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Probability Hypothesis Density (PHD) filter is a framework for

multitarget tracking, which provides estimates for the number of

targets as well as the individual target states. Sequential Monte

Carlo (SMC) implementation of a PHD filter can be used for non-

linear non-Gaussian problems. However, the application of PHD-

based state estimators for a distributed sensor network, where each

tracking node runs its own PHD-based state estimator, is more

challenging compared with single sensor tracking due to commu-

nication limitations. A distributed state estimator should use the

available communication resources efficiently in order to avoid the

degradation of filter performance. In this paper, a method that effi-

ciently communicates encoded measurements between nodes while

maintaining the filter accuracy is proposed. This coding is com-

plicated in the presence of high clutter and instantaneous target

births. This problem is mitigated using adaptive quantization and

encoding techniques. The performance of the algorithm is quan-

tified using a Posterior Cramér-Rao Lower Bound (PCRLB) that

incorporates quantization errors. Simulation studies are performed

to demonstrate the effectiveness of the proposed algorithm.
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1. INTRODUCTION

The use of a large number of networked sensors,

which can be deployed all over the surveillance region,

has become feasible in tracking applications because of

the availability of cheap sensors. The multisensor data

need to be fused in order to fully utilize the information

obtained in the network. A common practice in sensor

network applications has been to process the collected

data in a central processor. This architecture is known

as the centralized sensor network [10, 26]. Centralized

architectures are generally simpler to execute since the

processing of data at one location can reduce the com-

putational requirements of an algorithm. It is theoreti-

cally optimal if the network has enough communication

bandwidth to send all the sensor data to the fusion node

at every sampling time [3].

However, there are several drawbacks associated

with the centralized architecture. First, the network re-

lying on one processor to perform the task of every

node in the network may result in a single-point fail-

ure. Second, in real-time applications, the central node

may reside many hops away and sending data from

one node to a central node may take too long. This

may introduce latency, synchronization problems and

imbalanced workload in the network. Further, the cen-

tralized architecture may utilize significant resources in

communicating the data across the network. Distributed

processing over the sensor network can be used to alle-

viate the problems inherent to the centralized architec-

ture. Further, the distributed architecture requires lighter

computational power at each fusion node due to the dis-

tribution of processing over multiple nodes.

Distributed algorithms based on particle filters have

gained much attention. In [5], methods based on like-

lihood factorization of particles and adaptive data-

encoding scheme are proposed for nonlinear/non-

Gaussian systems with distributed architecture. An im-

provement to the approach proposed in [5] has been

presented in [13] using a better encoding scheme and

measurement vectorization. More particle-based imple-

mentations are given in [18], [22]. The adaptive data-

encoding scheme uses the histogram of expected mea-

surements to encode the target-generated measurements

effectively. However, the false measurements might end

up transmitting a larger number of bits than transmitting

measurements without encoding. Hence, the effective-

ness of the encoding scheme might degrade dramati-

cally if no method is in place to identify and remove

false measurements before transmitting over the net-

work. Also, target birth must be taken care of while

removing the false alarms in order to handle the time-

varying number of targets.

The primary focus of this paper is on creating dis-

tributed algorithms that minimize network communica-

tion relating to sensor data fusion when multiple time-

varying number of targets are present in the monitored
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area. In this paper, a decentralized version of the Prob-

ability Hypothesis Density (PHD) filter is used to track

multiple targets. The PHD filter eliminates the hard

measurement-to-track association problem, unlike the

Multiple Hypothesis Tracker (MHT) [4]. Furthermore,

the PHD filter has been shown an effective way of track-

ing time-varying multiple number of targets that avoids

model-data association problems [15]. Gaussian mix-

ture implementation of PHD filter (GM-PHD) is pre-

sented in [25]. Sequential Monte Carlo (SMC) imple-

mentation of the PHD filter is used to handle the non-

linear measurements [24]. There are two options avail-

able to perform distributed tracking with a SMC-PHD

filter in a sensor network. The first option is to send

all the particles that represent the posterior density of

targets. However, this option requires high bandwidth

communications, which can not be handled by practi-

cal wireless sensor networks. The second option is to

send the most relevant measurements after eliminating

the false alarms to update the global estimates of the

targets.

In this paper, measurements are communicated

among nodes to update the filters. In this case, data

transmission requires higher bandwidth channels un-

less the quantization of those data are done intelli-

gently [16, 19]. To be effective, non-uniform quan-

tization schemes can be made to match the distribu-

tion of the quantity to be discretized. Companding is

a widely used method for implementing non-uniform

quantizers [17]. It has been observed in non-uniform

quantization that the communication can be consider-

ably reduced with the right selection of the compander

[16]. Quantized measurements need to be encoded be-

fore transmission. It is assumed that an optimal noise-

less source code will be employed to minimize trans-

mission needs between nodes. In this paper, Huffman

coding is used to encode the quantized measurements.

Handling multiple target-originated measurements at the

quantization stage and producing identical symbols for

encoding and decoding at each node are challenging.

This paper proposes “cascaded companders” to nonlin-

early quantize multiple target measurements. Predicted

probability density is used in generating identical set of

symbols and to place the companders at right positions.

The measurement quantization and encoding techniques

proposed this paper can be applied to distributed track-

ing with GM-PHD and other PHD filter realization al-

gorithms as well.

