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Bearings-only localization with light-of-sight (LOS) propagation

is well understood. This paper concentrates on bearings-only local-

ization with non-line-of-sight (NLOS) measurements, where target

images arrive at a network of sensors each after a single specu-

lar reflection. The reflecting surface can be 1) flat or 2) circular

(inner side of a circle), and is assumed known. In this paper, we

derive the least squares (LS), Stansfield, and maximum likelihood

(ML) estimators for both cases. As to the former, their estimation

performances are similar to their counterparts in LOS localization:

Stansfield is very close to ML, and both are usually significantly

better than LS. As regards the second, since the target-sensor ge-

ometry has multiple possibilities, the ML solution is extremely intri-

cate. However, if a concentric opaque circle (such as the earth) lies

within the reflecting one, e.g. the earth within the ionospheric layer,

the propagation path becomes unique; a grid search based ML is

available for such a circumstance. ML is computationally intensive

for a circularly reflecting surface; two suboptimal algorithms, LS

and Stansfield, are developed based on small angle approximation.

These algorithms perform differently from those for the flat case:

ML significantly outperforms LS and Stansfield, especially for a

large observation error; however, Stansfield is not necessarily better

than LS.
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1. INTRODUCTION

1.1. Distributed Localization: from LOS to NLOS

Sensor networks enable the localization of a target

(or source) of interest with spatially complementary ob-

servations. Current available physical measurements in-

clude received signal strength [1], time of arrival [11],

angle of arrival (AoA) [6, 7, 10, 13, 19], and so forth.

They can be individually or cooperatively utilized in

target information extraction. In this paper, we concen-

trate on localizing a single target with distributed AoAs,

specifically bearings-only localization.

Bearings-only localization infers the position of a

target with multiple AoA lines, which share a unique

intersection–the target location–in the absence of

noise. If observation uncertainty is included, a global in-

tersection may not exist and advanced estimators are re-

quired. Least squares (LS) is a straightforward choice if

the noise distribution is unknown [6]. If noise statistics

are known, maximum likelihood (ML) is an option and

is popular [10, 13]. Its good performance is guaranteed

at the cost of computational load. The Stansfield estima-

tor is a kind of weighted LS for independent Gaussian

noise [19]; it is a compromise between estimation per-

formance and computation. Reference [10] shows that

the root mean square errors (RMSEs) of a Stansfield

estimator are not necessarily larger than those of ML

in bearings-only localization. Other approaches include

total least squares [7], and so forth.

The aforementioned works focus on line-of-sight

(LOS) propagation, where a direct path exists between

the target and sensors; nevertheless, practical problems

may not necessarily have a LOS. When the wavefront

(acoustic, light, or electromagnetic) of target radiation

meets an interface between two media, reflection will

happen [14]. The reflection is helpful for the extraction

of target information in some circumstances, especially

where LOS propagation is unavailable. An interesting

application is over-the-horizon radar (OTHR) [9, 17]

(see Fig. 1). If multiple geometrically complementary

radar sensors are available, a fusion center can infer

the position of the target with proper data association.1

Instead of LOS AoAs, this paper studies the localiza-

tion with non-line-of-sight (NLOS) reflection measure-

ments, where the radiation from a target reaches a sensor

after a single specular reflection.

1.2. Localization with Reflected Measurements

This NLOS based localization problem is motivated

by OTHR, which utilizes ionospheric reflection to cap-

ture a target beyond the horizon [9, 14, 17]. Such a

reflection based technique has been used in long-range

missile and aircraft detection, and it is considered an

1OHTRs are not the only system utilizing electromagnetic reflection

phenomenon. Some other applications such as array aperture synthesis

and low elevation target extraction can be respectively found in [4]

and [2].
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Fig. 1. An illustration of reflection based target perception with an

OHTR [17].2 The LOS path is unavailable due to the earth

curvature, and the radiation of the target reaches a radar sensor after

a single reflection on ionosphere. If multiple distributed radar

sensors are available, one could properly associate their data to infer

the location of the target.

effective means of wide-area surveillance [5]. The iono-

sphere has two typical reflection layers: E and F, whose

characteristics are frequency dependent and resolvable

[14]. In this paper, sensors are assumed to be either

frequency selective or capable of resolving echo fre-

quencies and labeling a AoA to its corresponding layer.

We thus could focus on a single layer localization with

multiple sensors, and the extension to double layers is

straightforward. In addition, a real OTHR system works

in three dimensions. This paper initiates an investigation

in two dimensions–same as do [9] and [17]–where the

reflection layer is the inner side of a circle–a slice of

the ionosphere (see Fig. 3 for an immediate perception).

As is the case for [9] and [17] we work in two dimen-

sions and do not offer any discussion of incorporating

the third.

As opposed to the usual LOS based localization

[6, 10, 13, 19], a sensor here in the NLOS case observes

the virtual image of a target. To understand the ramifi-

cations thoroughly, we investigate in two steps: flat and

circular reflecting surfaces, where the reflection is as-

sumed to be specular [9]. The ML, Stansfield, and LS

algorithms are derived for both cases. Even though the

former does not have a clear physical application, it fa-

cilitates the importation, from conventional LOS based

localization [6, 10, 13, 19] ideas, to the latter situation of

NLOS based localization with circular reflected AoAs.

As for a flat surface, the target-sensor reflection

geometry is unique, and we show that:

² the algorithm comparison for the LOS case in [6],

[10], [13], [19] still holds here: LS has the worst

performance, while the RMSE of Stansfield estimator

is not necessarily larger than that of ML.

