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We have developed a performance evaluation laboratory (PE
Lab) to assess automated technologies that fuse fragmentary, par-
tial information about individuals’ activities to detect modeled ter-
rorist threat individuals, groups, and events whose evidence traces
are embedded in a background dominated by evidence from sim-
ilarly modeled non-threat phenomena. We have developed the PE
Lab’s main components—a test dataset generator and a hypothesis
scorer—to address two key challenges of counter-terrorism threat
detection performance evaluation:

e Acquiring adequate test data to support systematic experimenta-
tion; and

e Scoring structured hypotheses that reflect modeled threat objects’
attribute values and inter-relationships.

The generator is parameterized so that the threat detection
problem’s difficulty may be varied along multiple dimensions (e.g.,
dataset size, signal-to-noise ratio, evidence corruption level). We
describe and illustrate, using a case study, our methodology for
constraint-based experiment design and non-parametric statistical
analysis to identify which among varied dataset characteristics most
influence a given technology’s performance on a given detection
task.

The scorer generalizes metrics (precision, recall, F-value, area
under curve) traditional in information retrieval to accommo-
date partial matching over structured case hypothesis objects with
weighted attributes. Threat detection technologies may process
time-stamped evidence in either batch, forensic mode (to tender
threat event hypotheses retrospectively) or in incremental, warn-
ing mode (to tender event hypotheses prospectively—as ‘‘alerts”).
Alerts present additional scoring issues (e.g., timeliness) for which
we discuss practical techniques.

PE Lab technology should be similarly effective for information
fusion or situation assessment technologies applied in other domains
(besides counter-terrorism), where performance evaluation presents
similar challenges.
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1. INTRODUCTION

Threat detection by sifting high-volume data streams
for indicators has been likened to the problem of rec-
ognizing a complete “threat” needle by selecting from
among many haystack-sized piles of threat and non-
threat needle pieces [33]. Under this analogy, problem
difficulty may vary depending on factors such as how
many stacks there are, how many threat and non-threat
needles are distributed among them, and how like are
threat and non-threat needles. A key goal in developing
a performance evaluation laboratory (PE Lab) is to un-
derstand how variation along dimensions like these can
affect the performance of a threat detection technology.

As the haystack analogy suggests, many characteris-
tics that contribute to threat detection’s difficulty may be
modeled simply using convenient abstractions of real-
world phenomena. We want to identify well-performing
regions of an information fusion approach—e.g., its
power to resolve ambiguities arising from partial, poten-
tially corrupted, and temporally overlapping evidence
fragments. We deliberately aim to drive the evaluated
technology toward explicit representations of and rea-
soning about structured data and connections between
entities and events. Abstraction serves to factor out is-
sues inessential to this, and we model key relation-
ships among threat and non-threat actors, events, and
evidence characteristics approximating qualitative real-
world relationships and quantitative values. We also fac-
tor out user interaction—e. g., evidence visualization and
mixed-initiative hypothesis development—so that tech-
nology evaluation is in principle entirely automated (al-
though in practice we have not yet required hands-off
execution for detection technologies).

We have followed these principles in developing the
PE Lab’s dataset generator during a multi-year, multi-
contractor, multi-agency Government research program,
where it has served in several program-wide technology
evaluations that have necessitated our development of
novel, compatible scoring methods. Many results have
already been reported [1] [2] [3] [4] [5] [7] [8] [9] [10]
(117 [12] [13] [14] [18] [22] [23] [24] [25] [29] [30]
[31] [32] [40] [41] [43] [44].

The PE Lab is schematized in Fig. 1, where square-
cornered boxes represent artifacts, round-cornered
boxes represent processes, and arrows represent flow
of artifacts. The threat detection component—assumed
to employ link discovery (LD) technology and also
referred to here as an LD component—is rendered
3-dimensionally to indicate its status outside of the PE
Lab proper (as the technology under test).

Synthetic dataset generation creates evidence used
to challenge LD and (synthetic) ground truth used in
scoring LD’s hypotheses. LD processes evidence to hy-
pothesize threat phenomena. Generation uses simulation
driven by discrete, stochastic event patterns that also are
provided to LD. Hypothesis scoring compares technolo-
gies’ output hypotheses to ground truth.
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Fig. 1. PE Lab schematic.

In subsequent sections, we describe the following.

Abstract challenge problem domain (Section 2)

General hypothesis scoring methods (Section 3)

Alert scoring methods (Section 4)

Experiment design to identify performance influences

in the problem space (Section 5)

e PE Lab advantages for information fusion system
design (Section 6)

e Conclusions (Section 7)

2. COUNTER-TERRORISM THREAT DOMAIN

Synthetic datasets have the advantage for evaluation
that (synthetic) ground truth is readily available for
scoring. To support unclassified, exploratory counter-
terrorism research, we have developed synthetic datasets
presenting the same key sources of threat detection
difficulty that intelligence analysts have described in
real data. In the terminology of the information fusion
community [37] [38], real and synthetic datasets present
common “referencing” and “registration” problems: Is
the “man in the white shirt” in one report the same
“man in a white shirt” described in another report about
a different event? They also present several types of
“association” problems: Are several lower-level events
all parts of the same higher-level event, or are people
members of the same organization? Finally, they present
“estimation” problems: Is a group of events that have
already been associated really an instance of a particular
type of behavior, and if so can upcoming events be
predicted based on our model of the behavior? The issues
addressed by PE Lab-based evaluation fall mainly in
the Joint Director of Laboratories data fusion model’s
Level 2, estimation of relationships among entities—or
situation assessment [21].

We generate our synthetic datasets over an artifi-
cial world that is tunable, mitigating privacy and secu-
rity classification concerns and supporting systematic
experimentation. That our artificial world is also ab-
stract facilitates parameterized overlap between threat
and non-threat activities and de-emphasizes knowledge
representation and reasoning requirements in compar-
ison to (threat) signal detection requirements, consis-

Threat

Fuel

Fertilizer oil

Fig. 2. Real-world motivation for challenge problem.

tent with the funding program’s goals. Our synthetic
datasets, while thus simplified, present deliberately se-
lected technical challenges.

Fig. 2 exhibits some real-world motivation behind
the abstract, artificial world challenge problem domain
we have developed. The PE lab’s dataset generator
uses an artificial world abstraction style inspired by
that of Hats [27] [28]. A key difference is that the PE
Lab is structured deliberately to emphasize exploratory
experimentation, as described in Section 5.

On the left-hand side of Fig. 2, “Farmer Fred” buys
fertilizer and fuel oil and transports these via truck
to his farm. He applies the fertilizer using his tractor
which (along with his truck) burns the fuel oil. (Fred
is an honest, hard-working man.) On the right-hand
side, “Demolition Dan” acquires the same resources but
mixes them into a slurry that he transports (via rental
truck) to the basement of an office building. (Dan is up
to no good.)

In the artificial world, capabilities (like farming and
demolition) and resources (like fertilizer and fuel oil)
are mapped to abstract elements that individuals can
possess intrinsically or acquire. Infrastructure elements
(like office buildings) are mapped to “targets” that sup-
port both legitimate/productive and destructive modes of
use or “‘exploitation.” Non-threat and threat individuals
(like Fred and Dan) each may belong to any of various
groups whose members collaborate in sub-group teams
towards different goals. Exploitations play out the gen-
eral scheme of Fig. 3.

The exploitation scheme on the left-hand side of
Fig. 3 includes four main, sequential subevents, each
of which unfolds through several levels of task decom-
position (illustrated in Fig. 4), bottoming out in trans-
actions with record types indicated on the right-hand
side of Fig. 3 and at the bottom of Fig. 4. In a threat
exploitation, the final, consummation phase—in which
capabilities and resources are (destructively) applied to
the target—defines the time by which alerting must oc-
cur to be at all effective. Transactions appearing in in-
crementally presented, time-stamped evidence are the
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1. Plan activity.
2. Observe target.

—'l 3. Acquire resources. |

*| 4. Apply capabilities & resources.

Fig. 3. Generic exploitation scheme.
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Fig. 4. Invocation relationships among event generation patterns.

sole basis LD has for issuing alerts; intermediate-level
events are never materialized in evidence.

In the real world, people typically interact simultane-
ously in several different social spheres associated with
(e.g.) work, family, faith, neighborhood, sports/hobbies,
civic involvement, shopping, and other relationships.
People interact to coordinate times and locations for
all of their activities, negotiate inter-activity constraints,
and travel as necessary to interact. To make large dataset
generation efficient, we have abstracted away such de-
tails, modeling all group activities with the same ab-
straction (the exploitation pattern), allowing individuals
to participate in arbitrarily many activities simultane-
ously, and assuming that all activities take place in a
single location (e.g., a metropolitan area).

