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Medical Decision Support Systems involve two main issues: med-

ical knowledge representation and reasoning mechanisms adapted

to the considered representation model. This paper proposes an ap-

proach to construct a new medical knowledge representation model,

based on the use of possibility theory. The major interest of using

the possibility theory comes from its capacity to represent differ-

ent types of information (quantitative, qualitative, binary, etc.), as

well as different forms of information imperfections such as uncer-

tainty, imprecision, ambiguity and incompleteness. Starting from

the description, realized by an expert of the medical knowledge,

describing the relationship between symptoms and diagnoses, the

proposed approach consists on building a possibilistic model includ-

ing the Medical Knowledge Base. Moreover, the proposed approach

integrates several possibilistic reasoning mechanisms based on the

considered knowledge. The validation of the proposed approach is

then conducted using an Endoscopic Knowledge Base. The proposed

representation, reasoning model and the obtained validation results

show a real interest in order to realize various goals of Medical De-

cision Support Systems such as classification, similarity estimation,

etc.
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1. INTRODUCTION

Physician is the direct responsible for health and
life of his patients. Therefore, diagnosis delivering is

an extremely critical, although difficult task. Further-
more, diagnosis delivering is an error-prone task [3].
Medical Decision Support Systems such as Knowledge

Based Systems, Case Based Reasoning Systems, Ma-
chine Learning Systems and Medical Data Mining Sys-

tems, have been constructed in order to reduce diagnosis
error risks, as well as to help physicians making high
quality and reliable medical decisions [4]. These sys-

tems involve two main issues: the medical knowledge
representation and adapted reasoning mechanisms. The

medical knowledge, in general terms, has to be con-
sidered from two points of view: Expert Knowledge
related to the physician’s description of different rela-

tionships between symptoms and diagnoses, symptoms
and symptoms, and diagnoses and diagnoses. Patient
Information is collected from each patient (patient data

collecting and structuring). The first is crucial in order
to establish Medical Knowledge Base, while the second

leads to establish the patient database (i.e., Medical Case
Base). Experts use their own experience of the medical
cases as well as references knowledge sources to define

the structure of the medical knowledge base.
Medical knowledge often suffers from different

forms of information imperfections (i.e., uncertainty,
imprecision, ambiguity, etc.). In addition to the differ-
ent types of information imperfections, the information

can be quantitative (numerical or binary) or qualitative
(nominal and ordinal) [17, 29]. Thus, the heterogeneity

and imperfection of medical knowledge must be taken
into consideration while the construction of a Medical
Decision Support System. In other words, Medical De-

cision Support System has to be able to deal with het-
erogeneous and imperfect knowledge.

In [27] R. Seising et al. defined the Medical knowl-
edge as follows:

“The certain information about relationships that ex-
ist between symptoms and symptoms, symptoms and di-
agnoses, diagnoses and diagnoses and more complex
relationships of combinations of symptoms and diag-
noses to a symptom or diagnosis are formalizations of
what is called medical knowledge.”

The term “symptom” is used for any information about

the patient’s state health (anamnesis, signs, laboratory
test results, etc.).
According to the previous definition, the term “med-

ical knowledge” will be considered in this study to
represent the relationship between symptoms and di-

agnoses, (Symptom)—(Diagnosis). This relation is gen-
erally expressed in a probabilistic way based on the use
of a linguistic term, referring to the expert’s assessment

of the occurrence of a given symptom related to a given
diagnosis.

In order to be exploited in Medical Decision Support
Systems, this Medical Knowledge has to be modeled
(translated into a model understandable by the system)
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using one of representation’s approaches such as prob-
abilistic, fuzzy, possibilistic, etc.
In [4] and [18], theory about clinical decision sup-

ports system is presented. The probabilistic approach
is one of the first model that can be proposed, regard-
ing the probabilistic nature of the linguistic term. The
following probability, pr(D j B) (where D and B repre-
sent respectively a diagnosis and a symptom), should
be computed for each diagnosis. This value is obtained
by the Bayes’ formula:

pr(D j B) = pr(B jD):pr(D)
pr(B)

: (1)

In this formula we need two types of information:
–pr(B jD) which is available
–pr(D) which is difficult to be known, but it can be

estimated by a statistic approach.
In our case, we suppose that the only available

information is pr(B jD). For this reason the probabilistic
representation approach is not adequate in our context.
Fuzzy sets theory, introduced by Zadeh [33] has sev-

eral interesting properties that make it suitable for for-
malizing the imperfect information upon which medi-
cal diagnosis is usually based on. Firstly, it allows the
definition of inexact and/or ambiguous medical entities
as fuzzy sets. Secondly, it offers the possibility of us-
ing linguistic variables in addition to crisp numerical
variables. Finally, fuzzy logic (i.e. mathematical logic
allowing the manipulation of fuzzy sets) offers reason-
ing methods adequate for approximate inferences draw-
ing. Fuzzy sets as a framework representation and fuzzy
logic as a reasoning mechanism have been successfully
applied to different Medical Decision Support Systems
[1, 5, 21, 22, 26].
Progress in this field was characterized by the in-

troduction of the possibility theory as an alternative ap-
proach of the inexact reasoning. Although the possi-
bility theory is an extension of the fuzzy sets theory,
it has many advantages over to make it more suitable
as well as more efficient [24, 35]. In fact, possibility
theory provides an approach to formalize subjective un-
certainties of events, that is to say means of assessing
to what extent the occurrence (realization) of an event
is possible and to what extent we are certain of its oc-
currence, without having the possibility to measure the
exact probability of this realization because we lake sim-
ilar events to be referred to, or because the uncertainty
is the consequence of observation instruments reliability
absence. It also offers the advantage of decision making
based on two set-based measures called the possibility
and the necessity measures. At the level of information
fusion, the possibility theory uses simple mathematical
operations (min, max, etc.). Several studies proved the
successful using of possibility theory as a representation
framework and as a reasoning mechanism in Medical
Decision Support Systems [9].