2Reference [17] acknowledges that the picture is in turn derived from

an image provided by the US National Oceanic and Atmospheric Ad-

ministration (NOAA).

TABLE I

Coordinates Notions

Coordinate Objective

(xt,yt) target

(xs
i
,ys
i
) the ith sensor

(x̄t
i
, ȳt
i
) image of (xt,yt) corresponding to the ith mirror

(x̄s
i
, ȳs
i
) image of (xs

i
,ys
i
) corresponding to the ith mirror

(x̄n
i
, ȳn
i
) image of (xs

i
,ys
i
) corresponding to the normal line

(xc
i
,yc
i
) intersection between circle and the ith observation line

(xb ,yb) boundary of blocking circle division area

The circular NLOS case has two unique properties:
1) the reflection with a circular surface is nonlinear,
and the image of a single point with respect to it
is not unique; 2) the spatial uncertainty of the target
does not coincide with that of the AoA, since the
circular reflection nonlinearly changes the noise spatial
distribution around the target (a focusing effect, see
Fig. 7). That is, circular/NLOS is considerably more
complicated than flat/LOS, and this paper investigates
it from the following perspectives:

² We give the reflection model and reveal that multiple
reflection paths exist between a sensor and the target.
A ML solution turns out to be quite intricate.

² If an opaque blocking circle (no propagation can pass
through it) is concentric to the reflecting one, and
all the sensors are deployed on the blocking circle,
then the unblocked target-sensor reflection path is
unique and can be found numerically. Therefore, a
grid search based ML can be performed.

² The grid search is laborious; suboptimal algorithms
such as LS and Stansfield are given based on a small
arc approximation. Their performance are compared.

Note that the suboptimal algorithms for the circular
reflection case utilize the corresponding results of the
flat case.
This paper includes some material from [18], how-

ever, with significant expansions including a thorough
investigation of flat reflecting surface and explicit target-
sensor geometric analysis for circular reflecting surface.
The rest of this paper is as follows. Section 2 studies the
bearings-only localization with flat reflecting surfaces;
Section 3 analyzes the reflection geometry for a circular
surface, and gives the ML localization algorithm; subop-
timal localization approaches for circular reflection are
given in Section 4; numerical results are in Section 5,
while conclusions are drawn after that.
Notation: Boldface uppercase and lowercase letters

denote matrices and column vectors respectively. k ¢ k
stands for the Frobenius norm, while diag(a) denotes
the diagonal matrix formed by vector a. (¢)T and (¢)¡1,
respectively, represent matrix transpose and inverse. AB
and

_
AB respectively denote the line and arc through

points A and B, while 6 _AB measures the angle of _AB.
N (0,"2) is a zero-mean Gaussian distribution with vari-
ance "2. Finally, the coordinates of different locations
are collected in Table I for clarity.
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Fig. 2. Bearings-only measurement with flat reflecting surface:

(a) target image based modeling, and (b) sensor image based

modeling.

2. BEARINGS-ONLY LOCALIZATION WITH FLAT
REFLECTING SURFACES

This section investigates NLOS localization with

known flat reflection surfaces, where a LOS propaga-

tion path is assumed unavailable. The radiations of a

target arrive at a network of passive sensors after a sin-

gle specular reflection, and the AoA is recorded by an

individual sensor. Suppose that proper synchronization

and communication links are extant, and hence a pro-

cessing center can collect the reflected AoAs to infer

the location of target.

2.1. Maximum Likelihood Estimation

ML with flat reflecting surfaces has two modeling

approaches: target and sensor images based (see Fig. 2).

In the following, we will show their equivalence.

2.1.1. Target Image Based Modeling
If a reflecting surface is flat, the image of a target

is unique. A sensor actually observes the target image

instead of the target itself. Therefore, the image based

modeling as shown in Fig. 2(a) is obvious.

Let the coordinates of the target be (xt,yt), and then

the location of its image with respect to a reflecting

surface y = aix+ bi is expressed as (x̄
t
i, ȳ

t
i), where

x̄ti =
1¡ a2i
1+ a2i

xt+
2ai
1+ a2i

yt¡
2aibi
1+ a2i

ȳti =
2ai
1+ a2i

xt+
a2i ¡1
1+ a2i

yt+
2bi
1+ a2i

(1)

based on Lemma 4 in Appendix A. As a result, the

measured AoA for the ith sensor is

'i = arctan

μ
ȳti ¡ ysi
x̄ti ¡ xsi

¶
| {z }

¢
=Á0

i
(xt ,yt)

+n0i (2)

where (xsi ,y
s
i ) stands for the (known) coordinates of

sensor i, and n0i denotes its measurement noise.

2.1.2. Sensor Image Based Modeling
The measured AoA can be transformed as a function

of sensor image as shown in Fig. 2(b). Let the reflecting

surface be y = aix+bi, and then the slope of the image

of horizontal reference line is tan(2ai). Therefore, the

observed AoA for sensor i is written as

'i = 2arctanai¡ arctan
μ
yt¡ ȳsi
xt¡ x̄si

¶
| {z }

¢
=Ái(xt,yt)

+ni (3)

where (x̄si , ȳ
s
i ) denotes the coordinates of the image of

sensor i corresponding to y = aix+ bi,

x̄si =
1¡ a2i
1+ a2i

xsi +
2ai
1+ a2i

ysi ¡
2aibi
1+ a2i

ȳsi =
2ai
1+ a2i

xsi +
a2i ¡ 1
1+ a2i

ysi +
2bi
1+ a2i

(4)

and ni represents the noise for sensor image based

modeling. Note that the (x̄si , ȳ
s
i )s can be precalculated.