Among the various methods to quantify the perfor-

mance, verifying the closeness of the estimates mean

square error matrix to the lower bound is a commonly

known method in target tracking applications. The Pos-

terior Cramer-Rao Lower Bound (PCRLB) is defined to

be inverse of the Fisher Information Matrix (FIM) for

random vector and provides lower bound on the per-

formance of unbiased estimators of the unknown target

state [23]. The PCRLB for state estimation with quan-

tized measurements is complicated due to nonlinearity

of the quantizer. Previously, in [28] the PCRLB for dy-

namic target tracking with measurement origin uncer-

tainty and in [8] the PCRLB for state estimation with

quantized measurement were developed. In this paper,

the PCRLB calculation with quantized measurement is

extended to incorporate measurement origin uncertainty

for bearing only tracking.

This paper is structured as follows. Section 2 ex-

plains the proposed distributed implementation of SMC-

PHD filter. Quantization and encoding methods are ex-

plaiined in Section 3. Section 4 provides the derivation

of the PCRLB with quantized measurements and mea-

surement origin uncertainty. Simulations that demon-

strate the effectiveness of the proposed quantization

strategy are presented in Section 5. Conclusions are

given in Section 6.

2. DISTRIBUTED TRACKING USING SMC-PHD
FILTER

2.1. State and Measurement Models

In this paper, the problem of tracking a time-varying

number of multiple targets is considered. The general

parameterized target dynamics is given by

xk+1 = Fkxk + ºk (1)

where xk denotes the target state, Fk is a known matrix

and ºk is the process noise at time k.

The measurements originate from either targets or

clutter. The target-originated measurement is given by

zk = hk(xk) +!k (2)

where hk is a nonlinear function and !k is the measure-

ment noise at time k. For simplicity it is assumed that vk
and !k are Gaussian with zero means and covariances

¡k and §k, respectively.

It is assumed that the number of false alarms is

Poisson-distributed with the average rate of ¸k and that

the probability density of the spatial distribution of false

alarms is ck(zk).

2.2. PHD Filter

In tracking multiple targets, if the number of targets

is unknown and varying with time, it is not possible

to compare states with different dimensions using or-

dinary Bayesian statistics of fixed dimensional spaces.

However, the problem can be addressed by using Finite

Set Statistics (FISST) [15] to incorporate comparisons

of state spaces of different dimensions. FISST facilitates

the construction of multitarget densities from multiple-

target transition functions by computing set derivatives

of belief-mass functions [15], which makes it possible to

combine states of different dimensions. The main prac-

tical difficulty with this approach is that the dimension

of the full state space becomes large when many targets

are present, which increases the computational load ex-

ponentially in the number of targets. Since the PHD is

defined over the state space of one target in contrast
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to the full posterior distribution, which is defined over

the state space of all the targets, the computational cost

of propagating the PHD over time is much lower than

propagating the full posterior density.

In general, a PHD-based multitarget tracker will ex-

perience more difficulty in resolving closely-spaced tar-

gets than a tracker based on the full target posterior.

However, if the probability density functions of indi-

vidual targets is highly concentrated around their means

compared to the target separation, such that the indi-

vidual target pdfs do not overlap significantly, it will

become possible to resolve the targets using the PHD

filter as well. A theoretical explanation on the capabil-

ity of the PHD filter to resolve closely-spaced targets

in Gaussian context is given in [15]. By definition, the

PHD Dkjk(xk j Z1:k), with single target state vector xk,
and given all the measurements up to and time step k, is

the density whose integral on any region S of the state

space is the expected number of targets Nkjk contains in
S. That is,

Nkjk =
Z
X

Dkj(xk j Z1:k)dxk: (3)

This property uniquely characterizes the PHD and the

first-order statistical moment of the full target posterior

distribution possesses this property. Hence, the first-

order statistical moment of the full target posterior, or

the PHD, given all the measurement Z1:k up to time step

k, is given by the set integral [14]

Dkjk(xk j Z1:k) =
Z
fkjk(fxkg[Y j Z1:k)±(Y): (4)

More detailed mathematical explanations and derivation

of the PHD filter can be found in [14]. The approximate

expected target states are given by the local maxima of

the PHD. The prediction and update steps of one cycle

of PHD filter are given in the following section.

2.2.1. Prediction
In a general scenario of interest, there are target dis-

appearances, target spawning and entry of new targets.

The probability that a target with state xk¡1 at time
step (k¡ 1) will survive at time step k is denoted by
ekjk¡1(xk¡1), the PHD of spawned targets at time step

k from a target with state xk¡1 by bkjk¡1(xk j xk¡1), and
the PHD of newborn spontaneous targets at time step k

by °k(xk). Then, the predicted PHD, Dkjk¡1(xk j Z1:k¡1),
at time k given all measurements up to time k¡ 1 is
given by

Dkjk¡1(xk j Z1:k¡1)

= °k(xk) +

Z
[ekjk¡1(xk¡1)fkjk¡1(xk j xk¡1) + bkjk¡1(xk j xk¡1)]

£Dk¡1jk¡1(xk¡1 j Z1:k¡1)dxk¡1 (5)

where fkjk¡1(xk j xk¡1) denotes the single-target Markov
transition density. The prediction equation (5) is lossless

since there are no approximations.

