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This paper considers the passive-sensor data association prob-

lem based on multi-dimensional assignment (MDA), a prerequisite

for data fusion. The S-D algorithm has been shown to be effective

for solving the MDA problem. The bottleneck of the S-D algorithm

lies in its cost computation, which consumes about 95%—99% of

the CPU times. Since the number of costs in the MDA problem

increases exponentially with the number of sensors, the S-D algo-

rithm becomes quite inefficient when a large number of sensors

are used. We propose an efficient data association technique, “S0-

D+Seq(2-D)” algorithm, which decomposes the original problem

to an S0-dimensional assignment and several 2-dimensional assign-

ments. The S0-D+Seq(2-D) algorithm yields a total number of costs

which only increases quadratically with the number of sensors. Sim-

ulation results show that the S0-D+Seq(2-D) algorithm achieves a

significant reduction in CPU time compared to the S-D algorithm

with similar association qualities.
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1. INTRODUCTION

Data association is a crucial task in many surveil-

lance systems and is a prerequisite for data fusion.

In general data association solves the correspondence

problem in either a “hard” or “soft” manner [2]. A

typical step in tracking problems is the measurement-

to-track association where it decides which measure-

ment to update which track. There are several state-of-

the-art methods in solving the type of association, for

example, Joint Probabilistic Data Association (JPDA)

and Multiple Hypothesis Tracking (MHT) [2]. In this

paper, we consider another type of association called

measurement-to-measurement association in a multisen-

sor mutlitarget scenario, where each sensor generates a

set of line of sight (LOS) or direction of arrival (DOA),

i.e., incomplete position measurements of the targets

and the goal is to decide which of the measurements in

each sensor correspond to the same target. The measure-

ments are grouped together by an association algorithm

and are used to generate a composite (full position) mea-

surement of a common target. In tracking applications,

the composite measurements can be used in the sub-

sequent measurement-to-track association to update ex-

isting tracks (this is fusion configuration III [2]). This

measurement-to-measurement association is considered

as “static” where the measurements are assumed to be

synchronized, i.e., observed at the same time. The fusion

of asynchronous measurements is discussed in [13].

Measurement-to-measurement association becomes

especially challenging if the sensors are passive and

measure LOS angles only for the targets. Measurements

from multiple sensors have to be associated to deter-

mine the full positions of the targets. The brute force

approach, i.e., enumerating all possible combinations

and choosing the most likely one, is computationally

prohibitive even for a moderate size problem. For ex-

ample, the total number of combinations for a scenario

of 20 targets and 2 sensors (assuming no missed de-

tections or false alarms) is 20! = 2:4£ 1018. A practi-

cal approach is to formulate the multisensor data as-

sociation as a multiple dimensional assignment (MDA)

problem [2] and then employ (constrained) optimization

techniques to obtain the optimal assignment. When the

number of sensors is greater than or equal to three (i.e.,

S ¸ 3), the MDA is known to be NP hard. While a num-
ber of suboptimal techniques have been proposed, the

Lagrangian relaxation based approaches [14], [16] have

been shown to be superior to others (e.g., branch and

bound, row-column heuristic) for their excellent balance

between the accuracy and the efficiency. The relaxation

technique in [9] is termed as the S-D (assignment) algo-

rithm. In [18] an extended approach of determining the

top m assignments (as opposed to only the best one) has

been obtained by using Murty’s ranking algorithm [10].

Prior to the optimization step in the S-D algorithm,

the first step is to calculate the candidate association
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costs. It has been reported [20], [1] that this cost-

calculation step consumes 95%—99% of the CPU time.

Consequently, when the number of targets is large, a

direct use of the S-D algorithm can become quite in-

efficient. Thus, for the large-scale problem clustering

techniques [8] are applied before carrying out the S-D

algorithm. By employing the clustering (or partition-

ing), the original large problem is reduced to a number

of smaller subproblems, which can be solved efficiently

by the S-D algorithm.