The measurement uncertainty of the second ap-

proach ni is an imaging transformation of that for the

first one n0i. If the reflecting surface is flat, the trans-
formation will not change the distribution. Based on

Appendix B, we obtain Ái(xt,yt) = Á
0
i(xt,yt), so the two

modeling approaches are equivalent. As for the first one,

the unknown parameters, xt and yt, are included in both

the numerator and denominator of tanÁ0i(xt,yt); direct
optimization with it will have a nontrivial computational

load. The following estimation algorithms adopt the sec-

ond modeling approach.

Suppose that the measurement uncertainty of sen-

sor i subjects to zero-mean Gaussian distribution with

variance ¾2i . Collecting the unknown parameters as

μ = [xt,yt]
T, the conditional probability density function

(PDF) of the observed AoA for the ith sensor is

f('i j μ) =
1q
2¼¾2i

exp

μ
¡j'i¡Áij

2

2¾2i

¶
(5)

where Ái
¢
=Ái(xt,yt) for notational simplicity. Let each

sensor send its bearing measurement to a central pro-

cessing unit, and then the central processor utilizes all of

them to estimate target location. Suppose that f('i j μ)s
are mutually independent; the centralized ML estimator

is given by

μ̂ML = argmax
μ

NY
i=1

f('i j μ)

= argmin
μ

NX
i=1

1

¾2i
j'i¡Áij2 (6)

where N counts the number of sensors.

2.2. Stansfield Estimation

Stansfield estimator approximates ML under small

observation errors [19]. It relies on the law of small-
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angle approximation: the bearing noise ni is small

enough that

ni ¼ sinni: (7)

Substituting (3) into (7), we have

'i¡Ái ¼ sin('i¡Ái) (8)

= sin

0BBBB@'i¡ 2arctanai| {z }
¢
=°i

+arctan

μ
yt¡ ȳsi
xt¡ x̄si

¶1CCCCA
=
(xt¡ x̄si ) sin°i+(yt¡ ȳsi )cos°i

di(xt,yt)
: (9)

Substituting (9) into (6), the optimization is recast as

μ̂SE = argmin
μ
(Uμ¡ v)T¤¡1D¡1(Uμ¡ v) (10)

where ¤= diag([¾21, : : : ,¾
2
N]),

U=

2664
sin°i cos°i

...
...

sin°N cos°N

3775 (11)

is a N £ 2 matrix assumed with full rank,

v=

2664
x̄s1 sin°1 + ȳ

s
1 cos°1

...

x̄sN sin°N + ȳ
s
N cos°N

3775 (12)

and

D= diag([d21(xt,yt), : : : ,d
2
N(xt,yt)]) (13)

where di(xt,yt) denotes the distance between the target

and the image of the ith sensor:

di(xt,yt)
¢
=

q
(xt¡ x̄si )2 + (yt¡ ȳsi )2: (14)

Clearly, the distance matrix D depends on target location

(xt,yt), and it is unknown.

In [19], the distance matrix D is assumed available

from secondary observations; therefore, (10) degener-

ates to a standard quadratic optimization. Later, [10]

shows that a rough estimate, say D̂, can be used in (10)

without significantly affecting the estimation accuracy,

because its objective function only weakly relies on D.

With D̂, the solution for (10) is

μ̂SE = (U
T¤¡1D̂¡1U)¡1UT¤¡1D̂¡1v (15)

which has the form of weighted LS.

2.3. Least Squares Initialization

Both ML and Stansfield estimators require a guess

of μ: the former uses it for optimization initialization,

while the latter employs it to obtain D̂. This can be

realized via LS.

The line through the target and the image of sensor

i is
y¡ ȳsi = tan(2arctanai¡'i| {z }

=¡°i

)(x¡ x̄si ) (16)

equivalently written as

(x¡ x̄si )sin°i+(y¡ ȳsi )cos°i = 0: (17)

Therefore, one can minimize

μ̂LS = argminx,y

(
NX
i=1

j(x¡ x̄si )sin°i+(y¡ ȳsi )cos°ij2
)

= argmin
μ
kUμ¡ vk2 (18)

= (UTU)¡1UTv (19)

to get an initial guess of μ. Here U and v share the same
definitions as those in the previous subsection.

2.4. Cramér-Rao Lower Bound

The Cramér-Rao lower bound (CRLB) reveals per-

formance limitation of an unbiased estimator. For a non-

random vector μ, its estimation covariance matrix is
bounded by [15]

Ef(μ̂¡μ)(μ̂¡μ)Tg ¸ J¡1μ (20)

where Jμ is the Fisher information matrix defined as

Jμ =¡E
8<:rμ

"
rμ log

Ã
NY
i=1

f('i j μ)
!#T9=;

=

NX
i=1

1

2¾2i
Efrμ(rμ j'i¡Áij2| {z }

¢
=Pi

)Tg: (21)

Clearly, Jμ is a 2£ 2 matrix, and we now specify it

element-by-element. The first-order derivatives of Pi are

@Pi
@xt

= 2(Ái¡'i)
@Ái
@xt

and
@Pi
@yt

= 2(Ái¡'i)
@Ái
@yt
:

(22)

