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Active sonar tracking using measurements from multistatic sen-
sors has shown promise: there are benefits in terms of robustness,
complementarity (covariance-ellipse intersection) and of course sim-
ply due to the increased probability of detection that naturally ac-
crues from a well-designed data fusion system. It is not always clear
what the placement of the sources and receivers that gives the best
fused measurement covariance for any target—or at least for any
target that is of interest—might be. In this paper, we investigate the
problem as one of global optimization, in which the objective is to
maximize the information provided to the tracker.

We assume that the number of sensors is given, so that the
optimization is done in a continuous space. The strong variability
of target strength as a function of aspect is integral to the cost
function we optimize. Doppler information is not discarded when
constant frequency (Doppler-sensitive) waveforms are available. The
optimal placements that result are consistent with our intuition,
suggesting that our placement strategy may provide a useful tool in

more complex scenarios where intuition is challenged.
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1. INTRODUCTION

A. Background

Multistatic sonar networks have the potential to
improve anti-submarine warfare (ASW) detection and
tracking performance against small, quiet targets in
harsh reverberation-limited littoral operating areas. This
improved performance comes from increased area cov-
erage, expanded geometric diversity (greater coverage
footprint), increased target hold, robustness to sensor
loss and jamming, improved localization through cross-
fixing (complementarity of uncertainty); and of course
through simple gains in probability of detection via data
fusion [5].

Moreover, multistatic systems are flexible. It is pos-
sible to use different waveforms at different sources, and
the ping times can be chosen with greater freedom. In
most scenarios, how to choose these parameters to ex-
ploit the capabilities of the multistatic sonar system is
not immediately obvious—flexibility brings complexity.
In practice it is common that parameters such as sen-
sors’ locations, waveforms and ping times are chosen
heuristically and perhaps not optimally.
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Fig. 1. Cartoon illustrating one of the benefits of using multistatic
sonar: complementarity of the localization uncertainties.

In this paper, we investigate the advantages that an
optimized sensor placement might offer, and we pro-
pose a methodology to determine the optimal placement
strategy. Tracking in a complex and time-varying ocean
environment is challenging. Multi-path effects, salin-
ity/temperature gradients and geographical constraints
may result in highly cluttered and/or low SNR sonar
signals. Hence, finding the “best” placement strategy is
going to be a considerable help to the tracker. In this
work, it is assumed that quickly-deployable short range
sensors are used and based on the predicted tracking
performance, a sensor re-deployment scheme is pro-
posed.

This study began with [6], which introduced many
of the features from this paper (a similar criterion, as-
pect dependence, blanking zone). In [6] a certain in-
tuitive regularity in optimized sensor layout was noted,
and the incremental benefit of complementarity between
sensors’ perspectives (intersecting covariance ellipses)
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was seen to diminish after the second source/receiver
pair. The results were considerably more stable in [7],
presumably due to the use of the minimax optimiza-
tion that we shall discuss shortly. The current paper
is more comprehensive, and additionally considers the
case of Doppler-sensitive waveforms. We find the work
of Hernandez and Horridge [10], [11], who use the
posterior Cramer-Rao lower bound (PCRLB), highly
relevant. The PCRLB is dynamic and allows for both
missed detections and false alarms by incorporating the
information reduction factor (IRF) [12]. A question an-
swered in [10] is: Given a present target being tracked
and its associated uncertainty, where ought a new sensor
be “dropped” to minimize the future uncertainty? In this
paper we have a different concern: How should a field
of sensors be configured to protect against an intelligent
threat? The PCRLB is perhaps a better indication of
tracking performance than the metric we shall introduce;
but as noted in [10] it is more complex, conservative,
and requires a description of the target dynamics and
initial uncertainty.

In the next section, we explain our modeling as-
sumptions. Then, we outline the proposed optimization
technique, while Sections 4 to 7 report representative
results. In the final section, we summarize our contri-
bution.

B. Deployable Experimental Multistatic Sonar
(DEMUS) System

We relate our analysis to DEMUS [14], an exper-
imental system designed and used for investigation of
the potential of multistatic sonar systems. The DEMUS
system is composed of three deployable receiver arrays
and one deployable acoustic source. Each system is bat-
tery powered, moored to the sea bottom, and communi-
cates with the ship via radio and satellite links sited on a
surface buoy. The receiver array records 64 channels of
acoustic data (7 arms of 9 staves, plus one in the center).
Each vertical stave sums the output of 3 hydrophones.
The array’s aperture may be scaled by extending the
system’s arms. The source array is made up of a ver-
tically suspended set of 8 free flooded acoustic rings,
capable of transmitting at high power.