However, even with the clustering, the CPU time

of the S-D algorithm increases drastically when a large

number of sensors are used. The reason is that the

number of costs to be computed increases exponen-

tially with the number of sensors, although this com-

putational burden can be mitigated by employing the

gating technique [2], [7] to remove unlikely candidate

associations. Note that it is not uncommon to have a

large number of passive sensors since some of them

have lower costs and are easier for deployment, e.g.,

infrared or CCD cameras. Aiming at the large-scale

data association, that is, when a large number of targets

are present and many sensors are used, we propose an

efficient data association technique: “S0-D+Seq(2-D)”

algorithm. This algorithm first decomposes the origi-

nal problem to a (fixed) S0-dimensional assignment and

S¡ S0 2-dimensional assignments. Then the former is
solved by using the S-D algorithm and the latter is

solved by a successive use of the (modified) Auction

algorithm [14].

The paper is organized as follows. In Section 2 the

MDA problem is formulated for passive sensors in 3D.

In Section 3 the iterative least squares (ILS) technique is

presented for target position estimation using the LOS

measurements. In Section 4 the dihedral-angle based

clustering technique is discussed. The proposed S0-

D+Seq(2-D) algorithm is given in Section 5. Simulation

results are given in Section 6 based on a large-scale

localization problem. Finally, conclusions are given in

Section 7.

2. FORMULATION OF THE MDA PROBLEM

Assume that there are S passive sensors in a 3D

space,with knownpositionsps = [xs,ys,zs]
0 (s= 1, : : : ,S).

The sensors are assumed to be synchronized.1 For a

given target, each sensor provides its LOS measurement,

azimuth angle and elevation angle, namely,

zis = h(x,ps)+ws s= 1, : : : ,S (1)

where is is the measurement index in sensor s, x=

[x,y,z]0 denotes the target’s position, ws is zero-mean
white Gaussian measurement noise with covariance Rs

1This corresponds to Configuration III Fusion, following the classifi-

cation originated by O. E. Drummond (see [2]).

and

h(x,ps) =

·
®s

"s

¸
=

26664
tan¡1

μ
y¡ ys
x¡ xs

¶
tan¡1

Ã
z¡ zsp

(x¡ xs)2 + (y¡ ys)2

!
37775
(2)

Each sensor may receive a number of such measure-

ments from multiple targets, as well as false alarms. An

S-tuple of measurements Zi1i2:::iS , consisting of one mea-

surement from each sensor, represents a possible asso-

ciation, that is, the measurements Zi1i2:::iS are assumed

to originate from the same target. Since a target may

not be detected by every sensor, a dummy measurement

is added to each sensor with index 0, to represent the

missed detection. If there is only one nondummy mea-

surement in a S-tuple, this nondummy measurement is

deemed to be a false alarm.2 For each S-tuple there is

an associated cost ci1i2:::iS , which is given by the negative

log-likelihood ratio [2]

ci1i2:::iS =¡ ln
¤(Zi1i2 :::iS j x)
¤(Zi1i2 :::iS jØ)

(3)

The numerator in (3) represents the likelihood that the

S-tuple of measurements Zi1i2 :::iS originate from the same

target with position x, namely,

¤(Zi1i2:::iS j x) =
SY
s=1

[1¡PDs]1¡u(is)[PDsp(zis j x)]u(is) (4)

where PDs is the detection probability of sensor s, u(is)

is an indicator function, defined as

u(is) =

½
0 if is = 0

1 otherwise
(5)

and p(zis j x) is given by
p(zis j x) = j2¼Rsj¡1=2

¢ exp(¡ 1
2
[zis ¡ h(x,ps)]0R¡1s [zis ¡ h(x,ps)])

(6)

The denominator in (3) represents the likelihood that

all the measurements in the S-tuple are false alarms,

namely,

¤(Zi1i2 :::iS jØ) =
SY
s=1

¸u(is) (7)

where ¸ denotes the spatial density [2] of the false

alarms.