The challenge to threat detection technology is to
identify and report threat cases—top-level objects with
attributes and values summarizing extant threat phe-
nomena at a level sufficient for scoring. The case types
that are LD is tasked to detect include threat actors
(groups, individuals, and their aliases) and (ideally, im-
pending) threat events/attacks. To perform this chal-
lenge, an automated threat detector is given informa-
tion about the underlying artificial world that is rela-
tively complete (excepting only a few, novel exploita-

Observability:
0% 100%

o World fixtures

& Resource, capability types Given

& Targets Given

¢ Usage modes Given )
® Actors

* Groups Given partially

« Individuals Given partially

& Aliases Given partially
e Events

* Threat Given partially

« Threat-like clutter Given partially

+ Noise Given partially

+ Transaction records Given partially

Fig. 5. Threat detection objectives and notional instance
observabilities.

tion modes) and about events and actors that is only
partial—per settings of “observability” parameters, as
depicted notionally in Fig. 5.

We further describe the artificial world problem
domain as follows.

o Individuals have assets.
—They have permanent capabilities.
—They can acquire consumable resources as neces-
sary to exploit a target in one of its modes.

e Both resources and capabilities are abstract enumer-
ations.

e Exploitation modes are sets of capabilities and re-
sources.

—Vulnerability modes are exploited by threat actors.
—Productivity modes are exploited by both threat and
non-threat actors.

e Groups are collections of individuals. Only threat in-
dividuals belong to threat groups. Both threat and non-
threat individuals can belong to non-threat groups.
Groups have designated exploitation modes—vulner-
ability modes for threat groups and productivity
modes for both group types. A group can exploit a
target that exhibits one of its modes.

e Groups have subgroups—exploitation teams—that
focus on particular exploitation modes for which a
team has qualified members.

e Groups’ and teams’ member individuals tend to share
abstract social/demographic attributes.

e Noise events masking threat activity occur at several
levels. We refer to non-threat exploitations as clut-
ter. Structured noise events share intermediate struc-
ture with exploitations. Transaction noise events are
atomic.

In this world, inter-connections abound. Modes over-
lap with respect to capabilities and resources (as sug-
gested in Fig. 2). Groups overlap with respect to modes,
as do targets. Individuals overlap with respect to teams
and groups and with respect to capabilities. Exploita-
tions overlap in time with each other and with noise and
clutter events. All of these inter-connections contribute
to threat detection difficulty.
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Fig. 6. Generic hypothesis scoring scheme.

3. GENERAL HYPOTHESIS SCORING METHODS

We want to score structured hypotheses that re-
flect modeled threat objects’ attribute values and inter-
relationships—e. g., a threat event case mentions a threat
group case, which includes threat individuals that may
be named by their aliases. (Section 3.2 gives full at-
tribute type details.) In this object-oriented context, we
need metrics analogous to traditional information fu-
sion’s probability of detection and probability of false
alarm. For this purpose, we generalize the related re-
call and precision metrics from traditional information
retrieval to accommodate partial matching over struc-
tured objects with weighted attributes. Fig. 6 depicts
the generic scoring scheme. We require LD to return
hypothesis objects that are definite (incorporate neither
logical nor probabilistic uncertainty).

In Fig. 6, the reference cases are summaries com-
puted from ground truth, and the hypothesized cases are
from LD. Because case objects have significant struc-
ture, we want to credit LD when hypothesized cases
approximately match reference cases. Match quality is
determined by case comparison. When a hypothesized
case object’s existence has been inferred from lower-
level evidence, we can decide which reference case to
pair the hypothesized one with only by comparing the
hypothesized case with all relevant reference cases—on
the basis of their attribute values. We store comparison
results for the candidate pairs in a matrix. With inexact
matching, it also can be ambiguous which of the one-to-
one mappings admitted by the candidate pairs should be
selected, so we use an algorithm that optimizes dataset-
level scores. Given these pairs, we compute scores for
object-oriented metrics based on traditional precision,
recall, and F-value metrics.

Subsequent subsections present our scoring methods
in more detail, as follows.

e Section 3.1 summarizes the issues of case comparison
and case pairing that arise with inexact structured
object matching.

e Section 3.2 summarizes the scored object types and
attributes in our counter-terrorism domain.

e Section 3.3 presents the algorithmic details of case
comparison.

Reference (R) Hypothesized (H) | RNH |
Recall R)= ——
| R-H U RNH |
RNH H-R | ROH |
Precision (P)= —M
| RNH U H-R |

Fig. 7. Traditional precision and recall.

2PR/(P +R)

F-value

\\
> %0 o2 04 08 08

Precision = P

Fig. 8. The F-value surface.

e Section 3.4 describes how we apply the algorithm at
the attribute and value level.

e Section 3.5 summarizes additional extant and contem-
plated hypothesis scoring capabilities.

e Section 3.6 discusses others’ work related to our
hypothesis scoring approach.

3.1. Case Comparison and Pairing

Case comparison determines the quality of match
between any two cases. We characterize this quality by
generalizing the traditional precision and recall metrics
that presume exact matching between hypothesized and
reference items. Fig. 7 illustrates the traditional versions
of these metrics.

Traditionally, recall R is the number of valid hy-
potheses divided by the number of detection targets (the
required number of valid hypotheses). Precision P is the
number of valid hypotheses divided by the number of
all hypotheses.

A single metric to summarize the values of recall
and precision is frequently useful, and it is traditional to
appeal to F-value = 2PR/(P + R)—the harmonic mean
of precision and recall. (When both precision and recall
are zero, we define F-value as zero.)

F-value (shown in Fig. 8 and also known as
“F-score” or “F-measure’) has the same extremes as a
simple average of precision and recall but discounts
differences between them (less aggressively than
min(P,R) would discount such differences).
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Attribute Reference case Hypothesized case
T T
Group: Dan’s devils Fred's friends
Target: Home offices
Mode: Truck bomb
(-. = * = =
P=1/2 p=1)3 Tvalue 2(1/3*1/2)=2/6=2/5
1/3+1/2 5/6
Fig. 9. Object-oriented metrics.
# 1 2 3
Reference Group | Dan’s devils Humbug Grousers
attacks Target | _Home offices Town bridge Play stadium
Mode | _Truck bomb HazMat spill Bio aerosol
Group |_Fred’s friends Grousers Dan’s devils
Hypothesized  Target | -Home offices || - Town bridge || Home offices
attacks Mode — Truck bomb Bio aerosol
# A B o]
Fig. 10. Case pairing issue.
Reference
# 1 2 3 1 2 3 1 2 3
3 Al G| 000 | 0.00 0.33 | 0.00 | 0.00 0.00 | 0.00
7
g B| 033 | 033 | 033 033 | 0.33 | 0.33 0.33 @ 0.33
g
>
T C 0.00 | 0.33 0.6 0.00 | 0.33 WErA 0.00
Precision Recall F-value
< 0.20 =060 < 080 <1.00
Fig. 11. Case pairing matrix and metrics.

To accommodate inexact matching over structured
case objects, we define object-oriented versions of pre-
cision, recall, and F-value, as illustrated in Fig. 9. Our
complete definitions—in Section 3.3—address object
attributes that may be weighted differently, so that at-
tributes contribute to scores non-uniformly.

Of the three attribute values in the reference case of
Fig. 9, the hypothesized case agrees only for the Target
attribute, so the object-oriented recall score R is 1/3.
Of the two attributes included in the hypothesis, only
one agrees with the reference, so the object-oriented
precision score P is 1/2. The corresponding object-
oriented F-value (F-value) is 2/5, as shown.

Case pairing determines which hypothesized cases
to pair with which reference cases—since this may not
be obvious, as illustrated in Fig. 10.

In Fig. 10, we have three reference and three hy-
pothesized attack cases. (Reference Case 1 and Hypoth-
esized Case A correspond to the pairing of Fig. 9.) Links
appear in the bipartite graph between reference and hy-
pothesized cases wherever these share one or more at-
tributes. Fig. 11 illustrates how we perform one-to-one
case pairing using a matrix over all possible pairings.

In Fig. 11, we compute per-pair object-oriented pre-
cision, recall, and F-value (as in Fig. 9). Then we use
an optimization algorithm to select (red-circled) pairs
leading to the greatest average object-oriented F-value.
So, we have computed a matching for Fig. 10’s bipartite
case graph including just the strictly vertical edges.

Case pairing is necessary only for objects whose ex-
istence LD has hypothesized based on lower-level evi-
dence, when we require it to invent a unique identifier
(UID) in its own namespace. Otherwise LD reports ob-
jects’ UIDs as they appear in evidence. We forcibly pair
any like-UID hypothesized and reference objects, and
we omit them from the case pairing matrix.

When the numbers of reference and hypothesized
cases do not match, we (effectively) pad the matrix, as
necessary to make it square, with null cases. Precision
and recall with respect to null cases are defined as zero.