2.2.2. Update
The predicted PHD can be corrected with the avail-

ability of measurements Zk at time step k to get the

updated PHD. It is assumed that the number of false

alarms is Poisson-distributed with the average rate of ¸k
and that the probability density of the spatial distribution

of false alarms is ck(zk). Let the detection probability of

a target with state xk at time step k be pD(xk). Then, the

updated PHD at time step k is given by

Dkjk(xk j Z1:k)

»=
24X
zk2Zk

pD(xk)fkjk(zk j xk)
¸kck(zk) +Ãk(zk j Z1:k¡1)

+ (1¡pD(xk))
35

£Dkjk¡1(xk j Z1:k¡1) (6)

where the likelihood function Ã(¢) is given by
Ãk(zk j Z1:k¡1)

=

Z
pD(xk)fkjk(zk j xk)Dkjk¡1(xk j Z1:k¡1)dxk

(7)

and fkjk(zk j xk) denotes the single-sensor/single-target
likelihood. The update equation (6) is not lossless since

approximations are made on predicted multitarget pos-

terior to obtain a closed-form solution. The reader is

referred to [14] for further explanations.

2.3. Sequential Monte Carlo PHD Filter

This section describes the SMC approach to the PHD

filter [24]. This approach provides a mechanism to rep-

resent the posterior probability hypothesis density by

a set of random samples or particles, which consist of

state information with associated weights, to approxi-

mate the PHD. The advantage of this method is that

the number of particles can be adaptively allocated such

that a constant ratio between the number of particles and

the expected number of targets is maintained. This has

a significant effect on the computational complexity of

the algorithm. The complexity does not increase expo-

nentially, but only linearly with the increasing number

of targets. The SMC implementation considered here is

structurally similar to the Sampling Importance Resam-

pling (SIR) type of particle filter [2]. Let the posterior

PHD Dk¡1jk¡1(xk¡1 j Z1:k¡1) be represented by a set of
particles fw(p)k¡1,x(p)k¡1gLk¡1p=1 . That is,

Dk¡1jk¡1(xk¡1 j Z1:k¡1) =
Lk¡1X
p=1

w
(p)
k¡1±(xk¡1¡ x(p)k¡1)

(8)

where ±(¢) is the Dirac Delta function. In contrast to par-
ticle filters, the total weight of the particles

PLk¡1
p=1 w

(p)
k¡1 is

not equal to one; instead, total weight gives the expected
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number of targets nXk¡1 at time step (k¡ 1), which fol-
lows from the property that the integral of the PHD over

the state space gives the expected number of targets.

2.3.1. Prediction
Importance sampling is applied to generate state

samples that approximate the predicted PHD Dkjk¡1(xk j
Z1:k¡1). State samples fx(s)kjk¡1gLk¡1p=1 are generated from the

proposal density qk(¢ j xk¡1,Zk) and i.i.d. state samples
fx(p)
kjk¡1gLk¡1+Jkp=Lk¡1+1

corresponding to new spontaneously

born targets from another proposal density pk(¢ j Zk).
That is,

x
(s)
kjk¡1 »

½
qk(¢ j xk¡1,Zk) p= 1, : : : ,Lk¡1
pk(¢ j Zk) p= Lk¡1 +1, : : : ,Lk¡1 + Jk

:

(9)

Then, the weighted approximation of the predicted PHD

is given by

Dkjk¡1(xk j Z1:k¡1) =
Lk¡1+JkX
p=1

w
(p)
kjk¡1±(xk ¡ x(p)kjk¡1)

(10)
where

w
(p)
kjk¡1 =

8>>>>><>>>>>:

ekjk¡1(x
(p)
kjk¡1)fkjk¡1(x

(p)
kjk¡1 j x(p)k¡1)+ bkjk¡1(x(p)kjk¡1 j x(p)k¡1)

qk(x
(p)
kjk¡1 j x(p)k¡1,Zk)

w(s)k¡1 p= 1, : : : ,Lk¡1

°k(x
(p)
kjk¡1)

pk(x
(p)
kjk¡1 j Zk)

1
Jk

p= Lk¡1 +1, : : : ,Lk¡1 + Jk

: (11)

The functions that characterize the Markov target tran-

sition density fkjk¡1(:), target spawning bkjk¡1 and entry
of new targets °k(¢) in (11) are conditioned on the target
motion model.

2.3.2. Update
With the available set of measurements Zk at time

step k, the updated particle weights can be calculated by

w
¤(p)
k =

24(1¡pD(x(p)kjk¡1)) + NZ
kX
i=1

pD(x
(p)

kjk¡1)fkjk(z
i
k j x(p)kjk¡1)

¸kck(z
i
k) +ªk(z

i
k)

35w(p)
kjk¡1

(12)
where

ªk(z
i
k) =

Lk¡1+JkX
p=1

pD(x
(p)
kjk¡1)fkjk(z

i
k j x(s)kjk¡1),w(p)kjk¡1

(13)

and fkjk(¢) is the single-target/single-sensor measure-
ment likelihood function.

2.3.3. Resample
To perform resampling, since the weights are not

normalized to unity in PHD filters, the expected num-

ber of targets is calculated by summing up the total

weights, i.e.,

n̂Xk =

Lk¡1+JkX
p=1

w
¤(p)
k : (14)

Then the updated particle set fw¤(p)k =nXk ,x
(p)
kjk¡1gLk¡1+Jkp=1 is

resampled to get fw(p)k =nXk ,x(p)k gLkp=1 such that the total
weight after resampling remains nXk . Now, the discrete

approximation of the updated posterior PHD at time

step k is given by

Dkjk(xk j Z1:k) =
LkX
p=1

w
(p)
k ±(xk ¡ x(p)k ): (15)

2.4. Distributed Architecture

Distributed processing over the sensor network can

be used to alleviate the problem inherent to centralized

architectures. A sample distributed architecture is shown

in Fig. 1, where S indicates the sensor. The underly-

ing sensor network architecture consists of two differ-

ent types of devices: sensors and nodes. Sensors col-

lect measurements from the targets and report them to

computational nodes. Nodes are responsible for running

filters to track targets. Information gathered at one node

are shared among various nodes. The efficient utiliza-

tion of communication resources without compromising

accuracy is essential.

