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The problem of maintaining tracks of multiple maneuvering tar-
gets from unassociated measurements is formulated as a problem of
estimating the hybrid state of a Markov jump linear system from
measurements made by a descriptor system with independent, iden-
tically distributed (i.i.d.) stochastic coefficients. This characteriza-
tion is exploited to derive the exact equation for the Bayesian recur-
sive filter, to develop two novel Sampling Importance Resampling
(SIR) type particle filters, and to derive approximate Bayesian fil-
ters which use for each target one Gaussian per maneuver mode.
The two approximate Bayesian filters are a compact and a track-
coalescence avoiding version of Interacting Multiple Model Joint
Probabilistic Data Association (IMMJPDA). The relation of each of
the four novel filter algorithms to the literature is well explained.
Through Monte Carlo simulations for a two target example, these
four filters are compared to each other and to the approach of using
one IMMPDA filter per target track. The Monte Carlo simulation
results show that each of the four novel filters clearly outperforms
the IMMPDA approach. The results also show under which con-
ditions the IMMJPDA type filters perform close to exact Bayesian

filtering, and under which conditions not.
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1. INTRODUCTION

In the literature approximate Bayesian approaches
towards maintaining tracks of multiple maneuvering tar-
gets from unassociated measurements have focussed on
the development of combinations of Interacting Multi-
ple Model (IMM) and Joint Probabilistic Data Associa-
tion (JPDA) approaches. Initially, combinations of IMM
and JPDA have been developed along two heuristic di-
rections. Bar-Shalom et al. [4] heuristically developed
an IMMIJPDA-Coupled filter for situations where the
measurements of two targets are unresolved during pe-
riods of close encounter. The filters of the individual tar-
gets are coupled through cross-target-covariance terms.
The filtering results obtained have not been very encour-
aging to continue this heuristic approach. De Feo et al.
[20] combined JPDA and a rather crude approximation
of IMM, under the name IMMIPDA. The first proper
combination of IMM and JPDA was developed by Chen
and Tugnait [18]. Focus of this development was on
showing that fixed-lag IMMIJPDA smoothing performed
far better than IMMIJPDA filtering at the cost of 3 scans
delay. In [9], [10] we used the descriptor system ap-
proach [8] to develop a track-coalescence-avoiding ver-
sion of IMMIPDA (for short IMMIPDA*). Moreover,
we showed that both IMMIJPDA and IMMJPDA* per-
form much better than just applying IMMPDA filtering
per maintained track. In spite of these developments it
remains unclear how IMMIJPDA and IMMJPDA* fil-
tering performs in comparison with the exact Bayesian
filter.

This motivates us to study the Sampling Importance
Resampling (SIR) based Particle Filter (PF) paradigm
[21, 28, 43] for maintaining tracks of multiple maneu-
vering targets from unassociated measurements. During
the last decade this paradigm has been recognized as
a practical means for approximating an exact Bayesian
filter arbitrarily well. This has stimulated the develop-
ment of a large variety of particle filters (e.g. [1, 22,
38, 42]) that typically outperform established approx-
imate non-linear filtering and target track maintenance
approaches such as Extended Kalman Filtering, Proba-
bilistic Data Association (PDA), the Interacting Multi-
ple Model (IMM) algorithm, and their combinations.

The extension of these results to multiple target
tracking situations has also received significant atten-
tion. Early on it was recognized that the JPDA for-
malism provided a logical starting point for this de-
velopment. Gordon [26] developed a SIR-PF version
by replacing JPDA’s Gaussian density by a density the
evolution of which is approximated with help of a SIR
particle filter. Avitzour [2] developed a more advanced
SIR particle filter by using joint-target particles; we re-
fer to this as SIR joint PF. Karlsson and Gustafsson
[30] compared the RMS position errors of a SIR joint
PF with those of a JPDA filter for maintaining tracks
in an example of two perpendicular crossing targets.
For this “easy” example the difference in performance
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appeared to be small. Salmond et al. [45] showed that
a SIR joint PF works well for the initialization of two
non-maneuvering targets that start from the same initial
position. Gordon et al. [27] developed a SIR joint PF
approach for tracking a group of targets, the members
of which stay close to each other. Through several com-
plementary studies, efficiency improvements have been
developed for these particle filters, e.g. [29, 41, 42, 48].
To track multiple objects for robotic vision, Schultz et
al. [46] developed an occlusion extension for SIR PF
and showed that this outperformed JPDA on a multi-
person tracking problem. Tracking multiple objects with
occlusion situations by SIR joint PF for robotic vision
has been shown in [33] and [34].