As an optimization algorithm to select a best-scoring
one-to-one case pairing, we have often used greedy,
heuristic search with a sparse matrix representation that
can process thousands of structured hypothesized and
reference cases in tens of minutes on conventional hard-
ware. We also have implemented an optimal assignment
algorithm [19] that can process hundreds of cases in
minutes. The greedy algorithm always selects next the
best score in the yet-unselected row or column with
the greatest standard deviation among F-values, thus
has O(n?) behavior. In practice, when its F-values dif-
fer from those optimally computed, it is only by a few
percentage points. The optimal algorithm is O(n?). For
small n (up to about 10,000), both algorithms are dom-
inated by the O(n?) matrix set-up time. Our current im-
plementation doesn’t support non-sparse, square matri-
ces of more than about 5,000 on a side, though, and, as
the optimal algorithm does not readily accommodate a
sparse matrix representation, we fall back to the greedy
algorithm as an alternative. We also are interested in
the optimal forward/reverse asymmetric assignment al-
gorithm of Bertsekas and Castanon [6] which is reported
to work efficiently with sparse matrices.

To help illustrate how we develop dataset-level met-
rics, Fig. 12 depicts a somewhat larger, notional case
pairing matrix. Again, it holds computed object-oriented
F-values for candidate reference-versus-hypothesized
case pairings.

In Fig. 12, we again have circled entries to optimize
average F-value in a one-to-one pairing. Generally, we
admit entries to candidacy per a user-specified F-value
threshold that must be exceeded for a hypothesis to be
deemed adequate for an analyst or other consumer. The
larger, red circles apply when all non-zero entries are
candidates for pairing (i.e., when the threshold is zero).
The smaller, yellow circles apply when the threshold
is set at 0.75. Notice that the pairings under the differ-
ent thresholds are different—each case pairing process
considers just the eligible entries. Giving these pairs and
object-oriented precision and recall scores, we compute
dataset-level precision and recall. Under zero thresh-
olding, the dataset’s average object-oriented F-value is
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Reference
# 1 2 3 4 5 6 7 8 9 10

0.09 @ 0.9 0.27 0.60 0.12 0.22 0.69

B| 0.30 0.68 0.12 0.26 0.6 0.11

D v 0 @ 0.20 0.37 0.99 0.80
3
N E 0 0 0.16 0 @ 0.02 0.22 0.06
3
S
o
& F 0.19 0.04 0.6 0 0 0.12
T
e} O 0 0.02 0.02 0.03 0 0.25 @ 0
Il 06 0.04 0.30 0.12 0.05 0.76 0.9 0.33

1| 0.21 0.38 0.9

0.34 0.9 0.35 0.32 0.17
J| 0.16 @ 0.40 0.11 0.6 0.24 0.30

Fig. 12. Larger, notional case pairing matrix.

0.834, and the traditional metrics aren’t particularly in-
formative (always equal one), as all cases (given equal
numbers) are paired. Under non-zero thresholding, we
always apply traditional metrics given these pairings,
so the dataset-level precision, recall, and F-value under
the 0.75 threshold all equal 0.8. (A potential expedi-
ent would be to develop different higher-thresholded
dataset-level scores from a single, zero- or otherwise-
lower-thresholded case pairing by dropping any below-
threshold pairs.)

To support forthcoming examples, we exhibit, in
Fig. 13 and Fig. 14, matrices with notional object-
oriented precision and recall values that combine
to yield the F-values in Fig. 12. For each cell in
the F-value matrix, we have set R = (1 + F-value)/2
and P = R(F-value)/(2R — F-value). We have set the
F-value threshold for case pairing at zero and include
only the larger, red circles from Fig. 12.

When LD can rank its hypotheses with respect to
estimated quality, this ranking supports developing a
precision-recall curve and computing the area under
the curve (AUC). Any consistently applied variant of
precision and recall—e.g., using any consistent F-value
threshold—suffices here. Fig. 15 illustrates the AUC for
the example values in Fig. 13 and Fig. 14, under two
different hypothesis rankings.

At each ith curve point, we compute precision and
recall with respect to the full reference case set and
the set of LD’s 1st- through ith-ranked hypotheses.
Fig. 15 notes the hypotheses accounted for by each
rectangle contributing to the example’s AUC supposing
LD ranks its hypotheses in the order (A, B, C, D, E, F, G,
H, I, J). Instead of performing full case pairing at each
point, we expediently take the case pairings over the full
sets of reference and hypothesized cases as authoritative
and impose them as we consider each successively
presented case to develop the curve.

Reference

Hypothesized

Fig. 13. Notional recall values for Fig. 12’s F-values.

Reference

# 1 2 6 7 8 9 10
Al 0.14 0.02 0.17 0.07 0.13
Bl 0.19 0.06 0.25 0.69 0.8
[ 0.9 0.94 0.15 0.07 0.37 0.17 0.9 0.8
D (e 0 00 0.35 0.12 0.25 0 0.33 0
3
N E 0.28 0.32 0.09 00 0.01 0.14 0.03
é
[~
& F 0.37 0.12 0.02 0 0 0.07
T
G 0 0.01 0.38 0.01 0.02 0 0.16 0 0.6
0.02 0.6 0.36 0.88 0.22
0.93 0.22 0.89 0.23 0.21 0.10
0.39 0.06 0.15 0.19 O

Fig. 14. Notional precision values for Fig. 12’s F-values.

AUC summarizes LD’s performance on a dataset in
a way that rewards good rankings. When LD returns
lower-quality hypotheses earlier, these drag down incre-
mentally computed scores for later points in the curve
as well. When LD returns its hypotheses in the order
(E, D, I, C, A, G, F, B, H, J) induced by decreasing
F-value scores, the AUC rises to 0.851.

Note that our detection task, where structured threat
hypotheses must be developed from lower-level evi-
dence, leads to expectations different from those for the
traditional information retrieval task, where every pre-
sented item merely must be classified as positive or neg-
ative. In the traditional setting, the AUC expected from
a strategy of pure guessing is 0.5. In our setting, some
reference threats may never be reported, given what-
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m(E,DIC A G, F B, H,J), AUC = 0.851
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Fig. 15. Precision-recall curve and area for the example values in
Fig. 13 and Fig. 14.

ever practical minimum-estimated precision threshold
a detector may set. Also, the universe of potential—
e.g., syntactically admissible—hypotheses for a given
dataset is practically unbounded, rather than limited to
presented items as in the traditional case, so that preci-
sion scores may be dominated by a practically arbitrary
number of false-positive responses (making guessing a
practically ineffective strategy).

The size of the information fusion hypothesis space
also presents issues for some other metrics commonly
used in performance analysis of (binary) classifiers. In
particular, the so-called “false-positive rate” used in
receiver operator characteristic (ROC) curves and in
the calculation of the “detection capability” metric of
Gu et al. [16]' assumes a practically enumerated set
of “true-negative” responses (i.e., the presented items
known in ground truth to be non-threat). True nega-
tives also must be enumerated for the machine learning
community’s commonly used “accuracy” metric (the
number of true—positive and negative—responses di-
vided by the number of all—true and false—responses).
Schrag and Takikawa [35] describe analogies between
our hypothesis scoring approach and binary classifica-
tion.

3.2. Scored Object Types and Attributes

Table I presents the types and attributes that are con-
sidered during scoring in the counter-terrorism domain,

I'The authors, working in the domain of computer network intrusion
detection, describe an “intrusion detection capability” metric which is
in fact applicable in any binary classification setting.

TABLE I
Scoring-Relevant Types and Attributes

Reference
attribute
2
Scoring- g £
relevant % °
type Scoring-relevant attribute Attribute domain = 8
VulnerabilityExploitationCase
startingDate Date (integer) 1 1
endingDate Date (integer) 2 1
minAssetApplicationEndingDate  Date (integer) 2 1
maxAssetApplicationEndingDate  Date (integer) 2 1
performedBy ThreatGroup 3 1
directingAgent ThreatIndividualEC =~ 2 1
deliberateActors ThreatIndividualEC = 1 1+
targetinExploitation ExploitationTarget 5 1
modelnExploitation VulnerabilityMode 4 1
ThreatGroup
exploitsVulnerabilities VulnerabilityMode 1 o
memberAgents ThreatIndividualEC 1 1+
ThreatIndividualEC
hasMember ThreatIndividual 1 1+
ThreatIndividual
ExploitationTarget
VulnerabilityMode
modeCapabilities Capability 1+
modeResourceTypes ResourceType 1+
Capability
ResourceType

per the artificial world’s representation. Along with each
attribute is specified its domain, scoring weight (reflect-
ing the challenge problem developer’s intuition of an at-
tribute’s importance), and reference attribute cardinality
(either single or multiple).

The first three types in Table I are just the scored
case types. The remaining types are those that appear
as values of scored attributes of cases (i.e., as subcases)
or in turn as values of the subcases’ attributes.

For each type, each instance also has a unique
identifier (UID) by which it may be referred to. An
object of class ThreatIndividualEC is used to represent
an equivalence class (EC) of threat individual identities,
supporting aliases. In attribute values, we interpret any
of an EC’s member UIDs as denoting the full EC.

Note that an instance of the exploit-target event
generation pattern in Fig. 4 is represented in Table I
only at the top level (the VulnerabilityExploitation-
Case threat event type). To simplify scoring, we have
engineered this object type to include relevant at-
tributes that it might not explicitly have otherwise—e.g.,
minAssetApplicationEndingDate, determined by com-
paring occurrence dates of (lower-level) events associ-
ated with the apply-resource and apply-capability pat-
terns.