The MDA problem is formulated as follows [9]

min
½i1 i2 :::iS

n1X
i1=0

n2X
i2=0

¢ ¢ ¢
nSX
iS=0

ci1i2:::iS ½i1i2:::iS (8)

2We make the assumption that a target is detected by at least two

sensors, otherwise the target’s state is unobservable.
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subject to

n2X
i2=0

¢ ¢ ¢
nSX
iS=0

½i1i2:::iS = 1; i1 = 1,2, : : : ,n1

n1X
i1=0

¢ ¢ ¢
nSX
iS=0

½i1i2:::iS = 1; i2 = 1,2, : : : ,n2

...
...

n1X
i1=0

¢ ¢ ¢
nS¡1X
iS¡1=0

½i1i2:::iS = 1; iS = 1,2, : : : ,nS (9)

where ½i1i2:::iS 2 f0,1g. Thus, the goal is to find f½i1i2:::iSg,
i.e., a partition of the total measurements that minimizes

the global cost, subject to the constraints that each mea-

surement is associated with one and only one measure-

ment (including the dummy measurement) in each other

sensor. When S = 2, this MDA problem can be solved

exactly by using the modified Auction algorithm [14].

In the general case, i.e., S > 2, this problem is NP hard

and can only be solved suboptimally. The S-D algorithm

[9], which is based on the Lagrangian relaxation, has

been shown to be an effective technique to solve this

general MDA problem.

3. POSITION ESTIMATION VIA ITERATIVE LEAST
SQUARES

Since the target position x in (4) is unknown, it is

substituted by its estimate x̂ obtained from the S-tuple

of measurements Zi1i2:::iS . While there are a number of

methods to obtain x̂, the iterative least squares (ILS)

technique [3] is preferred since it is easy to implement

(no Hessian involved) and provides a (approximate)

covariance matrix for its estimate at the same time.

Assume that there are n nondummy measurements

in Zi1i2:::iS (2· n· S) and we stack them to form an

augmented vector z. Then, the ILS estimate in the jth

iteration can be written as

x̂j+1 = x̂j +[(Hj)0R¡1Hj]¡1

¢ (Hj)0R¡1[z¡h(x̂,p)] (10)

where R = diag([R1, : : : ,Rn]),
3 ẑ= [ẑ01, : : : , ẑ

0
n]
0, h(x̂,p) =

[h(x̂,p1)
0, : : : ,h(x̂,pn)

0]0 and

Hj =
@h(x̂,p)

@x

¯̄̄̄
x=x̂j

(11)

is the Jacobian matrix of the stacked measurement vec-

tor evaluated at x̂j . In this case, the Jacobian matrix is

H = [H 01 ¢ ¢ ¢H 0n]0 (12)

3The subscript in Ri is the index of the nondummy measurement and

is not the sensor index. It is different from that of the previous section.

This holds for other variables.

where

Hi =

2664
@®i
@x

@®i
@y

@®i
@z

@"i
@x

@"i
@y

@"i
@z

3775 (13)

@®i
@x

=¡ y¡ yi
(x¡ xi)2 + (y¡ yi)2

(14)

@®i
@y

=
x¡ xi

(x¡ xi)2 + (y¡ yi)2
(15)

@®i
@z

= 0 (16)

@"i
@x

=¡ (x¡ xi)(z¡ zi)p
(x¡ xi)2 + (y¡ yi)2kx¡pik2

(17)

@"i
@y

=¡ (y¡ yi)(z¡ zi)p
(x¡ xi)2 + (y¡ yi)2kx¡pik2

(18)

@"i
@z

=

p
(x¡ xi)2 + (y¡ yi)2

kx¡pik2
(19)

and k ¢ k denotes the Euclidean norm.
To start the ILS recursion an inital estimate x̂0 is

required, which is given by [12]

x̂0 =
y2¡ y1 + x1 tan®1¡ x2 tan®2

tan®1¡ tan®2
(20)

ŷ0 =
tan®1(y2 + tan®2(x1¡ x2))¡ y1 tan®2

tan®1¡ tan®2
(21)

ẑ0 = z1 + tan"1

¯̄̄̄
(y1¡ y2)cos®2 + (x2¡ x1)sin®2

sin(®1¡®2)
¯̄̄̄
(22)

which has made use of the first two measurements.