2.5. Distributed Tracking Algorithm

The objective in this paper is to develop a distributed

algorithm based on the SMC-PHD filter while minimiz-

ing the communication requirements of the distributed

network in the presence of multiple time-varying num-

ber of targets and false alarms. It is assumed that the

optimization of sensor resources to collect data and

communication issues such as network protocols are al-

ready efficient enough. The proposed algorithm main-

tains SMC-PHD filters at all the computational nodes.

There are a number of different options to perform

distributed tracking with an SMC-PHD filter in a sen-

sor network. One option is to send all the particles that

represent the posterior density of target states. Another

is to send Gaussian mixture representation of the poste-

rior density. These two options require high bandwidth

communications, which cannot be handled by practical

wireless sensor networks. The third option is to send

only most relevant measurements after eliminating the
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Fig. 1. A sample distributed architecture.

false alarms to update the global estimates of the tar-

gets. In this paper, the option of communicating the rel-

evant measurements among nodes to update the filters is

used. In a sensor network, it is possible that each node

has enough active sensors to track an object by itself

with reasonable tracking accuracy. Therefore, a PHD

filter can be used to obtain the estimates based on the

measurements collected from sensors local to that node.

Since these nodes maintain PHD filters based on local

measurements, they can also be used in the encoding

strategy. The proposed framework will be performed in

two layers. The first layer collects measurement data

that are local to each node and maintains a local PHD

filter using its associated sensors. In the second layer,

all measurements are exchanged to all other nodes in

the network and the global PHD filters are maintained.

In the proposed algorithm, identical copies of the

SMC-PHD filter are maintained at each node. Initially,

this is achieved by initializing filters using the same ran-

dom seed. In order to encode the measurement data, an

intelligent quantization and encoding strategy is used.

From time step k¡ 1 to k, particles are propagated while
taking into account the measurement prediction covari-

ance. The range of expected measurements is divided

into bins depending on the required accuracy level.

The contribution of each propagated particle’s distri-

bution is integrated over the bins to form the proba-

bility density. The measurements are quantized with a

non-uniform quantizer where companders are used to

perform non-uniform quantization. The probability den-

sity in the measurement space is then transformed to

the companded measurement space. Then, the quantized

measurements are encoded using Huffman encoding al-

gorithm with the transformed bin probabilities. The en-

coded measurements are transmitted to all other nodes

where each node decodes and decompands the data to

obtain the quantized measurements. The details of quan-

tization and encoding strategy used in this algorithm is

presented in Section 3.

Each node performs filtering using quantized mea-

surements to obtain the target state estimates. All nodes

use the same set of measurement data to update the fil-

ter, thereby maintaining the identical copy of filter.

The steps of the distributed SMC-PHD filter are

given below.

1) Initialization at k = 0:

² Initialize SMC PHD filter on each node n=

1, : : : ,N using the same random seed to generate

identical particle distribution on all the nodes.

² For each node n= 1, : : : ,N
– Generate samples fx(p)0 gL0p=0

2) Quantization and encoding (For implementation de-

tails of this step the reader is referred to Section 3):

² Local Estimation
– Perform filtering using the SMC PHD filter

acting only on the measurements local to the

node.

² Quantization
– For each node n= 1, : : : ,N

* For s= 1, : : : ,Lk¡1, predict x
(p)
kjk¡1

* Calculate the bin probabilities, p(zk j bj ,
z
(p)
1:k¡1), in the measurement space using

predicted measurements and construct the

probability density where bj is the jth mea-

surement bin.

* Identify the regions where the companders

need to be placed and the number of com-

panders needed. One compander per target

is used and the width of the companding

region is limited to 3¾cp, where the ¾
c
p is

the standard deviation of the cth cluster. The

compander is placed on the mean value, ¹cp,

of the cluster. In other regions linear quan-

tizer is used.

* Quantize the measurements, z̃k
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Fig. 2. Calculation of bin probabilities.

Fig. 3. Quantization.

² Encoding
– For each node n= 1, : : : ,N

* Calculate the bin probabilities, p̃(zk j bj ,
z
(p)
1:k¡1), in the transformed measurement

space.

* Use the bin probabilities to form Huffman

tree Hk¡1
f and encode quantized measure-

ments.

3) Reducing the false measurements transmitted over

the network:

² Remove the measurements from the queue if the

number of bits in each encoded measurement ex-

ceeds a predefined threshold, l. This process is

done using the local estimates of the target.

4) Global estimate:

² For each node n= 1, : : : ,N, create the Huffman
tree Hk¡1

f and the quantizer to reconstruct the

quantized data, z̃0k.
² Using the obtained set of measurements, perform
filtering to obtain the global state estimates.

3. QUANTIZATION AND ENCODING

Measurements reported by sensors in a sensor net-

work need to be transmitted in order to perform track-

ing at high computational nodes called fusion centers.

Quantization and encoding play a crucial role whereby

measurements are quantized and encoded before be-

ing transmitted. Intelligent quantization and encoding

schemes are necessary to effectively use the communi-

cation resources. This section explains how quantization

and encoding can be effectively implemented to perform

distributed target tracking with SMC-PHD filters.