Bistatic sonar can have many configurations, and
the characteristics of DEMUS, our notional platform,
include its relatively large beamwidth (approximately
six degrees)—although with sufficient SNR the angular
resolution can be made much better via interpolation—
and the isotropic nature of its angular resolution. That is,
although many sonar arrays have different performance
depending on their orientation (e.g., broadside versus
endfire in a linear array), DEMUS does not: this re-
moves a parameter from our optimization process and
allows us to concentrate on placement alone. In other
words, the optimization is done concerning the locations
of the sensors, their orientations do not matter.

TARGET

Array Heading

X

RECEIVER

Fig. 2. Bistatic source/receiver/target geometry for a single
source/receiver pair.

2. MODELING

A. Measurement Model and Localization Accuracies

In active sonar, the measurements are the return of
the transmitted acoustic signal from the target of interest
and the time of arrival. Hydrophones (receivers) deter-
mine the angle of arrival that gives the localization of
the target together with the traveling time of the sig-
nal. Further, the transmitted frequencies could be trans-
lated from those of the received signal due to the rela-
tive motion of the target to the source and/or receiver.
This Doppler shift provides information on the relative
speed of the targets. In this paper we assume two differ-
ent cases: first, with Doppler information not available,
specifically where a wide-band linear frequency modu-
lated (LFM) sonar signal is used; and second, a constant
frequency sonar signal (CW) is used and Doppler infor-
mation incorporated in the localization analysis.

The measurement model for a multistatic system,
with stationary source and receiver, is

rtr

r
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ii w (222)
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where the target state consists of its position and ve-
locity, X, = [x y x y]’ and r,, is the range between the
target and the receiver. For LFM signals, the range rate
measurement 7 is insignificant and hence ignored.

The localization accuracy, i.e. the covariance matrix
of the target state estimation after a single observation
set [r 6 r]’ is received, is a function of source, receiver,
and target states and the selected sonar waveform,

o2 o. 0 O
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where

e X_: source’s state (location) in Cartesian plane, s =
1,2,...,N;, N, is the number of sources.
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Fig. 3. Left: Nominal target strength [in dB] versus bistatic angle. Specular reflections from the broadside of the target are expected to be
considerably stronger than those from oblique or endfire angles. Right: The blanking zone ellipse, with source indicated by the box and
receiver by the star. Target detection is not possible within the blanking zone.

e X,: receiver’s state (location) in Cartesian plane, r =
1,2,...,N,, N, is the number of receivers.

e X,: target’s state (location and velocity) in Cartesian
plane.

e w: selected waveform, w € {LFM, CW}.

In recent work [3], [4], localization errors for bistatic
and quasi-monostatic contact localization accuracy were
derived as a function of the source-target-receiver geom-
etry and assumed error statistics for source and receiver
locations, sound speed, time, bearing, and array heading
measurements. This study illustrated that the impact of
measurement errors on localization accuracy depends
highly on the source-target-receiver geometry. Due to
space limitations we omit the lengthy equations showing
the relations between the errors mentioned above and
the components of covariance matrices, and refer the
interested reader to the related publications [3] and [4].
Coraluppi has described the measurement errors and,
more important, the measurement error covariances, as
a function of the fundamental system errors in angle,
observation time, array orientation, speed of sound and
source receiver locations. Sensitivity analysis of these
errors can be found in a consequent publication [9].

B. Target Detection Modeling

In addition to the localization analysis a second
element that we require in the optimization metric to be
discussed in Section 3-A is a model for target detection
capability. Significant work exists on elaborate target
strength and signal-to-noise (SNR) modeling; we have
chosen to work with simple models that capture the
key geometric dependencies relevant to CW and LFM
transmitted waveforms.

1) Aspect Dependence: In many studies, targets are
assumed to be a point: the sonar cross-section is inde-
pendent of the angle of illumination; or, in the case of
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bistatic systems, independent of the relative angle be-
tween source and receiver. Many practical targets do
not have this behavior at all. A “specular” return from
a target whose broadside is normal to the bistatic angle
is apt to be much larger than from a target that presents
some other visage. Much is known about some targets.
However, to keep our work generic, yet still to capture a
flavor of the aspect-dependence that we seek, we have
applied a simple target strength (TS) model to repre-
sent the aspect angle dependence of the signal return.
If the target heading happens to be parallel to the line
between the source and the receiver, the target strength
is highest. This effect degrades as the angle varies away
from the “best” angle; i.e., 90 degrees. Fig. 3 shows
the target strength versus bistatic angle. If the expected
target heading is known (for example, the surveillance
volume is a narrow region that any target must traverse),
the sensor placement ought to exploit this information.