4. CLUSTERING

In the S-D algorithm, the most expensive step is

computing the association costs, which consumes 95%—

99% of the CPU time [20], [1]. From (8) the total

number of costs to be calculated is

nc =

SY
s=1

(ns+1) (23)

For simplicity, assuming that the number of measure-

ments is n0 for every list (sensor), then

nc = (n0 +1)
S (24)

Consequently, a large n0 is unfavorable for the effi-

ciency of the S-D algorithm.

The clustering technique is used to reduce a large-

size problem to a number of smaller subproblems,

which can be solved independently. The clustering algo-

rithm groups measurements based on a distance metric.

For the passive sensors in 3D, an effective metric is the

so-called dihedral angle [8]. The dihedral angle is de-

fined as the angle between two planes, a target plane and
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Fig. 1. Clustering using dihedral angles.

Fig. 2. Computation of the dihedral angle.

TABLE 1

Clustering Using Dihedral Angles

FOR sensor s = 1 : S¡ 1
FOR sensor j = s+1 : S

Cluster measurements in sensors s and j using the dihedral

angles

END FOR

Find the measurements that have not yet been clustered for the

use of the next iteration

END FOR

a reference plane (see Fig. 1). The target plane passes

through two sensors and one LOS measurement from

either of these two sensors, while the reference plane is

the XY plane in the 3D Cartesian space (assuming both

of the sensors are located on the XY plane). Given two

LOS measurements from two different sensors, if these

measurements originate from the same target, then the

two dihedral angles, one for each LOS measurement,

would be close to each other. As a result, clustering the

dihedral angles leads to clustering the respective LOS

measurements.

The dihedral angle ' for a LOS measurement [®,"]0

from sensor 1 located at the origin with reference to

another sensor 2 located on the same plane as sensor 1,

but at an angle ¯ to it (see Fig. 2) is given by

'= tan¡1
μ
tan"

sin¢

¶
(25)

where

¢=mod(j®¡¯j,¼) (26)

Eq. (26) denotes the angle j®¡¯j with a modulus of ¼.
The dihedral angles have to be computed in pair-

wise between each pair of sensors. A summary of the

clustering algorithm using the dihedral angles is given

in Table 1.

TABLE 2

Numbers of Costs of the S-D algorithm for Different Numbers of

Sensors (n0 = 7)

No. of sensors S No. of costs nc

4 4,096

7 2,097,152

10 1,073,700,000

The dihedral angle can be also utilized in gating [2]

to prune unlikely associations. If a candidate association

fails in the gating test, there is no need to compute its

cost, i.e., an infinitely large cost is assigned to it. For

a given cluster, the calculation of the candidate costs is

recursive. Beginning at zi1 in list 1, we take one mea-

surement from each list at a time. If the measurement

falls inside the gate defined by the previous measure-

ments in the tuple, this measurement is incorporated in

the tuple, which advances to the next list. The cost of the

tuple is only evaluated at the last list when a full tuple

is achieved. For example, assuming the current list is m

and the current association tuple is Zi1:::im¡1 , if zim passes

the gating test then it is added and form Zi1:::im , otherwise

all the subsequent candidate associations starting with

Zi1:::im are discarded. Consequently, the CPU time spent

in the cost computation can be saved via this gating

process.

REMARK I: While the clustering technique signifi-

cantly reduces the association complexity, the downside

is that some measurements can be grouped incorrectly.

Hence the use of clusters poses a design trade-off be-

tween complexity and accuracy. Note that the associa-

tion algorithm to be presented next is not restricted to

this clustering technique. It can be integrated with any

clustering algorithm for passive sensors in 3D.

5. S0-D+Seq(2-D) ALGORITHM

For a small number of sensors, the S-D algorithm

(along with the clustering technique if the number of

targets is large) is able to perform in real time. However,

when the number of the sensors increases, the CPU

time of the S-D algorithm increases drastically, which

is impossible for the S-D algorithm to operate in real

time. We can see from (24) the total number of costs

increases exponentially with S. For example, assuming

n0 in (24) is 7 (in each cluster we expect a small number

of n0), the numbers of costs for the S-D algorithm are

shown in Table 2 for different numbers of sensors.