Note also that event objects have as attribute values
objects of other types, some of which also are scored.
We rely on the fact that our counter-terrorism domain’s
supercase type-to-subcase (whole-to-part) type graph
(depicted in Fig. 16) is directed and acyclic, as we
compute scores for leaf types first and work our way up
to root types. (In Fig. 16, only the object types requiring
case pairing are shown.)
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— VulnerabilityExploitationCase

> ThreatGroup f

> ThreatIndividualEC

> VulnerabilityMode «———

Fig. 16. Counter-terrorism domain supercase type-to-subcase type
graph.

3.3.  Algorithmic Details of Case Comparison

We compare two like-type cases to determine their
object-oriented precision P and object-oriented recall
R, as follows.

We treat a case as a set of assertions regarding the
case’s attribute values—e.g., (hasMembers Group-4931
Individual-2437). Note that a given case can have mul-
tiple, distinct assertions pertaining to a given (multi-
valued) attribute. e.g., Group-4931 can have more than
one member. Note also that the reference and hypoth-
esized cases can have different numbers of assertions
and of attributes, depending on numbers of values per
attribute reported by the reference and by the hypothe-
sis.

For each case type, for each defined attribute, a case
scoring specification indicates an assertion weight, as
summarized in Table I. For a given attribute, the same
weights are used for assertions of hypothesized as for
those of reference cases.

For a given reference case with the set of asser-
tions {r,r,...,r,,} and corresponding set of weights
{wy,w,,...,w, }, we define the “object-oriented recall
basis” R, = ;-1 mW; (So, each weight is counted
once for each assertion in which the attribute appears.)
For a given hypothesized case with the set of asser-
tions {h,,h,,...,h,} and corresponding set of weights
{wy,w,,...,w,}, we similarly define the “object-oriented
precision basis” P, = 3" ;_; ,,w;. Note that, for a given
comparison of two cases, R;, and P, may differ depend-
ing on numbers of values per attribute reported by the
reference and by the hypothesis.

We pair reference and hypothesis attribute assertions
one-to-one, computing for each pair (r;, ;) the follow-
ing (per the next section’s rules for assertion compar-
ison).

e Object-oriented recall R(r;, h;)
e Object-oriented precision P(h;,r;)

We define the “object-oriented recall contribution”
R, as the sum over the hypothesized case’s assertions
of assertion weight w; pro-rated by the corresponding
recall—R,. = > i_ ) R(;,h)*w;. The “object-oriented
precision contribution” P, is the sum over the reference
case’s assertions of assertion weight w; pro-rated by the
corresponding precision—7P, =3y, P(h;,r;)*w;.

Attribute (weight)  Reference

Hypothesized

Group (3): Dan'’s devils /

-

-
Fred's friends\

Target (5):| / Home offices )
Mode (4): \\Truck bomb missing /
e

B=3+5+4=12 =Rl Fy=5/12

P=3+5=8 P=217=5/8

‘72b=‘7’=5 Fvalue=2(5/12*5/8)=50/96 =1/2

¢ e 5/12+5/8 100/96
Fig. 17. Object-oriented metrics with non-uniform attribute
weights.

For a given pair of reference and hypothesized cases,
we define the following.

R=R/R,
P=P,/P,
F-value = 2(P+xR)/(P + R).

We compute the metrics for a given dataset’s cases
of a given type as follows. Let N, be the number of
reference cases and Ny the number of hypothesized
cases. Let the set {p,,p,,...,p,} be the computed pairs,
and R(p,), P(p,) the object-oriented recall and precision
(respectively) of the kth pair. Then for the dataset we

have the following.

/.

Fig. 17 adds non-uniform attribute weights to the
example of Fig. 9 to illustrate their use in the object-
oriented metrics.

The metrics’ sensitivities to specified attribute
weights depend on the numbers of values for each at-
tribute in compared cases (so, how many times each
weight is counted) and—for nested objects—on weights
applied in supercases.

R =

> R

(k=1...0)

> P

(k=1...0)

P =

3.4. Pairing and Comparison for Attribute Values

We require that paired assertions have the same at-
tribute, so single-valued attributes pair straightforwardly
and multi-valued attributes require a one-to-one pairing
over their values. In principle, the values may be scalars
(of type, e.g., Date) or structured objects (cases or other
objects—e.g., Targets) that have UIDs. Per Table I, we
have no multi-valued attributes with scalar values in the
counter-terrorism domain. Thus, we emphasize here the
pairing of multi-valued attribute assertions with nested
object values.

We have two alternative general methods for pairing
multi-valued attribute assertions.
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e Rely on a global one-to-one pairing between all the

hypothesized and reference instances of the nested
case types for any multi-valued attributes. This has
the advantage of consistent pairing across all contexts
(because the same hypothesized case is always paired
with the same reference case).

Compute a local one-to-one pairing addressing just
the context of a given candidate pair of hypothesized
and reference cases and their attribute values. This
has the advantage of optimizing per-candidate pair
scores—at the expense of global consistency (because
different hypothesized cases may be paired with dif-
ferent reference cases in different contexts). Local
pairing over nested cases with multi-valued attributes
might be prohibitively expensive, but these do not
arise in our counter-terrorism domain.

Once pairs have been established over the candidate

hypothesized and reference objects’ attributes, we can
read off each pair’s object-oriented precision and recall.
We have two alternative general methods of doing this.

Interpret the computed comparison scores smoothly
(accept them at face value)—wherever they fall in
the interval [0,1]. Smooth comparison reflects the
combined matching quality of a given case and all
of its nested subcases.

Interpret the selected pairing crisply, by returning
one—for both precision and recall—if the hypoth-
esized object has been paired with a reference object,
zero otherwise. Thus, scores fall in the set {0,1}.
Crisp attribute comparison minimizes the impact of
inexact matching of nested subcases. The crisp setting
matters when the F-value threshold for case pairing
is zero. Under non-zero thresholding, comparison is
always “crisp” (using traditional metrics, as noted in
Section 3.1).

Of the object types with attributes considered dur-

ing scoring, instances only of ThreatlndividualEC ap-
pear as values of multi-valued attributes in other types
(VulnerabilityExploitationCase and ThreatGroup). So,
in our counter-terrorism domain, only instances of type
ThreatIndividualEC may require local case pairing. For
these instances, a pair’s object-oriented precision and
recall depend on how we handle any aliases.
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If both the reference and hypothesized ECs are sin-
gleton (perhaps because the dataset does not invoke
aliasing), the pair’s object-oriented precision and re-
call are both one if the UIDs match, otherwise both
Zero.

Otherwise (at least one of the reference and hypoth-
esized ECs is not singleton), we have two choices.
—Apply smooth or crisp comparison to the globally
or locally computed pairing of reference and hypoth-
esis ThreatIndividualECs.

—Anti-alias by appeal to the ECs defined in ground
truth, then (after discarding any resulting duplicate
assertions) score as for singletons. This may be ap-

Hypothesized

Reference

‘DLocaI
B Global
F-value
Smooth  Crisp
1.00
el
o5 (Bl El o
oba
R
0.00
Smooth  Crisp
1.00 5
<
S b=
050 | |8 ‘DLocaI
B| 0.19 0.07 0.16 7 B Global
0.00
C 0.94 0.15 0.07 Smooth  Crisp

Fig. 18. Alternative pairings (local and global) and interpretations

(smooth and crisp) for objects (of type ThreatGroup) with
object-valued attributes (of type ThreatIndividualEC).

propriate when LD does not have access to an alias
detection capability.

To illustrate the above concepts, suppose that Fig. 12

compares objects of type ThreatlndividualEC. Suppose
that we would like to compare two ThreatGroups and
that we have for the present zeroed out the scoring
weight for the exploitsVulnerabilities attribute. Then
only the memberAgents attribute counts; suppose for
the compared groups it has the following values.

Reference: {EC-1, EC-2, EC-3, EC-4}
Hypothesized: {EC-A, EC-B, EC-C}

We have reproduced the relevant portions of Fig. 12,

Fig. 13, and Fig. 14 in Fig. 18. The global pairing is
given by the larger, red circles, the local pairing by the
smaller, cyan ones.

Of the types in Table I, the following either have

no attributes or have no attributes that are considered
during scoring.

Instances of type Date are represented by integers.
The object-oriented precision and recall for a pair of
reference and hypothesized Dates are both (identi-
cally) defined in terms of their normalized temporal
distance, as illustrated in Fig. 19. (The “ratio” param-
eter is computed with respect to a nominal distance
specified for the given attribute.)

The types Target, Capability, and ResourceType have
no scored attributes. If a pair’s UIDs are the same,
the object-oriented precision and recall are both one,
otherwise both zero.