2) Direct Blast: An important concern in bistatic
systems is the direct blast: the signal that arrives at the
receiver via the direct path. Propagation speed dictates
that no target’s return can arrive at the receiver prior
to the direct blast; but, more important, since the direct
blast is considerably louder than any target reflection, as
a practical matter no reception is possible until the direct
blast passes over. The direct blast can be very useful in
calibration and registration, and consequently is perhaps
a great strength of the multistatic architecture. However,
there is an unavoidable “blanking zone” (the inside of
an ellipse having source and receiver as foci and whose
target-locus-receiver distance is the transmitted pulse
length times the speed of propagation) as illustrated in
Fig. 3, in which the system is blind.

3) Signal-to-Noise Ratio (SNR) Modeling: 1t is as-
sumed that the multistatic system will be capable of
transmitting and processing both LFM and CW. This
capability is desired in a multistatic system since LFM
and CW waveforms are “complementary.” When the
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target strength is maximum, target heading is parallel
to the line between the source and the receiver, the tar-
get is in Doppler blind zone, i.e. range rate remains the
same no matter what the target speed is. In this situation
LFM waveform (or any Doppler-insensitive waveform)
would be the right choice to use. On the contrary, when
the target heading is perpendicular to bistatic orienta-
tion, then the target strength is minimum, whereas the
range-rate is highest. Hence, a Doppler-sensitive wave-
form such as CW would provide high SNR.

In [8], SNR is calculated as a function of source/
receiver/target locations and the selected waveform by
a model that employs a simplified reverberation-limited
sonar equation and a Q-function, which quantifies
Doppler performance of sonar waveforms in rejecting
reverberation. The model allows for both CW and LFM
waveforms, and is sensitive to a number of waveform
properties including center frequency, bandwidth, etc.
In our work, we use this model and the reverberation-
limited active sonar equation becomes (see [8] for de-
tails),

SNR =TS —BSS — AREA — Q(A() 3)

where TS is the target strength (as in Fig. 3-left), BSS
is the bottom scattering strength, a parameter that de-
pends on ocean seafloor type and composition (for our
purposes, this is constant over the surveillance region),
AREA is the area of the ensonified patch (i.e., resolu-
tion cell) that is a function of beam-width and the range
from receiver to the patch, and the last term, Q(A f),
is the (negative-valued) Q-function, which reduces the
amount of reverberation energy as a function of the
target’s Doppler shift. Q(A,) is the term that quanti-
fies Doppler-sensitive constant-frequency (CW) wave-
form’s advantage over the FM waveform.

4) Target Detection Probability and Detection-Local-
ization Coupling: The target detection probability for
source i, receiver j, and waveform w, assuming Swer-
ling I model (i.e., Rayleigh distributed target amplitude),
is given by [13]

ij(lv.]) — e*DT/(1+SNR) (4)
where DT stands for the detection threshold. We set
DT at 10 dB. The measurement error assumptions that
drive the state estimation covariance (see equation 2)
calculations include bearing, timing and frequency shift
errors; these are related to the observed SNR as follows:

A
76 = /SNR )
o = —2 (6)
T v/ SNR
op=—= )

:

SNR

where A, ~, ¢ are some constants. This implies that
amplitude-weighted interpolation between beams and

between matched-filter bins is performed [2]. This cou-
pling is used in our optimization work; that is, for each
source-target-receiver geometry, we determine the mea-
surement error standard deviations to be employed.

3. SENSOR PLACEMENT OPTIMIZATION

In this section, we describe the details of the pro-
posed optimization algorithm. We propose an objective
function that utilize the state estimation covariance ma-
trix, R, and the probability of detection, P;. The bearing,
timing and the frequency errors that are used in the cal-
culation of R, depend on the SNR value. Hence, R is
a function of target orientation, relative Doppler, and
source, receiver, target locations; so is P,.

A. Obijective Function

In finding an optimal sensor placement, our main
objective is to improve target tracking performance.
Hence, we use the “information” flow to the tracker
as the basis of the optimization surface. The Fisher in-
formation matrix can be seen as a quantification of in-
formation in the measurement about the target’s state.
In Section 2-A, we have shown that the target local-
ization uncertainty R can be derived as a function of
source/receiver/target locations and the selected wave-
form (CW or LFM). The Fisher information matrix is
defined as the inverse of the covariance of the estimate:

®)

For optimization purposes, we need a scalar quantity
for each source, receiver and target configuration for a
given waveform w (CW or LFM). We use the “informa-
tion gain”

LyeaX) = > PPDIX X, X, w).