The proposed algorithm needs an efficient nonlinear

non-uniform quantization for measurements. Therefore,

the concept of “cascaded companders,” which can quan-

tize measurements from multiple targets, is proposed.

This section briefly explains the process of developing

the compander. The first step is to construct a proba-

bility density of expected measurements to identify the

regions where the target originated measurements would

lie. The details of this process are given in Section 3.01.

Measurements that fall in this region are quantized with

minimum quantization error via Gaussian companders.

Section 3.13 explains the cascaded companders. Details

of encoding and decoding process using Huffman cod-

ing are given in Section 3.23. Sections 3.3 and 3.14

provide details on the false alarm elimination process

and the incorporation of quantization errors into track-

ing, respectively.

3.0.1. Construction of a Probability Density
The necessity to have identical and accurate prob-

ability densities of targets at each node, where global

SMC-PHD filter is running, is clear from the fact that

the measurements are quantized, encoded and commu-

nicated across these nodes based on the probability den-

sity. The construction of probability density begins with

propagating the densities of particles from time step

k¡1 to k, taking into account the measurement predic-
tion covariance. The range of expected measurements

is divided into bins depending on the required accu-

racy level. The contribution of each propagated parti-

cle’s distribution is integrated over the bins to form the

probability density. Figure 2 shows the distribution of

three sample particles and the quantizer decision bound-

aries ai¡1 and ai. The probability density of predicted
particles p(zsk) in the measurement space is given by

p(z
p
k ) =N (zsk;hk(xpkjk¡1),Sk) (16)

where hk(:) is a nonlinear function and Sk is the measure-

ment prediction covariance. Then the bin probability is

given by

p(zk j bj ,z(p)1:k¡1) =
Lk¡1X
s=1

Z ai

ai¡1
p(zsk)dz: (17)

3.1. Quantization

One dimensional quantizer Q with L levels may be

defined by a set of L+1 decision levels a0,a1, : : : ,aL
and a set of L output levels y1,y2, : : : ,yL, as shown in

Fig. 3. When a sample x, the quantity to be quantized,

lies in the ith quantizer interval si = ai¡1 < x· ai the
quantizer produces the output value Q(x) = yi [9]. The

value of yi is usually chosen to lie within the interval
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Fig. 4. Nonuniform quantization.

Fig. 5. A typical compander.

si. The end levels a0 and aL are generally chosen to be

the smallest and largest values the input samples may

obtain. The L output levels generally have a finite value

and if L= 2n, a unique n-bit binary word can identify a

particular output level. The input-output characteristics

of a one-dimensional quantizer resemble a staircase.

The quantizer intervals, or steps, may vary in size.

Uniform and non-uniform quantizer strategies are

investigated in this paper.

3.1.1. Uniform Quantization
Uniform quantizer is where the measurement space

is divided into equal bins based on the number of bits

used to encode. The output points are located at the mid-

point of these intervals. If the step size is denoted by 4,
then the maximum absolute error is given by 4=2. In
general, uniform quantization is not the most effective

way to obtain good quantizer performance [9].

3.1.2. Non-uniform Quantization
The non-uniform quantization essentially has a non-

uniform spacing of decision levels based upon the input

probability density [16]. The general model used to rep-

resent the non-uniform quantizer is shown in Fig. 4. The

combined function of compression, quantization and

expansion is termed companding [17]. The quantized

samples are transmitted over the network while at the

receiver end of the network the quantized samples are

decompanded to its original values plus the quantization

noise. The variance of the quantization noise associated

with the received samples is related to the shape of the

companding function G(:) and the number of the bits,

n, used for quantization. A typical companding function

is shown in Fig. 5. With reference to the figure,

G(y+¢y)¡G(y) = ± (18)

in which the right hand side is the resolution of the uni-

form quantizer. Using standard companding techniques,

¢y can be given as

¢y ¼
±

_G(y)
(19)

where _G denotes differentiation of G.

3.1.3. Measurement Quantization with Cascaded
Companders

The non-uniform quantization is performed based on

probability density of the targets. Figures 6 and 7 show

quantizers at two different time steps, when one and

two targets are present in the environment, respectively.

The companders are placed in the measurement space

such that the target-originated measurements have less

quantization errors than other measurements. In this

paper, a Gaussian compander law, which is centered

on the expected target position and whose curvature

is dictated by the standard deviation of the expected

position [16], is used. The compander and expander

functions are as follows:

² Compander: erf(»=¾p6)
² Expander: ¾p6erf(»)

where erf(») = 2=
p
pi
R »
0
exp(¡t2)dt. One compander per

target is used and the width of the companding region

is limited to 3¾cp, where ¾
c
p is the standard deviation of

the cth cluster. The compander is placed on the mean

value, ¹cp, of the cluster. A maximum quantization error

is set in other regions of the measurement space, where

the compander is not placed, by a liner quantizer. The

companders are cascaded when multiple targets mea-

surements are to be quantized.
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Fig. 6. A 32-bin compander with one target.

Fig. 7. A 32-bin compander with two targets.

3.1.4. Incorporating Quantization Errors
The insertion of quantized measurement to the SMC-

PHD filter is done by updating the current particles by

the quantized measurements while taking into account

the extra error introduced by the quantization. The er-

ror arising from quantization has a uniform distribution.
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Fig. 8. Construction of Huffman Encoding Table.