For the type VulnerabilityMode, we require strict
set equivalence. For each of the two multi-valued
attributes, if a pair’s respective sets of attribute values
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Fig. 19. A normalization function for Date distances.

have the same members, the pair’s object-oriented
precision and recall are both one, otherwise both zero.

3.5. Additional Hypothesis Scoring Capabilities

The PE Lab also implements many-to-one and
many-to-many case pairing methods that—unlike their
one-to-one counterpart—do not necessarily penalize LD
for submitting multiple competing hypotheses. We have
considered (but not yet implemented) support for logi-
cal and probabilistic uncertainty. One practical approach
may be for LD to submit disjunctive hypotheses with
each disjunct’s probability noted. Entire disjunctions
would then be paired one-to-one with reference cases.

Because we include some (partially described, po-
tentially corrupted) case objects in evidence, we would
like a scoring method to factor this information out
of reported scores. We score evidence’s case objects
directly (treating them as hypotheses), to establish a
baseline, as described in Section 5.4. To obtain more
diagnostic value, we are contemplating a refinement to
develop separate hypothesis scores regarding reference
case content that is:

Correct in evidence;

Clearly incorrect (corrupted) in evidence;
Ambiguous in evidence; or

Omitted from evidence.

Our hypothesis scorer’s many parameters (only
some of which have been mentioned here) support cus-
tomized experimentation. For example, we have on oc-
casion (as in Section 3.4’s illustration) tailored case
scoring specifications to zero out the weights of at-
tributes that a given technology does not address. An-
other parameter lets us count the weight of each multi-
valued attribute only once for a given object instance,
rather than counting the attribute’s weight time it ap-
pears in the object. Counting just once is appropriate
when attributes’ relative imports are roughly indepen-
dent of their per-instance cardinalities, which agreed
with our intuition when we applied the overall PE lab
approach in the computer network intrusion detection
information fusion domain [34].

We are considering the following alternative treat-
ment of temporal information (e.g., events’ endpoints)

Event extent

Leader: Dan Dooley Doober

Fig. 20. Ground truth representation of a time-varying attribute.

| RNH | | RNH |
| R-H U RNH | |RNH U H-R |
Group: Dan’s devils - Reference (R)
Mode:  Truck bomb -
. Content
Target: Home offices RNH } vetiap
Mode:  missing H-R
Hypothesized (H) |  Group: Fred's friends
Y
Temporal overlap
t
Fig. 21. Temporal object-oriented recall and precision.

to accommodate scored objects with time-varying prop-
erties that may be included in future versions of the
artificial world or that may arise in other application
domains—e.g., groups with time-varying membership
(memberAgents) or events during which an exploita-
tion’s leader (directingAgent) role may alternate among
team members. Instead of treating an event’s endpoints
as individual scalar attributes (startingDate and end-
ingDate), we would record, for each object attribute
with temporal extent, a set of contiguous temporal in-
tervals over which its potentially different values hold.
In ground truth, for each single-valued attribute there
would be a set of disjoint, adjacent intervals that to-
gether cover the object’s extent, as in Fig. 20.

Fig. 21 suggests how we would compute temporal
object-oriented precision and recall for the reference
and hypothesized threat events shown in Fig. 9. (For
simplicity, Fig. 21 omits the weights of Fig. 17. The
fact that our current threat events have static attributes
also simplifies the illustration, in that we require only a
single temporal interval per event.)

Note that scores for these temporal versions of
object-oriented recall and precision are zero whenever
the intervals do not overlap, which means we can omit
any non-overlapping pairs from the case pairing matrix
without excluding any pairs with non-zero comparison
scores.

Under some circumstances, it might make sense to
compare temporal objects with attributes summarized
at different levels of temporal abstraction; thus two
objects’ coarse time structures could be seen to match
relatively well even when their fine time structures did
not.

3.6. Related Work (Hypothesis Scoring)

Our object-oriented metrics may be compared with
other metrics of inexact matching, such as the graph
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edit distance metric used in LAW [44]. Some of the
key differences between this approach and ours are:

e Our strong object orientation versus their accommo-
dation of arbitrary relationship graphs;

e Our separate tracking of false-positive and false-
negative discrepancies versus their uniform distance
tracking; and

e Their accommodation of ontological distances be-
tween typed nodes that we haven’t required (because
our ontology of case- and scoring-relevant attribute
types in Table I includes no subtype relationships).

Our reliance on a directed acyclic graph of subcase
types means that (given global pairing of multi-valued
attributes) we compare two cases of a given type only
once, regardless of how interconnected the different-
type hypotheses may be. It also allows us to deprecate
the fine differences between nested cases in comparison
to the coarser differences at the supercase level. They
also take advantage of graphs’ hierarchical structure
and cache computed subgraph distances locally, but not
globally as we do. Ghallager [15] surveys additional
graph-based pattern matching metrics.

Working in the computer network intrusion detec-
tion domain, Tadda et al. [39] have adopted our un-
weighted object-oriented metrics and our one-to-one
case pairing (with recall, rather than F-value, used in
case comparison matrices) and have developed some
original metrics—inspired by metrics in the field of tar-
get tracking—to summarize a resulting case pairing ma-
trix. This is for a single-level case structure where each
attribute value is assumed to appear in no more than one
hypothesis.

To support scoring in the network intrusion detection
PE Lab, Schrag and Takikawa [34] developed object-
oriented precision and recall scores at different levels
by defining different case types corresponding to dif-
ferent abstractions (information-reducing mappings) of
a full-information case type accommodating hypotheses
from the technology under test. This requires separate
case pairings for the different case types but supports
scoring the abstractions using common metrics. Preci-
sion for the most-reduced case type, a bag of evidence,
corresponds to the “track purity” metric used in target
tracking.

Mahoney et al. [26] describe scoring for a two-level
military situation hypothesis that includes a joint prob-
ability distribution (e.g., a Bayesian network) regarding
component objects’ existence and attribute values. They
compute (un-normalized) attribute value distances at the
situation component level, accounting for hypothesized
probabilities and applying attribute weights. At the sit-
uation level, they invoke a distance threshold to qualify
potential matches of hypothesized and reference com-
ponents, then develop all possible sets of one-to-one
pairs and estimate the likelihood of the observed dis-
tance given that the pair is a correct match and given
that the pair does not match. By aggregating the like-

lihoods computed for a given pair across the sets, they
estimate the overall likelihood for each pair. It is not
clear whether this work could be generalized easily to
address more deeply nested hypotheses.

4. ALERT SCORING METHODS

The scoring methods of Section 3 allow us to com-
pare, for a given scored object type, a static set of hy-
pothesized objects against a static set of reference ob-
jects. They thus are appropriate for scoring a batch of
event hypotheses tendered retrospectively/forensically.
By themselves, though, they are inadequate for scor-
ing alerts—event hypotheses tendered prospectively,
for warning, when LD incrementally processes time-
stamped event records in evidence. Here, we describe
methods that additionally account for alert scoring’s
dynamics—whether the alerts in effect during reference
events are good hypotheses and whether they can be
used to support effective warning.

Schrag et al. [36] describe an approach that was im-
plemented late in the development of PE Lab and sug-
gest an alternative practical approach and an associated
(deemed-impractical) idealized approach. All three of
these variants rely on specified costs of false-positive
and false-negative reporting that are applied uniformly
over a portion of the reference event’s temporal extent.
As explained further in Section 4.2, they also conflate
evaluation of the quality of a prospectively tendered
event hypothesis and of the decision about whether or
not to tender it, in that they presume some mitigating
action will be attempted for all tendered alerts. Rec-
ognizing the potential value of pure hypothesis quality
evaluation and of more sophisticated models for cost
and response, we here sketch two alternative, comple-
mentary approaches.

e Section 4.1 describes a cost-free approach based on
the temporal variant of object-oriented precision and
recall described in Section 3.5.

e Section 4.2 describes an alert-free, cost-based ap-
proach that excludes precision and recall because it
doesn’t even require the technology under test to
present alerts, rather merely to invoke response ac-
tions when it considers this advantageous with refer-
ence to a furnished cost model.

e Section 4.3 describes related work.

4.1. Cost-free Alert Scoring

As LD advances incrementally through time-stamp-
ed evidence, it must examine only the events that are
reported (with respect to simulation time) either at or
before its current processing time. LD may submit alerts
at any (simulation) time, with any frequency it chooses.
Finer incremental processing time intervals may incur
greater overall processing time but also may afford
more opportunity to detect impending threat events
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and issue alerts sooner. Coarser intervals may not pick
up evidence regarding threat events until after they
have been consummated—and so miss the opportunity
for alerting. Requiring alerts at fixed simulation-time
frequencies would entail similar issues. Requiring alerts
at specified simulation times (e.g., near threat event
consummations) might engender gaming by LD.