A complementary development in SIR particle fil-
tering is to use sensor measurements at the pixel level
as observations. This allows handling the problems of
target detection and target tracking in an integrated way,
and thus to shortcut the traditional sequence of signal
processing first, followed by target detection (thresh-
olding) and then target tracking. The feasibility of a
track-before-detect particle filtering approach has been
introduced in [15, 44] for a single target. Extensions
to multiple targets have been developed in [40] using
single target particles, and in [17, 32, 35] using joint
particles. For the current paper we assume that track
maintenance has to be performed on the basis of de-
tected measurement observations, and that pixel level
sensor measurements are not available. Hence, the track-
before-detect problem setting goes beyond the scope of
the current study.

The aim of this paper is to extend the SIR joint par-
ticle filter approach towards track maintenance, to the
situation of multiple maneuvering targets and to evalu-
ate for an example how the performance of these particle
filters compares with IMMJIPDA and IMMIPDA* filter-
ing. This asks for the combination of an SIR joint PF for
unassociated measurements with an SIR PF for tracking
a suddenly maneuvering target [16, 36, 37]. The basis
for this integration is provided by the exact Bayesian
filter for this particular problem. We developed such an
exact Bayesian characterisation using the descriptor sys-
tem approach [10, 14]. The current paper extends these
results in the sense of incorporating a non-homogeneous
false measurement density [39].

The specialty of this exact characterization is that
both the mode switching and the data association are
performed jointly for all targets and that the false plot
density is non-homogeneous. Based on such exact equa-
tions, we develop a standard SIR particle filter to eval-
uate the exact Bayesian equations. A weakness of this
standard SIR joint particle filter is that after a resam-
pling step for some of the joint modes there may be
hardly any or even no particles left. In theory this can be
compensated for by significantly increasing the number
of particles. However, a more effective approach is to re-
sample a fixed number of joint particles per joint mode.
We refer to this as hybrid SIR joint particle filtering.
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Through Monte Carlo simulations for a simple example
the standard SIR and hybrid SIR joint particle filters
are compared with the following three combinations of
IMM and PDA:

e An IMMPDA filter, which updates an individual
IMM track using MMPDA [25] and implicitly assum-
ing there are no other targets;

e A compact version of IMMIPDA, which we derive
in this paper in a systematic way from the exact
Bayesian filter equations; and

e The track coalescence avoiding version IMMIJPDA*)
of this compact IMMIPDA.

The paper is organized as follows. Section 2 formulates
the multi-target track maintenance problem considered.
Section 3 embeds this in filtering for a jump linear de-
scriptor system. Section 4 develops an exact Bayesian
characterization of the evolution of the conditional den-
sity for the state of the multiple targets. Section 5 de-
velops the standard SIR joint particle filter. Section 6
develops the hybrid SIR joint particle filter. Section 7
adopts the IMMIPDA assumptions, and shows the im-
pact on the filter equations relative to those of [18].
Section 8 develops IMMIPDA*. Section 9 illustrates
and compares the performance of these filters through
Monte Carlo simulation results. As a performance ref-
erence we also run single target IMMPDA filters on
the same scenario. Finally, Section 10 draws conclu-
sions.

2. MULTITARGET TRACK MAINTENANCE PROBLEM

Consider M targets and assume that the state of the
ith target is modelled as a jump linear system:
x=d@)xi_ +bOHW,  i=1,..

M (D

where x! is the n-vectorial state of the ith target, 6! is
the Markovian switching mode of the ith target and
assumes values from M = {1,...,N} according to a
transition probability matrix IT’, a/(¢’) and b'(#!) are
(n x n)- and (n x n')-matrices and wf is a sequence of
i.i.d. standard Gaussian variables of dimension n’ with
wi, w/ independent for all i # j and w!, (x{,6}), (x},6))
independent for all i # j. At ¢t =0, the joint density
Py g is known for each i € [1,M]; typically these are
i-variant.