In this document, we propose the use of the possi-

bility theory [10] as a global framework in our Medical

Decision Support System. After studying the existing

possibilistic approaches, we can note that these works

neglect the issue of the medical knowledge representa-

tion, and concentrate their contribution only on the issue

of possibilistic reasoning (for instance see [10]). In other

words, there is no algorithm describing the phase con-

cerning the transition from the medical description (i.e.

the linguistic term expressing the medical knowledge

(Symptom)—(Diagnosis)) into a possibilistic description

(i.e. numerical value in the interval [0,1] expressing the

occurrence possibility degree of Symptom with a given

Diagnosis).

The important contribution of this work is to answer

the question concerning the issue of medical knowledge

possibilistic representation. Furthermore, this work pro-

poses an algorithm describing, in details, the construc-

tion of Possibilistic Knowledge Base (in which the re-

lation (Symptom)—(Diagnosis) is represented by possi-

bilistic value belonging to the interval [0,1]) fromMedi-

cal Knowledge Base (in which the relation (Symptom)—

(Diagnosis) is represented by linguistic term).

This document is organized as follows: Section 2 de-

tails a knowledge representation model allowing physi-

cians to express their medical knowledge. Main as-

pects of possibility theory are briefly introduced in Sec-

tion 3. Section 4 is devoted to the detailed description

of the proposed approach to construct a new possibilis-

tic model of medical knowledge and to the use of this

model in order to build Possibilistic Knowledge Base.

In Section 5, the evaluation of the reliability of the con-

structed model will be conducted by realizing several

tasks accomplished by Medical Decision Support Sys-

tems. The particular Endoscopic Knowledge Base al-

lowing the validation of proposed possibilistic model,

obtained results and the comparison with prior ones are

detailed in Section 6. Finally, Section 7 presents conclu-

sions concerning the proposed model as well as some

propositions for further developments.

2. MEDICAL KNOWLEDGE AND REPRESENTATION
(EXPERT VISION)

The objective of the medical knowledge base con-

struction is to perform a reliable information model-

ing of the medical knowledge description, expressed

by physicians, according to a predefined knowledge

representation scheme. The knowledge representation

schemes had been classified by Carter [6] into four cat-

egories: logical, procedural, graph/network and struc-

tural. In this paper, we adopt the structural model that

has been used by Cauvin [4] in order to construct

the Endoscopic Knowledge Base, which represents our

medical application. According to this structural model,

this section is devoted to present the description of:

–Diagnoses in the medical knowledge base;

–Patient-cases in the medical case base.

From here, we will use the term “feature” to rep-

resent the name of symptom, and the term “modality”

to represent the value of symptom. For example, the
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Fig. 1. Qualitative description using linguistic term.

Fig. 2. Example of qualitative description using linguistic term.

TABLE I

Example of Physician Description in a Medical Knowledge Base

P1 P2

v1
1

v1
2

v1
3

v2
1

v2
2

D1 always never never rare usual

D2 rare usual usual never always

D3 exceptional usual usual never always

feature “Temperature” can take one of three modalities

low, normal, high.

2.1. Medical Knowledge Base

The Medical Knowledge Base is assumed to en-

capsulate the expert knowledge related to the differ-

ent considered diagnoses. A diagnosis is represented by

physicians, using all potential modalities of the prede-

fined features, through describing the relationship be-

tween modalities and diagnoses. This relationship ex-

presses the occurrence, assessed by physicians, of a

given modality for a given diagnosis.

2.1.1. (Modality)—(Diagnosis) Relationship
From a probabilistic point of view, the ideal repre-

sentation of this relation is to attribute to each couple

(Modality)—(Diagnosis), it’s exact occurrence probabil-

ity value. Nevertheless, these values are rarely known

by physicians in terms of exact values. For this rea-

son and in order to express this imprecise/ambiguous

knowledge of the probabilistic values, physicians use

a qualitative description by means of natural language

[2]. This description mode offers physicians the oppor-

tunity to express their uncertainty by using linguistic

terms more indicative than numerical ones used in pos-

sibility or probability theories. The form of the qualita-

tive description using these linguistic terms is shown in

Fig. 1. In this form, the linguistic term belongs to the

scale fnever,: : : ,alwaysg. For instance, if the relation be-
tween a given diagnosis Flu and a given modality fever

is described by the linguistic term habitual as shown

in Fig. 2, then we can read: the modality fever occurs

habitually with the diagnosis rheum.

2.1.2. Medical Diagnosis Representation
Let D= fD1, : : : ,DMg denote the set ofM diagnoses,

P= fP1, : : : ,PGg denote the set of G features used for

the description of diagnoses. In this description, each

feature is considered independently from the others.

Each feature Pg can assume one of Kg potential modali-
ties defined by the setVg = fvg1 ,vg2 , : : : ,vgKgg. The diagno-
sis Dm, m= 1, : : : ,M, is thus represented in the medical
knowledge base by the following model:

Dm = f(Pg,vgj ,R(vgj ,Dm)); g = 1, : : :G; j = 1, : : : ,Kgg
(2)

where

² Pg denotes the feature “g”;
² vgj is the jth modality (j = 1, : : : ,Kg) of the feature
“g”;

² R(vgj ,Dm) represents the linguistic term (defined by

physicians) that expresses the occurrence of jth mod-
ality related with the given diagnosis Dm;

² Q= fq1, : : : ,qLg represents the predefined set of lin-
guistic terms.