Recall the definition of di(xt,yt) in (14), and then

@Ái=@xt and @Ái=@yt shall be specified as

@Ái
@xt

=
yt¡ ȳsi
d2i (xt,yt)

and
@Ái
@yt

=¡ xt¡ x̄si
d2i (xt,yt)

:

(23)

Based on (22), the second order derivatives of Pi are

@2Pi
@2xt

= 2

μ
@Ái
@xt

¶2
+2(Ái¡'i)

@2Ái
@2xt

(24)

@2Pi
@2yt

= 2

μ
@Ái
@yt

¶2
+2(Ái¡'i)

@2Ái
@2yt

(25)

@2Pi
@xt@yt

=
@2Pi
@yt@xt

= 2
@Ái
@xt

@Ái
@yt

+2(Ái¡'i)
@2Ái
@xt@yt

:

(26)
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Fig. 3. AoA measurement with circular reflecting surface: the

radiation of the target arrives at a sensor after a single specular

reflection. The reflection geometry can be equivalently addressed as

that the image of sensor with respect to the reflecting normal is

exactly on the line determined by target and reflection point.

Since EfÁi¡'ig= 0, we obtain

[Jμ]1,1 =

NX
i=1

1

¾2i

μ
@Ái
@xt

¶2
(27)

[Jμ]2,2 =

NX
i=1

1

¾2i

μ
@Ái
@yt

¶2
(28)

[Jμ]1,2 = [Jμ]2,1 =

NX
i=1

1

¾2i

μ
@Ái
@xt

¢ @Ái
@yt

¶
(29)

where [Jμ]j,k refers to a particular element of Jμ.

3. BEARINGS-ONLY LOCALIZATION WITH
CIRCULAR REFLECTING SURFACE

The reflecting surface was flat in the previous sec-

tion. Now we will focus on bearings-only localization

with a circular reflecting surface (inner side of a circle),

where the target and N sensors are all within a circle as

depicted in Fig. 3. The radiation from the target reaches

each sensor after a single specular reflection on the cir-

cle, where the reflection is assumed to be specular [9].

A fusion center collects the noisy AoAs to infer the tar-

get position. Note that some similar problems exist in

elastic collision and optical imaging [8, 12, 16]; results

of this paper may be useful in their cases, especially

where there is noise.

3.1. Geometric Modeling

The geometric relationships between the target and

sensors are required for localization. Suppose the re-

flection be specular, so the angle of incidence equals

the angle of reflection. Let the center of the reflecting

circle be (xc = 0, yc = 0), and let (R cosμi,R sinμi) stand

for the (unknown) reflection point for sensor i, where R

denotes the radius of the circle, and μi is an instrumental

variable as shown in Fig. 3. Instead of direct application

of the reflection law, we use an equivalent transforma-

tion: the image of sensor i corresponding to the normal

line
y = x tanμi (30)

is exactly on the line through target and reflection point

as shown in Fig. 3. Mathematically, it is expressed as

R cosμi¡ x̄ni
R sinμi¡ ȳni

=
xt¡R cosμi
yt¡R sinμi

(31)

where (xt,yt) denotes the coordinates of the target, while

(x̄ni , ȳ
n
i ) denotes the image coordinates of the ith sensor

with respect to the normal line. As the coordinates of the

ith sensor is (xsi ,y
s
i ), and hence (x̄

n
i , ȳ

n
i ) can be written as

x̄ni = cos(2μi)x
s
i +sin(2μi)y

s
i

ȳni = sin(2μi)x
s
i ¡ cos(2μi)ysi

(32)

based on Appendix A. Substituting (32) into (31), we

have

R(ysi + yt)cosμi¡R(xsi + xt)sinμi
(xsi yt+ xty

s
i )cos(2μi)¡ (xsi xt¡ ysi yt) sin(2μi)

= 1:

(33)

Now, the coordinate connection between sensor i and

target is obtained with the help of μi.

3.2. Maximum Likelihood Estimation

Suppose that μi could be expressed as a function

of xt and yt, say μi(xt,yt), and then we can choose

the reflection point (R cos(μi(xt,yt)),R sin(μi(xt,yt))) as a

reference and formulate the observed AoA Ãi as

Ãi = arctan

μ
R sin(μi(xt,yt))¡ yi
R cos(μi(xt,yt))¡ xi

¶
| {z }

¢
=´i(xt,yt)

+wi (34)

where wi »N (0,"2i ) denotes the Gaussian measurement
noise. Let the wis be independent, and hence the ML

estimation becomes

μ̂ = argmax
μ

NY
i=1

f(Ãi j μ), (35)

where

f(Ãi j μ) =
1q
2¼"2i

exp

μ
¡jÃi¡ ´i(xt,yt)j

2

2"2i

¶
(36)

denotes the conditional probability density function

of Ãi.

3.3. Challenges for Maximum Likelihood

To this point all appears as the (straightforward?)

LOS localization case. What is new? Three things are:

BEARINGS-ONLY LOCALIZATION WITH NLOS REFLECTED AOAS 7



Fig. 4. An illustration of the existence of multiple solutions for

(33). If a target and a sensor is symmetric about the center of the

reflection circle, four reflection points can be immediately found.

Note that reflection points are not necessarily as uniform as those in

the figure if the sensor and the target is not centrally symmetric.

1) The solution μi(xt,yt) is not unique. Therefore, the

expression of (34) is not unique, neither is the likelihood

equation (35). An example with a special target-sensor

configuration is provided in Fig. 4 for illustration.

