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This paper discusses the Maximum Likelihood (ML) algorithm

for the self-localization of passive (angular) or active (angle and

range) sensors using targets of opportunity. The approach, which

is considered in two dimensions, is appropriate when traditional

alternatives, such as the use of known-location targets or satellite

navigation systems, are unavailable. It is not assumed that the

sensors can “see” each other, though they are assumed to take

measurements with respect to a common (biased) axis. Unlike

previous ML algorithms, we take into account the circular nature of

the angular measurements, allowing for more accurate estimates to

be obtained. A simple least-squares method is additionally provided

for initialization. Simulations demonstrate that the accuracy of the

ML estimator approaches the Cramér-Rao Lower Bound (CRLB),

something that similar algorithms have been unable to achieve.
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1. INTRODUCTION

Due to their low cost and ease of deployment, the

use of passive acoustic sensors for target tracking has

seen increasing popularity. Such systems might consist

of individual microphones or hydrophones that self-

assemble into arrays [24], or, perhaps, sensors consist-

ing of clusters of microphones or hydrophones, each

producing measurements consisting of arrival angles

and features/attributes for use in data association [19].1

The clusters of microphones or hydrophones form indi-

vidual sensors, which can also be referred to as “nodes”

in the system. This paper focusses on the latter sce-

nario, localizing sensors with measurements taken with

respect to a common, unknown coordinate axis. Deter-

mining which detection on one sensor corresponds to

the same target on another sensor (measurement asso-

ciation) might be accomplished, for example, by utiliz-

ing acoustic patterns for classification, as has previously

been done to aid acoustic tracking [19]. Target tracking

is not considered here. The scenarios considered focus

on angular noise levels up to 2± (root-mean squared er-
ror), which is the accuracy of the sensors in [19], though

acoustic sensors can often have significantly worse an-

gular accuracies.

When considering the construction of land-based

sensor networks, it cannot be assumed that satellite-

based localization systems, such as GPS (USA) or

GLONASS (Russia), will be available, and such signals

cannot penetrate far underwater. However, many non-

satellite-based location estimation algorithms, which

have been primarily designed for use in underwater and

wireless networks may be used. A number of methods

applied to sonar channels are described in [4]. These

approaches typically utilize the communication charac-

teristics between sensors and are divided into two cate-

gories: range-based and range-free. Range-based meth-

ods utilize range (distance) measurements. Range-free

schemes do not utilize range information. Both tech-

niques might take advantage of moving anchor nodes

that broadcast their position [6, 9, 13, 22].

Our focus is on algorithms for node localization

based on the angle-only observations of the nodes,

though we do consider the case where range measure-

ments are also available. Estimates based on angle-only

measurements are particularly useful when the sensors

have a limited broadcast range. Underwater, this might

be the case when the sensor network is built using data

MULEs (Mobile Ubiquitous LAN2 Extensions) [21]. A

data MULE is a mobile device that approaches the sen-

sors to collect data. In such a network, traditional meth-

ods of sensor localization, which rely on communication

channels between sensors, are not applicable.

1Given multiple targets in a scene, features, such as the range-Doppler

profile of different targets, can be used in target tracking algorithms

to determine which measurements originated from which targets.
2Local Area Network
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The node localization algorithm considered in this

paper can also be used with networks of wireless land-

based acoustic sensors. Though many localization tech-

niques using aspects of the wireless communication

channel between sensors exist, estimates of the sensor

locations obtained using acoustic data can reasonably be

expected to be uncorrelated with those obtained using

more traditional means. Multiple uncorrelated estimates

can be easily fused, improving the overall accuracy. Un-

der the typical assumption that the noise on the estimates

is Gaussian distributed, estimate fusion via the least

squares algorithm [1, Ch. 3] requires that the covariance

matrix of the individual estimates be known. Thus, in

Section 7, the Cramér Rao Lower Bound (CRLB), a

lower bound on the error of an unbiased estimator, is

derived for the estimation problem at hand. Since the

accuracy of the ML estimation method derived in this

paper approaches the CRLB, as demonstrated in Sec-

tion 7, the CRLB should be an accurate approximation

for the covariance matrix of the estimate at low noise

levels. However, being a lower-bound, in more difficult

(nonlinear) estimation problems, or when the signal to

noise ratio is low, the CRLB tends to be overly opti-

mistic. The validity of the CRLB for estimate fusion is

not considered in this paper.

A maximum likelihood (ML) solution to localiz-

ing both passive and active nodes is outlined in [16].

Though sensors often cannot take measurements span-

ning a full 360±. Additionally, the distribution of the
noise corrupting angular measurements often depends

upon the geometry of the target with respect to the hy-

drophone or microphone array taking the measurement.

Nonetheless, it is common practice for the noise cor-

rupting angular measurements to be modeled as Gaus-

sian, which is not bounded to a range of 0 to 2¼ radians.

Since the sensors can face any direction, the angular

measurements taken by the sensors in a global coordi-

nate system can span the range of 0 to 2¼ or ¡¼ to
¼, depending upon where the boundary is placed. The

Gaussian noise approximation is often good except near

the discountinity (0—2¼ or ¡¼—¼). Figure 1 illustrates the
boundary problem. This paper rederives the ML algo-

rithm accounting for the idiosyncrasies of circular data.

Section 2 discusses the signal model and the ML solu-

tion is provided in Section 4. Since poor performance is

generally observed when using a random initialization,

Section 5 discusses the generation of initial estimates

without prior information. Though this work focusses

on angle-only networks, the case where 2D range mea-

surements are also available is additionally considered.

Section 7 demonstrates the performance of the algo-

rithms through simulation and Section 8 summarizes

the results.

With the exception of [16], few algorithms have

been developed to jointly localize and determine the ori-

entation of angle-only sensors. A significant amount of

work has been done regarding localizing users within

cellular networks [23], with very little attention paid

Fig. 1. The traditional linear measurement model as applied to

circular data with a mean of 60± does not accurately represent the
uncertainty in the likelihood of observations near the 0—2¼

boundary, as illustrated for the Normal distribution. In this case, a

significant portion of the density is clipped. A circular measurement

model (illustrated by the dashed line) more accurately reflects the

underlying uncertainty.

to the angle-only measurement case. In what has been

done, a single user must always be in range of at

least two base stations (anchor nodes). Other work has

considered similar issues for cellular networks [17],

whereby all users are in range of a number of anchor

nodes. In our solution, no target ever needs to be si-

multaneously observed by two nodes of a known lo-

cation provided that conditions for observability, which

are discussed in Section 3, are met.