Table I shows an example of an expert description in a

medical knowledge base [4]. In this example, the physi-

cian describes a set of three diagnoses (diseases) D=

fD1,D2,D3g using two features: P1 (with three modal-
ities: V1 = fv11,v12,v13g) and P2 (with two modalities:
V2 = fv21,v22g). Five linguistic terms are used:Q= fq1 =
never, q2 = exceptional, q3 = rare, q4 = usual, q5 =
alwaysg.

2.2. Patient-Case Representation

The Medical Case Base is assumed to encapsulate

the recorded data collected from different patients. An

expert standardizes the description such that a case has

a unique description and is structured to be used by a

computer-aided system [4].

A patient-case is described by physicians using the

same set of G features (Pg, g = 1, : : : ,G) used in the
description of diagnoses. Each feature Pg can assume

one and only one of its potential modalities included

in its corresponding feature modalities set Vg, or it can

assume the value “0” in the case where this feature is

not evaluated (i.e., a missing data) or if the feature is

impossible to be observed or to be evaluated.

Let B = fB1, : : : ,BNg denote a medical case base
containing a set of N patient-cases. A patient-case Bn,
n= 1,2, : : : ,N, is thus represented in the medical case
base by the following medical model:

Bn = f(Pg,xg,n),Dng (3)

where

² xg,n is the value of the feature Pg such that xg,n 2
Vg [f0g, g = 1, : : : ,G;

² Dn is the diagnosis associated with the case Bn,
Dn 2D= fD1, : : : ,DMg, (D contains all possible diag-
noses).

In this model, only a discrete set of modalities is in-

volved, it means that an expert divides each continuous

modality in intervals.

An illustrative example of an Endoscopic Medi-

cal Case Base is shown in Table II. In this example,
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TABLE II

Example of Physician Description in an Endoscopic Case Base

P1 = Object Type P2 = Origin Diagnosis

B1 Not Homogenous Simple Parietal Tumor

B2 Homogenous Parietal Spot

B3 Not Homogenous Multiple Luminal Food

three cases B1, B2, B3, are described using two features:
P1 = “Object Type” with three modalities fHomogenous,
Not Homogenous Simple, Not Homogenous Multipleg and
P2 = “Origin” with two modalities fParietal, Luminalg.
The associated diagnosis is respectively given as fD1 =
Tumor, D2 = Spot, D3 = Foodg.

3. POSSIBILITY THEORY

3.1. Possibility and Necessity Measures

Possibility Theory, introduced by L. Zadeh in 1978

[34] and then developed by Dubois and Prade in 1988

[13], offers an interesting tool allowing to deal with dif-

ferent forms of information imperfections (ambiguity,

imprecision, incompleteness, etc.).

The possibility theory constitutes the basis of several

recent studies in medicine [11]. The obtained results in

these studies confirmed the efficacy of the use of possi-

bility theory as a tool for medical knowledge represen-

tation, as well as for the medical diagnostic decision.

Let − = fx1, : : : ,xNg denote an exhaustive and ex-
clusive Universe of discourse that means the list of the

possible alternatives. At the semantic level, the basic

function in possibility theory is the possibility distribu-

tion denoted as ¼ :−! [0,1] which assigns to each pos-

sible alternative xn from − a value ranging within the

interval [0,1]. This possibility distribution represents the

possibility occurrence degree of xn, the basic alterna-
tive, decision, diagnosis, etc. If, for some xn, ¼(xn) = 1,
then xn is said to be a totally possible alternative; and
if ¼(xn) = 0, then xn is said to be an impossible alterna-
tive. Based on a possibility distribution, the information

concerning the occurrence of an event A 2 P(−) (P(−)
is the power set of −) is represented by means of two
set functions: a Possibility Measure denoted as ¦(:) and
a Necessity Measure denoted as N(:).
The possibility measure ¦(:) is defined as fol-

lows [11]:

¦ : P(−)! [0,1]

A!¦(A) = max
xn2A

(¼(xn))
(4)

and satisfying the following requirements:

¦(©) = 0 and ¦(−) = 1 (5)

¦

0@[
j2J
Aj

1A=max
j2J

¦(Aj) 8Aj , j 2 [1,J] (6)

where J represents the number of elements of the set

P(−).
If the possibility measure of an event A 2 P(−) is

equal to the unity (i.e., ¦(A) = 1, then A is said to be

totally possible event. If ¦(A) = 0 then, A is said to be
totally impossible event.

Reciprocally, the possibility distribution can be de-

fined from the possibility measure, by affecting the pos-

sibility measure of the subset A= fxng to the alternative
xn: ¼(xn) =¦(fxng).
The second measure, called the necessity measure

N(:), is defined as follows [11]:

N : P(−)! [0,1]

A!N(A) = 1¡max
xn2A

(1¡¼(xn)) 8Aj , j 2 [1,J]
(7)

and satisfying the following requirements:

N(©) = 0 and N(−) = 1 (8)

¦

0@\
j2J
Aj

1A=min
j2J

N(Aj) 8Aj , j 2 [1,J]: (9)

If the necessity measure of an event A 2 P(−) is
equal to the unity (i.e., N(A) = 1, then A is said to be
totally certain; and if N(A) = 0, then A is said to be

totally uncertain.