2) The number of μi(xt,yt) depends on geometry–

the locations of target and sensor i.

3) μi(xt,yt) cannot be analytically obtained; thus, a

closed-form expression of likelihood equation is un-

available.

A thorough understanding of these is important to un-

derstand the ML formulation in (35). The first two

points relate to a famous geometric problem–circular

billiards. Reference [8] gives a comprehensive analy-

sis on the solution properties of (33) for a normalized

circle, and we briefly summarize them below for com-

pleteness.

LEMMA 1 Let (xc = 0, yc = 0) and R = 1. A sensor

is fixed at (xsi = c, y
s
i = 0), where 0· c < 1, while the

target (xt,yt) is arbitrarily located within the circle. If

jcj+ jxtj+ jytj 6= 0, the number of solutions for (33) is
either 2, 3, or 4 for a given (xt,yt). Furthermore, define

a supplementary variable h as

h= (1¡3c+2c2)t6 +3(1¡ c+2c2)t4

+3(1+ c+2c2)t2 + (1+3c+2c2) (37)

where t 2 [¡1,+1], and then the separatrix l(x,y)
x=¡ c

h
[(1¡ c)t6 +3(1¡ 3c)t4 + 3(1+3c)t2 + (1+ c)]

y =
16c2t3

h

(38)

Fig. 5. Solution number distribution within a unit circle: a sensor is

fixed at (xs
i
= 0:955, ys

i
= 0), while a target can be arbitrarily

selected within it. If the target is located in the two (four) solutions

region, equation (33) has two (four) possible nonoverlapping

reflection paths, while if the target is on the separatrix line, equation

(33) has three solutions. The sensor and the right two singular points

are concentric.

divides the circle into two parts. If the target falls into the

region that includes point (0,0), (33) has two solutions,

while if it falls into the other one, the number of solutions

for (33) is four. Finally, if the target falls (exactly) on

l(x,y), (33) has three solutions.

PROOF Proof can be found in [8].

Clearly, the shape of l(x,y) depends on the value

of c. An illustration with c= 0:955 is given in Fig. 5.

From this figure, we see that l(x,y) is continuous but

not everywhere differentiable; a nondifferentiable point

is denoted singularity [8]. For jcj ¸ 1=3, l(x,y)s share
the similar shape as that in Fig. 5: the separatrix is open

and has three singular points: (x=¡c=(1+2c), y = 0)
and ³

x= c(2c2¡1), y =§2c2
p
1¡ c2

´
: (39)

Those for jcj< 1=3 share another shape, where the

separatrix is closed, and another singular point (x=

¡c=(1¡2c), y = 0) is added in addition to the previous
three. Note that 1) the above results are valid for R = 1

and ysi = 0; any other scenario with R 6= 1 or (and) ysi 6= 0
can be obtained via a simple scaling or (and) rotation of

coordinates; 2) Lemma 1 does not include the extreme

case, c= xt = yt = 0, of which the number of solutions

is infinity.

The first two points are now clear. The geometrically

dependent multiple-solution characteristics of circular

reflection can significantly complicate ML estimation.

For example, if a sensor obtains a noisy AoA, it may be

8 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 8, NO. 1 JUNE 2013



responsible for up to 4 propagation paths. Since we have

no knowledge to which one the AoA corresponds, a

complete case-by-case enumeration is necessary in ML

processing. As a result, for a system with N sensors, the

total number of possible combinations can be up to 4N .

The final ML result is the best estimate from all these

combinations; obviously, it is very intricate.

Regarding the third item, μi(xt,yt) cannot be analyti-

cally derived, nor can the likelihood maximization (35)

be explicitly posed. As a consequence, local search al-

gorithms such as gradient-based approaches [3] and al-

ternating projection [21] will not in general work here.

Fortunately, since the μi(xt,yt)s can be numerically cal-

culated for a given (xt,yt), a grid search based algorithm

[20] is applicable for this problem. Specifically, uni-

formly divide a search area around the initial guess into

a fine grid, and pick up the grid cell with the maximum

ML value as an optimal estimate. This algorithm works

well for low dimensions, and its performance depends

on grid fineness, the search area size, and the accuracy

of initialization. Generally, the larger the search area and

the greater the fineness, the better performance; how-

ever, the larger the search area, the greater the compu-

tational load.

3.4. Maximum Likelihood Simplification with a
Blocking Circle

In the previous subsection, target and sensors are

arbitrarily located within the enclosing reflection circle;

nevertheless, a real problem has more physical con-

straints. For example, the earth serves as a blocking

(opaque) circle; no radiation can pass through it. Fur-

thermore, the sensors are likely fixed on the earth, while

the target is always within the annulus between the two

circles. Suppose the reflection and blocking circles be

concentric; we will show that the ML estimation could

be simplified with the above constraints.

LEMMA 2 Let the radius of the blocking circle be r,

where r < R. Suppose a sensor be at A as shown in Fig. 6.

Let AC and CD be two tangents of the blocking circle,

and then we have that:

² if the target is located within region A1, enclosed by
CD,

_
DE, EF, and

_
CF, it is reflectively-invisible for

the sensor; or

² if the target is located within region A2, enclosed by
AB,

_
BC, CD, and

_
AD, it is reflectively-visible for the

sensor.