In [18] an algorithm for localizing sensors that can

see their neighbors was developed. The algorithm is

deterministic and errors compound with propagation

distances. An attempt to mitigate this problem was given

in [11], where a linear programming method was used

to improve the consistency of the angular measurements

between sensors before the deterministic localization

algorithm was executed. In both instances, it is generally

assumed that if one sensor can see another, then the

reverse is true. Thus, these algorithms are not applicable

to the case where targets of opportunity are observed.

Another method involving semidefinite programming

was given in [3], but it requires the use of a heuristic

parameter that depends upon the size and geometry of

the network.

Many papers dealing with sensor registration only

correct for residual bias after an initial estimate has been

obtained. Most require full range and angle estimates

(see [5] for an extensive bibliography), though some are

adaptable to the range-only case [20]. The majority of

algorithms only estimate the sensor orientations, though

some can also estimate the sensor positions [14]. Most

approaches utilize some type of linearization and none

of them are applicable to the aforementioned estimation

scenarios when no initial estimate is available.

2. DEFINITIONS AND MODELS

We assume that all angular and, if available, range

measurements are taken in two dimensions with respect

to a common axis, which need not be known. The sen-

sors and the targets are assumed to be individual points

in space. The measurements between sensors are as-
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sumed to be synchronized. That is, in each scan, mea-

surements from disparate sensors represent the angle

from the sensor to the targets at the same time (at the

same target position).3 It should be noted that individual

observations may occur simultaneously or at different

times if a target is stationary. A measurement of the

same target at a different time shall simply be consid-

ered as another target in the context of this problem,

since tracking is not performed (admittedly such infor-

mation would help, but here we ignore it). If multiple

targets are present at the same time, then classification

information may be used to associate measurements be-

tween the sensors. We will not address the problem

where measurements cannot be associated between sen-

sors, in which case there may be multiple possible solu-

tions for the target location based upon a particular set

of observations.

When dealing with angles, it will become necessary

to utilize a four-quadrant inverse tangent function with

range (¡¼,¼], which is defined as follows

atan2[y,x]
¢
=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

arctan
hy
x

i
x > 0

arctan
hy
x

i
+¼ x < 0, y ¸ 0

arctan
hy
x

i
¡¼ y < 0, x < 0

¼

2
x= 0, y > 0

¡¼
2

x= 0, y < 0

0 x= 0, y = 0

(1)

where arctan represents the standard inverse tangent

function with range (¡¼=2,¼=2).
Let μs,t and rs,t be the angular and (if available) range

measurements from sensor s observing target t. Both

shall be assumed corrupted with zero-mean additive

noise:

μs,t = μtrues,t +w
μ
s,t (2)

rs,t = r
true
s,t +w

r
s,t: (3)

All of the additive noises are assumed independent. The

range noise, wrs,t, is assumed to be distributed Gaussian

Nf0,¾2r g. The Gaussian noise assumption is commonly
used despite the fact that one will never measure a

negative range.4 As the targets can be assumed to be

far from the sensors compared to the standard deviation

of the noise (> 30¾), this approximation is accurate.

However, the use of a Gaussian approximation for noise

corrupting angular measurements is more problematic.

3This is equivalent to saying that the sensors are assumed to be syn-

chronized and the propagation delay between a target and a sensor is

assumed to be negligible.
4The normal distribution is unbounded, implying that there exists a

probability, however small, of measuring a negative range.

When dealing with angular measurements, many

traditional statistical concepts need to be redefined due

to the “wrapping” of the distribution about the circle

and due to problems at the 0—2¼ boundary. For example,

the traditional notions of mean and variance no longer

provide useful quantities; a sample mean of ¡¼ and ¼
would yield zero, which is the worst possible estimate,

since ¡¼ and ¼ represent the same point on the circle.
For this reason, a lot of research has been done with

regard to statistical methods relating to directional data

in multiple dimensions [7, 8, 15]. Our definition of the

mean direction and circular standard deviation are based

on the following trigonometric moments

®
¢
=E[cosμ], ¯

¢
=E[sinμ]: (4)

The mean resultant length, ½, and mean direction, ¹μ,

are defined in terms of these moments through the polar

relation
®+ j¯ = ½ej¹μ : (5)

Thus, the magnitude of ®+ j¯ is the mean resultant

length, and its phase is the circular mean. The circular

standard deviation is defined as

¾μ
¢
=
p
¡2ln½: (6)

The maximum likelihood sensor localization algo-

rithm derived in [16] using common targets of oppor-

tunity assumed that angular measurements of the target

locations were corrupted with additive Gaussian noise.

That is, the distribution of the angular measurement was

p(μ) =
1p
2¼¾2

exp

μ
¡ (μ¡¹)

2

2¾2

¶
: (7)

As will be demonstrated in Section 7, maximization

based upon the algorithm in [16] yields results that are

often very useful but, depending upon the geometry

of the sensors and the observed targets, can also be

quite far from the CRLB. In other words, the estimator

cannot be statistically efficient without accounting for

the circularity of the measurements. This paper accounts

for the circularity of the noise.

In the following subsections, we consider three noise

distributions appropriate for circular data: the wrapped

normal distribution, the clipped mod normal distribution

and the von Mises distribution. At low circular standard

deviations, less than around 20± or ¼=9 radians, all of
the distributions are essentially the same, as shown in

Fig. 2. However, as the standard deviations increase, the

differences become more profound, with the von Mises

distribution distinguishing itself the most from the other

two.

If an angular measurement is truly corrupted with

additive Gaussian noise, which is often a good assump-

tion due to the Central Limit Theorem, then the noise

effectively gets wrapped on the region from 0 to 2¼ or

¡¼ to ¼, depending upon where one wishes to make the
cut. For this reason, the wrapped normal distribution,
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Fig. 2. When the circular standard deviation is low, as in (a), then the distributions shown are essentially the same. Increasing the circular

standard deviation, the von Mises differentiates itself first, and only when the circular standard deviation is very high are the two normal

distributions significantly different. The plot ranges are §1:5¾μ . (a) ¾μ = 1±. (b) ¾μ = 80±.

discussed in Section 2.1, is the most natural distribu-

tion to use. Moreover, the circular mean and standard

deviation in the wrapped normal distribution have an

easy-to-understand meaning: they are equal to the mean

and standard deviation of the linear normal distribution

that got wrapped to the circle [15]. Indeed, if the stan-

dard deviation is small and the mean is far from the

boundary, then both distributions are nearly the same.

