensors (VM-blue), three SW sensors (SW-

red), and three UGSs (UGS-green). The sensor pattern

is an aggregate distribution of squad-level soldiers while

on patrol, it spreads over 25 m front to back. The shooter

position is marked by a red human figure, and the shot

line is marked by a translucent red line.

For both sensor layouts, shots were fired from three

different positions using three different weapons. Fig-

ure 7 also shows the three different shooter positions

used for the experiment. As Fig. 7 indicates, shooter

positions one and two are approximately 200 m from

the sensor formation and shooter position three is about

300 m from the sensor formation. The GPS locations

of the three shooter positions are given in Table IV.

The three different weapons used for the experiment

TABLE V

Ammunition

Weight Muzzle Velocity Velocity at

Weapon Caliber (g) (m/sec) 183 m (m/sec)

Weapon 1 7:62£ 39 mm 124 721 543

Weapon 2 5:56£ 45 mm 55 988 702

Weapon 3 7:62£ 54 mm 181 823 668

and details of the ammunition used in the weapons are

given in Table V.5 For each scenario/shooter position,

10 shots were fired using each weapon. Thus, a total of

180 shots were fired, 60 shots per weapon.

6.1. Results

This subsection presents the summary of experimen-

tal results obtained by implementing the fusion algo-

rithm on the gunfire detection data. Before we proceed

further, it is important to note that the sensor GPS ac-

curacy level is much higher than the fused solution ac-

curacy, and estimating the sensor position along with

5http://www.chuckhawks.com/rifle ballistics table.htm.
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the shooter location and bullet trajectory does not im-

prove the fused solution accuracy. This is clearly visible

in both simulations presented in the previous section,

where the fused solution accuracy is very close to the

GPS measurement accuracy for the first simulation and

the fused solution accuracy is much lower than the GPS

accuracy for the second simulation. Besides, including

the sensor location as well as the bullet trajectory within

the fusion algorithm significantly increases the prob-

lem dimensionality and thus contributes to the compu-

tational cost. Therefore, the fusion approach used for the

experiment does not try to estimate the bullet trajectory

and sensor locations based on the results presented in

Section 4.1. The sensor locations reported by the sensor

GPS is taken as the absolute truth. Thus, the 2-D non-

linear least-squares problem associated with the sensor

fusion is similar to that given in (27).

As mentioned earlier, the sensors are designed to

provide these weights along with its relative shooter

position estimates. These weights indicate the estimated

accuracy level of the calculated range and bearing. From

analyzing the experimental data, it was noticed that

the weights provided by the sensors are inconsistent

with the relative solution accuracy. This inconsistency

is particularly visible in the case of outliers. Using these

inconsistent weights in the fusion process would bias the

fused solution toward an outlier. Thus, we implemented

the fusion algorithm using three different weighting

schemes. The first weighting scheme simply uses the

weights provided by the sensors; this fusion scheme

is denoted as “Fusion-SW (Fusion-Sensor Weights).”

For the particular sensor under consideration, the sensor

provided weights are obtained based on the signal-to-

noise ratio.

The second weighting scheme involves calculating

the weights based on the true error associated with the

range and bearing estimates; this fusion scheme is de-

noted as “Fusion-TE (True Error).” For this weighing

scheme, the difference between the measured range/

bearing and the ground truth are first calculated. The

square of these errors are then taken as the weight as-

sociated with the range and the bearing measurements.

Note that this weighting scheme is not practical in re-

ality since the ground truth is unknown. We use this

weighting scheme strictly for comparative purposes.

The third weighting scheme is the consistency-based

weighing scheme presented in Subsection 4.2 and is de-

noted as “Fusion-CW (Fusion-Consistency Weights).”

Given next are the results obtained from implement-

ing the fusion algorithm on experimental data. Five dif-

ferent fused solutions are presented per scenario/shooter

location. These fused solutions correspond to i) in-

dividual best solution, ii) individual average solution,

iii) Fusion-SW solution, iv) Fusion-TE solution, and

v) Fusion-CW solution. Individual best and individual

average solutions are obtained by selecting the best sen-

sor solution or simply averaging the individual solutions

across the nine sensors.

TABLE VI

Sensor Locations and Heading for Wedge Flank Formation

Sensor GPS-East (m) GPS-North (m) Heading (deg)

SW1 283147 4709413 35

SW2 283134 4709443 40

SW3 283165 4709401 31

UGS1 283133 4709431 39

UGS2 283195 4709396 26

UGS3 283156 4709413 34

VM1 283127 4709432 40

VM2 283182 4709394 28

VM3 283184 4709384 26

6.1.1. Scenario 1: Wedge flank formation
The sensor locations and headings corresponding

to the wedge flank formation are given in Table VI.

