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Higher levels of the data fusion process call for prediction and
awareness of the development of a situation. Since the situations
handled by command and control systems develop by actions per-
formed by opposing agents, pure probabilistic or evidential tech-
niques are not fully sufficient tools for prediction. Game-theoretic
tools can give an improved appreciation of the real uncertainty in
this prediction task, and also be a tool in the planning process. Based
on a combination of graphical inference models and game theory,
we propose a decision support tool architecture for command and
control situation awareness enhancements.

This paper outlines a framework for command and control
decision-making in multi-agent settings. Decision-makers represent
beliefs over models incorporating other decision-makers and the
state of the environment. When combined, the decision-makers’
equilibrium strategies of the game can be inserted into a represen-
tation of the state of the environment to achieve a joint probability
distribution for the whole situation in the form of a Bayesian net-

work representation.
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1. INTRODUCTION

The military domain is one of the purest possible
game arenas, and history is full of examples of how mis-
takes in handling uncertainty about the opponent have
had large consequences. For an entertaining selection,
see, e.g., [16]. Commanders on each side have resources
at their disposal, and want to use them to achieve their,
mostly opposing, goals. In the network centric war-
fare [1, 2] era, they are aided by large amounts of infor-
mation about the opponent from sensors and historical
data bases, and about the status of their own resources
from their own information technology infrastructure.
In recently proposed infostructures for command and
control (C2) [12], decision support tools play a promi-
nent role. These tools seldom include game-theoretic
means. Gaming is, however, a prominent feature of mil-
itary training and the regulated decision processes often
assign the roles of red and blue players to staff officers
in manual planning activities [52]. Gaming is thus a
conceptual part of the planning process in many orga-
nizations. It must be emphasized, however, that there
are significant differences between practice and theory
in application of such regulations. It has, for example,
been shown in studies that the Swedish defense orga-
nization practices a more naturalistic decision-making
process than the recommended one [51]. A pure nat-
uralistic planning process relies more on unobservable
mental capabilities of decision-makers than on rational
analyses of alternative moves and their utilities [28].
The most common way to deal with uncertainty is, how-
ever, to make an assumption—and to forget that it was
made. These observations have been the starting point
for introducing a less complex planning model—PUT
(Planning Under Time-pressure)—in the Swedish de-
fense organization. PUT is based on analyses of a few
opponent alternatives and incremental improvement of
one’s own plans [51]. It thus has potential for the use of
gaming tools, provided they are realized in a way that
supports subjective improvement of decision situations
and decision quality [3].

Data fusion aims at providing situation awareness at
different levels for a commander. The JDL model [47,
56] has been proposed for structuring the fusion pro-
cess into five levels where the third level consists of
higher level prediction of possible future problems and
possibilities. We believe that the problem of predicting
the future in a C2 context comes in two variations that
differ in complexity and dependencies: the problem of
capturing all aspects of a complex situation, and the
problem of strategic dependence in a multi-agent en-
counter. Considering the former problem, the influence
diagram is a well-established and appropriate modeling
technique for modeling everything that is not dependent
on our own or the opponents’ actions, for example doc-
trine and terrain. Efforts in this direction have been pro-
posed; see for example [50] for a discussion about doc-
trine modeling using dynamic Bayesian networks [40].
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Looking at the latter problem, predicting decisions is
also a game-theoretic problem, which has been noted
in a recent proposal for revisions to the JDL model
where the authors suggest the use of game-theoretic al-
gorithms for the estimation process in higher level data
fusion [37].

In this paper, we outline a schematic model using
influence diagrams to obtain parameters for a descrip-
tion of the situation in the form of a Bayesian game.
The result from the game is a description of equilib-
rium strategies for participants that can be incorporated
in the influence diagram to form a Bayesian network
(BN) description of the situation and its development,
changing decision nodes to chance nodes.

We review some applications of gaming and simu-
lation in Section 2 and describe our use of influence
diagrams in Section 3. Section 4 gives background and
some historical notes regarding agent interaction and
Section 5 gives a short background on game theory. Sec-
tion 6 contains an outline of the game component rep-
resentation. Section 7 discusses solutions and addresses
the problem of obtaining these solutions in a compu-
tationally feasible manner. In Section 8 we illustrate
the use of Bayesian game-theoretic reasoning for opera-
tions planning by transforming a decision situation into
a Bayesian game that we solve. Section 9 addresses the
problems and possibilities that the ambiguities typical
for a game-theoretic solution pose. Section 10 discusses
related work and Section 11 is devoted to conclusions
and discussion regarding future research.

2. THE GAMING PERSPECTIVE

Tools proposed to support the gaming perspective
include microworlds [10, 17, 35], which are com-
puter tools where several operators train together; and
computer-intensive sensitivity analyses of simple mod-
els [22, 39]. There are also large numbers of full and
small scale simulation systems used to assess effective-
ness of new types of equipment and ways to use them.
These microworld and simulation systems are used for
off-line analyses to define recommended strategies in
conceivably relevant situations.

Systems built for real-time decision-making can take
advantage of anytime algorithms with which a coarse
prediction can be obtained instantly but is subject to
successive refinements when additional time, resources
and observations arrive. In such a system, refinements
are typically based on either solution improvement or
solution re-calculation. An interesting prototype system
based on solution improvement is [25] where the sit-
uation picture is continuously improved as new obser-
vations arrive. The method used is particle filtering, a
method where new observations strengthen, weaken or
eliminate current hypotheses. A somewhat similar pro-
totype system based on solution re-calculation is [9]
where a predicted future situation picture is calculated
as a one shot event. Here, solely the particle filtering

prediction step is used. The actual choice between the
two principles depends on several factors such as the
system’s intended usage, i.e., whether the decision prob-
lem is a one shot problem or a continuous task, and the
nature of the problem itself, i.e., whether the present
solution can actually be used as basic data for the cal-
culation of a new solution.

