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Track-oriented multiple-hypothesis tracking is a powerful and

widely-accepted methodology in multi-target tracking. We show

that the target-death problem inherent in the probability hypothesis

density filter does not arise in the MHT. However, the MHT suffers

from a problem of its own: excessive competition for measurements

from tentative tracks. We introduce a mechanism to mitigate this

effect by favoring confirmed tracks in the association process. A

heuristic justification for the technique is that it mitigates the sub-

optimality associated with hypothesis pruning and sequential track

extraction. Perhaps more convincingly, the modification to the MHT

equations is provably optimal in the limiting case of cardinality

tracking with unity detection probability. We show that modified-

scoring MHT improves upon standard MHT in several benchmark

studies.
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1. INTRODUCTION

Track-oriented multiple hypothesis tracking (MHT)
is well-established as a paradigm for multi-sensor multi-
target tracking. The fundamental approach includes
many variants. Hypothesis-oriented MHT was first pro-
posed by Reid [10]. The initial integer-programming
formulation of the problem is due to Morefield [8]. The
hybrid-state decomposition that allows for computation-
ally-efficient track-oriented MHT is due to Kurien [7].
An efficient solution to the optimization problem re-
quired for nscan hypothesis pruning via Lagrangian re-
laxation is due to Poore and Rijavec [9]. A linear-
programming based relaxation approach to the same
optimization problem was proposed independently by
Coraluppi et al [3] and by Storms and Spieksma [12].
In practice, MHT implementations must limit the

number of local (or track) hypotheses. This can be
achieved by measurement gating, by limiting hypoth-
esis generation, and by pruning or merging existing
hypotheses. Additionally, sequential track extraction
schemes are adopted in lieu of optimal (batch) track
extraction [1]. These techniques, while necessary for
computationally-realizable and real-time MHT process-
ing, lead to suboptimal data association decisions and
track extraction. In this paper, we show that the subop-
timality can be mitigated by favoring nearly-confirmed
and confirmed tracks over tentative ones in the data-
association process with suitable modification to the
MHT track scoring equations.
This paper is organized as follows. In Section 2,

we summarize the hybrid-state derivation of the track-
oriented MHT, with some modifications with respect
to the original derivation [7]. In Section 3, we address
briefly the target-death problem that arises in probability
hypothesis density (PHD) filtering as discussed in Erdinc
et al [6], and show that it does not arise in track-oriented
MHT. In Section 4, we introduce the modified-scoring
MHT equations and considering a limiting case of the
general tracking problem that we call cardinality track-
ing. Section 5 provides simulation results that demon-
strate the improved performance of modified-scoring
MHT over standard MHT. Concluding remarks are in
Section 6.

2. MULTIPLE-HYPOTHESIS TRACKING

A key challenge in multi-sensor multi-target tracking
is measurement origin uncertainty. That is, unlike a
classical nonlinear filtering problem, we do not know
how may objects are in the surveillance region, and
which measurements are to be associated. New objects
may be born in any given scan, and existing objects may
die.

We assume that for each sensor scan, contact-level

(or detection-level) data is available, in the sense that

signal processing techniques are applied to raw sensor

data yielding contacts for which the detection and lo-

calization statistics are known. We are interested in a

scan-based (or real-time) approach that, perhaps with
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some delay, yields an estimate of the number of objects

and corresponding object state estimates at any time.

Several approaches to contact-level scan-based

tracking exist. In this section, we employ a hybrid-

state formalism to describe the track-oriented multiple-

hypothesis tracking approach. Our approach follows

closely the one introduced in [7]. We assume Poisson

distributed births at each scan with mean ¸b, Poisson

distributed false returns with mean ¸fa, object detection

probability pd, object death or termination probability

pÂ at each scan. (We neglect the time-dependent nature

of birth and death probabilities as would ensue from an

underlying continuous-time formulation, and we neglect

as well inter-scan birth and death events.)

We have a sequence of sets of contacts Zk = (Z1, : : : ,

Zk), and we wish to estimate the state history X
k for all

objects present in the surveillance region. Xk is com-

pact notation that represents the state trajectories of tar-

gets that exist over the time sequence (t1, : : : , tk). Note

that each target may exist for a subset of these times,

with a single birth and a single death occurrence i.e.

targets do not reappear. We introduce the auxiliary dis-

crete state history qk that represents a full interpretation

of all contact data: which contacts are false, how the

object-originated ones are to be associated, and when

objects are born and die. There are two fundamental

assumptions of note. The first is that there are no tar-

get births in the absence of a corresponding detection,

i.e. we do not reason over new, undetected objects. The

second is that there is at most one contact per object per

scan.

We are interested in the probability distribution

p(Xk j Zk) for object state histories given data. This
quantity can be obtained by conditioning over all pos-

sible auxiliary states histories qk.

p(Xk j Zk) =
X
qk

p(Xk,qk j Zk)

=
X
qk

p(Xk j Zk,qk)p(qk j Zk): (1)

A pure MMSE approach would yield the following:

X̂MMSE(Z
k) = E[Xk j Zk] =

X
qk

E[Xk j Zk,qk]p(qk j Zk):

(2)

The track-oriented MHT approach is a mixed MMSE/

MAP one, whereby we identify the MAP estimate for

the auxiliary state history qk, and identify the corre-

sponding MMSE estimate for the object state history

Xk conditioned on the estimate for qk.

X̂(Zk) = E[Xk j Zk, q̂k] (3)

q̂k = q̂MAP(Z
k) = argmaxp(qk j Zk): (4)

The MHT recursion. Each feasible qk corresponds

to a global hypothesis. (The set of global hypotheses

is generally constrained via measurement gating and

hypothesis generation logic.) We are interested in a

recursive and computationally efficient expression for

p(qk j Zk) that lends itself to maximization without the
need for explicit enumeration of global hypotheses. We

do so through repeated use of Bayes’ rule. Note that

f(¢) denotes the probability density function and p(¢)
denotes the probability mass functions. The normalizing

constant ck does not impact MAP estimation.

p(qk j Zk) = f(Zk j Zk¡1,qk)p(qk j Zk¡1)
ck

=
f(Zk j Zk¡1,qk)p(qk j Zk¡1,qk¡1)p(qk¡1 j Zk¡1)

ck

(5)

ck = f(Zk j Zk¡1) =
X
qk

f(Zk j Zk¡1,qk)p(qk j Zk¡1):

(6)

Recall that we assume that in each scan the number

of target births is Poisson distributed with mean ¸b,

the number of false returns is Poisson distributed with

mean ¸fa, targets die with probability pÂ, and targets are

detected with probability pd. The recursive expression

(5) involves two factors that we consider in turn.