After receiving the shot data, each sensor estimates the

shooter location relative to its position. This relative

solution, in terms of range and bearing, is then relayed

to the central node along with the GPS measurements

of the sensor locations and the sensor heading (see

Table VI). Sensors also provide weights, which indicate

the estimated accuracy level of the relative solution,

along with its relative solution estimates. After receiving

the measurements from the sensors, the central node

combines the individual solutions to yield the fused

solution.

Figure 8 shows the relative performance between the

fusion schemes using the different weighting schemes

mentioned previously. In Fig. 8(a), the fusion results

obtained from consistency-based weighting scheme

(Fusion-CW) is compared against the fusion results ob-

tained from sensor-provided weighting scheme (Fusion-

SW) and the individual average. Individual average is

the simplest form of fusion, where the fused result is

obtained by simply averaging the individual solutions.

Figure 8(a) indicates that the fusion results obtained

from consistency-based weighting scheme are within

the 20 m error circle while the fusion results obtained

from sensor-provided weighting scheme and the indi-

vidual average are mostly outside the 20 m error circle.

Figure 8(a) also indicates that the individual average

estimates are strongly biased with a Tx-error of 20 m

and a Ty-error of 10 m. This bias is clearly visible in the

Fusion-SW and Fusion-CW results.

Figure 8(b) contains the histogram of the fusion er-

ror for scenario one, shooter position one. Besides the

fusion results obtained using the three different weight-

ing schemes mentioned earlier, Fig. 8(b) also contains

the results from individual average and individual best.

In the individual best approach, the fused solution is the

one with the least error, i.e., most accurate. Note that this

approach requires knowing the true shooter position a

priori and thus it is not feasible in reality. It is important

to note that the fusion results obtained from true error

based weighting scheme (Fusion-TE) is more accurate

than the individual best sensor as shown in Fig. 8(b).
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Fig. 8. Fusion result: Scenario 1, shooter position 1. (a) Fusion error. (b) Fusion error histogram.

Fig. 9. Fusion result: Scenario 1, shooter position 2. (a) Fusion error. (b) Fusion error histogram.

Fused solution obtained from Fusion-TE yields a zero

estimation error 16 out of 30 times while the individual

best only has 5 out of 30 solutions with a zero estima-

tion error. The fused solution obtained from individual

average is the lest accurate with 20 out of 30 solutions

with an estimation error of 25 m or higher. Compared to

the individual average, the Fusion-SW yields a more ac-

curate solution. In contrast to the results obtained for the

numerical simulation, estimation errors are not Gaussian

as indicated by Fig. 8(b) except for the error obtained

from Fusion-TE.

Figure 9 shows the relative performance across the

different fusion schemes for the scenario one, shooter

position two. In Fig. 9(a), the fusion results obtained

from Fusion-CW is compared against the results ob-

tained from Fusion-SW and the individual average.

Compared to shooter position one, these results are less

biased, as indicated in Fig. 9(a). As shown in Fig. 9(a),

the individual average is biased with a Tx and Ty-errors

of approximately 8 m. Figure 9(a) also indicates that

the fusion results obtained from Fusion-CW is within

the 20 m error circle while the results obtained from

Fusion-SW and the individual average are mostly out-

side the 20 m error circle. Figure 9(b) contains the his-

togram of the fusion error for scenario one, shooter po-

sition two. Figure 9(b) indicates that the fusion results

obtained from Fusion-TE yields a perfect localization

50% of time, i.e., 15 shots out of 30 result in a fused

solution with zero error. The fused results obtained from

Fusion-SW contains two solutions with errors of 35 and

40 m. Clearly, the fusion results obtained from Fusion-

TE is more accurate than the rest of the solutions, as

shown in Fig. 9(b).

Figure 10 shows the relative performance across the

different fusion schemes for the scenario one, shooter

position three. Compared to previous two shooter po-

sitions, shooter position three yields the least accu-

rate measurements due to the increased firing dis-
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Fig. 10. Fusion result: Scenario 1, shooter position 3. (a) Fusion error. (b) Fusion error histogram.

Fig. 11. Fusion result: Scenario 2, shooter position 1. (a) Fusion error. (b) Fusion error histogram.

tance of 300 m. Figure 10(a) compares the fusion re-

sults obtained from Fusion-CW against the results ob-

tained from Fusion-SW and the individual average. Fig-

ure 10(a) indicates that the majority of fusion results

obtained from Fusion-CW, as well as the results ob-

tained from Fusion-SW and the individual average are

outside the 20 m error circle. This degradation in per-

formance compared to the previous two shooter po-

sitions might be due to the increased firing distance.