Yw Y(s,r)eY

I(X, X, X,,w) = R(X;, X,, X,,w) "

©))

I seq(X,) is a function of target location given a particu-
lar geometry Y—the locations of sources and receivers,
see (14). In other words, the second sum in the equa-
tion (9), implies that all source/receiver pairs’ locations
in the given geometry are considered. Note that equa-
tion (9) is based on the simplifying approximation that
sensor measurement errors are uncorrelated from one
contact to another, and indeed can be related to the
PCRLB [10] for the case of a target without process
noise and in the absence of false alarms. This is true
for contact timing and bearing errors, but is not the
case for source and receiver positioning errors, array
heading errors, and speed of sound errors. Thus, the
expression, while simple and useful for our purposes,
has some degree of optimism: the true information gain
is upper bounded by this expression.

Direct blast blanking means that for certain source-
target-receiver geometries the detection probability that
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follows from our signal-excess modeling must be re-
placed by zero. Rather than doing so, and for numeri-
cal stability in the optimization process, we choose in-
stead to discount the information gain with a barrier-
type function. That is, as the target moves into the di-
rect blast region, it is still detected but with a rapidly
increasing localization uncertainty:

I(X,X,.,X,,w) = e J(X, X, X,,w) (10)

where d is the shortest distance between the target and
the border of the blanking zone ellipse.

We choose the determinant to be the scalar measure
of the quality of information available to the tracker at
each waypoint. Moreover, we consider a set of linear tar-
get trajectories 7, each consisting of several waypoints,
as illustrated in Fig. 4. The number of waypoints along
each trajectory differs based on the speed of the target
and the sampling interval; the latter is chosen so as to
have several waypoints for the fastest-moving trajecto-
ries of interest. We use the (optimistic) simplifying ap-
proximation that information gained along a trajectory
is the summation of the information across waypoints.
Thus, as the scalar measure for each trajectory 7, € T,
we use the summation of determinants of the fused in-
formation matrix over all waypoints w;; € T;:

M(T) =) " det(gyeeq(w;))- (11)
J

The objective function may be defined in either an
average or worst-case sense. The former approach seems
more applicable to problems where surveillance assets
are covert, and is defined as:

7=3" M@ (12)

where i is the trajectory index. Alternatively, the objec-
tive function J can be defined as the worst-case (i.e.
smallest) information gain achieved across all trajecto-
ries:

J =minM(T}). (13)

1

Maximization of the latter objective function is in fact
the well-known minimax criterion: minimization of the
maximum possible loss. In an overt network, a threat
submarine would try to choose a path so that it would
not be detected. Hence, operationally, the minimax cri-
terion makes more sense since it makes sure that there
are no “holes” in the surveillance region. We choose it
as our objective in the optimization.

Note that this objective incorporates (and maxi-
mizes) both localization accuracy and the detection op-
portunities over the whole trajectory of the target. In
other words, it aims to improve the tracking accuracy
at all instances of target penetration. Hence, it can be
seen that it relates to other operationally meaningful
objectives, such as maintaining (not losing) a track, or
increasing the target detectability.
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Fig. 4. In optimization, target trajectories are used instead of target
grids. A target heading south-east is shown, with 3 waypoints along
its trajectory.

I Objective of the target

/

Initialization Region
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v
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Fig. 5. Barrier Scenario: the best placement should prevent any
target from passing this 20 km-by-70 km barrier without being
tracked. The sensors are initially randomly placed inside the shaded
region.

B. Our Scenario

Here we consider the barrier-scenario; the target sub-
marine aims to pass a barrier 20 km long and 70 km
wide (see Fig. 5). The multistatic sonar system has to
be placed optimally so that no target can pass this region
without being tracked. We consider some possible target
trajectories, where the target heading and the speed dif-
fer (see Fig. 7; solid lines show 15 different trajectories).
The objective is to maximize the provided information
in the worst target trajectory. Operationally, the surveil-
lance area should have no “holes.” The tracker’s per-
formance is expected to meet some requirements even
in the worst cases.