Computation of p(qk j Zk¡1,qk¡1). It will be useful

to introduce the aggregate variable Ãk (consistent with

the approach in [7]) that accounts for the number of

detections d for the ¿ existing tracks, the number of

track deaths Â, the number of new tracks b, and the

number of false returns r¡ d¡b, where r is the number
of contacts in the current scan.

p(qk j Zk¡1,qk¡1) = p(Ãk j Zk¡1,qk¡1)p(qk j Zk¡1,qk¡1,Ãk)
(7)

p(Ãk j Zk¡1,qk¡1) =
½μ

¿

Â

¶
pÂÂ(1¡pÂ)¿¡Â

¾

¢
½μ

¿ ¡Â
d

¶
pdd(1¡pd)¿¡Â¡d

¾

¢
½
exp(¡pd¸b)pbd¸bb

b!

¾

¢
½
exp(¡¸fa)¸r¡d¡bfa

(r¡ d¡ b)!

¾
(8)

p(qk j Zk¡1,qk¡1,Ãk) =
1μ

¿

Â

¶μ
¿ ¡Â
d

¶μ
r!

(r¡ d)!

¶μ
r¡ d
b

¶ :
(9)

Substituting (8—9) into (7) and simplifying yields the

following.
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p(qk j Zk¡1,qk¡1) =
½
exp(¡pd¸b ¡¸fa)¸rfa

r!

¾
¢pÂÂ((1¡pÂ)(1¡pd))¿¡Â¡d

¢
Ã
(1¡pÂ)pd

¸fa

!dÃ
pd¸b
¸fa

!b
:

(10)

Computation of f(Zk j Zk¡1,qk). This quantity is

given by (11), where Zk = fzj ,1· j · rg, Jd is the set
of measurements associated with detections of existing

tracks, Jb is the set of measurements associated with

target births, Jfa is the set of measurements hypothe-

sized as false, jJdj+ jJbj+ jJfaj= r, and the factors on
the R.H.S. are derived from filter innovations, filter ini-

tiations, and the false contact distribution (generally uni-

form over measurement space).

f(Zk j Zk¡1,qk) =
Y
j2Jd

fd(zj j Zk¡1,qk)

¢
Y
j2Jb

fb(zj j Zk¡1,qk)
Y
j2Jfa

ffa(zj j Zk¡1,qk):

(11)

For example, in the linear Gaussian case, fd(zj j Zk¡1,qk)
is a Gaussian residual, i.e. it is the probability of ob-

serving zj given a sequence of preceding measure-

ments. If there is no prior information on the tar-

get, fb(zj j Zk¡1,qk) is generally the value of the uni-
form density function over measurement space. Simi-

larly, ffa(zj j Zk¡1,qk) is as well usually taken to be the
value of the uniform density function over measurement

space, under the assumption of uniformly distributed

false returns. Note that the expressions given here are

general and allow for quite general target and sensor

models.

Final form of the MHT recursion. Substituting

(10—11) into (5) and simplifying results in (12—13).

This expression is the key enabler of track-oriented

MHT. In particular, it provides a recursive expression

for p(qk j Zk) that consists of a number of factors that
relate to its constituent local track hypotheses.

p(qk j Zk) = pÂÂ((1¡pÂ)(1¡pd))¿¡Â¡d ¢
Y
j2Jd

"
(1¡pÂ)pdfd(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

#
¢
Y
j2Jb

"
pd¸bfb(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

#
p(qk¡1 j Zk¡1)

c̄k

(12)

c̄k =
ck½

exp(¡pd¸b ¡¸fa)
r!

¸rfa

¾Q
j2Jd[Jb[Jfa ffa(zj j Zk¡1,qk)

: (13)

Note that the constant c̄k normalizes the recursion with

respect to the case in which all returns in the current

scan are false. That is, for the case b = 0 (no births) and

¿ = d = Â= 0 (no current tracks, and correspondingly

no detections or terminations on current tracks), we

have

p(qk j Zk) =
½
exp(¡pd¸b¡¸fa)

r!
¸rfa

¾
¢

Y
j2Jd[Jb[Jfa

ffa(zj j Zk¡1,qk)
p(qk¡1 j Zk¡1)

ck
:

That is, the denominator in (13) is precisely the product

of the probability of no detected births, i.e. exp(¡pd¸b)
¢p0d¸0b=0!, the probability of r false alarms, i.e.

(exp(¡¸fa)=r!)¸rfa, and the filter residuals associate

with all measurements being false.

An implicit reduction in the set of hypotheses in

(12—13) is that target births are assumed to occur only

in the presence of a detection (i.e. there is no reasoning

over un-detected births). Correspondingly, the factor

pd reduces the effective birth rate to pd¸b (though

surprisingly the factor is absent in [7]). Further, in the

first scan of data, it would be appropriate to replace

pd¸b by pd¸b=pÂ to account properly for the steady-state

expected number of targets. (More generally, target birth

and death parameters should reflect sensor scan rates,

as the underlying target process is defined in continuous

time.) Further reduction in the set of hypotheses is

generally achieved via measurement gating procedures

[1]. Finally, for a given track hypothesis, one usually

applies rule-based spawning of a missed detection or

termination hypothesis, but not both (e.g. only spawn

a missed detection hypothesis until a sufficiently-long

sequence of missed detections is reached).