Several duality relations link the possibility measure

and the necessity measure:

A 2 P(−) : 0·N(A)·¦(A) (10)

If N(A)> 0, then ¦(A) = 1 (11)

If ¦(A)< 1, then N(A) = 0 (12)

N(A) = 1¡¦(Ac): (13)

3.2. Joint and Conditional Possibility Distribution

Within the application studied here, the expert ex-

presses medical knowledge as the possibility of modal-

ity occurrence given a diagnosis. This type of knowl-

edge can be modeled using the conditional possibility

concept.

Given two reference sets X and Y where X =
fx1, : : : ,xMg and Y = fy1, : : : ,yNg, a joint possibility dis-
tribution ¼(xm,yn) where xm 2 X (m= 1, : : : ,M) and yn 2
Y (n= 1, : : : ,N) can be defined on the Cartesian product
X £Y in order to express the joint occurrence possibil-
ity of the singletons xm 2 X (m= 1, : : : ,M) and yn 2 Y
(n= 1, : : : ,N) [34]. The joint possibility distribution pro-
vides information on each reference set X and Y individ-

ually as two marginal possibility distributions, obtained

by retaining the largest value of joint possibility distri-

butions relative to the reference set as it is explicated in

the following definitions.
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DEFINITION 1 Starting from a given joint distribution

¼, the marginal possibility distributions are defined on
the two reference sets X and Y as follows:

8xm 2 X : ¼(xm) = sup
y2Y

¼(xm,y) (14)

8yn 2 Y : ¼(yn) = sup
x2X

¼(x,yn): (15)

The reciprocal influence among the reference sets

can be studied through the degree to which an element

yn of Y is possible, knowing that the element xm of X is
considered. In other words, the conditional possibility

which is defined as follows:

DEFINITION 2 There is not a unique definition of the

conditional possibility distribution ¼(yn j xm) measuring
the occurrence for an element yn from Y knowing

that the element xm from X has occurred [6], but all

proposed definitions in the literature [31] are based on

the following general formula linking the conditional

possibility with the joint and marginal possibilities:

¼(xm,yn) = ¼(yn j xm) ¤¼(xm) 8xm 2 X, 8yn 2 Y
(16)

where, “*” is a combination operator which can be con-

sidered as the minimum or the product fusion operator.

The decision made by humans, is usually taken

based on information fusion of different types and as-

signed various forms of imperfection: uncertain infor-

mation, possibilistic information, binary information,

ambiguous information, etc. To address these different

types of information into a single framework, a trans-

formation from one type to another is fundamental. An

important facet of the theory of possibilities lies in the

ability to transform probabilistic information in pos-

sibilistic information in carrying out the projection of

probability distributions to possibility ones. Indeed, this

transformation is a useful operation when dealing with

heterogeneous information. Several transformations of

a probability distribution into a possibility distribution

and conversely have been proposed in this direction. In

this study, we will adopt Dubois-Prade transformation

[13, 15]:

Dubois-Prade transformation procedure:

Given a reference set X = fx1, : : : ,xMg, in which

each element xi is associated with its probability pri =
Pr(fxig), i= 1, : : : ,M. In order to perform the transfor-

mation from the given probability into a possibility dis-

tribution, first, the probability values are arranged in

a decreasing order so that pr1 ¸ pr2 ¸ : : :¸ prM ; then,
the following possibility degrees are computed 8i, i=
1, : : : ,M:

¼1 = 1

¼i =¦(fxig) =
MX
j=1

(prj) if pri¡1 > pri

= ¼i¡1 otherwise:

(17)

4. POSSIBILISTIC MEDICAL KNOWLEDGE
REPRESENTATION MODEL

In Section 2, we have shown the Medical Knowl-

edge Base, and how physicians qualitatively describe,

using linguistic terms, the medical knowledge consid-

ered mainly as a relationship (Modality)—(Diagnosis).

In order to be exploited in Medical Decision Sup-

port Systems, this Medical Knowledge Base has to be

modeled using one of representation approaches. Fur-

thermore, the linguistic term, expressing the relation-

ship (Modality)—(Diagnosis), has to be translated into a

model understandable by the system.

This section is devoted to present our proposed

approach in order to represent this kind of relationships

by means of possibilistic model.

4.1. Possibilistic Knowledge Base Construction

Assume that a Medical Knowledge Base (as de-

scribed in Section 2), containing a set D of M diag-

noses, is available. Each diagnosis in this base Dm,

m= 1, : : : ,M, is characterized using a set P of G fea-

tures. Each feature Pg, g = 1, : : : ,G, can assume one of
Kg possible modalities grouped in a set Vg. The diag-
nosis Dm is thus expressed using the model given in
(2). The expert will indicated the modality frequency

for each diagnosis in using a qualitative scale Q of L
linguistic terms Q= fq1, : : : ,qLg running from “never”

to “always” as follows: q1 = never, : : : ,qL = always. The
expert doesn’t know the exact probability but only an

approximation.

The objective here is to translate the Medical Knowl-

edge Base established by the Expert into a possibilistic

model exploitable by medical decision support systems.