C. Likelihood Surfaces

With N available sensors, the parameter space for
the optimization algorithm is 2N, reflecting the need to
locate each sensor in both latitude and longitude. We
have no particular prescient knowledge on how this 2N
dimensional surface would look, and hence it is not easy
to decide on the most appropriate optimization algo-
rithm. However, we can take 2-dimensional snapshots
from this surface. One example is given in Fig. 6. The
dark colored area around (8000,—10000) is the best
placement for the 3rd receiver at the moment that the
snapshot is taken. In this figure, this snapshot reveals a
smooth surface, although one that is not necessarily con-
cave. We choose the steepest ascent algorithm, mainly

JUNE 2007



25 T T T T T T T

1.5¢

25 ! ! | ! 1 1 !
3 2 ] 0 1 2 3

x 10°

Fig. 6. 2-dimensional snapshot of 8-D surface: 1 source and 2
receiver positions are held, the 3rd receiver is free. The best
positions are dark red areas at right.

since it is easy to implement, and it is intuitively easy
to monitor its behavior.

D. Steepest Ascent Algorithm

The steepest ascent algorithm is a gradient-based
unconstrained optimization technique. Y is a stacked
vector of dimension 2N,

Y=[X, X,---X,, X, sz"'XrN,]/ (14)

where total number of sensors is N = N, + N,. In each
iteration k, Y* moves in the direction of the gradient
of the objective function, until convergence to a (local)
maximum occurs. We have

Yo = YR 4 ofVF(YR (15)

where «y, is the step size used at iteration k. As previ-
ously described, we use objective function

SO =T =min )y " det(gyeeq(w;)) (16)
J

where i =1,2,..., number of waypoints. Due to the
complicated nature of the objective function, f(Y*),
it is hard to obtain the gradient analytically. Hence
a numerical gradient evaluation scheme is used. We
approximate the gradient at the direction i by the central
difference formula [1],

afrh
0Y!

where h is fixed for each gradient direction and the
e; is the unit vector in the direction of Cartesian basis
vector i. The value of h should be chosen as small as
possible, otherwise, the coarsely-discretized objective
function may result in erroneous gradient estimates. On
the other hand, smaller 4 may cause numerical problems
near the local maximum [1].

~ %( f(* +hey) — f(YX —he))  (17)

Step-size selection is a critical step for fast conver-
gence.! The step-size needs to be large enough to reach
the local minimum soon, and small enough to prevent
oscillation (or large errors) when near the critical point.
We apply a successive step-size reduction strategy, the
so-called “Armijo rule” [1]. The Armijo rule picks its
step-sizes to satisfy the inequality

FOE = f(F + sV (YR > —ap"s|| V£
(18)

where 0 < 8 <1 (chosen as 6 =0.7), 0 <o <1 (cho-
sen as 0 =0.1), s<1 and m =0,1,2. The step-size is
o = #"s. The Armijo rule first tests step-size s (i.e.,
m = 0) and then keeps increasing m until the inequality
is satisfied. The parameter s (chosen as s = 0.1) and o
assure that there is a substantial increase in the objec-
tive function for the stepsize ay. Convergence is de-
clared when m reaches 20, this implying that the algo-
rithm tests a point very close to the current one and
there is still no improvement in terms of the objective.
We choose s so that the first test point in the gradient
direction would be 5 km away from the current lo-
cation Y*. Overall, the optimization algorithm works
as follows:

1) Randomly initialize the sensors positions.?

2) Evaluate f(Y*) for current position vector Y*.

3) Evaluate gradient by central difference formula
(2N %2 = 4N f(Y*) evaluations.)

4) Test step sizes, oX, according to Armijo rule. (At
most m function evaluations.)

5) Update sensor positions using equation (15).

6) Go to step 2.

4. PLACEMENT STRATEGIES WITH LFM
WAVEFORMS

We refer to a source-receiver pair as a detection
node. In this section, we will consider 2-node and 3-
node systems. Besides the main question of how to
place these assets, we also aim to address which one
of, for instance, the 2-node systems perform better? Is
it better to deploy two sources with one receiver, or
is the system with two-receivers and a source good
enough? The barrier is the region (—35 km,—10 km)
to (35 km, 10 km); there are 15 hypothetical target
trajectories considered along this barrier. For instance,
trajectory 1 represents a target with heading 200 degrees
(from North) and 10 kts speed. Along this trajectory,
there are 5 waypoints.

I'We omit the discussions regarding the convergence rate of the steep-
est ascent algorithm. For a detailed analysis on the subject, see [1].
2Steepest ascent is not a stochastic method. Random initialization is
hence important. It ensures that there is no bias in the convergence
results.
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Fig. 7. 2 Sources (the squares), 1 Receiver (the circle) case: The
lines are trajectories and the dots represent waypoints of each
trajectory. Targets head south. The optimal placement forms a line in
the North-South direction. See Table I for scores of trajectories.
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Fig. 8. 1 Source, 2 Receivers case: The optimal placement is very
similar to the one in Fig. 7. See Table I for scores of trajectories.