The variances of errors introduced due to quantization

is given by

² Uniform quantization

Var(zik j xk) = ¾2w+
±2

12
: (20)

² Non-uniform quantization

Var(zik j xk) = ¾2w+
±2

12 _G(yik)
2
: (21)

3.2. Encoding

In information theory, an entropy coding is a lossless

data compression scheme that is independent of the spe-

cific characteristics of the medium. A common method

of entropy coding defines a codebook by assigning a

code to each symbol. By assigning smaller codes to the

more frequent symbols, the average size of each coded

symbol can be minimized. This leads to compression

over sufficiently large number of encoded symbols. This

technique is known as variable length coding. Generally,

variable length coding shows a better performance than

fixed-length codes where same size is assigned to all

symbols [20].

Two widely used entropy coding techniques are

Huffman coding [12, 6] and arithmetic coding [27].

Huffman coding is simple to implement and is efficient

when the probabilities of symbols to be sent can be cal-

culated in advance. Hence it is best suited for application

in this paper.

Encoding will help reduce the communication load

only for uniform quantization. In non-uniform quanti-

zation, the probability of getting measurement at each

measurement bin is almost equal. As a result, it is not

possible to achieve communication reduction by encod-

ing for non-uniform quantization.

3.2.1. Huffman Coding
Huffman coding assigns a variable length code to

each input symbol where the code and its size are based

on the probability of occurrence of the associated sym-

bol. It is necessary to calculate probability of symbols

before the assignment and construction of a dictionary.

By sorting and analyzing the probability of symbols, a

conversion table is constructed so that the symbols with

higher probability have the fewer number of bits and no

symbol is a prefix to another symbol [20]. Greater com-

pression can be achieved with the accurate estimation of

probability distribution.

3.2.2. Building Huffman Codes
The construction of Huffman encoding table is a

lengthy process. The probabilities must be sorted so that

the two lowest probabilities can be found. These prob-

abilities are added together to create a new probability

table. This table is sorted, and the process is repeated un-

til only two probabilities are left. These probabilities are

assigned a value of zero and one. The process is now re-

versed. At each stage the two expanded probabilities are

given a one or zero as they are expanded. The process

continues until the table is expanded to its original state.

For example, assume that the message “ASAFAFDAS”

is being encoded. The first step is to find the probability

for each symbol. “A” has a probability of 0.4, while S

has 0.3, D has 0.1 and F has 0.2. These probabilities are

sorted and added to create the table as in Fig. 8. Once

the table is constructed, the data can be compressed.

The compression process is accomplished by a direct

conversion of symbols. The entire message is encoded

as “10010101010011100,” which requires 17 bits. The

unencoded message would normally require 18 bits.

3.2.3. Measurement Encoding and Decoding
The original probability density constructed based

on expected measurements is transformed to com-

panded measurement space in order to create a global

Huffman dictionary for encoding. The term global refers

to the process or information that is related to global

SMC-PHD filter running on every node. Companded

measurements are encoded and transmitted over the net-

work. In the receiver, measurements are decoded before

expanding. The same steps are followed to construct a

decoding dictionary.

3.3. False Alarm Elimination

Reducing the number of false measurements com-

municated over the network is important as they con-

sume most of the communication resources. The num-

ber of bits in each encoded measurement, based on the
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local Huffman dictionary, can effectively be used to re-

duce the number of false measurements transmitted over

the sensor network. In this approach, it is assumed that

since the local PHD filters have the most up-to-date in-

formation including the birth of a new target and the

target generated measurements are most likely to be in

a region in which the value of the probability is high.

Thus the target-generated measurements are most likely

to have a lesser number of bits in their encoded form

compared to false measurements when encoded with lo-

cal Huffman dictionary. It is reasonable to assume that

the measurements that have a higher number of bits are

not target generated and, by having a threshold value on

the number of bits, they can be removed from the set

of measurements that are transmitted over the network.

Once the measurements are selected to be transmitted,

those measurements are encoded with the global Huff-

man dictionary in order to transmit over sensor network.

However, when measurements corresponding to new

targets are encoded with global Huffman dictionary may

produce higher number of bits. It could be noted that the

new targets can be identified by the global PHD filter

quickly. An indicator function, I(k,i)h is used to identify

whether the measurement has been communicated or

not.

I(k,i)h =

(
1 Hk¡1

f (z̃ik)· l
0 Hk¡1

f (z̃ik)> l
(22)

Hk¡1
f (z̃ik) is a function that generates Huffman codes for

each measurement. l is the cutoff number of bits per

measurement. If a measurement in its encoded form is

less than the cutoff number of bits, then the measure-

ment is communicated and not otherwise.

4. POSTERIOR CRAMER-RAO LOWER BOUND

In this section, the recursive Riccati-like formula

for the PCRLB is derived for state estimation using

measurements with quantization and origin uncertainty.

The Section 4.1 provides a brief review on PCRLB.

Incorporating the measurement origin uncertainty in

PCRLB is discussed in Section 4.2. In Section 4.3 the

PCRLB with quantized measurements is derived.

4.1. Background

Consider the estimation of the state of a dynamical

system given by (1) and (2). The quantized measure-

ments at time k are denoted by z̃k. Let x̂kjk denote the
updated state estimate at time instant k, using measure-

ment z̃1:k. The estimation error covariance matrix, Pkjk,
for unbiased estimator is bounded as follows:

Pkjk = E[(xk ¡ x̂kjk)(xk ¡ x̂kjk)T]¸ J¡1k (23)

where Jk is the Fisher information matrix, which is the

inverse of PCRLB.

For linear Gaussian systems, Riccati-like recursion

is given by [11]

Jk+1 = (Qk +FkJ
¡1
k FTk )

¡1 +E[¡¢xk+1xk+1
logp(z̃k+1 j xk+1)]| {z }
Jzk+1

(24)
with J¡10 = P0.