LD may supersede an alert tendered earlier in sim-
ulation time with one tendered later, or it may retract
an alert without superseding it. We call an alert that has
been tendered and that has been neither superseded nor
retracted an “active” alert. The temporal scores we’ve
described in Section 3.5 for retrospectively tendered
event hypotheses can be construed as applying to the
hypotheses active at the end of simulation time. For any
given simulation timepoint, we could make a similar
comparison of the active alerts—either to the full set
of reference events or just to those that have started.
If we averaged the resulting scores across timepoints,
though, earlier events that were considered in more per-
timepoint scores would have disproportionate effect. We
propose instead to consider all simulation timepoints si-
multaneously, admitting an alert as a candidate for pair-
ing with a reference event based on its activity status
(i.e., whether it is active or not) at an anchor point in the
reference when it might reasonably last be considered
useful—the first time one of its capability or resource
assets is applied to the target (noted in the attribute mi-
nAssetApplicationEndingDate) and after which we may
consider the attack’s success to be inexorable.

While we have thus shifted the focus from individ-
ual simulation timepoints to the reference events them-
selves, we’d like to go a bit further and reflect how the
quality of alerting has evolved over the course of each
reference event (i.e., not just at one anchor point). Given
unlimited computing power, we might compute the per-
anchor point scores using as anchors all earlier points in
the reference event (i.e., considering just the alerts active
at each point). While this may be feasible when there
are few alerts, for more general practicality we must
limit our invocation of the expensive case pairing oper-
ation. We propose to do so by taking the case pairing
that is computed for the reference cases’ minAssetAp-
plicationEndingDates as authoritative and by chaining
backward from the alerts paired there to any alerts they
have superseded.” Finally, we can take the average val-
ues we have computed for temporal precision and recall
(or for temporal F-value) over each reference case.

In the example of Fig. 22, Alert 3 tendered at Sim-
ulation Time 3 supersedes Alert 2 tendered at Time 2.
Alert 4 (not shown) is tendered past Anchor Point A

2The earlier practical and implemented approaches (Schrag et al.
2006) chained backward over supersession links established as au-
thoritative by pairing reference cases with retrospectively tendered
hypotheses. While this affords more perspective for LD, it might (es-
pecially since some reference events become visible in evidence after
they are complete) be considered artificial.

'{ Alert 1 event extent ‘

.{ Alert 2 event extent ‘

’ Alert 3 event extent

’ Reference event extent ‘

f f

Anchor Anchor
Point B Point A
i T i :
Time 1 Time 2 Time 3
Fig. 22. Alerts in a supersession chain.

corresponding to the minAssetApplicationEndingDate,
so is not eligible for comparison to this reference event.
Both Alert 1 and Alert 3 are active with respect to An-
chor Point A; Alert 2, the better match, is paired, and the
alert supersession chain it heads becomes authoritative
over the rest of the reference event. Even though Alert
1 is a better match at Anchor Point B than Alert 2, Alert
1 is not considered. The overall score computed for this
reference event thus is based on Alert 3 from Time 3 to
the event’s end, on Alert 2 from Time 2 to Time 3, and
on no alert before Time 2.

Under this treatment of supersession chains, LD
should supersede one alert with another when it believes
they apply to the same event. Otherwise, it should retract
the earlier alert and start a new chain. We require super-
session chains to be non-branching. Backward branch-
ing would introduce ambiguity as we chain backward.
Forward branching might make two reference intervals
end up at the same alert—if the heads of their respective
chains were paired with different reference cases.

4.2.  Alert-free Response Action Scoring

In the earlier approaches [36], we specified costs for
false-positive and false-negative predictions of an attack
on a target, indicating (respectively) the costs of actions
taken in response to a false prediction (e.g., escalated
protection, evacuation) and of inaction resulting from
a non-prediction (destruction of target, loss of life). We
applied these costs uniformly over the portion of the ref-
erence event’s temporal extent preceding the minAsse-
tApplicationEndingDate and discounted them to reward
good hypotheses—discounting the false-positive cost by
object-oriented precision and the false-negative cost by
object-oriented recall. See Fig. 23, whose dark-shaded
fraction corresponds to the discount and light-shaded
fraction to the assessed cost.

In the real world, the costs of action and of inaction
depend on complex interactions. Even in our artificial
world, it’s hard to tell a consistent story (in terms
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Fig. 23. Discounting uniform false-negative cost by object-oriented
recall (in earlier approaches).
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Fig. 24. Processes in automated threat defeat.

of actions and effects) about why false-negative and
false-positive costs should be applied symmetrically and
uniformly over time.

More fundamentally, our funding program’s scope
was limited to an LD component tendering threat hy-
potheses (see Fig. 1), not a “counter-threat enforcement”
component issuing actions to interdict threat agents or
to defeat their attacks (see Fig. 24). Imposing an ac-
tion interpretation on LD’s prospective event hypothe-
ses effectively required our evaluation participants to
conflate enforcement with LD and to make decisions
about whether to issue alerts at all.

In hindsight, we recommend that cost-based scores
be developed following an approach closer to that taken
by Morrison et al. [27] in the Hats simulator, where an
agent with threat detection capability (like that of LD)
acts as a player in a game. The player agent must act
on whatever threat event hypotheses it develops to in-
terdict suspected or known threat actors before they in-
flict damage. Performance is determined by the game’s
final score that accounts for incurred costs associated
with things like surveillance, damage, and false arrest.
Because the player agent is included in the Hats simula-
tion, its actions can have downstream effects as rich as
the simulation supports. For example, an incarcerated
agent will not participate in future attacks.

The simulator currently underlying PE Lab’s dataset
generator supports no such enforcement actions. One
reason we wanted datasets that could be processed en-
tirely off-line was to compare easily performance re-
sults for a given dataset across different technologies
under test, without the technologies’ different sets of en-
forcement actions resulting in different simulation his-
tories (effectively making the datasets different and the
technologies’ scores incomparable). The closest we can
come to Hats’ style of cost-based performance evalu-
ation and still maintain dataset-based comparability is
to admit “hypothetical” actions and effects that do not
actually manifest in simulation history. Instead, we pro-

TABLE II
Attack Effects and Eosts

One-time
cost

Attack Effect

Good individual dies.
Target is destroyed.

TABLE 111
Hypothetical Counter-Threat Enforcement Actions, Effects, and
Costs
Enforcement Action Un;t;ts':ne Latency Effect
Escalate target security. Low Short | CE can detain, evacuate.
Detain individual. Medium Nil Role-dependent...

Exploitation team leader:

Half of exploitation team members: Exploitation is abandoned.

Medium

Evacuate target. High Nobody good at target dies.

pose to infer tendered actions’ (determined or likely)
effects and (determined or expected) costs according to
a model that we furnish. Such a hypothetical action ap-
proach also might be used to evaluate an enforcement
component’s performance against real-world historical
datasets, which inherently require off-line processing.

To illustrate how this approach might be realized
in our artificial world, Table II suggests some notional
one-time costs to be associated with a successful attack.
Table III suggests continuing (per-time unit) costs that a
counter-threat enforcement (CE) component could incur
in its actions to defeat attacks.

Table III also suggests time constraints. Details fol-
low.

e Upon invoking the action to escalate security at
a target, there is a short “security escalation pe-
riod” (latency). Thereafter, CE can detain (effectively
incarcerate) individuals at that target and can evac-
uate it.

e The action to evacuate a target must be invoked a
medium time before the attack’s last resource or ca-
pability is applied (maxAssetApplicationEndingDate)
to avoid the deaths of visitors (everyone whose last
visit was to the target, including attackers’) when the
target is destroyed.

e CE may choose to detain (e.g.) suspected threat indi-
viduals or any individual it can determine may pos-
sess a resource or capability supporting a suspected-
impending threat mode. The exploitation team leader
or at least half its members must be detained through-
out the asset application interval (from minAsset-
ApplicationEndingDate to maxAssetApplicationEnd-
ingDate) to defeat the attack. We could (as in Hats)
accord greater cost to detaining a non-threat individ-
ual.

Fig. 25 illustrates CE’s hypothetical actions to defeat
a specific attack, in a scenario where CE is able to detain
three attackers but doesn’t have confidence that it can
thwart the attack. It decides to evacuate and is able to
do so in time.

Fig. 26 illustrates (not to scale) cumulative costs
associated with the enforcement actions and with the
attack in Fig. 25. In the described scenario, costs in the
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Evacuation latency

Evacuate Target 14.

Escalation
latency

TABLE IV
Coarse Problem Space Dimensions

Group Connectivity How many groups an individual belongs to

Noise, Clutter How much threat masking

Dataset Size How many observable transactions

Population Size How many individuals

Pattern Complexity Minimalistic vs. richer threat event modeling

Escalate security at Target 14. Observability How likely observations are
Reference event: Attack 37 on Target 14 ‘ Corruption How corrupted observations are
f i Aliasing How frequently aliases are used
min max Event Confusability How like are threat and non-threat activities
M Target Duty Level How busy targets are

Asset application interval

Fig. 25. Actions to defeat a specific attack.

In-235 Dies.

f Ta-14 Destroyed.

In-348 Dies.
Evacuate Ta-14.

In-579 Dies.

Fig. 26. Costs of hypothetical enforcement (left),
enforcement-defeated loss of life (center), and attack damage (right).

center column are averted; those in the left and right
columns are incurred.