Recently, it has become possible to build Bayes-
ian networks to identify the opponent’s course of ac-
tion (COA) from information fusion data using the plan
recognition paradigm, which was extended from a sin-
gle agent context to that of a composite opponent con-
sisting of a hierarchy of partly autonomous units [50].
The conditions for this recognition to work are that
the goals and rules of engagement of the opponent are
known, and that he has a limited set of COAs to choose
from given by the doctrines and rules he adheres to. The
opponent’s COA can then be deduced reasonably reli-
ably from fused sensor information, such as movements
of the participating vehicles. The game component has
thus been compiled out of the plan recognition problem.
When the goals and resources are not known, these can
be modeled as stochastic variables in a BN. However,
this is not a strictly correct approach, since the oppo-
nent’s choice of COA should depend, in an intertwined
gaming sense, on what he thinks about our resources,
rules of engagement and goals. The situation is essen-
tially a classic Bayesian game, and should be resolved
using game algorithms.

3. REALISTIC SITUATION MODELING

It has been suggested that decision-makers often
produce simplified and/or misspecified mental represen-
tations of interactive decision problems, see, e.g., [34].
Furthermore, most erroneous representations tend to be
less complex than the correct ones which, in turn, sug-
gest that decision-makers may act optimally based on
simplified and mistaken premises [15]. In this section
we discuss and propose the concept of influence dia-
grams, along with its preliminaries, as a means to spec-
ify a reasonably correct representation of the decision
problem at hand. An influence diagram is well suited for
modeling complex situations. In Section 6, an influence
diagram will serve as the underlying model that gives
us the basic data needed for the game component.

One goal of artificial intelligence (AI) [45] has been
to create expert systems, i.e., systems that can, provided
the appropriate domain knowledge, match the perfor-
mance of human experts. Such systems do not yet ex-
ist, other than in highly specific domains, but Al re-
search has inspired important interdisciplinary efforts
to solve questions regarding knowledge representation,
decision-making, autonomous planning, etc. These re-
sults provide a good ground for the construction of C2
decision support systems. Modern expert systems strive
for the ideal of a clean separation of its two components;
the domain-specific knowledge base and the algorithmic
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inference engine [14]. Our work proposes generic infer-
ence procedures and, thus, targets the inference engine
part of the expert system in this regard. During the last
decade, the intelligent agent perspective has led to a
view of Al as a system of agents embedded in real en-
vironments with continuous sensory inputs. We believe
that this is a viable way to reason about C2 decision-
making and we adopt the agent perspective throughout
this paper.

Agents make decisions based on modeling principles
for uncertainty and usefulness in order to achieve the
best expected outcome. The assumption that an agent al-
ways tries to do its best relative to some utility function,
is captured in the concept of rationality. The combina-
tion of probability theory, utility theory and rationality
constitutes the basis for decision theory. The basic ele-
ments that we use for reasoning about uncertainty are
random variables. General joint distributions of more
than a handful of such variables are impossible to handle
efficiently, and modeling distributions as Bayesian net-
works has become a key tool in many modeling tasks.

A BN offers an alternative representation of a prob-
ability distribution with a directed acyclic graph where
nodes correspond to the random variables and edges
correspond to the causal or statistical relationships be-
tween the variables. Calculating the probability of a
certain assignment in the full joint probability distri-
bution using a BN means calculating products of prob-
abilities of single variables and conditional probabili-
ties of variables conditioned only on their parents in
the graph. The BN representation is often exponentially
smaller [45] than the full joint probability distribution
table and many inference systems use BNs to repre-
sent probabilistic information. Another advantage with
the BN representation is that it facilitates the definition
of relevant distributions from causal links that are in-
tuitively understandable and, in the case of a dynamic
BN, develop with time. Successful(?) uses of these net-
works include the implementation of the “intelligent pa-
per clip” in Microsoft Office [23], although much of its
potential functionality was stripped away in the actual
deployment.

An influence diagram is a natural extension to a
BN incorporating decision and utility nodes in addition
to chance nodes, and represents decision problems for
a single agent [24]. Decision nodes represent points
where the decision-maker has to choose a particular
action. Utility nodes represent terminal nodes where
the usefulness for the decision-maker is calculated as
a function of the values of its parents. These diagrams
can be evaluated bottom up by dynamic programming
to obtain a sequence of maximum utility decisions.

When designing decision-theoretic systems to be
used for C2 decision-making, complex situations arise
where one wants to represent knowledge, causality, and
uncertainty at the same time as one wants to reason
about the situation, simulating different COAs in order
to see the expected usefulness of proposed moves. We
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Fig. 1.
data bases and doctrine are examples of domain-specific
subdiagrams that characterize a particular model.

The C2 process modeled in an influence diagram. Terrain

believe the influence diagram is the right choice for both
representation and evaluation and propose a simplified
schematic generic diagram in Fig. 1 for the C2 process.
C is a discrete random variable representing the con-
sequence of the decisions D,,...,D,. D, represents our
own decision and D,,...,D, represent the decisions of
the other agents. G, is a discrete random variable that
represents our own goals. U, is the utility that we gain
after performing decision D, depending on the conse-
quence C and our own goals G,. G, and U, are defined
similarly for the other agents where 2 <i <n.

The diagram in Fig. 1 is a simplified representation,
to be connected to models—encoded as BNs—of ter-
rain, doctrine, etc., that can be implemented as subdia-
grams with causal relationships between different nodes
of models. While these subdiagrams are interesting in
their own right, they are not the topic of this article.
Hence, we have chosen to think of them as existing
models that influence the decisions we are modeling.

A problem with the diagram in Fig. 1 is that it
does not capture “gaming situations” where one wants
to reason about opposing agents that act according to
beliefs about one’s own actions. Such dependencies are
not possible to model in an influence diagram or BN
without additional machinery. At this point it should
also be noted that the diagram in Fig. 1 should not be
considered to be very useful in its own right. Rather,
it is a statement of the problem we are trying to solve.
Among other things, the diagram is not regular which
is a requirement for algorithms that evaluate influence
diagrams, see, e.g., [46]. Regularity assumes a total
ordering of all of the decisions, a reasonable condition
for a single decision-maker who only needs to take his
own actions into account.

In this work we use the influence diagram as basic
data to develop a generalized technique that solves
problems for multiple decision-makers. In Fig. 2 we
give an alternative algorithm for evaluation of influence
diagrams with multiple agents, inspired from the single
agent construction found in [44, 45]. Here, the payoffs
for all combinations of alternatives are returned instead
of only the alternative with the highest possible payoff.
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Input: Influence diagram with decision nodes Dy, ..., D,, and utility nodes
Uy,...,U, belonging to agents 1,...,n respectively.