4.2. Effect of Measurement Origin Uncertainty

Consider ns (¸ 1) sensors, and let z̃sk be the quantized
measurement vector from sensor s. It is assumed that the

measurement noises of sensors are independent. Also,

due to false alarms, the total number of measurements

can vary among sensors at each time step. Let msk be the

total number of measurements from sensor s at time k.

Let the observation set at time k from sensor s be

z̃sk = fz̃sk(i)g
ms
k

i=1 (25)

where msk in general is random quantity.

Under the assumption that false alarms are uni-

formly distributed in the measurement space, and the

number of false alarms is Poisson distributed, probabil-

ity of getting msk is given by [11]

p(msk) = (1¡PsD)
(¸V)mk exp(¡¸V)

mk!

+PsD
(¸V)mk¡1 exp(¡¸V)

(mk ¡1)!
(26)

where PsD is the probability of detecting the target by

sensor s, V is the gated volume of the measurement

space.

If false alarms are removed by setting a cut-off

length for the number of bits to be sent after encoding,

then P̄sD must be calculated by considering the possibility

of removing a target originated measurement. In the

PCRLB calculation, PsD must be replaced by P̄sD. V

is must also be calculated using the predicted target

distribution and the false alarm removal cut-off limit.

Even though the cut-off is set on the number of bits, it

can be converted to the probability and can be used to

decide the gate size.

Using measurement independent assumption, the

measurement information, Jk(z̃), is given by [11]

Jzk(z̃) =

nsX
s=1

1X
ms
k
=0

p(msk)J
s
zk(m

s
k) (27)

where

Jszk(m
s
k) = E[¡¢xkxk logp(z̃sk j xk,msk))] (28)

p(z̃sk j xk,mk) is given by

p(z̃sk(i)
ms
k

i=1 j xk) =
24 (1¡ ²(msk))

Vm
s
k

+
²(msk)

mskV
ms
k
¡1

ms
kX

i=1

p1(z̃
s
k(i))

35
(29)
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Fig. 9. The simulation environment.

where

²(msk) =
PsD
p(msk)

(¸V)mk¡1 exp(¡¸V)
(mk ¡ 1)!

(30)

and p1(z̃
s
k(i)) is the pdf of the true observation, which

is function of xk. The details of obtaining p1(z̃
s
k(i)) with

the quantized measurement are given in the following

section.

4.3. Effect of Measurement Quantization

Due to the essence of quantization, it is known that

z̃sk(i) has a discrete distribution and the only fact that can

be inferred from z̃sk(i) =Q(z
s
k(i)) is that a

s
(i,k) · z̃sk(i)<

as(i+1,k) [8]. Under the assumption that the measurement

error is a zero-mean Gaussian variable with standard

deviation ¾s!, p1(z̃
s
k(i)) can be written as

p1(z̃
s
k(i)) = Pfz̃sk(i)) =Q(ysk(i)) j xkg

= Pfas(i,k) · hk(xk)+ vsk < as(i+1,k) j xkg

=

Z as
(i+1,k)

¡h(xk)

as
(i,k)
¡h(xk)

1

¾sw
p
2¼
exp

½
¡ t2

2(¾sw)
2

¾
dt:

(31)

It can be shown that

@p1(z̃
s
k(i))

@xak
=¡ 1

¾sw
p
2¼

@h(xk)

@xak

μ
exp

·
¡ (a

s
(i+1,k)¡ h(xk))2
2(¾sw)

2

¸
¡exp

·
¡ (a

s
(i,k)¡ h(xk))2
2(¾sw)

2

¸¶
:

(32)

From (28) and (32), it can be shown that

@ logp(z̃sk j xk,msk)
@xak

=
²(msk)

p(z̃sk j xk,msk)mskVm
s
k
¡1

ms
kX

i=1

@p1(z̃
s
k(i))

@xak
: (33)

Jszk(m
s
k) can be calculated using (33) and

¡@2 log(p(¢))
@xa@xb

=
@ log(p(¢))
@xa

@ log(p(¢))
@xb

: (34)

5. SIMULATION

In this section, results of the simulation studies for

the proposed distributed algorithm with quantization

and encoding strategies are presented.

5.1. Simulation Setup

In the simulations studies, a two dimensional track-

ing example is considered to show the effectiveness of

the proposed algorithms. As shown in Fig. 9, it con-

sists of two computational nodes placed at (¡15£ 103,
15£ 103) and (15£ 103,15£ 103). Each node has three
sensors reporting bearing-only observations at a time

interval of T = 30 s. The target motion model, which

is nearly constant velocity, has the following linear-

Gaussian target dynamics,

xk+1 = Fxk + vk (35)

where the target transition matrix F is given by

F=

26664
1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

37775 (36)
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Fig. 10. Position RMSE comparison with 128-bit quantization for

target 1.

Fig. 11. Position RMSE comparison with 128-bit quantization for

target 2.

and vk is zero-mean white Gaussian noise with covari-
ance Q given by

Q=

266664
1
3
T3 1

2
T2 0 0

1
2
T2 T 0 0

0 0 1
3
T3 1

2
T2

0 0 1
2
T2 T

377775q (37)

where q= 0:001 is the level of process noise in target

motion.