A set of measurements consists of measurements
originating from targets and measurements originating
from clutter. We assume that a potential measurement
originating from target i is also modelled as a jump
linear system:

o = WO + g O],

M (2)

where z/ is an m-vector, h'(¢') is an (m x n)-matrix and
g'(6}) is an (m x m')-matrix, and v! is a sequence of i.i.d.
standard Gaussian variables of dimension m’ with v} and

i=1,...
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v,j independ¢nt for all i # j. Moreover V! is independent
of x{ and w; for all i,j.

Let x,2Col{x!,....xM}, 6,2Col{6,....0M}, A8,
£ Diag{a'(8)),...,a" (@)}, B(6,)=Diag{b'(8)),...,bM
-(6M)}, and w, 2 Col{w!,...,wM}. Then we can model

the state of our M targets as follows:

x, = A(6)x,_, +B(0)w, 3)

with A and B of size Mn x Mn and Mn x Mn' respec-
tively, with {6,} assuming values from M according
to the transition probability matrix II = [IL, ,]. If the M
targets switch mode independently of each other, then:

M
_ i
L, =],
i=1

for every n € M and § € M.
Next with z, 2Col{z/,....zM}, H(8,) 2Diag{h' (6}),
A A
MM}, G(8,) =Diag{g'(0)),...,g" (M)}, and v, =

)

Col{v},...,vM}, we obtain:
z, = H()x, + G(6,)v, ®)
with H and G of size Mm x Mn and Mm x Mm' respec-

tively.

We next assume that with a non-zero detection prob-
ability, P}, target i is indeed observed at moment . In
addition to this there may be false measurements, the
density of which is not homogeneous. Similar to [39]
we assume that the number of false measurements at
moment ¢, F,, has a Poisson distribution:

E)F .
pr(F) = Ft! exp(—F), F=0,1,2,...
=0, else (6a)

where ﬁt is the expected number of false measurements.
Let f, denote the column vector of i.i.d. false measure-
ments, then the conditional density of f, given F, satis-
fies:

F
pue(f 1) =] 5

i=1

(6b)

where p,(*) is the (measurable) probability density func-
tion of a false measurement. Hence, the local density
A(-) of false measurements satisfies:

M) = Epy(fh.

Furthermore we assume that the process {F,f} is a
sequence of independent vectors, which are independent
of {x,}. {w,} and {v,}.

At moment t = 1,2,...,T a vector observation y, is
made, the components of which consist of the potential
observations z! of the detected targets plus the false mea-
surements {F, f;}. The multi-target track maintenance

(6¢)

problem considered is to estimate x,,f, given observa-
. A . . o
tions ¥, ={y,;0 <s <t} with y, representing the initial

Joint density p, , .

3. STOCHASTIC MODELLING OF OBSERVATION
EQUATION

This section characterizes the exact relationship be-
tween observation vector y, and the false and potential
observations at moment ¢ > 0. For this we largely fol-
low [8]. The measurement vector y, consists of mea-
surements originating from targets and measurements
originating from clutter. Firstly, the relation for mea-
surements originating from targets is identified. Subse-
quently, the clutter measurements are randomly inserted
between the target measurements.

Let ¢;, € {0,1} be the detection indicator for target
i, which assumes the value one with a time invariant
probability P >0, independently of ¢;,, j #i and in-
dependently of the processes introduced in Section 2.
This approach yields the following detection indicator
vector ¢, of size M:

& 2Col{) v s bpr}-

Thus, the number of detected targets is D, éZﬁl Gig

Furthermore, we assume that {¢,} is a sequence of i.i.d.
vectors.

In order to link the detection indicator vector with
the measurement model, we introduce the following op-
erator ®: for an arbitrary vector ¢’ of length M’ and hav-

ing (0, 1) valued components, we define D(¢') 2 Zf‘i ,1 &

and the operator ® producing ®(¢') as a (0, 1)-valued
matrix of size D(¢') x M’ of which the ith row equals
the ith non-zero row of Diag{¢'}. Next we define, for
D, >0, a vector that contains all measurements origi-
nating from targets in a fixed order

528(¢);,  where ®(¢,)20(g) @1,

with [, a unit-matrix of size m, and ® the Kronecker
product, i.e.,

b al, : bl
a
{ } ®I2| ...
c d
c, i dI,

In reality, however, we do not know in which order the
targets are observed. Hence, we introduce the stochastic
D, x D, permutation matrix y,, which is independent of
the processes introduced in Section 2 and is condition-
ally independent of {¢,} given D,. We also assume that
{x,} is a sequence of independent matrices. Hence, for
D, >0,

A . A
L, =X,%, where x,=x,®I,
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is a vector that contains all measurements originating
from targets at moment ¢ in a random order.