On the other hand, array processing generally does

not directly yield angular measurements, but rather unit

vectors pointing toward the targets. Processing the mea-

surements in their original (array) coordinates can pos-

sibly avoid the boundary issues illustrated in Fig. 1.

However, many sensors only provide angular measure-

ments. If one converts such unit vectors having compo-

nents corrupted with Gaussian noise into angles, then

the angular measurements are von Mises distributed

[15, pg. 42]. The von Mises distribution is discussed

in Section 2.3.

2.1. The Wrapped Normal Distribution

The wrapped normal distribution is obtained when

Gaussian noise is added to a circular datum. As dis-

cussed, for example in [7], [15], if the additive noise is

distributed as Nf¹,¾2g, then the wrapped normal dis-
tribution has the following PDF

p(μ) =
1

2¼

Ã
1+2

1X
k=1

½k
2

cos[k(μ¡¹)]
!

(8)

where

½= e¡¾
2=2 (9)

and ¡¼ · μ < ¼. The aforementioned definitions of the

mean direction and circular standard deviation are such

that ¹μ = ¹ and ¾μ = ¾.

2.2. The Clipped Mod Normal Distribution

We developed the clipped mod normal distribution

as a simple approximation that avoids the infinite sum

present in the wrapped normal distribution. It comes

from the assumption that almost all of the mass of the

Gaussian noise added to the measurement is within §¼
of the mean. In this case, shifting the cutting region

as far as possible from the mean and discarding the

mass that would have been wrapped (in this case, almost

nothing) and renormalizing the distribution is a good

approximation of the distribution on the circle. Thus,

the wrapped normal distribution may be approximated

by the following shifted and clipped distribution

p(μ) =
1

c
exp

μ
¡ [m(μ¡¹)]

2

2¾2

¶
(10)

where

c= ©
h¼
¾

i
¡©

h
¡¼
¾

i
(11)

m(μ) =

8><>:
μ¡ 2¼ if μ > ¼

μ+2¼ if μ <¡¼
μ otherwise

(12)

and ¡¼ · f¹,μg< ¼, © is the cumulative distribution of
the standard normal distribution, and c is the normaliz-

ing constant. Because the function m(μ¡¹) is squared,
other forms for m are also valid. Note, however, that

one cannot replace m with the modulo over ¼ or over

2¼, because that would assign large penalties to small

negative offsets.

2.3. The von Mises Distribution

The von Mises distribution was derived in 1918 by

Richard von Mises in an attempt to statistically deter-

mine whether the atomic weights of elements were inte-

ger multiples of a common base unit of weight, whereby

non-integer measurements would be attributed to noise.5

The von Mises distribution (on the circle) has been

widely studied, in part to due to its similarity to the

wrapped Cauchy distribution and the wrapped normal

5He concluded that the likelihood at the zero point (that the atomic

weights are integers) was nine times greater than the average likeli-

hood across the rest of the circle, which did not tell him very much.
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distribution. More information on the von Mises dis-

tribution and its multidimensional generalizations (von

Mises-Fisher distributions) can be found in [7], [8],

[15]. The von Mises distribution is given by

p(μ) =
1

2¼I0(·)
exp(·cos[μ¡¹μ]) (13)

where ¹μ is the mean direction, ¡¼ · fμ,¹μg< ¼, and
0· · <1. The value · is a measure of the concen-
tration of the distribution and is inversely proportional

to the circular standard deviation. The function Iº is a

modified Bessel function of the first kind. For an integer

º, Iº is given by

Iº(·) =
1

¼

Z ¼

0

exp[·cos[μ]]cos[ºμ]dμ: (14)

The mean resultant length of the von Mises distribu-

tion is

½=
I1(·)

I0(·)
: (15)

The von Mises distribution approximates a wrapped

Normal distribution having the same mean and circular

standard deviation. Given ·, the circular standard devia-

tion can be calculated from (15) and (6). Finding a value

of · corresponding to a particular circular standard devi-

ation can be performed using a simple numerical search.

However, the mean resultant length in (15) can be hard

to evaluate for accurate measurements. For example, if

¾μ = ¼=180, that is a 1
± standard deviation, a reasonable

value for an accurate sensor, then ·¼ 3283. Though ½
is just under one, I1(·)¼ 5:81£101423, a number that
cannot be stored in a computer’s double-precision float-

ing point register. However, the ratio in (15) may be

expressed as an infinite sum. Methods for computing

the ratio are compared in [10] and the most efficient

method for this problem is summarized in Appendix B.

The calculation of this ratio is important for evaluating

the CRLB, as discussed in Section 6.

3. THE OBSERVABILITY OF THE SENSOR
LOCATIONS

The requirements for observability in the angle-only

case shall be considered. Figure 3 shows a system with

three sensors, s1, s2, and s3. Suppose that the location of

s1 is known. In this case, all angles in the system may

be preserved by scaling everything around s1. That is,

the locations of s2 and s3 are not observable if only s1
is known. Now suppose that both s1 and s3 have known

locations. In this case, the locations of the targets t1 and

t2 can be uniquely determined (we know this from the

angle-side-angle theorem of planar geometry).

Given that the locations of s1 and s3 are known, if

only target t1 were observed, then, having angle-only

measurements, the location of s2 could not be uniquely

determined, because the observed angle at s2 simply

defines a line passing through t1. If both t1 and t2 were

observed, then, as shown in Fig. 3(b) angles μ1, μ2 and μ3

Fig. 3. A system with three sensors and two targets in (a). If the

location of two sensors is known, then the locations of the targets

may be uniquely determined as well as the third sensor location.

are all known. Similarly, because s1 and s3 have known

locations, the locations of t1 and t2 are known exactly.

Thus, the location of s2 may be solved by considering

the intersection of the line passing through t1 at an angle

of μ3 with respect to the x-axis with the line passing

through t2 at an angle of μ1 + μ3 with respect to the x-

axis. Note that this will not work if t1 and t2 are collinear

with respect to s2.

All together, in order for the locations of sensors

in a network consisting of angle-only observations to

be observable, the locations of at least two sensors

must be known a priori (anchor nodes). Additionally,

at least two targets must be observed by the sensors.