When S = 10, the total number of costs is over one

billion4 for a single cluster.

We propose an efficient data association technique,

called S0-D+Seq(2-D) algorithm, for the case where

more than 3 sensors are used. This algorithm consists of

two steps, the S0-D step and the Seq(2-D) step, which

are presented next.

4The actual number of costs to be computed would be smaller due to

gating.
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Fig. 3. An illustration of the S0-D+Seq(2-D) algorithm.

S0-D step: This steps solves a standard MDA prob-

lem with the dimension of S0 using the S-D algorithm,

that is, the data association is performed among S0 sen-

sors (S0 < S). While the minimum value of S0 is 2, prac-

tically S0 should be at least 3 to achieve quality asso-

ciations. This is due to the ghosting problem [2] of the

passive sensors. The use of more sensors can mitigate

this ghosting effect. A large gate (or no gating) is rec-

ommended for the S0-D step to prevent discarding some

less likely (due to noises) but real associations.

Seq(2-D) step: This step solves a series of 2D as-

signments sequentially using the modified Auction al-

gorithm [14]. The number of the 2D assignments is

S¡ S0. After the S0-D step, the S0-tuple association re-
sults are available. Then, take a new list from the re-

maining S¡ S0 lists and formulate a 2-D assignment

between the previous association results and the mea-

surements in this new list. After the 2-D assignment, the

length of each association is incremented by one, i.e.,

becoming a S0 +1-tuple. Next, take another list from

the remaining S¡ S0¡ 1 lists and solve another 2-D
assignment, and so on. In the end, after carrying out

S¡ S0 2-D assignments, each association is in a full

tuple, i.e., a S-tuple. The S0-D+Seq(2-D) algorithm is

summarized in Table 3, assuming the S0-D step chooses

the first S0 lists, i.e., s= 1,2, : : : ,S0. An illustration of the

S0-D+Seq(2-D) algorithm is shown in Fig. 3.

Similarly to (24), the number of costs in the S0-D

step is (n0 +1)
S0 . In the Seq(2-D) step, among the S¡ S0

2-D assignments the largest number of costs occur at

the last 2-D assignment, which in the worst case is

((S¡ 1)n0 +1)(n0 +1). Consequently, an upper bound
of the total number of costs of the S0-D+Seq(2-D)

algorithm is given by

n0c = (n0 +1)
S0 + (S¡ S0)(n0 +1)((S¡ 1)n0 +1) (27)

TABLE 3

S0-D+Seq(2-D) Algorithm

1) S0-D step:

Solve the S0-D assignment using the S-D algorithm and obtain

the S0-tuple association results f(i1, : : : , iS0 )g.
2) Seq(2-D) step:

FOR n= S0 + 1 : S

Construct the 2-D assignment between the previous

association results f(i1, : : : , in¡1)g and the measurements
fzing in list n;
Solve the 2-D assignment using the modified Auction

algorithm and obtain the n-tuple results f(i1, : : : , in)g.
END FOR

TABLE 4

Numbers of Costs of the S0-D+Seq(2-D) algorithm for Different

Numbers of Sensors (n0 = 7)

No. of sensors S No. of costs n0c

4 688

7 1,888

10 4,096

which increases quadratically with S. In Table 4 the

values of this upper bound are shown for different

number of sensors.

The association quality of this S0-D+Seq(2-D) algo-

rithm is evaluated next in the simulation results.

6. SIMULATION RESULTS

We consider a localization problem using the LOS

measurements. The numbers of the passive sensors used

are 4, 7 and 10. The sensors are located in a circle

of radius 5 km centered at (5,5) km in the XY plane,

with equal angle separations. The measurement noise

standard deviation is 1 mrad for both azimuth and

elevation angle. All the sensors are assumed to have the

same accuracy, detection probability PD (= 0:98) and

false alarm rate PF (= 10
¡5, which corresponds to an

average 15 false alarms for each sensor). The number

of targets is 300 and their positions are randomly placed

in the 3D Cartesian space, where the ranges of the X,

Y, Z coordinates are 0—10 km, 1—10 km, 5—10 km,

respectively. There is no prior information assumed for

the number of targets. The sensor-target geometry is

shown in Fig. 4 for the case of 10 sensors.