Targets have different stating times and starting posi-

tions within the surveillance region. Target 1 and target

2 are present at k = 0, and their initial target positions

are (¡10£ 103,¡15£103) and (¡5£ 103,9£ 103) m.
Target 3 enters later at time k = 10 from the position

Fig. 12. Position RMSE comparison with 128-bit quantization for

target 3.

(15£103,¡10£ 103) m. The targets’ initial velocities
are (5,5), (¡4,3), (¡5,2) ms¡1. The target trajectories
and sensor network arrangement are shown in Fig. 9.

The target generated measurements corresponding

to target j on sensor i

z
i,j
k = tan

¡1
Ã
y
j
k ¡ yiS
x
j
k ¡ xiS

!
+ vik (38)

where vik is an i.i.d. sequence of zero-mean Gaussian

variables with standard deviation 0.01 rad. The jth

target location is denoted by (x
j
k,y

j
k) and that of ith

sensor are denoted by (xiS ,y
i
S). Additional parameters

used in the simulations are: the probability of target

survival = 0:99; the probability of target birth = 0:05;

the probability of target spawning = 0; number of par-

ticles representing one target = 1000; the false alarm

density ¸= 4£ 10¡3 rad¡1. The simulation results are
based on 100 Monte Carlo runs.

5.2. Simulation Results

Figures 10, 11 and 12 show position Root Mean

Square Errors (RMSEs) comparison for target 1, 2 and

3, respectively. RMSE values are computed from 100

Monte-Carlo runs. In those figures, ‘Local 1’ indi-

cates the tracker at the fusion center 1 using only the

measurement from local sensors; ‘Global-Uniform’ and

‘Global-Non-uniform’ indicate the trackers that use the

uniformly and non-uniformly quantized measurement

from all the fusion centers, respectively; ‘Combined 1’

indicates the tracker running at fusion center 1 that uses

the quantized measurements from neighboring fusion

center and the non-quantized local measurements. As

expected, ‘Combined 1’ gives better performance than

all the other trackers. Non-uniform quantization gives

better performance than uniform quantization as well.

Since the measurements from fusion center 2 are not
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Fig. 13. OSPA comparison with 128-bin quantization.

used, the performance of the ‘Local 1’ tracker is the

worst. Even though ‘Combined 1’ gives the best per-

formance, its estimates cannot be used for quantiza-

tion and encoding, since ‘Combined 1’s results, which

are needed for decoding and decompanding, are not

available at fusion center 2. However, ‘Combined 1’

can be used to eliminate the false alarms. Figure 13

shows Optimal Subpattern Assignment (OSPA) [21]

distance comparison of the aforementioned approaches

with OSPA parameters, c= 25 m, p= 1.

The PCRLB comparison for target 1 with various

approaches is given in Fig. 14. From this figure, it can

be noticed that non-uniform quantization performs close

to the optimal performance, i.e., without quantization.

Also, non-uniform quantization with 64 bits performs

better than uniform quantization with 128 bits. Hence,

non-uniform quantization can also be used to reduce

the communication load in addition to improving the

tracking performance.

The numbers of bits transmitted with and without

Huffman coding are shown in Figs. 15, 16 and 17,

where the overhead bits are not included. The effect of

false alarms on communication load is shown in Fig. 15.

In general, most of the false alarms are away from

the target originated measurements. Hence, the number

of bits allocated for the false alarms using Huffman

coding, which used the probability density function of

the target originated measurement, is very high. As a

result Huffman coding will result in poor performance

unless the false alarms are not eliminated.

After false alarms are eliminated as explained in Sec-

tion 3.3, the number of bits transmitted is significantly

reduced when Huffman coding is used with uniform

quantization (see Fig. 16). When a new target enters and

is detected by the local fusion center, the number of bit

allocated for the new target originated measurement is

high as the global estimate does not have information

about the new target. Once the target is initialized the

Fig. 14. Position PCRLB comparison for target 1.

Huffman dictionary takes into account the new target

so the encoded measurements have fewer bits. This can

be observed at time step 11. Also, it is not possible

to eliminate all the false alarms at all the times. Es-

pecially, it is hard to eliminate a false alarm if it falls

close to any of the existing targets. This could be the

reason for the slight increase in the number of bits at

time step 24.

The number of bits transmitted using Huffman cod-

ing with non-uniform quantization is shown in Fig. 17.

During the non-uniform encoding, the probability dis-

tribution is uniform over the measurement bins. As a

result, there is no reduction in the number of bits trans-

mitted. Hence, it is better to use no encoding with non-

uniform quantization.

6. CONCLUSIONS

In this paper, a distributed implementation of

SMC-PHD filter and an efficient quantization and en-

coding for communicating measurements were consid-

ered. Communication resources need to be handled effi-

ciently in sensor networks while maximizing the track-

ing performance. False alarms take significant commu-

nication resources unless their communication is han-

dled properly. A non-uniform quantization via com-

panding was implemented to take advantages of the fil-

ter properties. It ensures that the target-originated mea-

surements are quantized with less errors than others. An

effective way of eliminating false alarms was also im-

plemented. Posterior covariance was derived to access

the algorithm using a recursive formula for the Fisher

Information Matrix. Simulation studies confirm that the

proposed quantization, encoding and false alarm elim-

ination techniques are shown to be more efficient in

terms of communication resource utilization and track-

ing performance than unencoded techniques. The pro-
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Fig. 15. Number of bits transmitted without false alarms

elimination (with 3 false alarms at each time step).

Fig. 16. Number of bits transmitted with uniform quantization and

false alarm elimination.

posed distributed algorithm for SMC-PHD filter is also

shown effective when the results were compared to its

performance bound.
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