A. Two-Node Cases

We consider two 2-node systems: one source and
two receivers, and two sources and one receiver. The
optimal placement turns out to be that the sources (blue
squares in the Figs. 7 and 8) and receivers (circled star
in the Figs. 7 and 8) form a line in the North-South
direction. This is intuitive since it allows sensors to see
the target from broadside. As explained in Section 2-B1,
the target strength is at its maximum if the bistatic angle
is close to 90 degrees (i.e., broadside), meaning that the
SNR is high. Moreover, the receivers are located so that
for any given target location, the orientation of the un-
certainty ellipses becomes complementary (see Fig. 1).
These lead both to high P, and to good localization
accuracy, hence resulting in good fused information.
The objective of maximizing the worst-case information
gain leads to a “balanced” deployment solution. Dur-
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TABLE I
Scores of Trajectories of Figs. 7 and 8
(worst cases are shown bold)

Trajectories 2S-1R 1S-2R
1 68.17 68.56
2 70.24 72.46
3 71.60 73.83
4 42.50 42.96
5 43.95 46.27
6 37.86 42.83
7 56.43 71.19
8 55.75 58.01
9 40.73 48.30

10 39.15 43.34
11 42.76 43.88
12 44.23 41.65
13 71.62 74.42
14 71.32 73.68
15 71.13 70.53

ing the optimization process, the worst trajectory jumps
between the west-most group to the east-most group.
Hence, the convergence geometry ends up being in the
middle of the barrier.

Placement scores® are obtained by using

Score =

(19)

Note that if a trajectory consists of a single waypoint
(target grid), and assuming the R is round, i.e., it is a
circular uncertainty around the target position, the score
has a physical meaning: it is the radius of the 1 —o¢
covariance circle.

Scores corresponding to the trajectories shown in
Figs. 7 and 8 are given in Table I. Balanced deployments
are evident from the scores (compare the scores of 1,
2, 3 with 13, 14, 15). Another intuitive outcome is
apparent from the scores of trajectories 7, 8 and 9: For
the single source case, they are higher (worse). When
the target penetrates into the blanking zone of the first
source/receiver pair, the range between the target and
the receiver of the second S/R pair is significantly higher
than in the case of 2 sources and 1 receiver. A higher
range results in higher localization error, mainly due to
the bearing error. So for an LFM waveform, it is better
to deploy two sources and a receiver, given the we have
only three assets.

B. Multiple-Node Case

We now consider the case that there are 3 receivers
with a single source. Fig. 9 shows the outcome of the
optimization algorithm. The optimal placement suggests
to use a regular geometry that one might find “heuris-
tic.” However this solution is not unique. The differ-

3Note that the scalar metric used in optimization is the determinant.
Score is introduced for easy comparison.
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Fig. 9. 3 Receivers, one source case, the optimal placement: Two
of the receivers (circles) are spread out to “monitor” the borders,
and the source (square) is in the middle with the third receiver is in
its north. They form a regular triangular geometry.

ent (random) initial placements result in different “op-
timal” placements, but they are equivalently good (see
the scores from Table II).

It is intuitive that given a solution one can create its
symmetric version and achieve the exact same scores
in reversed order. Two such solutions are shown in
Fig. 10. The initial placements were chosen randomly,
but interestingly, the converged geometries are almost
mirrored copies of each other. The scores indicate the
reversed-ordering effect, and these solutions are as good
as the regular-looking one from Fig. 9. Another nice
feature is that the range of the scores is not wide,
meaning that any path in the barrier would be monitored
similarly. This is due to use of the minimax criterion.*

4Our observation is that another candidate criterion, maximizing the
average measure, ZiM (), does not necessarily have this behavior.
It can achieve an improvement in the average score by only improv-
ing some of the trajectories. Such a result would be operationally
undesirable.
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It is important to note that the steepest ascent algo-
rithm is such that there is no guarantee that convergence
is to the global optimum except when the objective func-
tion is concave; and from Fig. 6, we cannot assume a
concave surface. Hence, our “optimal” solutions are not
outcomes of each and every execution of the proposed
algorithm. In fact, they are chosen so that they give the
best score(s) among many runs of the optimization pro-
gram. We follow this procedure:

e Execute the optimization process several times (on
the order of 10).

e List all convergence scores.

e Determine distinct outcomes with scores close to the
best overall score. (The optimal placements result in
similar scores, and these scores are much lower than
those in the rest of the list. Clustering is done by
observation.)

e Ignore suboptimal placements.