Given an association tuple, if there is only one

nondummy measurement, then it is deemed to represent

a false alarm, otherwise it falls into one of the following

3 categories (similar to [1]):

1. Completely correct (CC) association: The measure-

ments in an association tuple have identical origin

and there is no dummy measurement associated.

2. Partially correct (PC) association: There are at least 2

measurements with common origin, and the rest may

be from different origins or dummy measurements.
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Fig. 4. 300 Targets and 10 sensors (XY projection shown).

3. Completely incorrect (CI) association: In an associa-

tion tuple, there does not exit a pair of measurements

that come from the same origin.

Each CC or PC association corresponds to a detected

target (DT). The DT is defined as the origin that appears

most in a CC or PC association tuple, and the number

of times that the DT appears in a tuple is referred to

as the detection index (DI). The detected targets are a

subset of the total targets (TT).

Given an association tuple, if the number of the non-

dummy measurements is no less than a threshold TH
(TH > 1), then this association is accepted, otherwise it

is rejected. To quantify the quality of the accepted asso-

ciations, we introduce four metrics: fraction of correct

associations, fraction of missed targets, fraction of du-

plicated associations and fraction of purity, which are

defined below5

² Fraction of correct associations (FCA):
FCA=

NCC +NPC
NCC +NPC +NCI

² Fraction of missed targets (FMT):
FMT=

NTT¡NDT
NTT

² Fraction of duplicated associations (FDA):
FDA=

NCC +NPC ¡NDT
NDT

² Fraction of purity (FP):
FP=

DI

S

where DI denotes the average detection index. Note that

only NTT is independent of the threshold TH .

For the comparison, we consider the method that

solves the S dimensional assignment directly, i.e., the

S-D algorithm and the proposed sequential method, S0-

D+Seq(2-D), where S0 = 3. The case of S0 = 2 is also

evaluated in the simulations. Also, we examine the se-

quential m-best assignment algorithm, referred to as

5NX represents the number of X, e.g., NDT denotes the number of

detected targets.

m[S0-D]+Seq(m[2-D]), where for each S0-D and 2-D

assignment, the top m-best assignments (instead of the

only best one) are computed by using the Murty’s rank-

ing algorithm [10], [5]. Efficient implementations of the

Murty’s algorithm can be found in [11], [17], [18]. The

m[S0-D]+Seq(m[2-D]) algorithm is performed as fol-

lows. For each one of the m solutions obtained from the

previous step, the m-best assignment algorithm is car-

ried out, which yields m2 solutions. Then, m best ones

are selected out of these m2 solutions and stored for the

use in the next step. A simplified version, designated

as m[S0-D]+Seq(2-D), is also considered in which the

m-best assignment is carried out only once for the ini-

tial S0-D assignment to obtain the m best solutions, and

for each one of them, the sequential 2-D assignment is

used for subsequent associations. All the algorithms are

coded in C++ and run on a Intel i7 2.70 GHz laptop.

The results are based on 20 Monte Carlo runs.6

The dihedral angle based clustering technique from

Section 4 is employed. The dihedral angle gating is used

when incorporating a new measurement to a associa-

tion tuple which has been validated before. If the new

measurement passes the gate, the resulting new tuple is

valid with the tuple length incremented by one, other-

wise the new tuple is discarded, i.e., the whole (associ-

ation) subtree starting with this new tuple is pruned out.

The parameters are chosen as: TH = 3, m= 4. Although

the detection probability is 0.98, a larger value of PD
(PD < 1) is used in (4). This is due to a phenomenon

to be called “association splitting,” in which a CC or

PC association is divided into two or more PC asso-

ciations, which provide an overall lower cost. A simi-

lar phenomenon was observed in [1] for track-to-track

associations. This splitting phenomenon will result in

incomplete associations.7 The use of a larger (pseudo)

PD will penalize incomplete associations and prevent the

association from splitting.