One cannot consider too large a set of scans be-

fore pruning or merging local (or track) hypotheses in

some fashion. A popular mechanism to control these hy-

potheses is nscan pruning. This amounts to solving (4),

generally by a relaxation approach to an integer pro-

gramming problem [3, 8—9, 12], followed by pruning

of all local hypotheses that differ from q̂k at a depth of

nscan. That is, all remaining global hypotheses are iden-

tical up to scan k¡ nscan. Note that, if one were to set
nscan = 0, this would amount to immediate resolution of

association hypotheses up to the current time. The nscan
pruning methodology is applied after each new scan of

data is received, resulting in a fixed-delay solution to

the tracking problem.
Often, nscan pruning is referred to as a maximum

likelihood (ML) approach to hypothesis management.
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ML estimation is closely related to maximum a posteriori

(MAP) estimation. In particular, we have:

X̂MAP(y) = argmaxf(y j X)f(X) (14)

X̂ML(y) = argmaxf(y j X): (15)

Note that ML estimation is a non-Bayesian approach

as it does not rely on a prior distribution on X. ML
estimation can be interpreted as MAP estimation with a

uniform prior. In the track-oriented MHT setting, nscan
pruning relies on a single parent global hypothesis, thus
the ML and MAP interpretations are both valid.

Once hypotheses are resolved, in principle one has

a state of object histories given by X̂(Zk). In practice, it
is common to apply track confirmation and termination

logic to all object histories [1]. A justification for this is

that it provides a mechanism to remove spurious tracks
induced by the sub-optimality inherent in practical MHT

implementations that include limited hypothesis gener-

ation and hypothesis pruning or merging. Further, se-
quential track extraction allows for real-time processing

which optimal (batch) track extraction would not.

Given the use of post-association track confirmation
and termination logic, a reasonable simplification that

is pursued in [3] is to employ equality constraints in the

data-association process, which amounts to accounting
for all contact data in the resolved tracks. Spurious

tracks are subsequently removed in the track-extraction

stage.
To summarize, at each stage of processing, track-

oriented MHT maintains a set of track trees with depth

nscan. When a scan of measurements is received, each
measurement is compared with each (local) track hy-

pothesis, and a new level of leaf nodes is created. All

track hypotheses continue as well in the absence of a
measurement. Additionally, each measurement defines

the root of a new track tree. Following hypothesis gen-

eration, the MAP global hypothesis is determined via
a linear programming relaxation approach [3]. Corre-

spondingly, the set of track trees is pruned so that a

single global hypothesis exists at depth nscan +1. The
process then repeats for the next scan. (If one were to

set nscan, the procedure reverts to a standard 2D assign-

ment solution.)
Data association is followed by track extraction.

Tentative tracks are reported at the tracker output only

once a suitable track-confirmation criterion is achieved.
Similarly, once a track has degraded sufficiently (or

once it is determined that a still-tentative track cannot

achieve the confirmation criterion), the track is termi-
nated. This information flows back to the data associ-

ation module from the track extraction module, invali-

dating subsequent association hypotheses for the termi-
nated track.

3. THE TARGET-DEATH PROBLEM

A useful re-interpretation of the probability hypoth-

esis density (PHD) filter, known as the bin-occupancy

filter, is given in [6]. This paper describes as well the

target death problem that the authors had earlier identi-

fied, and which in turn has led to the cardinalized PHD

(CPHD) filter.

Consider the single-target case with no false alarms.

In the absence of a target measurement, the PHD surface

follows (16). Note that the PHD surface Dkjk(x) at each
time tk is a function of all data received up to tk and is

computed recursively. Dkjk(x) admits the interpretation
that it identifies the probability of target presence at a

given state.

Dkjk(x) = (1¡pd(x))Dkjk¡1(x): (16)

While (16) may appear reasonable, it can be shown that

it is inconsistent with the following simple Bayesian

argument. Let Yk¡1 be the existence state for the target at
scan k¡ 1, and assume that the death probability at any
scan is given by pÂ, as before. The updated probability

of existence after a missed detection is given by (17).

p(Yk = 1 j jZkj= 0)
= p(Yk = 1 j Yk¡1 = 1, jZkj= 0)p(Yk¡1 = 1)

=
p(Yk = 1, jZkj= 0 j Yk¡1 = 1)p(Yk¡1 = 1)

p(jZkj= 0 j Yk¡1 = 1)

=
(1¡pÂ)(1¡pd)
1¡ (1¡pÂ)pd

p(Yk¡1 = 1): (17)

Comparing (16) and (17), we see that the PHD filter

penalizes missed detections too heavily; it is claimed in

[6] that the CPHD appears to follow (17).

What happens with the track-oriented MHT ap-

proach? We compare the ratio of the probability as-

sociated with the track coast hypothesis (track is alive

in the absence of a measurement) with the probability

of track coast or death. That is, in the numerator we

want the case “no detection and target alive,” and in

the denominator we want the case “no detection (target

alive or dead.” Let qki and q
k
j denote global hypotheses

that include coast and death events, respectively, for the

target of interest. From (12), we see that (18) follows

immediately. Indeed, all factors in the global hypothesis

probability cancel except for those associated with the

(undetected) track.

p(qki j Zk)
p(qki j Zk)+p(qkj j Zk)

=
(1¡pÂ)(1¡pd)

(1¡pÂ)(1¡pd) +pÂ

=
(1¡pÂ)(1¡pd)
1¡ (1¡pÂ)pd

: (18)

Note that this validation is quite general, and in particu-

lar it is directly applicable to the multi-target case, under

the assumption that no contacts satisfy the hypothesis

gating criterion for the (undetected) object of interest

here. We conclude that track-oriented MHT properly

handles missed detections, and no target-death problem

is observed.
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4. MODIFIED-SCORING MHT AND CARDINALITY
TRACKING

In scan-based processing, assume that a track hy-

pothesis is confirmed when it achieves an M-of-N crite-

rion, with the start of the (tentative) track defined with

the first of the relevant M measurements, and that ten-

tative tracks that have no chance to achieve the M-of-N

criterion are discarded. Also, a track hypothesis is ter-

minated if K missed detections are exceeded. Note that,

under multiple-hypothesis processing, a confirmed track

may be pruned under a hypothesis-reduction scheme

such as nscan pruning. Following hypothesis resolution,

a single global hypothesis exists that is composed of

a number of resolved tracks. Next, the set of resolved

tracks undergoes a track extraction process based on the

same M, N, and K parameters. With these notions of

confirmed, resolved and extracted tracks, we now in-

troduce a modification to (12) that will prove useful.