It is important to note that all of the optimal place-
ments yield “equivalent” solutions. In other words, they
are very similar if one considers rotations and mirror re-
flections. The solutions given in Fig. 10 are an example
for two such placements.

5. PLACEMENT STRATEGIES WITH CW
WAVEFORMS

As opposed to an LFM waveform, a pulse at a con-
stant frequency has coarser time resolution, and conse-
quently, position-only estimation using only CW wave-
form yields a comparably larger uncertainty. On the
other hand, a CW waveform provides Doppler infor-
mation that is a function of the relative velocity of the
target. Hence, while a fast target (e.g. 10 kts) yields
few waypoints across the barrier, it is more likely to be
detected when a CW waveform is used.

Since the information matrix has velocity uncer-
tainty, the score loses its physical meaning when a CW

x10°

05F

x10*

Fig. 10. Equivalent solutions: convergence results for two different runs. Interestingly, the geometries are “mirrors” of each other.
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TABLE II
LFM Waveform is used
Scores of Trajectories for Figs. 9-10
(worst scores of each case are shown in bold)

Trajectory 1S-3R 1S-3R 1S-3R
No. Fig. 9 Fig. 10-left Fig. 10-right
1 52.14 48.51 47.90
2 52.29 41.66 52.18
3 47.15 51.81 51.08
4 38.91 42.41 30.10
5 36.93 41.49 33.29
6 35.97 43.20 33.82
7 46.56 29.69 34.65
8 51.09 31.91 30.73
9 47.04 29.47 35.12
10 35.60 32.07 42.70
11 35.63 30.51 40.14
12 41.67 29.59 40.53
13 45.51 49.65 52.21
14 50.49 50.43 42.29
15 51.86 45.64 47.81

waveform is available. Nonetheless, we use scores in
our comparison tables, since they are easier to compare
than the values of determinants of the information ma-
trices.

A. Two-Node Cases

We look at the same two systems as before. The op-
timal placements are given in Figs. 11 and 12. This time
the sensors are in the west-east orientation. This is again
intuitive since the penetrating target provides high range
rate (Doppler) measurement, and hence the information
provided to tracker is higher. The complementarity of
the waveforms is consistent with the complementarity
of the optimal solutions. Another important observation
is that the scores from the faster target are much bet-
ter (lower) than the other one. This indicates that the
Doppler information is so dominant that even though
the slow target has many more waypoints and hence
many more chances to be detected, it is harder to detect
it if only a CW waveform is used.

B. Multiple Node Cases

Convergence geometry for the 1 source—3 receivers
configuration is given in Fig. 13 in the fast-target case. It
is similar to the regular triangle geometry. The eminent
structure of the optimal geometry is to put two of the
receivers close to both sides of the barrier, and the
remaining receiver is placed in the center so that it forms
a line with the source in north-south orientation. (The
results are similar in the slow-target case.)

More important, this placement does not contradict
the one from LFM case. It seems that both high Doppler
detection and high target strength detection is possible
if 3 source/receiver pairs are available.
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Fig. 11. CW waveform is used: Orientation of the sensors are
complementary to the one of LFM waveform. See Table III for the
scores. Target speed is high: 10 knots.
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Fig. 12. CW waveform is used: Target speed is 4 knots.

Note that scores for slow target trajectories are worse
than faster ones. Indeed, target SNR is considerably
higher when target speed is high, resulting in much
higher probability of detection, and also better localiza-
tion. This effect is so dominant that even the fact that
slow targets have twice as many waypoints is little help
to the tracker.

6. PLACEMENT STRATEGIES WITH BOTH CW AND
LFM WAVEFORMS

In the previous two sections, we have analyzed the
proposed methodology and reported that the results are
consistent with intuition. In this section, we assume the
multistatic system is capable of using both waveforms
and the target speed is unknown. Hence we consider
two extreme cases to analyze the worst-case scenario: a
target with 4 knots speed which is hard to detect with a
CW waveform and a fast target moving with 10 knots
trying to pass the barrier as quickly as possible. Each
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TABLE III
Scores of Trajectories of Figures
(worst cases are shown bold)
Scores when CW Waveform is used for the Systems in the Figs. 11

and 12

Trajectory Fast Slow
No. 10 kts 4 kts
1 4.73 91.63
2 11.72 95.17
3 9.23 84.09
4 7.12 33.39
5 6.27 44.36
6 7.62 23.98
7 11.09 96.03
8 10.19 84.77
9 11.73 96.56
10 8.07 23.57
11 6.18 44.98
12 8.51 33.77
13 8.18 85.76
14 10.97 96.52
15 8.62 93.18