However, the anchor nodes need not observe common

targets if connected subsets of sensors between them can

observe the targets seen by the anchor nodes. Section 5

presents an algorithm for generating initial estimates of

the sensor locations by solving a set of linear equations.

In that case, this observability criterion manifests itself

as a requirement that the matrix in the linear equation

be invertible. The fact that the anchor nodes need not

be simultaneously seen by all sensors is made clearer

through simulation in Section 7 where the anchor nodes

never see the same targets simultaneously.

When range measurements are available, the sit-

uation becomes simpler, because a single sensor can

uniquely identify the location of a target. Thus, the loca-

tion of any additional sensor seeing the target may also

be determined. This means that the location of only one

sensor needs to be known. However, if measurements

are taken with respect to a common, unknown axis, then

two sensor locations must be known in order to resolve

the angular ambiguity.

4. MAXIMUM LIKELIHOOD ESTIMATION

This section presents a general formulation of the

maximum likelihood estimator using range measure-

ments and angular measurements taken with respect to a

common, unknown axis. If range measurements are not

available or if the measurement axis is known, then the

appropriate terms in the objective function and gradient

should be omitted. Defining wri,j and w
μ
i,j to be uncor-

related additive noise corrupting the range and angular

components of the measurement from sensor i to target
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location j, [ to be the “bias” on the angular measure-

ments (representing the fact that they are taken with re-

spect to an unknown axis), then, using the measurement

model given in Section 2, a measurement consisting of

a range, ri,j and angle, μi,j is given by

ri,j =

q
(y
j
t ¡ yis)2 + (xjt ¡ xis)2 +wri,j (16)

μi,j = atan2[y
j
t ¡ yis,xjt ¡ xis]+ [+wμ

i,j (17)

where (x
j
t ,y

j
t ) are the Cartesian coordinates of target j,

and (xis,y
i
s) are the coordinates of sensor i. The assump-

tion that wri,j and w
μ
i,j be uncorrelated does not always

hold. However, there do not appear to be readily avail-

able probability distributions that can jointly represent

the linear nature of the range measurement and the cir-

cular nature of the angular measurement.

Defining the vectors s and t to be the sets of all

unknown sensor and target locations, the likelihood

function is the product of the likelihoods for the ranges

and angles

¤(s, t,μb) =
Y
i,j

pr(ri,j js,t,[)pμ(μi,j js,t,[) (18)

where the product in (18) is over all pairs (i,j) where

sensor i observes target j. It is assumed that the range

measurements are corrupted with normally distributed

noise as

p(ri,j js,t,[)»N
·q

(y
j
t ¡ yis)2 + (xjt ¡ xis)2, (¾ri,j)2

¸
:

(19)

The distribution of μi,j depends upon which model from

Section 2 we are using.

Determining the maximum of (18) is equivalent to

finding the minimum of the negative log-likelihood of

(18), designated as ¸(s,t), which (discarding constant

terms) has the following form:

¸(s,t,[)

=

¸rz }| {X
i,j

¡1
2(¾ri,j)

2

μ
ri,j ¡

q
(y
j
t ¡ yis)2 + (xjt ¡ xis)2

¶2

+
X
i,j

Ks,tf

Ã
μi,j ¡ atan2

"
y
j
t ¡ yis
x
j
t ¡ xis

#
¡ [
!

| {z }
¸μ

: (20)

The value Ki,j and function f(¢) are given depending
upon the distribution of μi,j according to Table I.

In the simulations, the minimization of (20) was car-

ried out using the Quasi-Newton optimization algorithm

[2]. For this the gradient of ¸(s, t,[) is needed. This gra-

dient is the sum of the gradients of ¸r and ¸μ, which are

TABLE I

Values and Functions Dependent upon the Distribution of μi,j that

are used in Expressions for the Likelihood

(the function m is defined in (12))

Clipped Mod

Normal von Mises Wrapped Normal

Ki,j 1=(2(¾μ
i,j)

2) ·i,j 1

f(¢) m(¢)2 cos[¢] log[1+2§1
k=1
½k
2
cos[k(¢)]

F(¢) 2m(¢) sin[¢] (2§1
k=1
½k
2
k sin[k(¢)])=

(1+2§1
k=1
½k
2
cos[k(¢))

s ¡1 1 1

defined in (20). The gradient elements of ¸r are given by

@¸r
@ai

=¡
X
j

ri,j ¡
q
di,j

(¾ri,j)
2
q
di,j

cra(i,j) (21)

@¸r
@bj

=¡
X
i

ri,j ¡
q
di,j

(¾ri,j)
2
q
di,j

crb(i,j) (22)

@¸r
@[

= 0 (23)

with a 2 fxs,ysg and b 2 fxt,ytg. The constants are
di,j = (x

j
t ¡ xis)2 + (yjt ¡ yis)2 (24)

crxs(i,j) = (x
j
t ¡ xis) (25)

crys(i,j) = (y
j
t ¡ yis) (26)

crxt(i,j) =¡(x
j
t ¡ xis) (27)

cryt(i,j) =¡(yjt ¡ yis): (28)

With the quantities F and s given by Table I, the gradient

elements of ¸μ(s, t) are

@¸μ
@ai

=
X
j

Ki,jF(μi,j ¡ atan2[yjt ¡ yis,xjt ¡ xis]¡ [)cμa(i,j)

(29)

@¸μ
@bj

=
X
i

Ki,jF(μi,j ¡ atan2[yjt ¡ yis,xjt ¡ xis]¡ [)cμb(i,j)

(30)

@¸μ
@[

= s
X
i,j

Ki,jF(μi,j ¡ atan2[yjt ¡ yis,xjt ¡ xis]¡ [) (31)

where the cμ terms are

cμxs(i,j) = (y
j
t ¡ yis)=di,j (32)

cμys(i,j) =¡(xjt ¡ xis)=di,j (33)

cμxt (i,j) =¡(y
j
t ¡ yis)=di,j (34)

cμyt (i,j) = (x
j
t ¡ xis)=di,j (35)

and di,j is as defined in (24).
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In order to be able to perform likelihood maximiza-

tion, initial estimates of the quantities being estimated

are needed. The following section discusses how these

may be obtained.