Output: An n-dimensional utility matrix A containing, for each possible
value combination on the respective agents’ decision nodes, the result-
ing utility vector (u1,...,uy).

1. Set the evidence variables for the current world state, i.e., use the
percepts that the agent has received to date to assign values to a
subset of the random variables in the influence diagram.

2. For each possible value combination of the decision nodes;

(a) Set the decision nodes to their respective values.

(b) Calculate the posterior probabilities to the parent nodes of the
utility nodes using a standard probabilistic inference algorithm
or by the node elimination method of [46].

(c) Calculate the resulting utility vector for the action combination
and store this in the utility matrix A.

3. Return the utility matrix A.

Fig. 2. Algorithm for evaluating an influence diagram where
multiple agents make decisions.

4. AGENT INTERACTION

The decision situation that arises in decision node
D, in the influence diagram depicted in Fig. 1 is char-
acterized by its dependency on other actors’ decisions.
Standard Al tools for solving decision-making prob-
lems in complex situations, such as dynamic decision
networks and influence diagrams, are not applicable for
these kinds of situations, as the decisions are intimately
related to the other agents’ decisions. Game theory, on
the other hand, provides a mathematical framework de-
signed for the analysis of agent interaction under the
assumption of rationality where one tries to identify the
game equilibria as opposed to traditional utility maxi-
mization principles. A game component in multi-agent
decision-making thus uses rationality as a tool to predict
the behavior of other agents.

In higher level C2, i.e., threat prediction in a data
fusion context, the need of a game component becomes
obvious [55]. Circular relationships are not allowed in
influence diagrams or other traditional agent modeling
techniques and therefore we cannot make the agents’
decisions dependent on each other in the diagram in
Fig. 1. On lower level C2 this need is not as obvious,
because agents’ choices are to a large extent driven by
standard operating procedures obtained by training and
developed using off-line game analyses. On this level,
like in helicopter dogfights, successful developments
of strategies have been obtained with look-ahead in
extensive form, i.e., perfect information game trees with
zero-sum payoffs as reported in [27] or moving horizon
imperfect information game trees as reported in [54].
The depth of the game tree corresponds to inference
of agents’ actions that are dependent on each other,
i.e., a series of what-if questions such as “what is the
usefulness if agent i performs action c¢; and the other
agents perform actions c,...,¢;_1,C;,;,--.,¢, Which in
turn makes agent i respond with action ¢},” etc. Look-
ahead algorithms are typically modeled using a discount

factor v € (0,1) that reduces the utility by v¢ where d
is the tree depth. For problems in which the discount
factor is not too close to 1, a shallow search is often
good enough to give near-optimal decisions [45].

Look-ahead game trees have been used successfully
for reasoning in, possibly uncertain, games with perfect
information where optimal solutions are obtained with
the minimax algorithm. Examples of such games are
chess, go, backgammon, and monopoly. In the context
of C2 we deal with imperfect information which forces
us to solve a more complex game, more similar to poker,
since we cannot be sure of exactly where we are in
the game tree. Although ordinary minimax algorithms
cannot be used in our context it is still likely that the
ideas from ordinary game play algorithms, such as the
famous alpha-beta pruning [29], can be re-used to some
extent. This is interesting as these ideas rest on almost
a century of research and experience [33, 45].

Decision-making in environments where multiple
agents make decisions based on what they think the
other agents might do is a difficult problem, and the
use of game theory for agent design has so far been
limited due to lack of standard implementation methods.
We believe, however, that this barrier will be overcome
as more research is focused on the use of game theory
for agent design. The widely used Al book by Russell
and Norvig [45] added a section on game theory just
recently which indicates that the ideas are new and still
need to be investigated more thoroughly.

One of the barriers that do exist when using tradi-
tional game theory for agent design is that it assumes
that a player will definitely play a (Nash) equilibrium
strategy. This assumption is certainly true in applica-
tions where the game is a designed mechanism, such as
the management of (own) mobile sensors [26, 57] or the
construction of algorithms for efficient network capacity
sharing [4]. However, these situations must be consid-
ered a small subset compared with the many situations
in everyday life that involve uncertainty about both the
other actors and the world as a whole. Over time it has
come to be recognized that benevolence is the excep-
tion; self-interest is the norm [43]. Particularly, in our
C2 application self-interest is the norm that commander
training seeks to foster. In this work we aim at solving
this problem using the Bayesian game technique, which
is described below.

Other problems with game theory for agent design
are the lack of methods for combining game theory with
traditional agent control strategies [45] and the lack of
standard computational techniques for game-theoretic
reasoning [33].

In this paper we propose the use of a Bayesian game
for modeling higher-level agent interaction in an attempt
to obtain better situation awareness in a C2 system. As
situation awareness is obtained using fusion techniques
we believe that the game component is an integral part
of the data fusion process and provides information that
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is needed in level three data fusion processing according
to the JDL model [37, 47, 56]. A Bayesian game is a
game with incomplete information, that is, at the start
of the game the players may have private information
about the game that the others do not know of. Also,
each player expresses its prior belief about the other
players as a probability distribution over what private
information the other players might possess.

5. STRUCTURE OF GAMES AND THEIR
REPRESENTATIONS

Recent developments in game theory and Al have
made applications with significant game components
feasible. Most of the work, however, does not address
Bayesian games. Many description methods have been
developed with algorithmic techniques being able to
solve quite large games if they are of the right type.
The extensive form of a game is a tree structure, where
a non-terminal node can describe a chance move by
nature (random draw) or a move possible for one of the
participants, and a leaf node represents the end of the
game and its payoff after evolving through the path to it.
The immediate descendants of a non-leaf represent the
alternative outcomes of a chance move (in which case
the node is associated with a probability distribution) or
the set of actions available for the player in turn at this
point. This is adequate for leisure games like chess, a
perfect information game, but the chess game tree does
not fit into any computer. A deterministic game with full
information (like generalized chess or checkers) can be
solved if its game tree can be traversed, by bottom-up
dynamic programming.