Precise scalar costs would need to be tuned relative
to each other to ensure that datasets would pose rea-
sonable challenges. e.g., we generally would want CE
to incur a higher cost for incarcerating everyone it ever
sees than it incurs for doing nothing. A limited cost
budget (e.g., one that would support only a limited num-
ber of concurrent individual detentions or of total target
evacuation days) also could help to ensure plausible CE
threat-defeating strategies.

To facilitate comparison across datasets, scores may
be normalized in each dataset to the cost that would be
incurred if CE were to do nothing (and all attacks were
successful).

4.3. Related Work (Alert Scoring)

Besides Hats, related work appears to be limited.
Others have evaluated event prediction where exact
hypothesized-to-reference case matching is appropriate.
Weiss and Hirsh [42] specialize precision to discount
temporally close false-positive hypotheses. Létourneau,
Famili, and Matwin [20] apply a nonmonotonic time-
liness function to determine rewards and penalties for

Individual Duty Level How busy individuals are

true- and false-positive predictions of appropriate air-
craft component replacement times. Different metrics
are certainly appropriate in different contexts, and we
believe the accommodation of inexactly matching hy-
pothesized and reference cases and attendant case pair-
ing entail issues for structured threat alert scoring that
others have not addressed. Mahoney et al. [26] sug-
gest some overall strategies for comparing hypothesized
versus reference situation histories and note the require-
ment for timeliness, without directly addressing threat
event prediction.

5. EXPERIMENT DESIGN TO IDENTIFY
PERFORMANCE INFLUENCES IN THE PROBLEM
SPACE

We now describe our methodology for constraint-
based experiment design and analysis to identify which
among varied dataset characteristics most influence a
given technology’s performance on a given detection
task. We illustrate this methodology with a case study
using object-oriented F-value as the performance metric
of interest. We describe our experimental approach,
summarized as follows, in subsequent subsections.

1. Collapse many (fine) problem space parameters
into a few dimensions with discrete (coarse) difficulty
settings (Section 5.1).

2. Specify a mix of experimental datasets that maxi-
mizes diversity over the difficulty settings (Section 5.2).

3. Exercise participating detection technology con-
figurations over datasets in the mix (Section 5.3).

4. Score technologies’ output hypotheses relative to
an baseline derived from evidence (Section 5.4).

5. Determine the statistical significance of apparent
problem space performance influences by technology
and detection objective (Section 5.5).

Section 5.6 describes some related experimental de-
sign work.

5.1. Problem Space Discretization

The coarse problem space dimensions are summa-
rized in Table I'V.

Each coarse dimension corresponds to one or more
fine parameters. For some dimensions, we discretize
the fine parameters based on quantitative annual or
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TABLE V TABLE VII
Fine Parameter Discretizations by Problem Difficulty Cross-Parameter Constraints
Group Connectivity None Easy Fair Hard ° ‘E
% % % 5 gl 8|a|e
o 2 2 o S| ®» = s . " —
Individualstatus:| © | € [l =S| 5| £ | & | £ o|lx | e g Rationale for prohibited combinations of
Ol c| @ c| O] | Q| c sl e | B O i i i
£ @ 5 settings listed in rows
ElSIElS eS| el2] |&|E|2|¢ g
Mean groups per individual 1 1 2 4 4 6 6 | 10 z a 3 £
Dev. groups per individual 0 0 1 2 2 & 3 4 &
Y2.5[ Y3 People doing too few things during a simulation
Y3 |Y2.5 Too few threat events (maybe none)
TABLE VI Y1 Y3 Thin Too many threat events to score practically
Fine Parameter Discretizations per Annual Performance Goals YY235 YY235 5:: Too few threat events (maybe none)
Population Size Y1 Y2.5 Y3 Y3 [Y2.5| Fat T time ticks for i tal threat detecti
Number of individuals ~1,000 | ~10,000 | _~100,000 Y3 VA Rat] 0" 00 e amenty)
Mean threat group membership 20 80 80 Y2.5| Y1 | Fat y
Dev. threat group membership 5) 20 20
Number of capabilities 50 100 150
iinker of IRdoiices < it il 2. Perform constraint satisfaction to develop an ini-
Dataset Size Y1 Y2.5 Y3 tial dataset mix. o L. . . . L.
Number of observable transactions | N/A | ~100,000 | ~1,000,000 3. Perturb the initial mix in hill-climbing to optimize
the experiment’s coverage.
Noise, Clutter Y1 Y2.5 Y3
Threat-to-clutter event ratio 0.08 | 0.008 0.0008 Table VII indicates some prohibited coarse setting
Structured event SNR 008 | 0.008 0.0008 combinations and associated rationale. e.g., the Fat set-
Transaction event SNR 0.08 0.008 0.0008 ti di t ich threat t deli
Individual SNR 0.4 0.08 0.008 mng (corrpspon g to nch threal event modelmng—
Group SNR 0.8 0.16 0.016 resulting in more atomic transactions per threat event)

semi-annual performance goals (set by the funding
program)—see Table VI. For other dimensions we
chose to explore, we discretize into difficulty settings
such as Easy, Fair, Hard—see Table V for an example.
We apply a stop-light color-coding over the discretized
settings, adding light green for very easy settings and
dark red for very hard.

5.2. Dataset Mix Specification

Several factors make effective experimentation chal-
lenging in this context. The evaluation dataset mix
is scoped to occupy a few solid weeks of coordi-
nated program effort. Processing is not always hands-
off, with several disparate component developers some-
times manually handling intermediate results within a
single technology configuration. A star-shaped exper-
imental design with fixed baseline settings and single-
dimension departures might serve individual technology
configurations with single detection objectives, but—
with each dataset—we must test multiple configurations
over multiple objectives. What’s easier for one technol-
ogy/objective combination might be harder for another.
At evaluation time, we have somewhat sparse prior per-
formance data from dry-run activities. We need an ex-
periment that effectively tests over multiple baselines
simultaneously, so we choose a diversity-maximizing,
fractional factorial design.

We take the following steps, discussed below, to
maximize diversity.

1. Specify cross-dimension settings constraints that
ensure well dataset generation.

results in too few threat events when the signal-to-noise
ratio used is too low for the dataset size.

Other combinations of coarse settings over these di-
mensions have been verified to generate well datasets.
The coarse discretizations themselves assure compati-
bilities at the fine parameter level. For example, the var-
ious signal-to-noise (threat-to-non-threat) ratios (SNRs)
for a given coarse setting in Table VI are coordinated so
that there are enough individuals to satisfy the genera-
tor’s minimum group size requirement. The discretiza-
tion process thus factors out such fine, numerical con-
straints (whose violation would raise run-time excep-
tions), so that coarse constraint satisfaction over sym-
bolic domains is sufficient for the dataset mix specifi-
cation/experiment design.

The constraint satisfaction problem is challenging
in that we want a number of dataset specifications that
draw without replacement from settings pools, fixed
for each dimension, until all the pools are exhausted.
The pool for Group Connectivity, e.g., includes six
instances each for the tokens None, Easy, Fair, and
Hard. We have implemented an algorithm to specify
a dataset mix respecting both the constraints and the
pools. Alternatively, if the exact numbers of tokens
drawn from each pool is not critical, we can draw
with replacement to generate a random dataset spec-
ification and discard this if it does not satisfy con-
straints (or if it is a duplicate), until we have enough
datasets.

With an initial mix in hand, we perform a hill-
climbing random walk over the space of well datasets,
swapping any two datasets’ like settings along a given
dimension whenever this decreases the maximum num-
ber of like settings shared across all datasets.
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Fig. 27. Relative scoring r = (a— p)/(1 — p).
5.3. Detection Technology Exercise

Technology developers receive the test datasets in
database form and are required to return ranked hy-
potheses in the scorer’s input format for each of the
detection objectives noted in Fig. 5.

5.4. Adjusting Hypothesis Scores Relative to an
Evidence Baseline

To compare dimension influences across different
datasets requires comparable scores. As explained be-
low, our default (“absolute”) scoring method credits hy-
pothesis content that is patently manifest in datasets to
different extents. Comparability requires a (“relative”)
scoring method that factors this content out.

Evidence provided to LD (as illustrated in Fig. 5)
includes partial top-level case descriptions for some
instances of the detection object types (threat event,
group, individual, and alias association). These descrip-
tions, notionally corresponding to a legacy intelligence
database, afford starting places for the detection pro-
cess. The completeness, consistency, and transparency
of these descriptions with respect to ground truth de-
pend on settings for the Observability, Corruption, and
Alias dimensions. In absolute scoring, LD gets credit
for reporting detection objects whether the same infor-
mation appears in evidence or not.

In relative scoring, the detection task may be re-
interpreted as, “Find unknown and correct misreported
threat objects and their attribute values.” Let a stand for
LD’s absolute score, and let p stand for the score for
returning exactly all and only the top-level threat case
content provided in evidence. We use p as a baseline
in computing the relative score r = (a — p)/(1 — p). See
Fig. 27.