In particular, confirmation reward factors »2 > »1 > 1

are applied to track updates for confirmed and nearly-

confirmed track hypotheses. The later refers to tentative

tracks that reach confirmation in the current scan. The

measurement sets for confirmed, nearly-confirmed, and

tentative tracks are denoted by Jd, Jc, and Jt, respectively.

p(qk j Zk) = pÂÂ((1¡pÂ)(1¡pd))¿¡Â¡d

¢
Y
j2Jt

"
(1¡pÂ)pdfd(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

#

¢
Y
j2Jc

"
(1¡pÂ)»1pdfd(zj j Zk¡1,qk)

¸faffa(zj j Zk¡1,qk)

#

¢
Y
j2Jd

"
(1¡pÂ)»2pdfd(zj j Zk¡1,qk)

¸faffa(zj j Zk¡1,qk)

#

¢
Y
j2Jb

"
pd¸bfb(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

#
p(qk¡1 j Zk¡1)

c̄0k
:

(19)

We refer to standard MHT as solution to (4) based on

(12—13) with a fixed hypothesis tree depth (nscan). We

refer to modified-scoring MHT as the solution to (4)

based on (13, 19) with a fixed hypothesis tree depth

(nscan). Note that the normalization factor c̄
0
k in (19)

differs slightly from the normalization factor in (12),

since the track hypothesis scores have been modified

with the confirmation reward factors.

The use of the reward factors »2 > »1 > 1 amounts

to favoring confirmed and nearly-confirmed tracks in

the association process. While this appears reasonable

in (sub-optimal) MHT processing, we provide justifica-

tion for the procedure on two grounds: (1) optimality

of modified-scoring MHT in the limiting case of the

tracking problem known as cardinality tracking; (2) sim-

ulation results for the general case. We address (1) next,

while (2) is treated in Section 5.

Let us consider now the case where measurements

are not informative with respect to target state: we are

given only a sequence of cardinality measurements.

Assume we are given birth, death, detection and false

alarm statistics as well as a sequence that specifies the

number of measurements received. An example might

be (1, 2, 3, 3, 1: : :). We must decide how many targets

there are as a function of time.

Note that all filter residuals in (12) are identical,

leading to (20); correspondingly, (19) leads to (21) with

c1 the number of nearly-confirmed tracks and c2 is the

number of confirmed tracks. In this context, note that

measurement gating is not a meaningful concept as all

track updates are equivalent. Then, cardinality tracking

involves identifying the sequence of target cardinali-

ties jXjk given the sequence of measurement cardinali-
ties jZjk.

p(qk j Zk) = pÂÂ(1¡pÂ)¿¡Â(1¡pd)¿¡Â¡dpb+dd ¸bb

¸d+bfa

p(qk¡1 j Zk¡1)
c̄k

(20)

p(qk j Zk) = pÂÂ(1¡pÂ)¿¡Â(1¡pd)¿¡Â¡d»c11 »c22 pb+dd ¸bb

¸d+bfa

¢ p(q
k¡1 j Zk¡1)
c̄k

: (21)

For purposes of the ensuing analysis, it is useful to intro-

duce some assumptions regarding the parameters in (20)

so that the form of the optimal solution to (4) yields a

reasonable structure as explained below. It will be useful

to represent a tracking solution Xk in a compact man-

ner, where each track is represented as a sequence of

existence states, with 1 denoting measurement update,

0 denoting existence with no measurement update i.e. a

track coast, and x denoting non-existence. For example,

(x,x,1,1,0) represents a track that exists beginning with

the third sensor scan, involves two measurements and

one track coast and then terminates.

As a reminder, the assumptions below apply only to

the cardinality-tracking problem.

Assumption 1 (preference for longer tracks).

pd
¸fa

(1¡pÂ)> 1:

Consider jZjk = f1,1g. Assumption 1 insures that
solution X̄k = f(1)g or X̄k = f(x,1)g has lower proba-
bility than X̃k = f(1,1)g, i.e. p(X̃k j Zk)> p(X̄k j Zk).
Assumption 2 (singleton tracks discarded).

¸bpÂ
pd
¸fa

< 1:

Consider jZjk = f1g. Assumption 2 insures that so-
lution X̄k = f(1)g has lower probability than X̃k =Ø, i.e.
p(X̃k j Zk)> p(X̄k j Zk).
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Fig. 1. For jZjk = f1,2,6,4,3,1,2,2,2,1,0,0,2,3,2,1,2,0,3,1g, a Tetris solution with parameter 3 is illustrated above, for which
jXjk = f1,2,3,3,3,1,2,2,2,1,0,0,2,3,2,1,1,0,0,0g. Measurements that are part of the solution are denoted by grey cells.

Fig. 2. A violation of Tetris structure.

Assumptions 1—2 imply the following (preference

for track association). ¸bpÂ < 1¡pÂ.
Consider jZjk = f1,1g. The above inequality insures

that solution X̄k = f(1),(x,1)g has lower probability than
X̃k = f(1,1)g, i.e. p(X̃k j Zk)> p(X̄k j Zk).
Note that Assumptions 1—2 place limits on allowable

clutter rates for non-empty optimal tracking solutions;

the interested reader is referred to [2] for further dis-

cussion of this issue.

We consider now a special case of cardinality track-

ing (pd = 1) for which a number of results can be estab-

lished. First, we define a Tetris solution to be the solu-

tion obtained with sequential track extraction maximiz-

ing track length with contiguous sequences of measure-

ments. The Tetris solution is parameterized by a min-

imum track length parameter, such that tracks shorter

than a specified threshold are extracted. The solution is

best described by illustration: see Fig. 1.

Result 1 (structure of optimal solution). Let pd =

1. An optimal solution to (4) is given by the Tetris

solution with minimum track length parameter

k0 = min
i

(
i,
¸b(1¡pÂ)i¡1pÂ

¸ifa
¸ 1
)
:

Indeed, since tracks with length less than k0 contribute a

score less than unity to the posterior probability, a Tetris

solution with parameter less than k0 is not optimal.