In games with imperfect information, the exact po-
sition in the game tree may not be known to players.
This is the case in leisure games of cards, where the
hand of a player is only available to her. The deter-
mination of optimal strategies must use a game tree
where the decision is the same for a whole information
set, a set of nodes for a player where the information
available to her is the same. As an example, at the first
bid of a game of contract bridge, each of the possible
distributions of the cards not seen by the player is in
the same information set. Bottom-up evaluation does
not work, because at the lower levels of the game tree
the players have information on the hidden informa-
tion that was communicated by their opponents’ choices
of moves (like the initial round of bidding in bridge).
This situation is solved by putting the game on strate-
gic form, which means that all combinations of moves
for all of a player’s information-equivalent nodes in the
tree, and all chance moves, are listed with their payoffs.
Solutions can be found with numerical methods, linear
programming techniques for zero-sum games [11] and
solution methods for the linear complementarity prob-
lem (LCP) for general games [13]. For the former, a
unique mixed (randomized) strategy for each player is
a non-controversial definition of the game’s solution.

For the latter, the Nash equilibrium is the accepted so-
lution concept [42]. A Nash equilibrium always, under
general assumptions, exists but is less non-controversial
since sometimes several equilibria exist, and there are
alternative proposals regarding how to find one that is
in a tangible way more relevant than the others. The
payoff matrix is typically impossibly large, and games
of this type, like standard variants of poker and bridge,
have no known optimal solution although interesting ap-
proximation algorithms have appeared recently [5]. In
the above games, all players know the exact structure
and payoff system of the game. This is adequate for
many purposes, but not for our application.

The concept of a Bayesian game is fairly complex
and different views abound in the literature. With nota-
tion from [41], a Bayesian game, b, is defined by

I = (N (CienDien»(PicnWpien) (H

where N is a set of players, C; is the set of possible
actions for player i € N, T; is the set of player i’s possible
types, p; is a probability distribution representing what
player i believes about the other players’ types, and u;
is a utility function mapping each possible combination
of actions and types into the payoff for player i. It
should be noted that the set notation we use differs from
standard mathematical notation. Indices contain one or
several players in the set N and hence represent the
“player dimension.” When there is no subscript at all we
actually mean a set with a variable for each player in N
which is denoted a profile. The subscript —i denotes the
set of all players except for player i, i.e., N \ {i}. The
other dimension is defined by the letter itself that can be
either lower-case, representing one particular choice, or
upper-case, representing the set of all possible choices.
Henceforth, C; is the set of possible actions for player
i, ¢; € C; is one of player i’s possible actions, ¢ € C is
a possible strategy profile in the game, and C is the set
of all possible strategy profiles that we may encounter
in the game.

The definition given above is a flat representation
given originally in [21]. It seems as if it only states first-
order beliefs of players about each other, but this is not a
fair perspective. We want to consider all types of higher-
order knowledge, such as what player 1 believes that
player 2 believes that player 1... believes. This type of
information can indeed be modeled in a standard Bayes-
ian game, under quite general conditions, as shown in
a strictly mathematical and non-algorithmic argument
in [38]. On the other hand, the amount of information
required to perform such modeling can be infinite and
thus not extractable from, or actually used by, experts
and decision-makers. Bayesian games can have infinite
type sets even in simple cases like natural analyses of
bargaining situations. We will restrict our attention to
games with finite type sets and players, since otherwise
general solution algorithms do not exist (games with
infinite type sets must be analyzed manually to bring
about a finite solution algorithm).
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Fig. 3. Architecture overview. Models are represented by influence
diagrams that yield payoff values for a Bayesian game.

An important class of Bayesian games is games with
consistent beliefs. In this case the player’s belief, con-
ditional on his type, about other players’ types are all
derivable from a global distribution over all players’
types by conditioning, i.e., p;(t_; | ;) = p(t_; | t;). Hence,
this class is a subclass of imperfect information games.
The assumption of consistent beliefs is both required
and natural for most applications; it simply means we
should model the players using all information we cur-
rently have in our possession. Although game theory
means we solve the game for all players at the same
time, the solution is still obtained from one particular
decision-maker’s view of the situation. Therefore, con-
sistent versus inconsistent beliefs becomes more of a
philosophical question and we will assume consistent
beliefs throughout this work.

6. THE GAME COMPONENT

In this section we define the proposed information
fusion game component using notation from [41]. A
brief concept sketch is given in Fig. 3 and a more
formal summary is given in Fig. 4 which, in turn,
uses the algorithm depicted in Fig. 2. The objective
has been to specify an architecture that is suitable for
threat prediction in the C2 domain. The most important
criteria for the specification of such an architecture
are that the agents’ decisions are based on their belief
regarding the other agents’ private information, and
that the architecture is made up from an underlying
well-established and realistic probabilistic model of the
situation. We achieve the former criterion by the use
of a game with incomplete information, and the latter
criterion by using an influence diagram for representing
our model of the current situation awareness.

A top-down perspective on the architecture can be
seen in Fig. 3, depicting a probability distribution over
the possible worlds. Each such world is modeled in
an influence diagram, such as the diagram outlined
in Fig. 1, containing nodes for the goals (G;), the
possible courses of actions (D;), and the payoff (U;) for
each respective agent. Apart from these variables, each
influence diagram is connected to model specific subdi-

Inputs: 1) A list of influence diagrams; one influence diagram for each
possible agent model that needs to be considered. Decision nodes
Dy, ..., D, and utility nodes Uy, ..., U,, belonging to agents 1,...,n
respectively, need to exist in all diagrams. 2) A common prior prob-
ability distribution P over the possible agent models.

Output: Solution proposals for the influence diagram decision variables
Dyq,..., D,, in the form of mixed strategy Nash equilibria.

1. Let each influence diagram correspond to a Bayesian game type profile
t € T, representing that each influence diagram corresponds to differ-
ent beliefs regarding the participating agents’ private information.

2. Formulate the Bayesian game
TP = (N, (Ciien, (Ti)ien, (i)ien (ti)ien)
so that;
(a) N, the set of players, corresponds directly to the set of partici-
pating agents,

(b) C; corresponds to the set of actions available to agent 7 in decision
node D; in the influence diagrams,
(¢) T; contains the possible types for player ; induced by T" according
to item 1 above,
(d)
P(t)
Z P(sz- f?)

s €T

pi(t—i|ti) = (consistent beliefs),

(e) u;: C x T — R is given by the algorithm in Fig. 2, i.e., the
algorithm in Fig. 2 needs to be run for each type profile t € T' to
obtain the respective utilities given a certain model.