Note: The slow target gives higher (worse) scores, unlike when an

LFM waveform is used.
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Fig. 13. CW waveform is used: Two of the receivers reach to the
sides of the barrier and the source is in the middle with the third

receiver.

of the 15 trajectories are duplicated so one trajectory
corresponds to a slow target and the other corresponds
to a fast one.

For the single source, three receivers case the op-
timal placement is shown in Fig. 14. The outcome is
consistent with the earlier findings so that two of the
receivers are placed far out and the third receiver stays
in the middle of the barrier close to the source.

7. SENSITIVITY ANALYSIS OF SENSOR PLACEMENT
RESULTS

In the previous sections, we have reported “optimal”
placement strategies based on a sparsely sampled linear

05F

2 I L I L L I L

Fig. 14. Both CW and LFM waveforms are available. Trajectories
are duplicated corresponding to different target speeds, 4 kts and
10 kts. The geometry is consistent with the earlier placements.
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Fig. 15. The same initial placement as for Fig. 9, but with many
more trajectories. The optimal placement is the same.

target trajectories. Here we investigate whether this
choice has a dramatic impact on our results. The first
analysis we consider is to use the result from Fig. 9
and run the optimization again with more trajectories,
each of which has many more waypoints. The initial
placement is the one in the optimization run resulting
in Fig. 9. As seen in Fig. 15, the outcome is almost
identical to the former result.

For the second analysis the trajectories are perturbed
a random amount as seen in Fig. 16, and the optimiza-
tion algorithms re-run. The initial placement for opti-
mization is chosen as the optimal placement from Fig. 9.
If this placement is optimal, it is expected that perturba-
tion of the target trajectories would have little impact.
The result in Fig. 16 confirms this.

In an overt network, there is no reason for a threat
target to follow a straight line. Hence, in the last part
of sensitivity analysis we consider piece-wise linear tra-
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Fig. 16. The optimal placement with perturbed trajectories. The
initial point is the optimal placement from Fig. 9.
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Fig. 17. Targets follow a zig-zag path. It appears that the optimal
placement is robust.

jectories: such a trajectory is of interest since the target
strength is changing along the trajectory. The result is
given in Fig. 17. It appears that the optimal placement
from Fig. 9 is robust for different configurations of tar-
get trajectories.

8. SUMMARY AND CONCLUSIONS

We propose an optimization technique for the opti-
mal sensor placement for multistatic sonar systems. We
study optimal placements in the LFM-only case, the
CW-only case, and the combined LFM-CW case, and
show that the optimal placements are consistent with
our intuition, thus validating our placement methodol-
ogy and its use as a placement aid in more complex
scenarios where intuition is challenged.

An important aspect of the algorithm is that we em-
ploy a “minimax” criterion which results in a balanced
surveillance performance. This makes sure that there is
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no path across the barrier for a target yet it remains
“unseen.”
Some aspects of modeling are important:

e Targets are not “point” targets: we employ an aspect
angle dependent target strength model.

e Target Doppler is included in the localization analysis
whenever CW waveforms are used.

e It is assumed that targets follow some realistic tra-
jectories; Hence, availability of two complementary
waveforms, CW and LFM, is incorporated in the met-
ric.

e The modeling reflects the “Blanking Zone” due to
direct blast signal reception.

e Signal Excess is calculated by a model where:

—A simplified reverberation-limited sonar equation
is used;

—The Q-function is considered, which quantifies the
Doppler performance of sonar waveforms in rejecting
reverberation.

A scalar metric blends all of the above into a tra-
jectory score, where “information gain” is computed at
each waypoint of the trajectory. A steepest ascent al-
gorithm is used for optimization, together with an in-
telligent step-size selection scheme (Armijo rule), and
numerical gradient evaluation techniques.

It is desired to show that the “optimal” placements
do, in fact, improve tracking performance. Thus, in fu-
ture work, we plan to compare actual tracking perfor-
mance based on optimal sensor placements with per-
formance based on sub-optimal placements. This study
would provide further validation that our information-
based optimization objective captures the salient dataset
characteristics that are required for high-quality tracker
outputs and an effective surveillance system.
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