Similarly, a Tetris solution with parameter greater than

k0 will not include tracks that contribute a score greater

than unity to the posterior probability. Thus, such a

Tetris solution is not optimal either. It remains to show

that a non-Tetris solution cannot outperform the Tetris

solution with parameter k0. Assume a non-Tetris optimal

solution exists, and that it cannot be re-expressed as

a Tetris solution by a re-ordering of entire rows (else

the solution is equivalent to a Tetris one). In particular,

the non-Tetris solution must contain two (possibly non-

neighboring) row portions that are as shown in Fig. 2,

where each cell denotes a sequence of zeros or ones of

arbitrary dimension.

We now show that dropping 1B to the lower row (i.e.

partial row reordering) yields a posterior probability that

Fig. 3. Equivalent solution (top) or improved solution in the case

of a short track 1A (bottom).

is equal or higher. Indeed, if 1A is a track of length k0
or greater, the two posterior probabilities are the same

(Fig. 3-top). If 1A is a track of length less than k0,

the solution with the top-row 1A replaced by zeros has

larger posterior probability (Fig. 3-bottom). Thus, by

a sequence of steps of this kind, we recover a Tetris

structure. This shows that a non-Tetris solution cannot

outperform the optimal Tetris one.

Result 2 (optimality of modified MHT). The mod-

ified MHT solution with M = k0, N = k0, K = 0 and

nscan ¸ k0¡ 3 is optimal.
Result 2 is best illustrated by example. First, as-

sume that the target and sensor parameters are such

that k0 = 3 in Result 1. According to Result 2, modi-

fied MHT with nscan ¸ 0 is optimal. Consider the mea-
surement sequence jZjk = f1,2,1g. With standard MHT
with arbitrary nscan, one obtains either the set of tentative

track Xktentative = f(1,1,1)g or Xktentative = f(1,1),(x,1,1)g.
Indeed, there is no preference in terms of posterior prob-

abilities in associating the measurement in the third

scan with the longer or shorter tentative track. Cor-

respondingly, after track extraction, one obtains either

Xk = f(1,1,1)g or Xk =Ø. The cardinality-tracking re-
sult is thus either jXjk = f1,1,1g or jXjk = f0,0,0g. With
modified-scoring MHT, one is guaranteed that the mea-

surement in the third scan is associated to the tenta-

tive track of length two; indeed, this track is nearly-

confirmed, and »1 > 1 in (21) insures that the solution to

(4) yields jXjk = f1,1,1g. Thus, modified-scoring MHT
achieves optimality while standard MHT is not guaran-

teed to do so.

Next, assume once again that k0 = 3 in Result 1 and

consider the measurement sequence jZjk = f1,2,2,1g.
By similar reasoning, we see that standard MHT results

in either Xktentative = f(1,1,1,1),(x,1,1)g or Xktentative =

f(x,1,1,1),(1,1,1)g. After track extraction, one thus ob-
tains either Xk = f(1,1,1,1)g or Xk = f(1,1,1),(1,1,1)g.
The posterior probability associated with the latter so-

lution is the same as for the solution Xk = f(1,1,1,1),
(x,1,1)g. This is immediately seen to have posterior
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TABLE I

Simulation Parameters for the Cardinality Tracking Problem

Parameter Description Setting

Target birth rate 1

Target death probability 0.1

Sensor probability of detection 1

Sensor false alarm rate 0.33

Track initiation 3-of-3

Hypothesis tree depth (nscan) 1

Confirmation reward factors (modified-scoring MHT) 2 (confirmed tracks), 1.5 (nearly-confirmed tracks)

Track termination (maximum missed detections) 0

Number of scans in each scenario realization 100

Number of realizations 1000

probability that does not exceed that of Xk =

f(1,1,1,1)g, since a track of length two does not con-
tribute to the posterior probability (see definition of k0 in

Remark 1). With modified-scoring MHT, the measure-

ment in the fourth scan is guaranteed to be associated to

the confirmed track rather than to the nearly confirmed

one, since »2 > »1 in (21) insures that the solution to (4)

yields jXjk = f1,1,1,1g.
Finally, assume that the k0 = 4 in Result 1 and

consider the measurement sequence jZjk = f1,2,1,1g.
Result 2 tells us that modified-scoring MHT requires

nscan ¸ 1 to insure optimality. Indeed, with nscan = 0, the
measurement in the third scan will be associated with

either the shorter or longer track, since neither is nearly

confirmed. Thus, either Xktentative = f(1,1,1,1),(x,1)g or
Xktentative = f(1,1),(x,1,1,1)g results, from which we

have Xk = f(1,1,1,1)g or Xk =Ø, respectively. This in
turn leads either to solution jXjk = f1,1,1,1g or jXjk =
f0,0,0,0g. Conversely, with nscan = 1, we do not de-
cide on which track is updated with the measurement

in the third scan until the fourth scan is received. Ac-

cordingly, »1 > 1 in (21) insures that the solution to (4)

yields Xk = f(1,1,1,1)g and thus jXjk = f1,1,1,1g.
The importance of this section is that it demonstrates

the superiority of modified MHT over standard MHT

in a limiting case. For this case, we are able to show

that modified MHT with a sufficiently large hypothesis

tree depth achieves optimality in the sense of maximiz-

ing the posterior probability over all hypotheses. Modi-

fied MHT processing introduces a mechanism whereby

preference is given to tracks that have achieved or will

achieve track confirmation. This is an interesting result

in its own right, and provides motivation for use of mod-

ified MHT in a more general setting.

We now illustrate the performance of modified-

scoring MHT and standard MHT approaches to the car-

dinality tracking problem for a specific numerical ex-

ample. The example provides experimental validation

of the claims in Results 1—2. A nice aspect of eval-

uating cardinality tracking is that it is much easier to

provide statistically significant results for which track-

ing parameters are matched to target and sensor charac-

teristics. Indeed, ground truth is obtained via a Poisson

birth-death process and kinematic-space realizations are

absent, so that we are not limited to a small set of
benchmark scenarios. The simulation parameters are
captured in Table I.
The parameters in Table I satisfy Assumption 1—2.