5. ALGORITHMS FOR GENERATING INITIAL
ESTIMATES

5.1. Initial Estimates Without Range Measurements

1) Joint Estimation of Sensor and Target Locations:

The angular measurement of sensor i observing target

j, μi,j , taken with respect to a known, common axis may

be expressed as follows

tan[μi,j] =
y
j
t ¡ yis
x
j
t ¡ xis

(36a)

cot[μi,j] =
x
j
t ¡ xis
y
j
t ¡ yis

: (36b)

These equations may be rearranged to get

x
j
t tan[μi,j]¡ xis tan[μi,j]¡ yjt + yis = 0 (37a)

y
j
t cot[μi,j]¡ yis cot[μi,j]¡ xjt + xis = 0: (37b)

Thus, using (37a) and (37b), one can generate a lin-

ear system of equations that, in the absence of mea-

surement noise and assuming that a sufficient number

of equations are linearly independent, can be solved

exactly for the sensor and target locations, given that

enough sensors have a priori known locations. Sensors

with known locations are necessary for the uniqueness

of a nontrivial solution and are simply put on the right-

hand side of the equation.

For example, consider the presence of three sensors

observing two targets. Assuming that the location of

sensors one and three are known a priori, the location of

the two targets and the third sensor is given by the linear

set of equations in (38), which is derived using (37a).26666666664

0 0 tan[μ1,1] ¡1 0 0

¡ tan[μ2,1] 1 tan[μ2,1] ¡1 0 0

0 0 tan[μ3,1] ¡1 0 0

0 0 0 0 tan[μ1,2] ¡1
¡ tan[μ2,2] 1 0 0 tan[μ2,2] ¡1

0 0 0 0 tan[μ2,2] ¡1

37777777775
| {z }

A

26666666664

x2s

y2s

x1t

y1t

x2t

y2t

37777777775
| {z }

s

=

26666666664

tan[μ1,1]x
1
s ¡ y1s

0

tan[μ3,1]x
3
s ¡ y3s

tan[μ1,2]x
1
s ¡ y1s

0

tan[μ3,2]x
3
s ¡ y3s

37777777775
| {z }

b

: (38)

Fig. 4. The quadrants in which one should use the tangent or

cotangent so as to minimize the effects of measurement error.

Thus, in this case, the location of the second sensor
and the target at both times is the solution to

As= b: (39)

A necessary condition for the observability of the sys-
tem is that the locations of at least two sensors are
known. However, the two sensors with known locations
do not necessarily have to observe the same target at the
same time for the matrix A to have full rank.
Due to the use of the tangent in (37a), serious

estimation inaccuracies will occur if the targets used
for estimation are close to §90± with respect to any of
the observing sensors. This is because the measurement
error causes the measured angle to be above or below
§90±, changing a very large positive entry in the A
matrix to a very large negative value or vice versa.
This problem can be minimized by using Equation
(37b), which uses the cotangent, when the observation
is between 45± and 135± or between ¡45± and ¡135±,
as shown in Fig. 4.
2) Estimation of the Sensor Locations Alone: If the

target locations are not needed, they can be eliminated
from the estimation. We shall once again assume that
all angles are taken with respect to a reference direction
common for all sensors. In this subsection, we shall also
assume that each target is observed simultaneously by
at least three sensors with an appropriate (non-collinear)
geometry. We define the measurements as being taken
with respect to the x-axis in our 2-D coordinate system.
For simplicity of notation, let us define the following
functions

¢Ta,b(j)
¢
=tan[μa,j]¡ tan[μb,j] (40)

¢Ca,b(j)
¢
=cot[μa,j]¡ cot[μb,j] (41)

ªa,b(j)
¢
=1¡ cot[μa,j] tan[μb,j] (42)

where a and b are sensor indices and j is a target
index.
As proven in Appendix A, given any three sensors

simultaneously observing the target, one can combine
(36a) and (40) using (37a) for each sensor to get an
expression relating the sensor locations independent

EFFICIENT 2D SENSOR LOCATION ESTIMATION USING TARGETS OF OPPORTUNITY 79



of the Cartesian location of the target. For sensors 1

through 3, this gives us equations (43a)—(43d).

0 = y1s ¢
T
2,3(j)+ x

1
s tan[μ1,j]¢

T
3,2(j) + y

2
s ¢

T
3,1(j) + x

2
s tan[μ2,t]¢

T
1,3(j)+ y

3
s ¢

T
1,2(j) + x

3
s tan[μ3,j]¢

T
2,1(j) (43a)

0 = y1s cot[μ1,j]¢
T
2,3(j)+ x

1
s¢

T
3,2(j)¡ y2s ª1,3(j) + x2s tan[μ2,j]ª1,3(j)+ y3s ª1,2(j)¡ x3s tan[μ3,j]ª1,2(j) (43b)

0 = y1s cot[μ1,j]ª2,3(j)¡ x1sª2,3(j)¡ y2s cot[μ2,j]ª1,3(j)+ x2sª1,3(j) + y3s ¢C2,1(j) + x3s tan[μ3,j]¢C1,2(j) (43c)

0 = y1s cot[μ1,j]¢
C
3,2(j)+ x

1
s¢

C
2,3(j) + y

2
s cot[μ2,j]¢

C
1,3(j) + x

2
s¢

C
3,1(j) + y

3
s cot[μ3,j]¢

C
2,1(j)+ x

3
s¢

C
1,2(j): (43d)

As was the case in the previous section, the equa-

tions derived in this section can be used with multiple

observations of the targets over time to reduce the solu-

tion of sensor locations to that of solving As= b, where

in this case s consists of only the sensor locations.

Note that as the number of sensors increases, the

number of possible equations that can be written in-

creases rapidly. However, the equations are not all inde-

pendent. For example, for N sensors observing a com-

mon target, there are
¡
N
3

¢
possible variants of (43a)

that can be written depending upon which three tar-

gets are put into the equation. However, for N > 3 only

N of these equations are linearly independent and the

rest do not provide any new information, because they

are not based on new observations. Linearly depen-

dent equations may be removed by using the Modi-

fied Gram-Schmidt Orthonormalization Algorithm [12]

or other, similar methods, though, as demonstrated in

Section 7, this can hurt the performance of the algo-

rithm.