In other words, we want to build the following possi-

bilistic model of diagnosis Dm, m= 1,2, : : : ,M, in which
the relationship (Modality)—(Diagnosis) is represented

as a possibility value:

Dm = f(Pg,vgj ,¼(vgj jDm)); g = 1 : : : ,G; j = 1, : : : ,Kgg:
(18)

The proposed approach to realize reach this target

consists on performing the following steps:

Step 1 Transforming the qualitative scale of lin-

guistic terms Q= fq1, : : : ,qLg into a quantitative one
of numerical values ®= f®1, : : : ,®Lg where ®i 2 [0,1],
®1 = 0, : : : ,®L = 1, and 8j 2 [0,L¡1] : ®j < ®j+1, so that
8i 2 [1,L] there is qi ´ ®i.
Step 2 Substituting each R = qi 2Q in the Medical

Knowledge Base by the corresponding numerical value

®i. Therefore, the representation of a given diagnosis
Dm will be as follows:

Dm = f(Pg,vgj ,®(vgj jDm)); g = 1 : : : ,G; j = 1, : : : ,Kgg:
(19)

In fact, the distribution of numerical values at the level

of given feature Pg, cannot called a probability distri-
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Fig. 3. Projection d’une échelle qualitative en une échelle

numérique.

TABLE III

Linguistic Term Substitution by Numerical Ones

P

vP
1

vP
2

vP
3

D1 always never never

D2 rare usual usual

D3 exceptional usual usual

D4 usual exceptional never

bution because the normality condition is not satisfied

(i.e.,
PKg
j=1®(v

g
j j Dm) 6= 1). For this reason, a normaliza-

tion operation at the level of feature is necessary.

Step 3 Normalizing the numerical values ® at the
level of feature, in order to have a conditional probabil-

ity distribution:

Dm = f(Pg,vgj ,pr(vgj jDm)); g = 1 : : : ,G; j = 1, : : : ,Kgg
(20)

so that:

pr(vgj jDm)

=
®(vgj jDm)

®(vg1 jDm)+ ¢ ¢ ¢+®(vgj jDm)+ ¢ ¢ ¢+®(vgKg jDm)
:

(21)

For j = 1, : : : ,Kg.
Step 4 Applying the Dubois-Prade transformation

on the probability distributions in order to construct the

conditional possibility distributions. Once the transfor-

mation is performed, we obtain the model presented in

(18) of Dm.

4.2. Illustrative Example

In order to illustrate the construction of the Pos-

sibilistic Knowledge Base, let us consider the follow-

ing example: Assume that we have a set of four di-

agnoses D= fD1,D2,D3,D4g described using one fea-
ture P of three potential modalities grouped in a set

VP = fvP1 ,vP2 ,vP3 g (Table III), and the occurrence of these
modalities is represented by means of the qualitative

scale Q= fq1 = never, q2 = exceptional, q3 = rare, q4 =
usual, q5 = alwaysg.

TABLE IV

Substituting Linguistic Terms by Numerical Ones

P

vP
1

vP
2

vP
3

D1 1 0 0

D2 0.25 0.75 0.75

D3 0.1 0.75 0.75

D4 0.75 0.1 0

TABLE V

Resulting Probability Distribution

P

vP
1

vP
2

vP
3

D1 1 0 0

D2 0.14 0.43 0.43

D3 0.06 0.47 0.47

D4 0.88 0.12 0

In order to construct the possibilistic model of these

four diagnoses following the proposed approach, steps

from 1 to 4 must be applied as follows:

Step 1 The projection of the qualitative scale Q

(having five linguistic values), onto a numerical scale

® (also having five empirical numerical values), will

produce ®= ®1,®2,®3,®4,®5g where ®i 2 [0,1], ®1 =
0, : : : ,®5 = 1, and j 2 [1,4] : ®j < ®j+1, so that: 8i 2
[1,5] we obtain qi ´ ®i as follows:
–q1 = never! ®i = 0,
–q2 = exceptional! ®2 = 0:1,
–q3 = rare! ®3 = 0:25,
–q4 = usual! ®4 = 0:75,
–q5 = always! ®5 = 1.
Step 2 Substituting each linguistic term qi in Ta-

ble III by the corresponding numerical value ®i, leads
to Table IV.

We note that the sum of numerical values at the

level of the feature P doesn’t equal to 1 (for example,P3
j=1®(v

P
j jD2) = 0:25 + 0:75 + 0:75 = 1:75 6= 1). For

this reason, a normalization operation at the level of

feature is necessary.

Step 3 The conditional probability value for each

modality according to a given diagnosis is computed

according to (21) and shown in Table V. For example,

the conditional probability value of modality vP2 for a
given diagnosis D2 is calculated as follows:

pr(vP2 jD2) =
®(vP2 jD2)

®(vP1 jD2)+®(vP2 jD2)+®(vP3 jD2)

=
0:75

0:25+0:75+0:75
= 0:43:

106 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 7, NO. 2 DECEMBER 2012



TABLE VI

Conditional Possibility Distribution (Possibilistic Knowledge Base)

P

vP
1

vP
2

vP
3

D1 1 0 0

D2 0.14 1 1

D3 0.06 1 1

D4 1 0.12 0

The transformation of the probability distribution

into a possibilistic one, will be realized by applying

the Dubois-Prade’s transformation (Step 4), which will

finally produce the possibilistic model of this base con-

taining four diagnoses (Table VI). For example, the

probability distribution associated with the diagnosis

D4fpr(vP1 jD4)=0:88; pr(vP2 jD4)=0:12, pr(vP3 jD4)=0g
will be transformed according to Dubois-Prade as fol-

lows:

–Ranking the probability distribution as follows:

pr1= pr(v
P
1 jD4) = 0:88> pr2= pr(vP2 jD4) = 0:12> pr3

= pr(vP3 jD4) = 0;
–According to (17), we obtain:

¼1 = ¼(v
P
1 jD4) = 1,

¼2 = ¼(v
P
2 jD4) =

3X
i=2

pri = pr2 +pr3

= pr(vP2 jD4)+pr(vP3 jD4) = 0:12+0 = 0:12

¼3 = ¼(v
P
3 jD4) =

3X
i=3

pri = pr3 = pr(v
P
3 jD4) = 0:

This table is defined for each feature. If G is the

number of features, then we have G tables.