3. Calculate one or more solutions to the Bayesian game in the form of
mixed strategy Nash equilibria.

4. Equilibria in the game correspond directly to solution probability
distributions over the decision variables Dq,..., D, in the original
influence diagrams. These distributions are returned as solution
concepts—not necessarily to be executed, but to further enhance a
commander’s predictive situation awareness.

Fig. 4. Summary of the game component.

agrams containing environmental descriptions, doctrine
and other properties specific to the model in question.
An important observation regarding the model in Fig. 1
that motivates the use of game theory is the fact that
this model, seen as an ordinary influence diagram, does
not account for situations when agents’ try to make
decisions that are influenced by other agents’ decisions.
That is, it is not capable of representing circular causal
relationships between D; and D,. To account for this
gaming perspective we therefore think of the possible
world states as Bayesian game type profiles. Ultilities
are obtained for each such type profile by using its
correlated influence diagram to create a strategic form
game, i.e., utilization of the algorithm in Fig. 2 which
for each combination of the decision profile D,...,D
calculates utilities U,,...,U,,.

Using our prior belief regarding which model is
accurate, we then obtain a Bayesian game for the
whole decision problem. Calculation of equilibria in the
Bayesian game yields solutions for the decision vari-
ables D,...,D, in the form of mixed strategy Nash
equilibria. A more formal description of the scheme can
be found in Fig. 4.

Assuming consistent beliefs, the solution to a Bayes-
ian game is obtained by introducing a new root node
called a historical chance node that is used to imple-

n

BRYNIELSSON & ARNBORG: AN INFORMATION FUSION GAME COMPONENT 113



ment the Bayesian property of the game. A historical
chance node differs from an ordinary chance node in
that the outcome of this node has already occurred and
is partially known to the players when the game model
is formulated and analyzed. For each set of possible
types, the edges from the root node in the game corre-
spond to the model that is used if the players were of
this type. We say that a player i believes that the other
players’ type profileis¢_; € T, with subjective probabil-
ity p;(t_; | t,) given that player i is of type ¢, € T,. Again,
note that the subscript —i is standard notation for the
set of all players except for player i, i.e., t_; is a list of
types for all the other players.

For each type profile ¢ € T, an influence diagram, as
in Fig. 1, describes the decision situation using random
state variables. The different models differ in properties
that cannot be seen in Fig. 1, consisting of other random
variables describing for example terrain, doctrine, and
belief regarding all kinds of properties that do not rely
on other participating agents’ decisions. In the context
of our Bayesian C2 game the historical chance node
is thus a lottery over the possible models that are
represented as influence diagrams.

The Bayesian property of the game might seem triv-
ial at first glance, but the historical chance node at the
root of the tree poses a serious concern to us. To estab-
lish Nash equilibria for the game the normal representa-
tion in strategic form is needed, but the algorithm for the
creation of this relies on the players being able to decide
their strategies before the game begins, which is not true
in a Bayesian game that is represented with a histori-
cal chance node. The solution, due to Harsanyi [21],
is to reduce the game to Bayesian form and compute
its Bayesian equilibria. Such an equilibrium consists of
a probability distribution over actions for each player
and each of this player’s types. This can in principle
be accomplished by solving an LCP to obtain a mixed
strategy for each type of each player. Although in game-
theoretic studies, Bayesian games are often defined with
infinite type and action spaces, we classify actions dis-
cretely after doctrines the players are trained to follow,
and if the intuitive type of a player is a continuous vari-
able we discretize it.

At level two, for each node represented by a distinct
type profile r_; € T_,, the node is the start of the model
that the type profile t_; € T ; gives rise to. To represent
this model we use a game on strategic form; that is,
a game with players N, actions (C,),.y, and utility
functions (u;);cp -

The (still Bayesian) game relates to the influence
diagram in Fig. 1 in that N represents the n agents that
are about to make decisions D,,...,D,, C; represents
the actions available for agent i in decision node D;,
and u; is the utility that is obtained in the diamond
shaped utility node U, which is, in turn, depending
on the random variables C and G; denoting the world
consequence and the agent’s goals respectively.
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7. EQUILIBRIA AND COMPLEXITY

While modeling and representing a C2 situation is
interesting in its own right, a primary concern is the
use and interpretation of the model. In game theory the
concept of Nash equilibria defines game solutions in
the form of strategy profiles in which no agent has an
incentive to deviate from the specified strategy. Without
doubt, defining equilibria is the foremost goal in game
theory. Fortunately, this means that we can lean on well-
established results in our effort to find equilibria for the
C2 situation.

For a Bayesian game, Harsanyi [21] defined the
Bayesian equilibrium to be any set of mixed strategies
for each type of each player, such that each type of
each player would be maximizing his own expected
utility given that he knows his own type but does not
know the other players’ types. Mathematically speaking,
a Bayesian equilibrium for a Bayesian game I'’, as
defined in (1), is any mixed strategy profile ¢ such that,
for every player i € N and every type t;, € T,

o;(-|t;) € argmax Z pit_;|t)
TEA(C) t€T

>

ceC

I oitc; 1) | milepue.n). (2

JEN—i

Here, A(C;) denotes the set of probability distributions
over the set C;, i.e., the set of possible mixed strate-
gies that player i can choose from, and o,(- |#,) is the,
possibly mixed, strategy of player i in type t;.

Existence of a Bayesian equilibrium solution in
mixed strategies follows from the famous existence the-
orem for general games, which is due to Nash [42].
Solution methods for general-sum game-theoretic prob-
lems are however intractable for the generic case. The
most well-known solution method, the Lemke-Howson
algorithm [36, 49], solves a linear complementarity
problem [13]. The computational complexity for find-
ing one equilibrium is still unclear. We know, according
to Nash’s theorem [42], that at least one equilibrium in
mixed strategies exists but it is problematic to construct
one. The Lemke-Howson algorithm exhibits exponen-
tial worst case running time for some, even zero-sum,
games. However, this does not seem to be the typical
case [49]. Interior point methods that are provably poly-
nomial are not known for linear complementarity prob-
lems arising from games [49]. Methods amounting to
examining all equilibria, such as finding an equilibrium
with maximum payoff, have unfortunately been proven
NP-hard [19], so for these kinds of problems no efficient
algorithm is likely to exist.