5.2. Initial Estimates With Range Measurements

1) Jointly Estimating Sensor and Target Locations:

When range measurements are available, the estimation

problem becomes much simpler. Letting the range mea-

surement of sensor i observing target j be ri,j , we can

write

ri,j cos[μi,j] = x
j
t ¡ xis (44)

ri,j sin[μi,j] = y
j
t ¡ yis: (45)

As was true in the angular case we can collect these

linear equations and solve them for the sensor and target

locations. In this instance, the A matrix is particularly

simple, being composed only of §1 and 0 elements.
2) Estimating the Sensor Locations Alone: When

two sensors simultaneously observe the same target, we

can eliminate the target location from the estimation

problem by manipulating (45) and (44) to get

r2,j cos[μ2,j]¡ r1,j cos[μ1,j] = x1s ¡ x2s (46)

r2,j sin[μ2,j]¡ r1,j sin[μ1,j] = y1s ¡ y2s : (47)

As was the case in Section 5.1.2, we can again use the

equations to find initial estimates based on a linear least

squares solution.

5.3. Measurements with Respect to an Unknown,
Common Axis

We consider the case where all sensors have the

same unknown bias in their measurements. This might

occur, for example, if all measurements are taken with

respect to magnetic north, but the anchor node locations

are given in terms of geographic north.

Figure 5 illustrates the scaling uncertainty that arises

when only one anchor node is used. The dark circles

represent sensors and the open circles anchor nodes. The

dotted lines are only present to show that the transforms

considered are affine (they do not distort the relative

angles). In the noiseless case, if we were to remove

the second anchor node and not compensate for the

bias, then Figs. 5(b), (c), and (d) are three possible

solutions for the system described by As= b using the

equations for angle-only observations from Section 5.1

(when range measurements are available, then only one

solution exists). All of the biased solutions are rotated

by the bias angle. As shown in (b) and (c), the figure can

be scaled about the single anchor node without changing

any of the measured angles (in the case where angles

are measured to targets, the apparent locations of the

targets are scaled as well). Figure 5(d) comes about due

to our use of the tangent and cotangent in Section 5.1,

whereby the equations do not change if all angles are

flipped 180±.
In the case of only two anchor nodes and angle-only

measurements, a method of estimating the sensor loca-

tions while correcting for the unknown global rotation

is as follows:

1) Find an observation from the first anchor node.

Assume that it is at a known, fixed distance from the

first anchor node (such as 10 m). Find its location using

the bias measurement under this assumption. This shall

be a pseudo-anchor node.

2) Perform the sensor location estimation as de-

scribed in Section 5.1 using the biased measurements,

the first anchor node and the previously determined

pseudo-anchor node as an anchor node assuming that

the location of the second anchor node is unknown.

3) Find the vector between the first anchor node

and the true location of the second anchor node (for

example, for the scenario in Fig. 5(a), it has been
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Fig. 5. The open circles represent the anchor sensors, whose locations are known a priori. The dotted lines show that the transformation

being considered is affine (does not distort the relative angles between the sensors). The array points from the first (fixed) anchor node to the

one that is removed. The array is the vector between the first and last nodes. Subfigure (a) shows the true setup of the problem. Subfigures

(b), (c) and (d) show possible solutions when the second anchor node is removed and a common bias is left uncompensated. All scaled

solutions are angularly consistent–even, as illustrated in (d), when the scaling factor is negative. (a) True sensor locations. (b) One biased

solution. (c) Second biased solution. (d) Third biased solution.

drawn). We shall call this v1. Also find the vector

between the first anchor node and the apparent position

of the second anchor node as given by the previous

estimation (such as the vectors in Fig. 5(b) or 5(c)).

The choice of the pseudo-anchor node rules out the

geometry of 5(d)); we shall call this v2.

4) Evaluate μ = 6 v2¡ 6 v1.
5) Perform the sensor location estimation again us-

ing the adjusted angles and both of the true anchor

nodes to get a final estimate of the sensor locations.

The algorithm finds a solution for the biased sys-

tem and then compares how that solution is rotated

with respect to the true system. The first step of the

aforementioned method creates a pseudo anchor point

to set a reference for the scaling of the solution. This

is important to make sure that we do not get a solution

that is inverted by 180±, as in Fig. 5(d). Moreover, it is
necessary for setting the scale of the figure. We would

like to find a solution, but one possible solution places

the nodes infinitesimally close to the first anchor point.

The use of such a solution would be subject to precision

problems on any computer.

A similar procedure can be performed if range mea-

surements are available. In this case, there is no need

to designate any node as a pseudo anchor node. When

more sensors are present, one may break the obser-

vations into subsets according to the connectivity be-

tween anchor nodes, and calculate separate biases be-

fore averaging them. We shall not consider that case

here.

6. THE CRAMÉR-RAO LOWER BOUND

In order to evaluate the efficiency of the estimator

(how well the estimator is performing compared to a

lower bound on the unbiased estimator), the Cramér Rao

Lower Bound (CRLB) for the particular scenarios must

be calculated [1]. The CRLB provides a lower bound

on the covariance matrix of an unbiased estimator as

Ef[x̂¡ x0][x̂¡ x0]Tg ¸ J¡1 (48)

where x is a vector parameter, x̂ is the parameter esti-

mate, x0 is the true parameter value, and J is the Fisher

Information Matrix (FIM).

The FIM is defined as

J
¢
=Ef[rx¸(x)][rx¸(x)]Tgjx=x0 : (49)

In the context of the problem at hand, s and t correspond

to the variable x. The appropriate diagonal entries of

J¡1 provide a lower bound for the mean squared error
(MSE) of each estimated parameter, assuming that the

estimator is unbiased. The FIM may be estimated by av-

eraging values of [rx¸(x)][rx¸(x)]Tjx=x0 across Monte
Carlo runs. For the case where the angular measure-

ments have a von Mises distribution, an exact closed-

form solution (in terms of modified Bessel functions)

for the elements of the FIM will be presented. In the

simulations when using the wrapped normal distribu-

tion, the CRLB was estimated by averaging the squared

gradient across Monte Carlo runs.