5. POSSIBILISTIC REASONING

Once Possibilistic Knowledge Base is constructed,

as detailed in the previous section, the reliability of

the possibilistic modeling should be evaluated. This

evaluation has to be performed in terms of the qual-

ity of different tasks conducted by medical decision

support systems. In this paper, we will study the ex-

ploitation of our possibilistic model in medical decision

support systems adopting the Reasoning by Classifica-

tion. This reasoning type is based on the comparison of

the available information acquired from a patient with

the medical a prior knowledge formulated by physi-

cians (i.e., Expert Medical Vision) with the aim to as-

sign potential diagnoses facing this particular patient-

case.

Given a new case with an unknown diagnosis B

which its description is as follows:

B = f(Pg,xg); g = 1, : : :G; xg 2Vg [f0gg (22)

where

² Pg represents the feature ‘g’;
² xg represents the observed modality of the feature
‘g’. If the feature is observed, then xg take one and

only one value from the set of possible modalities

Vg = fvg1 ,vg2 : : : ,vgKgg, and it takes the value ‘zero’

otherwise (i.e., the feature Pg is not observed or it

is missing data).

In order to classify this case B (i.e., finding its

corresponding diagnosis), we have to compare it with

all diagnoses included in the knowledge base, through

calculating the similarity between this case and each

diagnosis, and then ranking the set of obtained potential

diagnoses according to the maximum similarity.

The similarity between B and Dm, m= 1, : : : ,M, is

represented in our approach by the possibilistic couple

[N(Dm j B),¦(Dm j B)] of similarity which can be esti-
mated by performing the following steps:

Step 1 Estimation of the local conditional possi-

bility (i.e., at the level of feature), ¼(Dm j Pg), m=
1,2, : : : ,M and g = 1,2, : : : ,G. Here, we distinguish two

cases:

² The feature Pg is observed and produced in the case B
as the modality xg: in this case, the local conditional

possibility ¼(Dm j Pg = xg) will be estimated from the
possibilistic knowledge ¼(xg jDm) which is available
in the possibilistic knowledge base (as we will see

later).

² The feature Pg is not observed or it is a missing
data: in this case, the local conditional possibility

is considered equal to the unity, ¼(Dm j Pg = 0) = 1.
This means that the diagnosis Dm is considered as

possible solution for a given feature Pg.

Step 2 Estimation of the global conditional possi-

bility (i.e., for the set of all features), ¼(Dm j B), m=
1, : : : ,M , by performing a conjunctive fusion of local

conditional possibilities. Indeed, the choice of the con-

junctive as a fusion type is justified by the fact that if

the diagnosis Dm is impossible to produce as a potential

solution, at least for one feature (i.e., ¼(Dm j Pg) = 0),
then the diagnosis has to be rejected as an impossible

solution to the target case B (i.e., ¼(Dm j B) = 0). For
example, using the conjunctive operator min, we obtain:

¼(Dm j B) =
G

min
g=1

¼(Dm j Pg): (23)

After this step, we obtain the conditional possibility

distribution defined on the set of diagnoses: f¼(D1 j B),
: : : ,¼(DM j B)g.
Step 3 Using the previous possibility distribution to

calculate the conditional possibilistic couple [N(Dm j B),
¦(Dm j B)], m= 1, : : : ,M, according to the following
formulas:

¦(Dm j B) = maxn=m
(¼(Dn j B)) = ¼(Dm j B) (24)
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N(Dm j B) = 1¡¦(Dm j B) = 1¡
M
max
n=1
n 6=m
(¼(Dn j B)):

(25)

It is clear that the possibilistic couple estimating

is essentially based on the availability of the local

possibility value, ¼(Dm j xg) (i.e., more precisely, the
possibility value ¼(Dm j vgj ), j = 1,2, : : : ,Kg). However,
the real challenge lies in the fact that this value is not

available in the possibilistic knowledge base. Indeed, the

available information is the local possibility ¼(vgj jDm)
(i.e., the possibility of observing a given modality of a

certain feature, since the diagnosis Dm). For this reason,

the essential question that arises is:

“How can calculate the conditional possibility ¼(Dm j
vgj ) where the information available in the possibilistic

knowledge base is the conditional possibility ¼(vgj j
Dm), m= 1,2, : : : ,M, g = 1,2, : : : ,G, j = 1,2, : : : ,Kg?”

In order to answer to this question, we use the

formula (16) that defines the conditional possibility

distribution. From this formula, we can write:

¼(Dm,v
g
j ) = ¼(v

g
j jDm) ¤¼(Dm) = ¼(Dm j vgj ) ¤¼(vgj ):

(26)

From this formula, we notice that:

–The estimating of the conditional possibility

¼(Dm j vgj ) is based on, beside to the conditional pos-
sibility ¼(vgj jDm) which is known, the availability of
marginal possibilities ¼(vgj )¼(Dm) which are unknown.
–Also, this relation does not provide a unique

opportunity to build the conditional possibility

¼(Dm j vgj ).
For these reasons, various rules are proposed in the

literature to interpret the relation between the condi-

tional and joint possibility distributions, as well as to

define the conditional possibility (i.e., Zadeh’s rule, His-

dal’s equation, Ramer’s rule, etc.) [31].