Let the random variable L, be the total number of
measurements at moment 7. Thus,

L, =D,+F,.

We next describe the relationship between the poten-
tial measurement vector z,, the false plot vector f, and

A
the measurement vector y,=Col{y,,,...,y; ,}, where

y;, denotes the ith m-vectorial measurement at moment
t. Because y, contains a random mixture of D, target
measurements and L, — D, false measurements, the re-
lation between z, and y, can be characterized by the
following pair of equations for the target and false mea-
surements respectively:

W)y, =x,®(¥)z, if D,>0

g if D=0 (7a)
ey, = 1, it L,>D,

-0 if L,=D,  (7b)

where 1), 1}, X, are explained below.

First we explain the target measurement (7a). This
equation has stochastic i.i.d. coefficients ®(1,) and
x;®(¢,). The detected target measurements in the ob-
servation vector y, are in random order. Hence, the po-
tential detected measurements of targets need to be ran-
domly mixed. To perform this by a simple matrix mul-
tiplication, a sequence of independent stochastic per-
mutation matrices {x,} of size D, x D, is defined and
assumed to be independent of {¢, }. To take into account
the measurement vector size m, x, needs to be “inflated”
to the proper size of D,m by means of the Kronecker
product with 7. To this end, = X, ® 1, with I, a unit-
matrix of size m, and ® the Kronecker product. Hence
X, P(¢,)z, is a column vector of potential detected mea-
surements of targets in random order.

A . .
Y, =Col{¢);,...,; ,} is the target indicator vector,

where ¢;, €{0,1} is a target indicator at moment ¢
for measurement i, which assumes the value one if
measurement i belongs to a detected target and zero
if measurement i is false. Because there are as many
detected targets as target measurements, the following
constraint applies:

D(,) = D(¢,).

Under this equality constraint, {¢,} is a sequence of in-
dependent vectors that is D,-conditionally independent
of all earlier defined processes.

In order to let 1), select the correct measurements
by simple matrix multiplication, the matrix operator
® defined above is used. To take into account the
measurement vector size m, ®(1),) needs to be “inflated”
to the proper size of D,m by means of the Kronecker

18 JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. I, NO. 1

product with 1,,. To this end, ®(v') 2 d()® I, with I,

a unit-matrix of size m, and ® the Kronecker product.
Hence ®(3),)y, is a column vector that contains all
detected target measurements in y,.

A . .
Y, =Col{¢,,...,797,,} is a false indicator vector of

size L, with ¢7, =1 —1);,. To select the false measure-
ments by matrix multiplication, the matrix operator ®
is used again. Hence ®(¢;)y, is a column vector that
contains all false measurements from y,.

Finally we develop a characterization for y,. For this
we first verify the following for L, > D, > 0:

() R, + W) OW) =1, .
Hence
¥, = [@@W) @(h,) + () @)y,

Substituting (7a) and (7b) into this equation yields the
following model for the observation vector y,:

if L,>D,>0.

¥, = 2() x,®(d)z, + @) f,  if L, >D,>0
= &) x,2(¢))z, if L =D,>0
=2 f, if L,>D,=0
={} if L,=0. (9

Together with equations (3), (4), (5) and (6), equation
(9) forms a complete characterization of our tracking
problem in terms of stochastic difference equations.

EXAMPLE Assume we maintain tracks of five targets
(M =5), of which we detect detect and observe four
(D, = 4) together with two false measurements (F; = 2),
and with:

000 1

oo 1o 6,=110111]

¥Zl1t o0 of" w=m110110
0100

i.e., the 2nd target is not detected, and the 3rd and 6th
measurements are false. This implies:

1 0 0 00
@(¢I)200100
00010
(3) L0 0O 0 0 1
1 0 0 0 0O
@(wt)201oooo
000100
L0 OO O 10
@(w:):'001000
000 0 01
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0000 1
00010
@)= 0 0 0 o
00100

q)(wt)TXt‘P(qSt)Zt = [Zs,z 24y 0 21 23y O]T

W) f=000 £, 00 f£,1".
Substituting this in (9) yields:

— T
Y =25, 2, fl,t 1y 23y f2,t] .