PROOF Let T be an arbitrary point within A1, and
assume AG—GT be an unblocked reflection path, where

G denotes the reflection point. To guarantee AG be free

from blocking, G must be located on arc
_
BC. Due to

the symmetry of specular reflection, GT will have an

intersection, say H, with the blocking circle. Therefore,

we have 6 _AH = 2 6 _BG < 2 6 _BC = 6 _AD, and H is located
on arc

_
AD. As a result, line GH, or, GT could not go

through A1. Obviously, this contradicts the assumption,
so an unblocked reflection path does not exist for the

first case.

The proof of the second conclusion is trivial. If a

reflection point, say J , continuously moves from C to

B on arc
_
BC, the intersection between the reflection line

and inner circle, say K, will continuously go from D to

A. Line JK will go through the entire A2. Therefore,
every point within A2 is visible, and Lemma 2 holds.
A half-plane is employed in Lemma 2, and the other

part is the same due to symmetry. The reflectively-

visible area A2 includes a LOS-visible region A3, which
is enclosed by AB,

_
BC, and AC. If a target falls into A3

of each sensor,3 direct arrivals will be utilized to esti-

mate the position of the target, and hence the problem

becomes a conventional LOS bearings-only localization

[6, 10, 13, 19]. A mixed scenario, parts of sensors ob-

taining LOS while the others measuring NLOS reflec-

tive AoAs, is also physically sound. Its localization can

be easily realized via a proper modification of (35), and

no discussion or specific example will be given. In ad-

dition, since a real system requires a certain amount

of elevation angle to avoid ground clutter, the practical

reflectively- and LOS-visible areas are smaller than their

theoretical results A2 and A3.
LEMMA 3 If the sensor is deployed at (r,0) while the

target is arbitrarily located within the reflectively-visible

region A1, then the sensor-target pair has exactly one
unblocked reflective path.

PROOF Firstly, we will show that the reflectively-

visible region A1 and the four-solution region shares no
subarea with the help of Fig. 5 and 6. Since 6 _AD =
6 _BC = 2arccosr=R, the coordinates of boundary point
D, say (xd,yd), is

xd = rcos 6
_
AD = r

μ
2
r2

R2
¡ 1
¶

yd = r sin 6
_
AD = 2

r2

R2

p
R2¡ r2:

(40)

Normalize (xd,yd) with R, say (x
0
d,y

0
d), and define c=

r=R; we see that (x0d,y
0
d) is exactly the upper singular

point of the separatrix as shown in (39). For a half-plane

as depicted in Fig. 6, since the four-solution region is

always on the left side of line OD [8], and since the

reflectively-visible region A1 is on its right side, their
intersection is empty. In the other words, A1 falls into
the two-solution region as shown in Fig. 5. Moreover, the

3The ionosphere is frequency selective, and only a certain frequency

span is useful for beyond-horizon exploration. For a real configu-

ration, an OTHR site is in general accompanied with another radar

system equipped with a non-ionospheric-reflection frequency. Their

detection results are combined to infer the target status: 1) if both of

them claim a target in a certain direction, the target actually appears

in A3; however, 2) if only the OTHR declares a detection, the tar-

get is beyond the horizon. One can properly use such information to

mitigate area uncertainty before target localization.
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Fig. 6. Reflectively-visible and -invisible areas within in the

annulus between the reflection and blocking circles. The sensor is

located at (r,0), while the target can be arbitrarily within the

annulus. If the target falls into A1, the area bounded by CD,
_
DE,

EF, and
_
CF, its radiation cannot arrive at sensor after one reflection.

However, if it falls into A2, the area enclosed by AB,
_
BC, CD, and

_
AD, the target is reflectively-visible. Note that AC and CD are two

tangents of the blocking circle, while AG and GT are two

supplementary lines in the proof of area division.

two reflection paths are separated by the line through

the sensor and target [8]; therefore, one of them will be

blocked. As a result, Lemma 3 can be proven.

With a blocking circle, only one solution of (33)

is valid; the likelihood equation (35) is unique for a

given grid sample. As a consequence, the grid search

based ML can be significantly simplified. Note that

since a closed-form likelihood function is unavailable,

the CRLB will not be given for the circular reflecting

surface.

4. SUBOPTIMAL ESTIMATION FOR CIRCULAR
REFLECTING SURFACE

Grid search based ML may obtain a globally optimal

estimate of a target; however, its computational com-

plexity is extremely high, as N calculations of μi(xt,yt)

are required for even one grid point. Suboptimal algo-

rithms with low computational load are investigated in

this section based on a small-angle approximation. The

basic idea is simple: if a sensor is close to the surface of

a circle with large radius, and its observation variance

is small, then the arc corresponding to the measurement

uncertainty has a small angle. Approximate it as flat,

and the tangent line through the intersection between

the ith AoA and the reflection circle can be considered

as a known flat reflecting surface.