Note that, as sensor measurements are not informative
with regard to target state and are only relevant to target
existence, the tolerable false alarm rates are quite low
compared to a general tracking problem. The tracking
initiation and termination settings and the choice of nscan
are consistent with the requirements for Result 1—2:

¸b(1¡pÂ)2pÂ
¸3fa

> 1>
¸b(1¡pÂ)pÂ

¸2fa
) k0 = 3,

nscan ¸ k0¡ 2) nscan ¸ 1:
An illustration of one realization is given in Fig. 4,
along with the corresponding modified-scoring MHT
output. Note that we provide a compact representation
of ground truth Xk, sensor measurements Zk, and tracker

output X̂k: we illustrate the sequence of cardinalities

jXjk, jZjk, and jX̂jk.
Statistical performance results are based on compu-

tation of the posterior probability p(qk j Zk). We find as
expected that the modified-scoring MHT is optimal in
the posterior-probability sense. Standard MHT suffers a
performance loss resulting in a (normalized) posterior
probability of 0.958. (By normalized posterior proba-
bility, we mean the ratio of the probabilities associated
with the standard and modified MHT solutions, respec-
tively.)

5. SIMULATION RESULTS FOR THE GENERAL
TRACKING PROBLEM

We now evaluate modified MHT and standard MHT
approaches to the general tracking problem for several
scenarios of interest. First, we identify the performance
metrics for this analysis. Our approach to tracker per-
formance evaluation is somewhat novel as we do not
identify a global mapping of tracks to targets. Indeed,
a global mapping can be problematic due to track swap
phenomena, true tracks that are seduced by false con-
tacts and become false tracks, etc. Instead, we rely on
a scan-based association of tracks to targets consistent
with the recently-introduced Optimal Subpattern As-
signment (OSPA) metric [11].
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Fig. 4. One realization of truth, measurement and optimal track cardinality sequences.

For each scan time ti 2 (t1, : : : , tN), we have an Ni£Mi
cost matrix Ai where Ni and Mi are the number of

targets and tracks in existence, respectively. Given a

distance threshold » on feasible track-truth assignments,

we determine the optimal OSPA assignment between

tracks and targets for each scan in a given dataset as

described in [11]. For a given scan, those tracks that are

assigned to targets are deemed to be true track instances.

Correspondingly, there is a detected target instance. Let

gi denote the number of such (target, track) pairs for the

scan at time ti. Next, we compute the following metrics

for each scenario realization:

² Track PD–ratio of total number of true track in-
stances (summed over all scan times) to total number

of target existence instances (summed over all targets

and all scan times):
PN
i=1gi=

PN
i=1Ni;

² Track quality–ratio of number of true track instances
and total number of track instances:

PN
i=1 gi=

PN
i=1Mi;

² Track purity–ratio of number of true track instances
that are as well from the mode assignment (i.e. from

the most frequently associated target) and total num-

ber of track instances:
PN
i=1 ḡi=

PN
i=1Mi; here, ḡi · gi

is the number of truth-track assignments where truth

is the mode target for the track, i.e. the target to which

the track is associated the most.

² Track rate–ratio of total number of tracks to total
number of targets;

² Track localization error–average displacement be-
tween true track instances and corresponding target

location that we denote by ¾T.

Since our metrics do not rely on classifying each

track as true or false, the false track statistics are un-

derstood as follows. First, the track rate metric answers

the question: how many tracks does the system gener-

ate, relative to the true number of targets? Secondly, the

track quality metric answers the question: for any given

track at any given time, what is the probability that it is

target originated? That is, track quality is the total dura-

tion of good tracks as a fraction of the overall duration

of all tracks. Thus, these metrics provide an assessment

of how much false track (both in number and in dura-

tion) is generated by the system, without the need for

global track assessment that is often problematic when

tracks are partially target-originated and partially false.

We report here on our metrics, where for each of

three benchmark scenarios the metrics are averaged over

multiple Monte Carlo realizations. Complete simulation

parameters are identified in Table II. Illustrations of

one modified MHT tracker output realization of each of

three scenarios are given in Figs. 5—7; Fig. 8 illustrates

the realization of the corresponding measurement data

for the third scenario. Scenario 1 includes three linear-

motion targets that move with identical speeds but dis-

placed in the y dimension and with different birth and

death times. Scenario 2 includes a single maneuvering

target. Scenario three includes three maneuvering tar-

gets that are matched in birth and death times and in

velocities and are displaced in the x dimension.

Monte Carlo performance results are given in Ta-

bles III—IV.

Encouragingly, for all scenarios we find improved

performance with respect to all performance metrics

of interest for modified MHT processing over standard
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TABLE II

Simulation Parameters for the General Tracking Problem

Parameter Description Setting (for scenario 1; 2; 3 respectively)

Monte Carlo realizations 100 (for each of the three scenarios)

Scenario duration 150 sec

Number of targets 3; 1; 3

Target birth (x,y) positions (¡40,5), (¡20,0), (¡40,¡5); (¡40,¡5); (¡40,¡5), (¡35,¡5), (¡30,¡5) m/sec
Target (x,y) velocities (0:5,0);(0:5,0:5) or (0:5,¡0:5); (0:5,0:5) or (0:5,¡0:5) in m/sec-all turns after 25 s

Target birth times from start (10,50,10); 10; (10,10,10) sec

Target death times from start (140,140,100); 110; (110,110,110) sec

Sensor footprint 2000 m2

Sensor revisit rate 1 Hz

Sensor probability of detection 0.8

Sensor false alarm rate 5

Sensor measurement error covariance in x,y 1 m2

Track initiation 6-of-6

Hypothesis tree depth (nscan) 1

Target birth rate 0.01

Target death probability 0.01

Confirmation reward factor (modified MHT) 2 (confirmed tracks), 1.5 (nearly-confirmed tracks)

Track termination (maximum missed detections) 2

Prior velocity covariance in x,y 1 m2/s2

Filter process noise in x,y 0.001 m2/s3

Data association gate 99%

Distance threshold for track-truth association 2

TABLE III

Performance Results for the Benchmark Scenarios

(Numerical results are based on 100 Monte Carlo realizations for each of the three scenarios.)