Figure 10(b) contains the histogram of the fusion er-

ror for scenario one, shooter position three. Here also,

the fusion results obtained from Fusion-TE is more

accurate than the individual best sensor as shown in

Fig. 10(b). Finally, note that the accuracy of the results

from Fusion-SW is greatly influenced by the individual

outliers while the results from Fusion-TE are insensitive

to the outliers.

6.1.2. Scenario 2: Quad symmetric formation
This subsection presents the results obtained from

scenario two, the quad symmetric sensor formation.

Compared to previous scenario, the sensors are more

clustered together in this scenario, and therefore, there

is a higher level of consistency between the sensors.

This higher consistency results in better localization

accuracy, as indicated here. The sensor locations and

headings correspond to the quad symmetric formation

are given in Table VII. Here also, 30 shots were fired

for each shooter position, 10 shots per weapon.

Figure 11 shows the relative performance across the

fusion schemes using the different weighting schemes.

In Fig. 11(a), the fusion results obtained from Fusion-

CW are compared against the fusion results obtained

from Fusion-SW and the individual average. Figure

11(a) indicates that the fusion results obtained from

Fusion-CW and Fusion-SW are mostly within the 20 m

SHOOTER LOCALIZATION USING SOLDIER-WORN GUNFIRE DETECTION SYSTEMS 27



Fig. 12. Fusion result: Scenario 2, shooter position 2. (a) Fusion error. (b) Fusion error histogram.

TABLE VII

Sensor Locations and Heading for Quad Symmetric Formation

Sensor GPS-East (m) GPS-North (m) Heading (deg)

SW1 283130 4709427 40

SW2 283129 4709434 39

SW3 283165 4709401 31

UGS1 283133 4709431 39

UGS2 283169 4709398 30

UGS3 283168 4709405 31

VM1 283127 4709431 40

VM2 283172 4709402 30

VM3 283177 4709395 29

error circle and they are more accurate compared to the

individual average. Also note that Fig. 11(a) does not

display the strong bias we observed in Fig. 8(a) and the

majority of the fused results obtained from Fusion-CW

and Fusion-SW shows a less than 10 m error.

Figure 11(b) contains the histogram of the fusion er-

ror for scenario two, shooter position one. Besides the

fusion results obtained using the three different weight-

ing scheme mentioned earlier, Fig. 11(b) also contains

the results from individual average and individual best.

Figure 11(b) indicates that the fusion results obtained

from Fusion-TE yields a perfect localization two out

of three time, i.e., 20 shots out of 30 shots results in a

fused solution with zero error. Clearly, the fusion results

obtained from Fusion-TE is more accurate than the indi-

vidual best sensor as shown in Fig. 11(b). Also, note that

the results obtained from Fusion-CW are more accu-

rate compared to Fusion-SW, and both Fusion-CW and

Fusion-SW yield better results compared to the indi-

vidual average. Comparing Figs. 8(b) and 11(b) clearly

indicates that the results obtained for the quad formation

yield better results.

Figure 12 shows the relative performance across the

different fusion schemes for the scenario two, shooter

position two. In Fig. 12(a), the fusion results obtained

from Fusion-CW are compared against the results ob-

tained from Fusion-SW and the individual average. Fig-

ure 12(a) indicates that the fusion results obtained from

Fusion-SW, Fusion-CW, and the individual average are

mostly within the 20 m error circle or within the close

proximity of the error circle. Figure 12(b) contains the

histogram of the fusion error for scenario two, shooter

position two. Here also, the histogram indicates that the

fusion results obtained from Fusion-TE yields a perfect

localization two out of three times, i.e., 20 shots out

of 30 shots result in a fused solution with zero error.

Clearly, the fusion results shown in Fig. 12 are more

accurate compared to rest of the results presented here.

This high level of accuracy is due to two reasons: i) the

clustered quad symmetric sensor formation and ii) the

bullet trajectory with sensors distributed on both sides

of the trajectory to reduce the miss-distance.