Let the observed AoA of the ith sensor be Ãi; its cor-

responding observation line, say loi , can be expressed as

y = (x¡ xsi ) tanÃi+ ysi : (41)

The observation line loi intersects the reflecting circle

x2 + y2 = R2 at two points (xci ,y
c
i ), where

xci = cos
2Ãi[tanÃi(x

s
i tanÃi¡ ysi )§Ki]

yci = cos
2Ãi[(y

s
i ¡ xsi tanÃi)§Ki tanÃi]

(42)

and

Ki =

q
R2=cos2Ãi¡ (ysi ¡ xsi tanÃi)2: (43)

Since the observation line is a ray, one solution of (42)

can easily be removed. The tangent line through the

intersection (xci ,y
c
i ), say l

t
i, is

y =¡x
c
i

yci
(x¡ xci ) + yci (44)

and it can be regarded as a ‘known’ flat reflecting sur-

face to localize a target with LS or Stansfield algorithms

in Section 2 via proper slope and intercept mappings:

ai =¡xci =yci
bi = (x

c
i )
2=yci + y

c
i :

(45)

Based on these, the suboptimal LS and Stansfield

localization algorithms are briefly summarized below:

1) Get the AoA lines loi for each sensor with (41);

2) Calculate the intersections (xci ,y
c
i )s between l

o
i s

and the reflection circle with (42);

3) Compute ai and bi for each tangent line lti
with (45);

4) Take lti as a flat reflecting surface, and compute

the image coordinate, say (x̄si , ȳ
s
i ), of sensor i with (4);

5) Substitute ais, bis and (x̄
s
i , ȳ

s
i )s into (11) and (12)

and compute U and v;

6a) LS: Consider (x̄si , ȳ
s
i )s as a virtual sensor, and

estimate μ̂LS with (19).

6b) Stansfield: initialize the distance matrix D̂ of

the Stansfield estimator with μ̂LS, and calculate μ̂SE
with (15).

Note that these suboptimal algorithms can also be used

in ML initialization.

The suboptimal algorithms alleviate computational

burden, although they can introduce bias. The error

mainly results from: 1) geometric distortion, and 2) ap-

proximating non-Gaussian with Gaussian noise. The

former is straightforward. As for the latter, since a circu-

lar reflecting surface leads to nonlinear transformation,

the measurement uncertainty of the target is no longer

Gaussian. However, the suboptimal estimators employ

sensor image based modeling, which implies that the

target spatial uncertainty is Gaussian with regard to the

sensor images, and that the uncertainty span linearly

relates to the image-target distance di(xt,yt). Actually, a

circular surface may somewhat reduce this uncertainty

expansion as shown in Fig. 7, and it is smaller than that

of a flat surface due to focusing. This will be revealed

via numerical simulation in Section 5.

Note that: 1) If the target is close to the reflecting

surface and the "is are not very large, the situation that

the uncertainty boundaries cross each other and sharply

expand will not happen. 2) The ML in Section 3 as-

sumes Gaussian distribution too. However, the nonlin-

ear transformation (33) guarantees the shrink of target

location uncertainty as shown in Fig. 7.
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Fig. 7. Converting AoA uncertainty to target location uncertainty

after flat (dashed) and circular (solid) reflections. The uncertainty

span is linearly enlarged with the increase of di(xt,yt) for the former,

while the conical angle for the latter is somewhat reduced (focused,

actually) after reflection.

TABLE II

Coordinates of Target and Sensors for Flat Reflecting Surfaces (m)

Target Sensor 1 Sensor 2 Sensor 3

x 10000 ¡3300 0 5000

y 5000 0 0 ¡2500

5. NUMERICAL RESULTS

5.1. Flat Reflecting Surfaces

This part compares the performance of LS, Stans-

field, and ML estimators for flat reflecting surfaces.

Three distributed sensors are employed in the simula-

tion; their coordinates together with those of the target

are in Table II. A LOS measurement is assumed un-

available, and three passive sensors extract AoAs of a

target of interest with the help of their individual reflect-

ing surfaces, of which the corresponding slope-intercept

expressions are

Surface 1: y = x=2+5000

Surface 2: y =¡2500
Surface 3: y = x¡10000:

(46)

Sensors are not perfect; measurement uncertainty (addi-

tive zero-mean Gaussian noise), exists. For simplicity of

comparison, observation noises share the same variance:

¾2i = ¾
2 for 8i. The RMSEs versus standard variance ¾

for these three estimators together with CRLB are il-

lustrated in Fig. 8. The number of Monte Carlo runs is

1000. According to Fig. 8, we observe

² The four curves linearly depend on ¾;
² LS is biased and is the worst among them, while the
RMSE of Stansfield is close to that of ML.

Simulation results coincide with the theoretical analysis

for LOS bearings-only localization in [6], [10], [13],

[19]. This is not surprising because NLOS bearing-only

localization is mathematically equivalent to that of LOS.

The estimate of the Stansfield rather than the LS

estimator is used to initialize the ML, as the former has

slightly better localization accuracy than the latter for

flat reflecting surfaces. Then, gradient-based approach

Fig. 8. Example of RMSEs versus bearing standard deviation ¾ for

flat reflecting surfaces.

TABLE III

Polar Coordinates of the Target and Sensors for the Circular

Reflecting Surface: Parameter set A

Target Sensor 1 Sensor 2 Sensor 3 Sensor 4

rd (km) r+50 r r r r

Á (¼) 0 0.10 0.08 ¡0:09 ¡0:06

TABLE IV

Polar Coordinates of the Target and Sensors for the Circular

Reflecting Surface: Parameter set B

Target Sensor 1 Sensor 2 Sensor 3

rd (km) r+50 r r r

Á (¼) 0 0.11 ¡0:07 ¡0:12

is employed to search for the optimal solution of ML

based on (6). The computational complexity of each

method here is similar to the corresponding one for the

LOS based location [6, 10, 13, 19].