Scenario (description) Tracker Modality Track PD Track Quality Track Purity Track Rate Track Loc. Error

1 (3 linear) standard MHT 0.915 0.850 0.780 1.90 0.825

1 (3 linear) modified MHT 0.925 0.918 0.867 1.58 0.755

2 (1 maneuvering) standard MHT 0.739 0.847 0.847 3.45 1.111

2 (1 maneuvering) modified 3.45 1.111

2 (1 maneuvering) modified MHT 0.759 0.869 0.869 3.41 1.092

3 (3 maneuvering) standard MHT 0.780 0.778 0.682 4.20 1.242

3 (3 maneuvering) modified MHT 0.809 0.820 0.727 3.97 1.235

TABLE IV

Incremental Performance Benefit of Modified MHT, Averaged Across Scenarios, with Respect to all Metrics of Interest: Higher Track PD,

Track Quality, and Track Purity; Lower Track Rate and Track Localization Error

(Numerical results accounts for all 300 Monte Carlo realizations.)

Metric Track PD Track Quality Track Purity Track Rate Track Loc. Error

Percent change 2.43% 5.34% 8.10% ¡6:09% ¡3:02%

MHT. (Note that for track rate and track localization er-

ror, a reduction indicates improved performance.) Not

surprisingly, since the scenarios are of increasing com-

plexity we find consistently lower performance as we

move from scenario 1 to scenario 2, and again from

scenario 2 to scenario 3, as can be seen in the track

quality, track rate, and track localization error. The one

exception to the trend is track PD as we go from sce-

nario 2 to scenario 3, though this can be explained: for

multi-target scenarios, it is sufficient for a track instance

by be close to any target to be deemed a detection, thus

the presence of multiple nearby targets makes this easier

to achieve.

Track purity is the same as track quality in the

single-target scenario (scenario 2); in multi-target sce-

narios, track purity is lower than track quality as we re-

quire not only good track instances but from the same

target as well. Indeed, track purity reflects the impact

of track switching, whereby the target associated with a

track may change over time. If no switching occurs,

track purity equals track quality. Figure 6 illustrates

what occasionally occurs, even in single-target settings:

track fragmentation whereby the first track is seduced

by false returns, and a second track is initiated. Note that

our OSPA-based metrics correctly classify at most one

track update as associated with each target at any time.
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Fig. 5. An example realization of scenario 1 (target trajectories are

dotted lines and modified MHT tracks are solid lines).

Fig. 6. An example realization of scenario 2 (target trajectories are

dotted lines and modified MHT tracks are solid lines).

TABLE V

Fusion Gain Computation (1:18 = 0:959=0:813)

Tracker Modality IQ-scenario 1 IQ-scenario 2 IQ-scenario 3 IQ-average

Standard MHT 1.249 0.686 0.510 0.813

Modified MHT 1.610 0.729 0.532 0.959

Thus, the fragmentation and track redundancy observed

here are reflected in degraded track rate, track quality,

and track purity values.

It is helpful to capture tracker performance improve-

ment with a single scalar metric, using the notion of

information quality [4]; as discussed in [4], this notion

can be related to the information reduction factor dis-

cussed in [15]. Information quality (IQ) is the average

information content (in a Fisher information sense) of

an arbitrarily-selected output track instance. With some

probability, the track is associated with a true target: this

Fig. 7. An example realization of scenario 3 (target trajectories are

dotted lines and modified MHT tracks are solid lines).

Fig. 8. Measurement data for one run of scenario 3 (crosses are

target-originated returns and dots are false alarms).

is given by the track qualitymetric. Correspondingly, the

information content is given by the Fisher information,

which in turn is the inverse of the track error covari-

ance matrix. Thus, IQ is the product of track quality

and Fisher information:

IQ =

PN
i=1gi

¾2T
PN
i=1Mi

: (22)

Further, we can evaluate fusion gain as the IQ ratio of

two competing tracking solutions. For the results cap-

tured in Table III, we find that modified MHT provides a
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fusion gain of 1.18 (or 18%) over standard MHT. This

is obtained by computing the ratio of average IQ for

modified MHT and average IQ for standard MHT. Fur-

ther details are in Table V. Note that, not surprisingly,

for both tracker solutions the IQ metric degrades with

increasing scenario difficulty.

6. CONCLUSIONS

This paper provides a compact and accessible intro-

duction to track-oriented multiple-hypothesis tracking

(MHT). It shows that track-oriented MHT does not suf-

fer from the so-called target-death problem that has been

observed in the probabilistic hypothesis density (PHD)

filter. Unfortunately, the MHT exhibits a problem of its

own, whereby unconfirmed tracks are often found to

take contacts away from confirmed or nearly-confirmed

tracks, degrading their quality.

We first study this problem in a simplified context

with no measurement state information: this formula-

tion reduces to the cardinality tracking problem. For

this problem, and with the further assumption of unity

detection probability, we are able to establish structural

results for the optimal tracking solution and, remark-

ably, we find that the modified MHT solution with

appropriately-selected track initiation and termination

criteria and with sufficient hypothesis tree depth is guar-

anteed to achieve optimality. Simulation results are con-

sistent with our theoretical findings.

The performance characteristics of modified-scoring

MHT in the simplified cardinality-tracking context mo-

tivate its use for more general tracking problems. We

study several benchmark scenarios and find improved

performance for modified-scoring MHT over standard

MHT. It is important to note that in all scenarios, all

targets die before the scenario end; thus, there appear

to be no negative side-effect to modified-scoring MHT

processing whereby confirmed tracks are kept alive de-

spite target death.