The standard way of calculating equilibria in a game
in extensive form is to transform the game into strate-
gic form. However, the creation of the matrix for the
strategic form typically causes a combinatorial explo-
sion. This is due to each value in the matrix represen-
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tation of a strategic form game representing the payoff
for a complete strategy. Hence, even though a game tree
typically contains widely different decision alternatives
in different subtrees the decisions in the other subtree
still need to be considered. Therefore the strategic form
matrix dimension grows for each node that is traversed.
In a series of articles [30, 31, 48] published during the
last decade the sequential form as a replacement for the
strategic form has provided a representation suitable for
efficient computation of equilibria in an extensive im-
perfect game with chance nodes. The idea is to replace
the game’s strategies with new strategies based on se-
quences ranging from the root node down to the leaves.
That is, each sequence represents a possible course of
events in the game. As the creation of the matrix for
the sequence form relies on payoffs that are already
in the tree the problem complexity is reduced from a
PSPACE-complete problem into a problem that is linear
in the size of the tree. However, it should be kept in mind
that general game trees often share decision alternatives
and, hence, do not exhibit a full scale combinatorial ex-
plosion. In totally symmetric problems, as investigated
in for example [8], the choice of game representation
therefore does not affect the computational tractability
significantly. Also, as mentioned above a pre-requisite
for the sequential method to be effective is that the game
is in extensive form to start with. Referring to the in-
formation fusion game component, as outlined in Sec-
tion 6, this is problematic since the algorithm depicted
in Fig. 2 results in a strategic game. However, using
an additional chance node denoting the common model
prior, it is possible to hinder this combinatorial explo-
sion by transforming the whole game component into
one large influence diagram. This influence diagram can
then be utilized to create the game tree directly using
the multi-agent influence diagram conversion algorithm
in [32] which, in turn, is a straightforward extension of
the single-agent decision tree algorithm found in [44].

As indicated, the incentive for us to actually use
the sequential method when developing the information
fusion game component has so far been limited, but the
relation between the sequential method and its potential
savings must be kept in mind when developing the game
component further. A model incorporating a series of
ordered decisions, or perhaps a hierarchy of decisions as
outlined in [7], is likely to benefit significantly from this
representation. More information on this topic regarding
so-called MAIDs, an acronym for multi-agent influence
diagrams, and their relation to the information fusion
game component can be found in Section 10.

Although game-theoretic methods are, in most cases,
computationally infeasible in theory, computation of op-
timal solutions still seems to be tractable in reasonably
sized C2 decision problems [8]. Moreover, despite the
intractability of finding all optimal solutions there exist
fast algorithms that often finds all, or nearly all, solu-
tions.

Dblue

Dred

Fig. 5. Influence diagram depicting an example scenario with a
blue player and a red player. The Boolean node BS denotes the blue
player’s private information that gives rise to two blue player types

in the game.

8. A SMALL EXAMPLE

In this section the gaming perspective is illustrated
with an example of a situation where the commander
wishes to reason about two possible models.

At a certain point in battle, a blue (male) unit con-
trols an asset (equipment or territory). When a red (fe-
male) unit appears on the scene the blue unit knows
immediately whether its own forces are inferior or su-
perior. The red unit on the other hand, does not know
anything regarding the capabilities of the blue unit. The
blue unit has the choice to engage in battle or to remain
passive. If he remains passive the red unit will use her
sensors to detect whether he is superior or not and if
he is inferior she will force him to give up the asset.
On the other hand, if the blue unit chooses to engage
the red unit she will be faced with an opportunity to
retreat or to engage. If the blue unit is superior and the
red unit chooses to engage him, he will both defeat the
red unit and keep control of the asset. If the blue unit is
inferior and the red unit chooses to engage him he will
lose both the battle and the asset. If the red unit retreats
the blue unit will keep control of the asset whether he
is superior or not. The central part of the correspond-
ing influence diagram is shown in Fig. 5. The random
variable BS (Blue Superior) constitutes evidence for the
blue decision-maker but not for the red decision-maker,
denoted with the dotted arrow from BS to Dy,.. The
node BS is also a parent to the world consequence node
C because it determines the outcome of an engagement
and thus the state of the world. The C node then affects
the decision-makers’ respective utility nodes where, in
this case, Uy, = —U.4 since the game is zero-sum. It
is vital to understand the difference between evidence
variables and query variables to fully grasp the exam-
ple (and the game component as a whole). For the blue
player, the variable BS is evidence which, in turn, gives
rise to one “blue superior game model” and one “blue
inferior game model.” For the red player, BS is just an
ordinary random variable with an associated conditional
probability table. The chance node C, on the other hand,
can never have its value set as an evidence variable as
it is referring to a future state.
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TABLE I
Payoff Matrices for the Myerson Card Game

Player 2 Player 2
M P M P
2,-211,-1 R [-22| 1,-1
Player 1 111 Player 1 A ERIEN

t; = l.a (superior) t, = 1.b (inferior)

If the value of 1) winning the battle and 2) con-
trolling the asset are worth one utility unit respectively,
the game becomes similar to the card game of Myer-
son [41]. As indicated in the situation description, we
follow the convention that odd-numbered players are
male and even-numbered players are female. This is
common practice in game theory and has no deeper
meaning. At the beginning of the game both players put
a dollar (the asset) in the pot. Player 1 (the blue force)
looks at a card from a shuffled deck which may be red
(he is superior) or black (he is inferior). Player 2 (the
red force), on the other hand, does not know the color
of the card but maintains a belief of this in the form of
a probability distribution in her influence diagram, i.e.,
a belief of the possibility of player 1 being superior or
inferior. Player 1 moves first and has the opportunity to
fold (F') or to raise (R) with another dollar, i.e., remain
passive or engage in battle. If he raises, player 2 has
the opportunity to pass (P) or to meet (M) with another
dollar in the pot, i.e., retreat or engage in battle.

We let o € (0,1) denote player 2’s belief of player 1
being superior. In this example, player 1 also knows
the value of «, i.e., the players’ beliefs are consis-
tent. The situation can then be modeled with a Bayes-
ian game I'®, as defined in (1), with N = {1,2}, C, =
{F.R}. C,={M.P}, T, = {La,1b}, T, = {2}, p,(2|
lay=p,2|1b)=1,p,(l.a]|2)=a,p,(1b|2)=1—«
and (u,(c;,c,,t,),u,(cy,¢5,1;)) as in Table L.