After having analyzed these rules, two of them can

be exploited, Zadeh’s rule and Nguyen’s rule, thanks to

their good properties and their relevance to the process

of medical diagnostic reasoning, because of its capa-

bility to estimate the conditional possibility ¼(Dm j vgj )
using only the conditional possibility ¼(vgj jDm) without
any other information as the marginal possibility. In this

study, we adopt Zadeh’s rule defining the conditional

possibility as equal to the joint one as follows:

¼ZA(yn j xm) = ¼ZA(yn,xm) = ¼ZA(xm j yn),
8xm 2 X and 8yn 2 Y: (27)

6. MEDICAL APPLICATION AND RESULTS

6.1. Endoscopic Application

The Medical Knowledge Base used in this study

is an Endoscopic Knowledge Base [8, 19]. This Base

consists of a set of 89 endoscopic findings (diagnoses).

Each diagnosis is described using a set of 33 features

corresponding with 206 global modalities. The qualita-

tive scale used to express the relationship (Modality)—

(Diagnosis) by the physicians consists of the follow-

ing linguistic values fnever, exceptional 2, exceptional 1,
rare 2, rare 1, usual 2, usual 1, alwaysg. Furthermore,
the linguistic value doubtful that is intermediate between

never and exceptional, is added when the expert has an

ignorance about the reality of the modality observation.

It is important to notice that there are two importance

levels for the three variables exceptional, rare, and usual.

The case base used in this study has been developed

in the framework of an endoscopic image analyzes sys-

tem [19]. It is a decision support system of the diagno-

sis of endoscopic findings. These findings are described

by the physicians, from the endoscopic images, through

symbolic terms, which are defined by the Minimal Stan-

dard Terminology of the SEGE (European Company of

Gastro-enterology). A case (or an object) in the base

represents a description of the image (using a set of 33

features, 24 features to describe an object and 9 features

to describe a potential sub-object) of an endoscopic le-

sion.

6.2. Experiments and Results

Before analyzing the results of the proposed ap-

proach on the global case base, and in order to have a

simple and clear representation of the obtained results,

we propose to analyze, as an illustrative example, the

classification of a small subset of three cases (i.e., endo-

scopic lesions), CB= fB1,B2,B3g, where the “known”
diagnoses of these cases are respectively: Normal Esoph-

agus, Dilated Lumen, and Ring.

The compatibility between each case Bf , f = 1,2,3,
and each diagnosis Dm, m= 1,2, : : : ,M, predefined in
the knowledge base, will be estimated according to our

possibilistic approach (presented in Section 5). In this

approach, the diagnosis Dm is considered as a potential

solution for the case Bf , if the conditional possibilistic
couple [N(Dm j Bf),¦(Dm j Bf)] is not [0,0].
The results obtained by our approach will be com-

pared with that obtained by the fuzzy approach. In the

fuzzy approach, Dm is considered as a potential solution

for the case Bf , if the conditional membership degree
¹(Dm j Bf) is not zero.
Fuzzy Theory uses one measure for uncertainty

whereas Possibility Theory uses two measures (i.e., the

possibility and necessity measures). So, in order to re-

alize the comparison of our possibilistic approach with

other one, we must build one measureª which combine
the possibilistic couple [N,¦] as follows [24]:

ª(Dm j B) =
N(Dm j B) +¦(Dm j B)

2
: (28)

So, according to this measure, the diagnosis Dm is

considered as a potential solution for the case Bf , if the
conditional possibilistic measure ª (Dm j Bf) is not zero.
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The ranking of the potential solutions will be per-
formed according to: the maximal conditional member-
ship degree in the fuzzy approach, and the maximal
measure ª in possibilistic approach.
Two types of comparison between these two ap-

proaches will be realized: comparison in terms of po-
tential diagnoses ranking, and comparison in terms of
decision quality. As an evaluation index of the taken
decision quality, we propose the use of the distance be-
tween the first two potential solutions, if this distance
is great, then the decision is of quality, because the dis-
crimination between the potential solutions is easier.
The obtained results are presented in Table VII. This

table shows the first two potential diagnoses proposed
for each case Bf , as well as the measure “Dist.” which
represents the evaluation index of taken decision quality
according to the considered decision criteria.
To facilitate the comparison and analysis of results

presented in this table, we made a graphic representation
in Fig. 4. This figures show a representation of the
first two potential diagnoses according to the three
approaches as well as the distance Dist., for respectively
the cases B1, B2, B3. In these figures, the two potential
diagnoses obtained by each approach, are presented in
the same color (i.e., the colors green, and blue represent
respectively the potential diagnoses obtained by the
Fuzzy, and Possibilistic Approach).
By analyzing the table and the figure, we note that:

In terms of potential diagnoses ranking:
² For the case B1, the two approaches gave the true
diagnosis (i.e., diagnosis of the studied case) as the
first potential solution.

² For the case B2, the proposed approach gave the true
diagnosis as the unique potential solution, whereas
the fuzzy approach gave an additional solution as a
second potential solution.

² For the case B3, the proposed approach gave the true
diagnosis as the first potential solution, whereas the
fuzzy approach gave two diagnoses as two first poten-
tial solutions having the same compatibility degree.

In terms of decision quality:
² For the three cases, the distance between the first two
potential solutions obtained by possibilistic approach
is greater than that obtained by fuzzy approach.