5.2. Circular Reflecting Surface

Bearings-only localization with a circular reflecting

surface is investigated in this subsection. Here the re-

flecting and blocking circles are concentric, with cen-

ter (0,0); their radii are, respectively, R = 6671 km and

r = 6371 km. Two system parameter sets are used, and

the coordinates of the target and sensors are collected

in Tables III and IV, respectively. The coordinates are

polar for simplicity, and they can be easily converted

into Cartesian via (rd cos(Á),rd sin(Á)). All sensors share

the same noise variance "2i = "
2 as the previous case.

Example of RMSEs versus " for LS, Stansfield, and

ML estimators for those two configurations are shown

in Fig. 9, where the number of runs is 1000.

From those two figures, we observe:

² RMSEs for Stansfield and LS may still linearly de-
pend on "; however, the former is not necessarily
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Fig. 9. Example of RMSEs versus AoA standard variance " for a

circular reflecting surface with circular block.

better than the latter. This may result from the fact

that multiple approximations, such as arc, noise, and

small-angle, are employed in the Stansfield estimator

for the circular surface, and these may degrade its

accuracy.

² ML outperforms LS and Stansfield at high "; how-
ever, the difference is not significant for small noise

levels. This is expected in that for a small variance

the uncertainty area is small, and the suboptimal ap-

proximations are nearly exact.

² The RMSE for ML is not a linear function of ",

since reflection with a circular surface may shrink

the uncertainty area compared to the flat one.

Apparently the Stansfield method does not significantly

outperform LS in this case, so a system designer can

make a choice between LS and ML trading off com-

putation for estimation accuracy. In addition, various

simulations reveal that "= 1:5 would be small enough

for the fearless use of suboptimal estimators in target

localization.

The estimate of LS is used to initialize the ML in this

part. Specifically, we firstly set the LS estimate as the

center of a 160£ 200 km2 rectangle, and then uniformly
divide it into 1£ 1 km2 grids. The ML estimate is the
point with the maximal likelihood value among these

161£ 201 vertices. The computational complexity of
the LS and Stansfield estimators are similar to those

for the LOS case [6, 10, 13, 19]. However, that for the

ML is much higher than its counterpart due to the grid

search and solution elimination.

The received signal of an OTHR usually undergoes

long distance propagation as well as frequency depen-

dent reflection loss. Those can result in a low signal-

to-noise ratio (SNR), which will cause low angular ac-

curacy. For example, reference [17] points out that a

tapered aperture of 3 km will lead to an angular res-

olution as large as 4 deg if the OTHR is operated at

3 MHz. Thus, a standard deviation up to 5 deg would

be reasonable in simulation, even though it sounds large

for traditional LOS radar systems such as phased array.

6. CONCLUSION

This paper studies bearings-only target localization

with NLOS reflection measurements. Two kinds of

reflecting surfaces are investigated: flat and circular. We

derive the LS, Stansfield, and ML algorithms for both

of them, and their performances are analyzed both via

theory and algorithmically.

The reflecting surfaces are idealized and assumed

known; however, the practical situation has many in-

gredients not discussed in this paper. For example, sen-

sors need not be synchronized, in which case a dy-

namic component (tracking, or at least motion vector

estimation) must be added. Multiple targets may also

be present, in which case some means of data associ-

ation is required. A practical system must also allow

for nonidealities, such as of errors in sensor position

and reflection surface, with possible extension of the

circular results to the elliptical case.

Lastly, and probably most important, a real OTHR

system operates in three dimensions. The estimators de-

rived in this manuscript can easily be extended from

the circular to the spherical case. But although we fully

expect the existence and uniqueness statements (Lem-

mas 1, 2, and 3) to be extensible (and very interestingly

so) to three dimensions, we doubt that this would be

straightforward.

APPENDIX

6.1. Image of Specular Reflection with Flat Surface

LEMMA 4 The image of a point (x0,y0) with respect to

a flat reflecting surface y = ax+ b locates at (x̄0, ȳ0) in

two dimensions, where

x̄0 =
1¡ a2
1+ a2

x0 +
2a

1+ a2
y0¡

2ab

1+ a2

ȳ0 =
2a

1+ a2
x0 +

a2¡ 1
1+ a2

y0 +
2b

1+ a2
:

(47)
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PROOF Proof is straightforward.

Lemma 4 is not universal: if the surface overlaps

with x= c (the special case is not included in y =

ax+ b), the image location is (x̄0 = 2c¡ x0, ȳ0 = y0).
However, this special case can be easily avoided via

a proper coordinate rotation, so we will no longer

separately discuss it in target localization.

6.2. Equivalence: Target and Sensor Images Based
Modelings

The equivalence of the target and sensor images

based modelings without noise are proven via tanÁi =

tanÁ0i in the following:

tanÁi =

tan(2arctanai)¡
yt¡ ȳsi
xt¡ x̄si

1+ tan(2arctanai)
yt¡ ȳsi
xt¡ x̄si

=

2ai
1¡ a2i

¡ yt¡ ȳ
s
i

xt¡ x̄si
1+

2ai
1¡ a2i

¢ yt¡ ȳ
s
i

xt¡ x̄si

=
2ai(xt¡ x̄si )¡ (1¡ a2i )(yt¡ ȳsi )
(1¡ a2i )(xt¡ x̄si )+2ai(yt¡ ȳsi )

(48)

Substitute (4) into (48), we have

tanÁi =
2aixt+(a

2
i ¡ 1)yt+2bi¡ (1+ a2i )ysi

(1¡ a2i )xt+2aiyt¡ 2aibi¡ (1+ a2i )xsi

=
ȳti ¡ ysi
x̄ti¡ xsi

= tanÁ0i: (49)
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