Solving the game using the technique described by
Harsanyi [21] involves introducing a historical chance
node, a “move of nature,” that determines player 1’s
type, hence transforming player 2’s incomplete infor-
mation regarding player 1 into imperfect information.
The Bayesian equilibrium of the game is then pre-
cisely the Nash equilibrium of this imperfect informa-
tion game. The Harsanyi transformation of I'® is de-
picted in Fig. 6 on extensive form.

Note that there are two decision nodes denoted “2.0”
that belong to the same information set, representing the
uncertainty of player 2 regarding player 1’s type. Also,
note that the move labels on the branch following the
“l.a” node do not match the move labels on the branches
following the “1.b” node, representing that player 1 is
able to distinguish between these two nodes. The normal
way of solving such a game is to look at the strategic
representation, as seen in Table II.

In order to solve the game, first note that Fr is
dominated by Rr and that F f is dominated by Rf
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Nature

1L,—1 2,-2 L,—1 —22

Fig. 6. The Harsanyi transformation of the game in Table 1.

TABLE II
The Strategic Form of the Game in Fig. 6
Player 2
M P

Rr | 4a—2,2 -4«

Rf | 3a—1,1-3a | 2a—1,1-2a
Player I p [ 302,234 1,—1
Ff | 2a—1,1-2a | 2a—1,1-2a

regardless of the value of «a, i.e., player 1 will always
raise if in a superior position. Second, if 3/4 < a < 1 we
have that P dominates M so that player 2 will always
choose to pass, which, in turn, implies that player 1 will
always choose to raise. Hence, ([Rr],[P]) is the one and
only equilibrium strategy profile for 3/4 <« < 1. For
0 <a<3/4 there are no equilibria in pure strategies
(just check all four remaining possibilities) and we
have to look for equilibria in mixed strategies. Let
qlRr] + (1 —@)[Rf] and s[M]+ (1 —s)[P] denote the
equilibrium strategies for players 1 and 2 respectively,
where ¢ denotes the probability that player 1 raises with
a losing card and s the probability that player 2 meets if
player 1 raises. A requirement for an equilibrium for
player 1 is that his expected payoff is the same for
both Rr and Rf, ie., s4a—2)+ (1 —s)l =sBa—1) +
(1-5)2a—1)=s=2/3. Similarly, to make player 2
willing to randomize between M and P, M and P
must give her the same expected utility against g[Rr]+
(1 —¢g)[Rf] so that g4a—2)+(1—¢)Ba—1)=¢gl+
(1-9Qa—1)=gq=—a/Ga—1).

We can now use the equilibrium strategy of the im-
perfect information game in order to derive the Bayes-
ian equilibrium of the game I'®. A Bayesian equilib-
rium specifies a randomized strategy profile contain-
ing one strategy o;(-|¢;) for all combinations of play-
ers and types. Hence, the unique Bayesian equilibrium
of the game I'® is o,(-| 1.a) = [R], o,(-| 1.b) = g[R] +
(1 =@IF], 0,(-12)=2/3[M]+ 1/3[P] for 0 < a < 3/4
and o,(-| 1.a) = [R], o,(- | 1.b) = [R], 0,(- | 2) = [P] for
3/4<a<l.
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Although this simple game presents a solution that
is not entirely trivial, it is simpler than our full family
of games in that it is zero-sum with only two players
and thus has a unique Nash equilibrium that is compu-
tationally easy to find.

9. SOLUTION INTERPRETATION

Nash equilibria, in the form of mixed strategies, as
a solution to decision problems require a moment of
thought. On the one hand, it is easy to argue that the
equilibrium strategy is theoretically sensible. After all,
the notion of Nash equilibria, building on the concept of
rationality, defines precisely this. By using the idea of
Bayesian games we are able to create alternative models
regarding agents that are in some way “‘irrational.” Thus,
by using Bayesian games we can counterattack any ob-
jections on the existing model by simply extending the
model with a new submodel that models the objection
in question. Of course, this also requires assigning a
prior probability to the new submodel and re-evaluating
the prior probabilities for the existing submodels, which
makes sense if someone comes up with an objection
(which is interpreted as a new model that we have not
thought of before). If the objection is independent of
the existing models, normalization is the natural way
to re-assign probabilities. Otherwise it is natural to let
the prior probability of the new model be represented
by a reduction of prior probabilities of the model or
the models that it depends on. In most cases we believe
that it is appropriate to have a separate model for the
“uncertain case” that takes care of whatever we have not
thought of. In that case the new submodel, provided it is
independent of other existing models, typically reduces
our overall uncertainty regarding the situation and thus
causes a reduction of prior probability for the earlier
mentioned “uncertain case” submodel. Models that take
care of the rest, i.e., that represent options or possibil-
ities that we are not yet aware of, are often found in
proposed architectures for multi-agent modeling, see for
example [20] where irrational behavior as well as lack
of information is modeled in so called “no information
models.”

On the other hand, although representing the the-
oretically rational course of action, the Nash equilib-
rium poses several concerns regarding its interpretation.
Looking at the example scenario in Section 8, it is inter-
esting to see how ¢ and s varies depending on o which
is shown in the diagram in Fig. 7, i.e., how the solu-
tion to our decision problem varies depending on our
subjective beliefs regarding the opponent being superior
or inferior. How do we convince a commander that he
should decide what to do by throwing a die that varies
depending on g(«)? He probably understands that he is
bluffing, and that it is in general disadvantageous both
to always bluff and to never bluff. Without knowing
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Fig. 7. The graph shows how the game-theoretic solution s(a) to
the decision problem in Section 8 varies in a non-intuitive manner
depending on the player’s speculation regarding the other player
being inferior or superior.

the background to the solution it is not trivial to under-
stand why player 1 should raise with a losing card with
probability g(«) in Fig. 7. Perhaps even more strange
is that player 2’s counterattack, the probability s(«) to
meet, is kept constant at s(a)) = 2/3 until o = 3/4 when
it suddenly goes down to zero. So there is a disconti-
nuity in the optimal strategy when « varies, although at
the discontinuity the optimal utilities vary continuously.
Hence, an error in the a estimate has no large utility
effect although the equilibrium solution strategies may
vary significantly. The conclusion regarding the Myer-
son card game is that a simple problem gives us a so-
lution that is difficult to understand intuitively and that
may or may not, dependent upon the decision-maker’s
objective, raise questions regarding robustness. This is
quite typical, see for example [6] for another example,
and we need to address the question of how to use the
solution in a sensible way. To actually throw the die is
part of the solution and if this is not performed the com-
mander is not rational and, hence, will be outperformed
by a rational opponent that is capable of modeling this
behavior. It is probably easier to accept the opponent’s
randomized strategy as a prediction. Then the optimal-
ity of one’s own randomized strategy is fairly easy to
establish. As can be seen in Fig. 7, however, such a pre-
diction must be analyzed for discontinuities that indicate
potential issues related to strategy robustness.