The CPU times and association qualities for differ-

ent algorithms are compared in Table 5, where the loca-

tion RMSE (averaged over all the correct associations)

is also provided. The S0-D+Seq(2-D) algorithm (S0-D

with sequential 2-D), which is, as discussed below, the

preferred one, is shown in boldface. The CPU time of

the S-D algorithm increases drastically with the number

of sensors, S. When S = 10, the S-D algorithm requires

too much memory that exceeds the computer capacity

and no results were obtained. The S0-D+Seq(2-D) al-

gorithm (S0-D with sequential 2-D), discussed in Sec-

tion 5, is advantageous when a large number of sensors

are used. When S = 7, S0-D+Seq(2-D) reduces the CPU

time of S-D by three orders of magnitude with little dif-

ference in association qualities. In terms of either correct

6This is because a single run of S-D on 7 lists/sensors took half an

hour while for 10 lists it became infeasible.
7For example, an association of measurements from sensors f1,2,3g
and one from f4,5,6,7g are found “cheaper” (when all of them have

the same origin) than associating all of them together.
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TABLE 5

Comparison of different algorithms

No. of sensors Algorithm FCA FMT FDA FP RMSE (m) CPU Time (s)

4 S-D 97.1% 4.8% 3.8% 90.9% 37.6 9.6

4 S0-D+Seq(2-D) 98.3% 6.6% 4.1% 93.1% 39.7 2.8

4 Seq(2-D) 98.6% 10.0% 3.9% 88.7% 42.4 2.0

4 m[S0-D]+Seq(m[2-D]) 97.3% 4.1% 4.2% 92.5% 37.2 8.9

4 m[2-D]+Seq(m[2-D]) 98.0% 4.6% 4.1% 92.8% 37.4 9.6

4 m[S0-D]+Seq(2-D) 97.3% 4.1% 4.2% 92.5% 37.2 7.3

4 m[2-D]+Seq(2-D) 97.6% 4.7% 4.1% 92.7% 37.9 6.9

7 S-D 98.2% 3.6% 6.3% 80.1% 33.9 1316.8

7 S0-D+Seq(2-D) 97.6% 5.2% 4.5% 86.2% 39.8 9.9

7 Seq(2-D) 97.4% 6.6% 4.2% 83.1% 42.7 9.2

7 m[S0-D]+Seq(m[2-D]) 96.8% 2.7% 4.9% 86.7% 35.0 61.1

7 m[2-D]+Seq(m[2-D]) 97.7% 3.5% 3.9% 87.1% 35.6 61.8

7 m[S0-D]+Seq(2-D) 96.8% 3.0% 4.5% 86.9% 35.1 36.4

7 m[2-D]+Seq(2-D) 96.8% 4.0% 4.4% 87.0% 36.4 35.4

10 S-D – – – – – –

10 S0-D+Seq(2-D) 96.8% 4.8% 5.3% 85.9% 40.3 20.2

10 Seq(2-D) 95.8% 5.7% 4.9% 83.3% 44.4 19.5

10 m[S0-D]+Seq(m[2-D]) 96.1% 2.4% 5.5% 86.7% 35.1 169.4

10 m[2-D]+Seq(m[2-D]) 97.2% 3.1% 4.1% 87.3% 36.0 169.2

10 m[S0-D]+Seq(2-D) 96.2% 2.6% 5.2% 86.8% 35.5 75.9

10 m[2-D]+Seq(2-D) 96.3% 3.6% 5.0% 86.9% 37.7 76.4

associations or duplicated associations (FCA and FDA),

which one of S-D and S0-D+Seq(2-D) is better depends

on the number of sensors used. The S-D algorithm has

fewer missed targets (FMT) and smaller RMSE, while

the S0-D+Seq(2-D) algorithm yields purer associations

(FP). With the increase of the number of sensors, both

the missed targets and the purities decline for both

S-D and S0-D+Seq(2-D) algorithms. Computationally,

Seq(2-D) is the least expensive. S0-D+Seq(2-D) con-

sumes more CPU time than Seq(2-D) (for large n the

time difference is negligible), however, it outperforms

the latter in terms of FMT, FP and RMSE. For instance,

when n= 4 the FMT values imply that S0-D+Seq(2-D)

reduces the missed targets of Seq(2-D) by more than

30%. This is obtained at the cost of extra 40% in CPU

time. For large n the improvement is 20% for an extra

CPU time of 5—8%.