Consider the elements of the FIM for normally dis-

tributed range measurements and von Mises distributed

angular measurements taken with respect to a common,

unknown axis (if range or angular measurements are

not available or the measurement axis is known, then

the appropriate terms may be omitted). Each element of

the FIM is the expectation of a product of sums. Note

that the expectation of cross terms6 in the product sums

involving angular measurements is zero. This is because

the variables in question are independent and, thus the

expectation of the product is equal to the product of the

6A cross term is a product such that elements involving (i1,j1) and

(i2,j2) are multiplied where i1 6= i2 or j1 6= j2.
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expectations. Based on (29) and (30), the expectations

have the following form,Z ¼

¡¼
sin[μ¡¹]e·cos[μ¡¹]dμ = 0: (50)

Note that the product of cross terms involving ¸r are

zero, because again the variables in question are inde-

pendent and the expectation can be factorized. Based on

(21) and (22), the expectations shall have the following

form

1p
2¼¾2

Z 1

¡1

r¡pd
¾2
p
d
e¡(r¡

p
d)2=2¾2dr = 0: (51)

Due to the assumed independence of the noise cor-

rupting the range measurement and that corrupting the

angular measurement, all cross terms between deriva-

tives of ¸r and ¸μ are zero. Thus, we can write

J =

Jrz }| {
Ef[rx¸r(x)][rx¸r(x)]Tg

+

Jμz }| {
Ef[rx¸μ(x)][rx¸μ(x)]Tg : (52)

Let us compute Jμ. Because all of the cross terms

are zero, we only need to concern ourselves with the

expectation of the product of the gradient elements with

the same (i,j) values. To simplify things, we shall note

that

I1(·) =
·

2¼

Z ¼

¡¼
sin2[μ¡¹]e·cos[μ¡¹]dμ (53)

which does not depend on ¹. Thus, taking the expected

value over the elements in the FIM, we get

E

·
@¸μ

@®i1s

@¸μ

@¯i2s

¸
=

8>><>>:
X
j

·i,j½i,jc
μ
®s
(i,j)cμ¯s(i,j)

if i1 = i2 = i

0 otherwise

(54)

E

"
@¸μ

@®
j1
t

@¸μ

@¯
j2
t

#
=

8>><>>:
X
i

·i,j½i,jc
μ
®t
(i,j)cμ¯t(i,j)

if j1 = j2 = j

0 otherwise

(55)

E

"
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@¯
j
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#
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μ
®s
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E

"μ
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@[

¶2#
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X
i,j

·i,j½i,j (57)

E

·
@¸μ
@®is
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@[
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=
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j

·i,j½i,jc
μ
®s
(i,j) (58)

E

"
@¸μ

@®
j
t

@¸μ
@[

#
=
X
i

·i,j½i,jc
μ
®t
(i,j) (59)

where (®,¯) 2 fx,yg and the mean resultant lengths are

½i,j =
I1(·i,j)

I0(·i,j)
: (60)

The calculation of the ratio of modified Bessel func-

tions in the CRLB can be problematic, as mentioned

in Section 2.3. An algorithm for calculating the ratio is

discussed in Appendix B.

Now let us consider the calculation of Jr.

E

·
@¸r

@®i1s

@¸r

@¯i2s

¸
=

8>>><>>>:
X
j

1

di,j(¾
r
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2
cr®s(i,j)c

r
¯s
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if i1 = i2 = i

0 otherwise

(61)
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= E

"
@¸r

@®
j
t

@¸r
@[

#
= 0:

(64)

7. SIMULATIONS

7.1. The Scenario

We used a scenario involving ten sensors and four

targets over 20 time-steps (in the equations, observa-

tions of the same target at a different times are treated

as separate “targets”). The sensors were placed in x lo-

cations in the set of f¡50,100g meters and y locations
in the set of f0,100,200,300,400g meters, with the ex-
ception of the one that would have been at (¡50,100),
which was instead set to (¡100,100) in order to break
the symmetry of the arrangement so that it would be

clear if poor estimates flipped anything. This configu-

ration is shown in Fig. 6. The locations of the sensors

at (¡50,0) and (100,400) were assumed to be known
a priori, and they were used as anchor arrays.

The first target was located at an x location of ¡250
meters and traveled at a constant speed from 20 to

380 meters in y. The second target was placed at an x

location of 350 meters and traveled at a constant speed

from 0 to 400 meters in y. The third target started at

400 meters in x, traveled at a constant speed to 800

meters by step 10 and came back to 400 meters in the

x direction by step 20. In the y direction, it traveled at

a constant speed from 20 to 380. The fourth target was

placed at a y location of 500 meters and traveled at a

constant speed from ¡600 to 1000 meters in x.
To demonstrate that unlike other algorithms, no tar-

get needs to be simultaneously visible to both anchor

nodes, and the targets were only visible to a subset of the

sensors at each time. From steps 1 to 4, only the sensors

at y locations of 0 and 100 meters could see the targets.

From steps 5 through 8, the sensors between 0 and 200

meters could see the targets. From steps 9 through 12
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Fig. 6. The scenario showing the true sensor (the dots) and target locations (the £s) used in the simulations. The anchor nodes are in the
upper-right and lower-left corners. The ellipses represent the 99% confidence regions based on the CRLB for the sensor locations when the

angular measurement axis is unknown. The dashed (outer) ellipses are using angle-only measurements using a von Mises angular noise

distribution with ¾μ = 2
± = ¼=90; the smaller, solid line ellipses are for the case with both angular and range measurements with ¾r = 7:5

meters. (a) Overall layout. (b) Magnified ellipses.

Fig. 7. The RMSE of the estimated sensor locations of the initialization algorithms. In (a) the measurements are taken with respect to a

common, known axis. In (b) they are taken with respect to a common, unknown axis. 1000 Monte Carlo runs were performed. (a) Known

measurement axis. (b) Unknown measurement axis.

the sensors between 100 and 300 meters could see the

targets. From steps 13 through 16 the sensors between

200 and 400 meters could see the targets and from steps

17 through 20 the sensors from 300 to 400 meters in

y could see the target. This means that the two sensors

with known locations never both simultaneously saw any

target.

7.2. The Initialization Algorithms

We compared the performance of the angle-only ini-

tialization algorithms under both known and unknown

measurement axes, as shown in Fig. 7, where the RMSE

of the sensor location estimates is shown, averaged over

all sensors having unknown locations. The line labeled

“No Targets” is the algorithm from Section 5.1.2 where

the sensor locations are estimated without explicitly es-

timating the target locations. The line labeled “No Tar-

gets, Min Combos” is the same, except redundant equa-

tions of the
¡
N
3

¢
that could be generated for each set of N

sensors observing a common target were eliminated us-

ing the Gram-Schmidt algorithm [12]. The line labeled

“With Targets” is the RMSE of the sensors when the

target locations are jointly estimated, as given in Sec-

tion 5.1.1. In all cases the solution to As= b was found

using least squares. The angular measurements were

generated using the wrapped normal distribution with

independence between sensors. One thousand Monte

Carlo runs were performed.
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Fig. 8. The RMSE of the estimated sensor locations of the three scenarios compared to the CRLB under wrapped normal noise. In (a) we

use the method of [16] utilizing a linear normal PDF that does not account for the circular nature of the measurements. In (b) we use the

new ML method utilizing the clipped mod normal distribution assumption. 1,000 Monte Carlo runs were performed. (a) ML not corrected.