Figure 13 shows the relative performance across the

different fusion schemes for the scenario two, shooter

position three. Figure 13(a), compares the fusion re-

sults obtained from Fusion-CW against the results ob-

tained from Fusion-SW and the individual average. Fig-

ure 13(a) indicates that the fusion results obtained from

Fusion-CW are mostly within or around the vicinity of

the 20 m error circle while the results obtained from

Fusion-SW and the individual average are outside the

20 m error circle. Figure 13(b) contains the histogram

of the fusion error for scenario two, shooter position

three. Note that the fusion results obtained from Fusion-

TE are perfect more than 50% of the time and they are

more accurate than the individual best sensor, as shown

in Fig. 13(b). The performance degradation shown in

Fig. 13 is similar to that obtained in Fig. 10 and is due

to the increased firing distance compared to the pre-

vious two shooter positions. Also note that the perfor-

mance degradation in Fig. 13 is slightly less than the one

observed in Fig. 10 due to the quad symmetric sensor

formation.
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Fig. 13. Fusion result: Scenario 2, shooter position 3. (a) Fusion error. (b) Fusion error histogram.

TABLE VIII

Summary of Fusion Results

Scenario & Fusion-TE Fusion-CW Fusion-SW Indiv. Avg Indiv. Best

Shooter Position Error (m) Error (m) Error (m) Error (m) Error (m)

Scenario 1 Shooter 1 2.9 12.1 16.3 23.3 6.0

Scenario 1 Shooter 2 3.5 10.7 14.5 20.6 6.0

Scenario 1 Shooter 3 5.0 14.2 21.9 21.9 11.8

Scenario 2 Shooter 1 3.3 11.0 13.2 26.9 6.6

Scenario 2 Shooter 2 2.7 9.7 11.1 10.8 6.7

Scenario 2 Shooter 3 3.4 13.1 20.6 19.1 9.4

Given in Table VIII is the summary of average (av-

eraged across 30 shots) localization error obtained for

six different experiments using the five different fusion

schemes explained earlier. As expected, the results ob-

tained from Fusion-TE outperform the individual best,

and on average the Fusion-CW yields better results

compared to Fusion-SW. Also note that the Fusion-CW

and Fusion-SW yield better results compared to the in-

dividual average except for scenario two, shooter posi-

tions two and three. For scenario two, shooter positions

two and three, the results obtained from individual aver-

age are slightly better than Fusion-SW. This is due to the

fact that the clustered sensors within the quad symmet-

ric formation yield consistent measurements, which are

equally distributed around the truth, and weighting them

equally yields better results compared to using inconsis-

tent weights. The consistency-based weighting scheme

presented here is just one of the ad hoc approaches to

develop synthetic weights. Numerous other schemes ex-

ist based on the consistency test that we are currently

pursuing in an attempt to achieve the performance of

Fusion-TE.

7. CONCLUSIONS

The shooter localization problem using a network

of soldier-worn gunfire detection systems is considered

here. This paper presents a fusion algorithm that utilizes

the benefits of the sensor network layout of all the sen-

sors within a small combat unit to help refine shooter

localization accuracy. Main contributions of this work

include (i) a detailed formulation of the fusion method-

ology and its performance analysis through numerical

simulations; (ii) parameter reduction of the optimization

problem and a consistency-based weighting scheme for

the real-time implementation of the fusion algorithm;

and (iii) detailed experimental results and the analysis of

data. It is shown that the multi-sensor fusion algorithm

for soldier-worn gunfire detection systems is essentially

the weighted nonlinear least-squares algorithm, which

can be easily implemented using the Gauss-Newton

method. Since the GPS accuracy of the sensors is much

higher compared to the shooter localization accuracy, it

is also shown that accepting the GPS measurements as

ground truth for the sensor locations and simply esti-

mating the shooter location greatly reduce the dimen-

sionality of the optimization problem and thus decrease

the computational cost without sacrificing performance

accuracy. The numerical results given in Section 5 in-

dicate that the fusion algorithm is able to improve the

localization accuracy by a factor of four compared to

the simple averaged solution, if the underlying assump-

tions are valid and the weights associated with individ-

ual sensor locations are consistent. Despite the lack of

consistency in the weights provided by the sensors, the
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fusion algorithm along with the proposed consistency-

based weighting scheme is able to produce a fused so-

lution twice as accurate as the simple individual average

solution.

Though the proposed fusion approach was able to

yield desirable results, there are several aspects of the

proposed approach that can be further improved. Few

of those features are (i) an improved weighting scheme

that would yield a fused solution that approaches the

accuracy obtained from the true error based weight-

ing scheme, (ii) a mathematically rigorous method to

quantify the uncertainties associated with the maximum

likelihood estimates, and (iii) an investigation of the

performance gain in fusing raw sensor measurements,

such as the two direction of arrival angles and the time

difference of arrival between the muzzle blast and the

shockwave versus the relative shooter position.
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