When S = 4, the m[S0-D]+Seq(m[2-D]) algorithm

(m-best S0-D with sequential m-best 2-D) has the same

association qualities as the m[S0-D]+Seq(2-D) algo-

rithm (m-best S0-D with sequential 2-D). For S = 7

and S = 10, m[S0-D]+Seq(m[2-D]) outperforms m[S0-

D]+Seq(2-D) in terms of FMT and RMSE, but not by

a large margin. The corresponding CPU times show that

m[S0-D]+Seq(m[2-D]) is more expensive than m[S0-

D]+Seq(2-D). The CPU time of m[S0-D]+Seq(2-D)

is approximately proportional to m. The m[2-D]

+Seq(m[2-D]) algorithm consumes similar CPU time

as the m[S0-D]+Seq(m[2-D]) algorithm, however, the

former has degraded performance in terms of FMT

and RMSE. The same situation occurs for the m[S0-

D]+Seq(2-D) and m[2-D]+Seq(2-D) algorithms. It is

also observed that the (sequential) m-best algorithms

slightly outperform the (sequential) algorithms that

choose the single best solution in FMT and RMSE, but

require more CPU time.

REMARK II: Similarly to the n-scan pruning approach

[4] used in the dynamic association, one can also apply

a sequential S0-dimensional assignment to this static

association problem, that is, solve the S0-D assignment

on sensors 1, : : : ,S0, then make a hard decision on

sensor 1 and solve the S0-D assignment on 2, : : : ,S0 +1,

etc. However, compared to S0-D+Seq(2-D), at each

step the S0-D assignment (assuming S0 > 2) is more

costly than the 2-D assignment for both cost evaluations

and optimization. In terms of association performance,

from the above results we can see that even the S-

D assignment is similar to S0-D+Seq(2-D), thus the

possible improvement of the sequential S0-D assignment

over S0-D+Seq(2-D) is quite limited.

REMARK III: Although the performance using more

sensors appears no better (or worse for some metrics)

than using fewer sensors (as the generation of a valid

association tuple becomes more demanding), from the

robustness point of view the use of more sensors is

always beneficial.

7. CONCLUSIONS

This paper presented an efficient data association

technique, S0-D+Seq(2-D) algorithm, for passive sen-

sors in 3D. The passive-sensor data association is a

challenging problem, since the line of sight (LOS) mea-

surements from the passive sensors only provide par-
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tial knowledge of a target position. The assignment-

based methods have been shown to be very effective

for data association, where the data association is first

formulated as a multiple dimension assignment (MDA)

problem and then solved (suboptimally) by using the

Lagrangian-relaxation based S-D algorithm. The bot-

tleneck of the S-D algorithm lies in the cost compu-

tation, which consumes about 95%—99% of the CPU

times. The number of costs to be evaluated in the MDA

problem increases exponentially with the number of lists

(sensors), which renders the S-D algorithm quite inef-

ficient when a large number of sensors are used. The

proposed S0-D+Seq(2-D) algorithm has a total num-

ber of costs increasing quadratically with the number

of sensors. As a result, it reduces the number of costs

drastically in comparison with the S-D algorithm. For 7

sensors the S0-D+Seq(2-D) algorithm achieves a CPU

time reduction of 3 orders of magnitude compared to the

S-D algorithm. The CPU time can be further reduced by

introducing parallelization to process different clusters

concurrently. The S-D and S0-D+Seq(2-D) algorithms

have similar association qualities. A good choice of S0
has been shown to be 3. The (sequential) m-best algo-

rithms slightly outperform the (sequential) non m-best

algorithms, but are more costly. It has also been shown

that the m[S0-D]+Seq(2-D) algorithm is preferred over

the m[S0-D]+Seq(m[2-D]) algorithm.
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