In a nutshell, modified MHT scoring is needed since

we cannot perform batch track extraction from the set of

track hypotheses. Indeed, batch extraction would incur

computational infeasibility (unbounded nscan) as well

as large reporting latency. Accordingly, we must use

(suboptimal) sequential track extraction. Favoring good

(i.e. confirmed or nearly-confirmed) tracks over tenta-

tive ones in the extraction process can be motivated on

two grounds: (1) empirically, as the scheme is found

to perform better; (2) in a limiting (albeit simplistic)

case–cardinality tracking, the scheme matches the per-

formance of optimal batch extraction, provided nscan is

large enough (where the lower bound is quantified).

While (1—2) do not prove that modified MHT is better

than standard MHT, they do provide meaningful prac-

tical & theoretical motivation.

Our scheme is similar in its effects to the two-stage

assignment scheme that has been adopted in an MHT

setting [13—14]; indeed there is a need to balance track

initiation and maintenance. A merit of our work, we

think, is to emphasize an often-ignored aspect of mak-

ing MHT work well in practice. Interestingly, giving

preference to established tracks is a scheme whose ap-

plicability is not limited to the MHT approach; a re-

cent example in the context of the Histogram Probabilis-

tic Multi-Hypothesis Tracker (H-PMHT) may be found

in [5].

REFERENCES

[1] S. Blackman and R. Popoli

Design and Analysis of Modern Tracking Systems.

Artech House, 1999.

[2] S. Coraluppi and C. Carthel

Aggregate surveillance: A cardinality tracking approach.

In Proceedings of the 14th International Conference on In-

formation Fusion, Chicago IL, July 2011.

[3] S. Coraluppi, C. Carthel, M. Luettgen, and S. Lynch

All-source track and identity fusion.

In Proceedings of the National Symposium on Sensor and

Data Fusion, San Antonio TX, June 2000.

[4] S. Coraluppi, M. Guerriero, and C. Carthel

Fusion gain in multi-target tracking.

In Proceedings of the 13th International Conference on In-

formation Fusion, Edinburgh, Scotland, July 2010.

[5] S. Davey

Histogram PMHT with particles.

In Proceedings of the 14th International Conference on In-

formation Fusion, Chicago IL, July 2011.

[6] O. Erdinc, P. Willett, and Y. Bar-Shalom

The bin-occupancy filter and its connection to the PHD

filters.

IEEE Transactions on Signal Processing, 57, 11 (Nov. 2009).

[7] T. Kurien

Issues in the design of practical multitarget tracking algo-

rithms.

In Multitarget-Multisensor Tracking: Advanced Applications,

Y. Bar-Shalom (Ed.), Artech House, 1990.

[8] C. Morefield

Application of 0-1 integer programming to multitarget

tracking problems.

IEEE Transactions on Automatic Control, 22, 3 (June 1977).

[9] A. Poore and N. Rijavec

A Lagrangian relaxation algorithm for multidimensional

assignment problems arising from multitarget tracking.

SIAM J. Optimization, 3, 3 (Aug. 1993).

[10] D. Reid

An algorithm for tracking multiple targets.

IEEE Transactions on Automatic Control, 24, 6 (Dec. 1979).

[11] D. Schuhmacher, B.-T. Vo, and B.-N. Vo

A consistent metric for performance evaluation of multi-

object filters.

IEEE Transactions on Signal Processing, 56, 8 (Aug. 2008).

[12] P. Storms and F. Spieksma

An LP-based algorithm for the data association problem in

multitarget tracking.

In Proceedings of the 3rd International Conference on Infor-

mation Fusion, Paris, France, July 2000.

[13] A. Sinha, Z. Ding, T. Kirubarajan, and M. Farooq

Track quality based multitarget tracking algorithm.

To appear in IEEE Transactions on Aerospace and Electronic

Systems.

[14] A. Sinha, Z. Ding, T. Kirubarajan, and M. Farooq

Track quality based multitarget tracking algorithm.

In Proceedings of the SPIE Conference on Signal and Data

Processing of Small Targets, Orlando FL, Apr. 2006.

[15] X. Zhang, P. Willett, and Y. Bar-Shalom

Dynamic Cramer-Rao bound for target tracking in clutter.

IEEE Transactions on Aerospace and Electronic Systems, 41,

4 (Oct. 2005).

MODIFIED SCORING IN MULTIPLE-HYPOTHESIS TRACKING 163



Stefano Coraluppi received the B.S. degree in electrical engineering and mathe-

matics from Carnegie Mellon University (1990), and M.S. and Ph.D. degrees in

electrical engineering from the University of Maryland (1992, 1997).

Dr. Coraluppi has worked on the research staff at ALPHATECH Inc. (1997—

2002), the NATO Undersea Research Centre (2002—2010), and Compunetix Inc.

(since 2010). He has contributed to programs in ground, undersea, maritime and air

surveillance for security and defense applications. In 2006, he was general cochair

(with Professor Peter Willett) for the ISIF/IEEE 9th International Conference on

Information Fusion in Florence, Italy. Currently, he serves on the Board of Directors

of the International Society of Information Fusion (ISIF), for which he served as

president in 2010. He is associate editor for target tracking and multisensor systems

for the IEEE Transactions on Aerospace and Electronic Systems and area editor

for tracking for the ISIF Journal of Advances in Information Fusion. His research

interests include multi-target tracking, data fusion, detection and estimation theory,

and optimal and stochastic control.

Craig Carthel received B.S. degrees in physics and mathematics in 1988, a M.S. in
mathematics in 1992, and a Ph.D. in mathematics in 1995, all from the University

of Houston.

He is a principal scientist at Compunetix Inc. in Monroeville, PA. He did research

in numerical analysis and optimization theory at the University of Houston. From

1995 to 1997, he worked at the Institute for Industrial Mathematics at Johannes

Kepler University, in Linz, Austria on parameter identification and inverse problems.

From 1998 to 2002, he was a senior mathematician at ALPHATECH Inc. in

Burlington, MA, where he worked on image processing, multisensor data fusion,

and ground target tracking. From 2002 to 2010, he was a senior scientist in the

Applied Research Department at the NATO Undersea Research Centre in La Spezia,

Italy, where he worked on military operations research, simulation, optimization, and

data fusion problems associated with maritime environments. In 2006, he served as

the technical program chair for the 9th International Conference on Information

Fusion.

164 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 7, NO. 2 DECEMBER 2012