(b) ML corrected.

The maximum noise standard deviation was set at

2±, corresponding to the accuracy of the acoustic sen-
sors used in [19]. Higher noise standard deviations

were found to produce occasionally very bad estimates

(outliers). The likelihood of encountering such outliers

varies depending upon the geometry. In many practi-

cal scenarios, this may not be a problem, since often,

coarse estimates of the sensor locations can be obtained

when they are placed and the initialization algorithm

can be bypassed. The maximum noise standard devia-

tion in the simulations in this paper was chosen suffi-

ciently low such that extremely bad estimates did not

occur, explaining the smoothness of the curves in the

simulations.

7.3. ML Maximization

We compared the performance of the ML algorithm

of [16] that does not take into account the circular nature

of the measurements (assuming a linear normal distri-

bution), with our ML algorithm (assuming a clipped

normal distribution with the same standard deviation).

The least-squares algorithm of Section 5.1.1 estimat-

ing both sensor and target locations was used to pro-

vide initial estimates. Measurements were generated us-

ing a wrapped normal distribution. All measurements

were taken with respect to a common, known axis.

1000 Monte Carlo runs were performed. The results

are shown in Fig. 8. Since the wrapping of the dis-

tributions depends upon where the ¼, ¡¼ boundary is
placed, rotating the global coordinate system changes

the performance. However, if the ensemble of sensors

make angular observations over the entire 360± range,
then no rotation will exist where the basic linear model

is nearly identical to the circular model.

In Table II, we numerically compare the effects of

having different amounts of data regarding the scenario,

TABLE II

The Average RMSE of the ML Estimates of the Sensor Locations

Depending upon the Measurements Available for ¾μ = 1
± and

¾r = 7:5 m as Obtained using the Initialization and Likelihood

Maximization Algorithms Compared to the CRLB using von Mises

Distributed Noise

(the results when using wrapped normal noise and performing ML

maximization assuming the clipped mod normal density are similar;

1,000 Monte Carlo runs were performed)

von Mises

Measurements Simulated CRLB

angle known axis 5.466 5.437

unknown axis 6.773 6.306

angle+range known axis 2.037 2.049

unknown axis 2.171 2.146

in this case when using the von Mises noise distribution.

The results are comparable when using the clipped

mod normal distribution. The noise parameters for the

sensors were ¾μ = 1
± and, when range measurements

were available, ¾r = 7:5 m.

8. CONCLUSIONS

The importance of accounting for the circular nature

of the data when performing sensor localization was

highlighted. If the measurement noise is truly Gaus-

sian, then the resulting noisy measurement will be

wrapped on the unit circle, leading to the wrapped nor-

mal distribution. We introduced an approximation for

the wrapped normal distribution that is very accurate

for small to moderate circular standard deviation values.

We derived simple linear least squares solutions for the

target locations that we then used as initial estimates

for performing ML estimation, as well as a method for

handling a common, unknown measurement axis. When
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using wrapped normally-distributed noise, our estima-

tion method accounting for the circular nature of the

data and using the clipped mod normal distribution for

estimation proved efficient, whereas a previously intro-

duced (and certainly decent) ML algorithm [16] that

uses a linear noise model can diverge from the CRLB,

dependent upon the geometry of the sensors and where

the ¼=¡¼ boundary for the global coordinates is placed.
We also quantified the effects of having different infor-

mation available when estimating the sensor locations,

including the availability of range measurements and

knowledge of the common measurement axis of the sen-

sors.

APPENDIX A. DERIVATION OF (43A)

Here we derive (43a), which underlies much of the

algorithm. The derivations of (43b), (43c) and (43d) are

performed similarly. Equation (36a) applied to the first

sensor gives us

tan[μ1,j] =
y
j
t ¡ y1s
x
j
t ¡ x1s

(65)

y
j
t = y

1
s +(x

j
t ¡ x1s ) tan[μ1,j]: (66)

Substituting (66) into (36a) applied to the second and

third sensors gives us

tan[μ2,j] =
y1s ¡ y2s +(xjt ¡ x1s ) tan[μ1,j]

x
j
t ¡ x2s

(67)

tan[μ3,j] =
y1s ¡ y3s +(xjt ¡ x1s ) tan[μ1,j]

x
j
t ¡ x3s

: (68)

Solving (67) for the x location of the targets gives us

x
j
t =

y2s ¡ y1s + x1s tan[μ1,j]¡ x2s tan[μ2,j]
tan[μ1,j]¡ tan[μ2,j]

: (69)

Substituting (69) back into (68) and simplifying gives

us the form of (43a).

APPENDIX B. CALCULATING BESSEL FUNCTION
RATIOS

In [10] two methods were considered for converting

a continued fraction representation of the ratio of two

modified Bessel functions of the first kind into sums,

allowing the computation of the ratio of Bessel func-

tions without the overflow problems associated with

calculating each function alone. Though the method at-

tributed to Gauss had better asymptotic performance,

it was demonstrated that the method attributed to Per-

ron allowed for faster calculation of the ratio of two

Bessel functions to an accuracy typically desired on a

computer. The method based upon work by Perron is

summarized as follows:

Iº(x)

Iº¡1(x)
=

1X
k=0

ck (70)

where fx,ºg> 0 and

ck =

kY
n=1

pk (71)

c0 = 1 (72)

p1 =

1

2
x

μ
º+

1

2

¶
³
º+

x

2

´μ
º+ x+

1

2

¶
¡ 1
2
x

μ
º+

1

2

¶ (73)

pk =

1

2
x

μ
º+ k¡ 1

2

¶
(1+pk¡1)μ

º+ x+
k¡ 1
2

¶μ
º+ x+

k

2

¶
¡ 1
2
x

μ
º + k¡ 1

2

¶
(1+pk¡1)

:

(74)

Computation of the ratio of Bessel functions may thus

be approximated by summing a suitable number of

terms from (70). A suitable termination criterion for

º = 1 is to stop when adding the next increment no

longer changes the result. For example using double-

precision arithmetic, for ·= 3000 terms k ¸ 5 no longer
change the result; for ·= 11 terms k ¸ 44 no longer
change the result.
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