To outperform someone by exploiting his plan is
called outguessing. It is tempting to use an estimate of
the risk of exploitation as a basis for decision-making
so that the (risk-compensating) Nash equilibrium mixed
strategy is chosen when the risk is high and the pure
strategy with the highest payoff is chosen when the risk
is low. An approach in this direction using hypergame
theory, which is fundamentally heretical to the concepts
of game theory, is proposed in [53].
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10. RELATED WORK

Development of game tools is an active area in Al In
the Gala system of [33], tools exist for defining games
with imperfect information. A tractable way to handle
games with recursive interaction in strategic form was
developed in [20], where the potentially infinite recur-
sion of beliefs about opponents is represented approxi-
mately as a finite depth discrete utility/probability ma-
trix tree defining the players’ beliefs about each other.
The solution emerging from this modeling is not a
Bayesian game equilibrium, however.

There is a significant body of work on multi-agent
interactions in the intelligent agents literature. A survey
of methodological and philosophical problems appears
in [20]. The principle of bounded rationality can be
taken as an excuse to use simpler solution concepts than
Bayesian game solutions. In our case, there is no reason
to assume that the opponent is not rational—there would
be few excuses if he turned out to be so. This does not
mean that it is not necessary to take advantage of op-
ponents’ mistakes when they occur. Plans must foresee
this and have opportunities of opponent mistakes as a
part; but these options should not be executed until the
evidence of the mistake is sufficient. The recursive mod-
eling of multi-agent interaction of [20] (mostly devel-
oped for cooperative rather than competitive interaction)
is thus not appropriate in our application. The proposal
in [27] is to use game theory with zero-sum game tree
look-ahead for C2 applications. Although this approach
was successful for analysis of lower level game situa-
tions, we have argued above that it is not enough in a
complete higher level C2 tool.

In [32] the concept of a multi-agent influence di-
agram (MAID) is defined, which in a similar manner
to our information fusion game component partitions
the decision and utility variables by agent so that util-
ities and decisions of many agents can be described.
The key idea behind the MAID framework is to use
the graph structure to explicitly state strategic relevance
between decision variables which, in turn, is being used
to break up a large game into a set of singly connected
components (SCCs) which can be solved in sequence.
The complexity of equilibria computation in the full
game is therefore reduced to the complexity of equi-
libria computation in the largest SCC in the MAID. In
some games, where the maximal size of an SCC is much
smaller than the total number of decision variables, the
MAID representation provides exponential savings over
existing solution algorithms. In the worst case, however,
the strategic relevance graph forms a single large SCC
and the MAID algorithm simply solves the game in its
entirety, with no computational benefits. The influence
diagrams in the information fusion game component
outlined in Section 6 are unfortunately examples of such
large SCCs. As it turns out, the whole game component
could be alternatively represented by a MAID with a
single large SCC provided an additional chance node,

representing the “move of nature,” was added to connect
the models to each other.

An extension of the MAID framework is the NID—
Network of Influence Diagrams. In the version de-
scribed in [18], several MAIDs—or other game repre-
sentations—can be connected in a directed acyclic
graph, where outgoing arcs are labeled with a proba-
bility distribution. This allows us to define situations
where agents do not all use the same model, but there
is no way to describe in an acyclic graph a situation
where there is mutual uncertainty and inconsistent be-
liefs about the game structure and the opponents’ goals.

11. CONCLUSIONS

In higher level command and control (C2) we can be
certain that large efforts are directed towards predicting
the beliefs, desires, and intentions of the adversary—
and there will not be a common agreed upon model of
the situation and its utilities. In fact, the complex na-
ture of any C2 decision situation makes it necessary to
go beyond any proposed theoretical model and question
how, if at all, it can be used in practice. Adding conflict,
where opposing parties try to outguess each other, com-
plicates things even further with the necessary addition
of a gaming perspective—putting stress on a decision
situation that is complex already from the beginning.

In this paper we propose a way to overcome the bar-
riers between theory and practice, taking into account
opponent modeling as well as current state-of-the-art C2
situation modeling principles. We characterize the pro-
posed architecture as an information fusion game com-
ponent to emphasize the inherent dependencies between
the gaming perspective and the process of fusing sensor
data into a comprehensible situation picture. It is our
belief that game theory should not be considered just
another tool in the decision-maker’s toolbox. Rather, it
is the science of agent interaction itself, i.e., we con-
sider game theory to be the whole toolbox as well as
a statement of the information fusion threat prediction
problem.

Game-theoretic tools have a potential for situation
prediction that takes uncertainties in enemy plans and
deception possibilities into consideration. The idea be-
hind Bayesian games is particularly interesting, and
needed, from the viewpoint of a commander facing a
real setting decision problem; it combines several mod-
els of the situation, thus making it possible to con-
sider such diverse factors as opponent irrationality or
the decision-maker’s intuition by incorporating these
ideas as separate models. However, Bayesian games,
as well as game theory in general, still have shortcom-
ings when representing realistic, potentially large and
complex, situation descriptions—at least compared to
the expressiveness and ease of understanding obtained
with the current state-of-the-art single agent description
within Al i.e., a Bayesian network representation of
the situation. Hence, the natural extension in order to

118 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 1, NO. 2 DECEMBER 2006



make the Bayesian game truly useful for other prob-
lems than leisure games is to maintain several influence
diagram representations of the possible models and let
the game’s utility functions consist of the utilities that
can be calculated with the use of the respective influence
diagrams.

For a situation picture to be truly useful for a com-
mander, it should convey both awareness of the cur-
rent situation as well as predictive awareness regard-
ing likely future courses of events. Hence, prediction
of future courses of events must be considered of ut-
most importance when commencing development of the
next generation’s C2 systems and, henceforth, in higher
level fusion the game component is both important and
needed.
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