² For the case B3, the fuzzy approach could not distin-
guish between the two potential solutions.
After presenting an illustrative example, we will

realize a comparison between two approaches on the
global case base containing 4450 cases (lesions). As
presented in the previous example, the comparison will
be realized in terms of the potential diagnoses ranking,
and in terms of the taken decision quality.
In order to realize the comparison in terms of the

potential diagnoses ranking, we can distinguish four
groups:
–Found: represents the number of cases for

which the right diagnosis is classified as a potential so-
lution.

TABLE VII

Potential diagnoses of the set CB according to two approaches

(Fuzzy, Possibilistic)

Fuzzy Approach Dist. Possibilistic Approach Dist.

¹(Dm j Bf ) ª (Dm j Bf )

B1 D1 =

Normal Esophagus: 0.5

0.13 D1 =

Normal Esophagus: 0.94

0.88

D2 = Spot: 0.37 D2 = Spot: 0.06

B2 D1 =

Dilated Lumen: 0.45

0.45 D1 = Dilated Lumen: 1 1

B3 D1 = Ring: 0.49 0.17 D1 = Ring: 0.84 0.69

D2 =Web: 0.32 D2 =Web: 0.15 2

–Sole: represents the number of cases for which

the right diagnosis is classified as a unique potential

solution.

–First: represents the number of cases for which

the right diagnosis is classified as the first potential

solution.

–Other: represents the number of cases for which

the right diagnosis is classified as a potential solution,

but not the first.

We note that the recognition rate associated with

diagnostic group called “Found” is always 100% for

both fuzzy and possibilistic approaches. This shows that

the correct diagnosis still occurs as a potential solution

to the target case considered.

For other groups, we note that the results obtained by

the proposed approach are better than those obtained by

the fuzzy approach, because the greater recognition rate

is devoted to the group First, while this rate is divided in

the possibilistic approach for the two groups “Unique”

61.24% and “First” 30.76%.

In order to realize the comparison in terms of the

taken decision quality, we apply the following algo-

rithm:

For each approach: Possibilistic and Fuzzy Do

From n= 1 To n= 4450 Do (n: means the considered
target case)

1. Calculate the possibilistic couple [N(Dm j Bn),
¦(Dm j Bn)] for all the diagnoses, Dm, m= 1,
: : : ,M;

2. Ranking the set of cases according to the maxi-

mum similarity measure;

3. Identify all cases where the correct diagnosis (i.e.,

the true diagnosis of considered target case) is

the first potential diagnostic obtained by each ap-

proach;

4. Calculate, for each case obtained by the previous

step, the distance between the two first potential

diagnoses (the true diagnosis and the next diagno-

sis).

End

End
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Fig. 4. Distance Representation. (a) Case B1. (b) Case B2. (c) Case B3.
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TABLE VIII

Comparaison Between the Two Approaches

Fuzzy Approach Possibilistic Approach

¹(Dm j Bf ) ª (Dm j Bf )

Found 100% 100%

Sole 0.2% 61.24%

First 91% 30.76%

Other 8.8% 8%

TABLE IX

Result Obtained by the Possibilistic Approach

Distance

Superior (Possibilistic> Fuzzy) 3678=4031 = 91:24%

Equal (Possibilistic = Fuzzy) 3=4031 = 0:08%

Lower (Possibilistic< Fuzzy) 129=3207 = 8:68%

After applying the above algorithm, the distances

obtained by the possibilistic approach are compared

with those obtained by one of the fuzzy approach. Three

groups can be distinguished:

–Superior: represents the number of cases for

which the distance calculated by the possibilistic ap-

proach is greater than that calculated by the fuzzy ap-

proach.

–Lower: represents the number of cases for which

the distance calculated by the possibilistic approach is

lower than that calculated by the fuzzy approach.

–Equal: represents the number of cases for which

the distance calculated by the possibilistic approach is

equal to that calculated by the fuzzy approach.

We note that the highest rate is dedicated to the

group “Superior.” This means that the distance char-

acterizing the quality of the solutions obtained by the

proposed approach is higher than that obtained by the

fuzzy approach.

7. CONCLUSION AND PERSPECTIVES

In this paper, the use of the possibility theory

as a global framework is proposed to construct the

medical knowledge representation model. This possi-

bilistic model is applied, as a knowledge representa-

tion approach, to represent the relationship (Modality)—

(Diagnosis), as well as in the construction of the medical

knowledge base. Possibilistic reasoning mechanisms are

also developed in order to support the case classification

by the physician.

This possibilistic representation transforms the ex-

pert linguistic knowledge into a model useable by a de-

cision support system. To tackle the case classification

issue, the compatibility (based on necessity and pos-

sibility measures) has been defined between the target

case and different potential diagnoses.

The proposed approach has been applied in the con-

text of Digestive Endoscopic Image Analysis where the

medical expert knowledge was successfully modeled

with results in full coherence with the expert’s expecta-

tion.

In this study, we have considered the complete case

description (i.e., all features that should have been de-

scribed by the expert are considered as fulfilled and

present). Nevertheless, an important decision making

difficulty has not been tackled; this concerns the par-

tial description context where some features, considered

by the user (not the expert) as less important, are not

filled. This situation makes some the application of deci-

sion support systems very difficult, even to the extent of

blocking. In the proposed framework, and due to the use

of the possibilistic distance, a decision proposition can

always be suggested to the user associated with a perti-

nence value. In a further research work, this pertinence

value will be upper and lower bounded allowing thus to

improve user confidence in the employed system.
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