Note that r can be negative—if LD does not perform
as well as the baseline. Note also that the relative
score rewards LD for any improvements to top-level
threat case content provided in evidence—for supplying
missing attribute values or correcting corrupted ones.

5.5. ldentifying Performance Influences

Because of the coarse discretizations and constraints,
our experiment design must be “unbalanced” (i.e., have
unequal numbers of settings within and across dimen-

TABLE VIII
Ranked Settings Significance Testing

Observed Number Number Ideal Distance
Easy 1 > 1 Easy 0
Easy 2 > 2 Easy 0
Hard 1 3 Easy 1
Easy 3 4 Easy 1
Easy 4 5 Easy 1
Eas 5 1 Hard 3

2 Hard 1

Hard ) Hard 1
Hard 4 Hard 1
Hard 5 Hard 1
Hard 6 Hard 1
Hard 7 Hard 2
8 Hard 3

Hard 9 Hard 3
8

Hard 3
Hard 2

Significance  0.0081 =a/(a+b) D

Distance of observed ordering

b
A

.62 ... 126 ...

... 256 256 256

sions). This requires us to invent novel techniques
to identify performance-influencing dataset characteris-
tics, rather than, e.g., applying ANOVA over coefficient
means among regression fits.

Relative scores support ranking experimental data-
sets by LD’s performance for a given objective. Under
this ranking, we expect the settings for a dataset dimen-
sion with significant performance influence to tend to
exhibit the expected difficulty order—e.g., “Easy, Fair,
Hard” or “Y1, Y2.5, Y3.” To determine the significance
of the settings order actually observed, we first com-
pute its distance to the expected, or “ideal,” order, as
illustrated in Table VIII. We first number the tokens for
each setting (e.g., “Hard”) consecutively as they appear
in each of the observed and ideal orders. Then, for each
so-numbered token, we compute the distance between
its ranks in the two orders. Finally, we sum the rank
distances for all the setting tokens—yielding in the ex-
ample an aggregate distance of 32.3

To determine the extent to which the observed or-
der is significant with respect to the ideal—the extent to
which the observed could have arisen strictly by chance,
with lower values indicating greater significance—we
similarly compute distances (represented in the abbrevi-
ated vector at the bottom of Table VIII) to the ideal from
a sufficient number N = a + b of randomly generated to-
ken orders, counting the number of times a the observed
order is at least as close and reporting significance as
a/N. The significance computation thus accounts both

3This example is taken from an experiment earlier than that reflected
in Table IX. Here, the Observability dimension is discretized into just
three settings: Easy, Hard, Covert.
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Performance Influence Case Study (Group Detection)

TABLE IX

Perfect
None Fair None
Y3 Hard
Fair Y2.5 Y3 Y2.5 Thin Fair Fair Fair Fair Fair
1 Hard Y2.5 Y3 _ Hard Hard Hard Hard Hard
[ - 5| 2z _ 2
kS 01 | 3| 2 & 9 8 §§ 3 2z = 3 3
@© € g % N 7] &5 = = 5 - = it 2 .
e 2 £ = @ 5 o £ E 2 z £ 9 z 3 Relative
g oo |5 | 8 ; | 8 | § |88 O 4 2 g8 | & | 3| 3 :
2 500 S | § | £ | S [gsl e | 8| 5| 2| £ | % | § | oObect
S oot | E| 3 2 A e | 2| £ <} © S g |z oriented
» © °g | = - £ F-value
0.0001
170.77 | Thin Fair None
1982.75| Thin Hard None Hard
127.80 | Thin None
13.41 Hard None
16.35 Thin | Perfect Fair Fair
1818.23| Thin | Perfect None Hard Hard
14.47 Fair Fair
136.69 | Thin | Perfect
175.22 | Thin Hard
1787.58| Thin Hard
Hard 1890.39| Thin Fair Fair
12.22 Fair
12.37 Hard Fair
17.77 Hard
23 | Hard Y2.5 Y3 Y3 14.65 Hard
22 | Hard Y2.5 Y3 Y3 15.71 Hard Fair
19 Fair Y2.5 14.89 Thin Hard Fair
37 | Fair Y2.5 12.46 Hard
29 | Hard Y2.5 12.67
32 Fair Y2.5 13.11 Fair
31 | Hard Y2.5 10.68 Hard Hard

for the closeness of the observed order to the ideal and
for variability of settings among the datasets.

By way of a case study, we include Table IX, cov-
ering results for a selected technology configuration [2]
with the group detection objective, (to provide member-
ship lists for all of the threat groups). Table IX covers
an additional dimension (not included in Table IV) rele-
vant to the technology configuration: Observed 2-way-
comms per Individual. The 21 datasets processed using
the selected technology are sorted by group detection
performance (noted lower right).* Each dataset dimen-
sion column is headed by an idealized settings order.
Under the dimension name, significance is plotted on a
log scale.

With a scoring option in effect to resolve aliases
automatically from ground truth, Group Connectivity
is the most significant influence: chance probability =
0.0006. (Without this option, Aliasing is.) We split the
dataset mix along this dimension to continue analysis,
with results shown below.

4The experiment reflected in Table IX included 24 datasets developed
from the pool specifications discussed in Section 5.2. The results were
developed in the context of a technology integration experiment; a
different group detection technology was used to process the three
datasets omitted from Table IX.

e Group Connectivity (GC) ar 0.0006 significance:
—GC = None: (No dimension of convincing signifi-
cance)

—GC = Easy: (No dimension of convincing signifi-
cance)

—GC = Fair or Hard: Observed 2-way-comms per
Individual ar 0.0005 significance

Both Group Connectivity and Observed 2-way-
comms per Individual are relevant to group detection
intuitively as well as in the group detector’s implemen-
tation.

5.6. Related Work (Experiment Design)

Hoffman and Jameson [17] present a multi-sensor,
multi-target geospatial tracking testbed with a multi-
dimensional dataset generation facility to explore the
performance boundaries of a particular data fusion
system implementation. They identify dimensions of
problem complexity (or solution difficulty), generate
datasets with parameter values varying along the differ-
ent dimensions (apparently following the same kind of
star-shaped experimental design we discussed in Sec-
tion 5.2), and determine limits of acceptable perfor-
mance for the fusion system and subsystems using tra-
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Fig. 28. Blackboard-based component integration.

ditional precision and recall along with other tracking
metrics. Our work differs from theirs in several ways.

e Our problem focuses on inference of higher-level
activities from discrete transaction evidence.

e Our evaluation applies object-oriented metrics to
structured hypotheses.

e Our experimentation employs a fractional factorial
design to differentiate performance of multiple so-
lution implementations.

e Our analysis uses a novel rank correlation test to
determine the problem dimensions most affecting a
given technology’s performance.

6. PE LAB ADVANTAGES FOR INFORMATION
FUSION SYSTEM DESIGN

The overall PE Lab supports advanced threat detec-
tion technology development in several ways.

As reported here, we assess technical progress
through program-wide evaluation and identify particu-
lar problem characteristics most influential to a technol-
ogy’s performance. Besides assisting individual tech-
nologists, this process can identify alternative technolo-
gies’ relative strengths and elucidate potentially advan-
tageous combinations.

Within a functional architecture (such as the black-
board architecture schematized in Fig. 28), we can em-
ploy the PE Lab to validate assumptions about the per-
formance of a downstream component (or blackboard
knowledge source—KS) based on that of an upstream
one.

Suppose, e.g., that a group detector depends on an
alias resolver to deliver sufficiently de-aliased evidence
about individuals. If the resolver is not yet performing
at a goal level meeting the detector’s input specs, we can
still ascertain validity of performance claims for the lat-
ter by stubbing the former with a direct feed of evidence
having per-spec de-aliasing. This can help to pinpoint
performance gaps among functional components early
in the development process.

In the future, we hope to facilitate such exploratory
experimentation via a PE Lab-based component test
harness and a program-wide commitment to automated
(i.e., hands-off) component execution. This has the po-
tential to institutionalize the evaluation/experimentation

process as a near-continuous loop in which experiments
result in performance feedback to technology develop-
ers and developers respond to performance deficits with
updated component versions. It also would enhance op-
portunities for large-scale experimentation.

7. CONCLUSIONS

Our hypothesis scoring methods are applicable in
principle to performance evaluation in any domain
where technologies return instances of one or more
structured object types, given a problem for which an
answer key is available. We expect that our alert scor-
ing methods may be applied with benefit in other infor-
mation fusion domains where hypothesis timeliness is
important. Our experimental design methods may ben-
efit other fusion (especially situation assessment) appli-
cations during exploratory system design and develop-
ment.

PE Lab datasets and documentation are currently
available to U.S. Government-approved users. Docu-
mentation covers concept of operations, event genera-
tion pattern language and counter-terrorism domain pat-
terns, dataset generation algorithms, ontology, database
schema, case scoring specifications, hypothesis format,
and user instructions for the hypothesis scoring and
dataset generation software.
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