4. EXACT FILTER EQUATIONS

In this section a Bayesian characterization of the
conditional density p, 4y (x,0) is given where ¥; denotes
the o-algebra generated by measurements y, up to and
including moment ¢. Subsequently, characterizations are
developed for the mode probabilities and the mode
conditional means and covariances.

First we introduce an auxiliary indicator matrix pro-
cess X, of size D, x L,, as follows:

=X @) if D, >0. (10)
Pre-multiplying the left- and right hand terms in (9) with
X, = X, ®1,, and subsequent straightforward evaluation
yields:

X,y = ®(0)H0,)x, + ®(¢)G@,)v, if D,>0

(1D
where the size of x, is D,m x L,m and the size of ®(¢,)
is D,m x Mm.

Notice that (11) is a linear Gaussian descriptor sys-
tem [19] with stochastic i.i.d. coefficients x, and ®(¢,)
and Markovian switching coefficients H(6,) and G(6,).

From (11), it follows that for D, > 0 all relevant as-
sociations and permutations can be covered by (¢,,X,)-
hypotheses. We extend this to D, =0 by adding the
combination ¢, = {0} and ¥, = { }!*. Hence, through
defining the weights

-~ A -
B(¢.x.0) =Prob{¢, = ¢.x, = x.0, = 0 | \}}
the law of total probability yields:
Pasn@0) =D B XODy 66,50 | 0.0.).
X0
(12)

And thus, our problem is to characterize the terms in the
last summation. This problem is solved in two steps, the
first of which is the following Proposition.

PROPOSITION 1 For any ¢ € {0,1}™, such that D(¢) £
S 6, <L, and any X, matrix realization X of size

D(¢) x L,, the following holds true:
pxr‘()r@z,f(hy;(x | 9’ ¢’>~<)

_ p2r|xt,91,¢‘r(>~<yl | x’g’ ¢) ) Px,\e,,yrfl (X | 6)
F(¢,x,0)
Bi(¢,X,0) = Fi(¢,x,0)
L—D(¢)

[T Aaea, —x"x1,)y.1)
j=1

(13)

M
I = BH @)1 pyy O/, (14)

i=1

where )}éf(@I

w L, = [1,...,117 is an L, vector with
I-valued elements and F,(¢,X.0) and c, are such that
they normalize pX’|9”¢[’ii,X(x|0,¢,f<) and B,(¢,X,0) re-
spectively.

PROOF See Appendix A.

The next step starts with substituting (13) and (14)
into (12), which yields:

px,’el\yt(X,e)
_ 5 [Potusn O [ 56.9) P 1)
X0 F;‘(¢’ X,e)
L—D(¢)
F;((b?)z’o) H )\([@(lLl 7)2T)21L,)yt]j)
j=1

M
. H[(1 — PHI=o(piyon

i=1

'Pe,\x,l(e)/cz-

Simplifying this and rearranging terms yields:

px,,{),“';(x’ 0)

= Z [Pz,x,,a,,q;,(;(yz ‘ X, 6’ (b) : Px,,e,\yH ()C, 6)

X0

L—D(¢)

[T Aaea, —x"x1,)y.1)
j=1

M
JTra = eht=2@ho/c, (15)

i=1

with
pz,‘x,ﬁ,,d), (z | X, 07 d))

= N{Z; R(OH(O)x, B()GO)G(O) 2(9)"}.
(16)
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Define Ij;(¢>,>~<,x,9) épi,\x,,ﬁ,,¢,(>~<yt | x,0,¢). Hence from
(16) we get:
E(¢,%,%,60) = [2n)""PDet{Q,(¢,0)}]/
-exp{— 157 (6,3, %,0)0,(6,6) ' 7,(6,%,x,0)}.

where (17)

5,(6,%.%,0) 2 Xy, — B($)H (0)x

0,(6.6) 2 (H)(GO)GO))B(0)".
Substituting (17) into (15) and rearranging terms yields

px,,gl\yl(xﬁ)

Li=D(¢)

1 I > ~ ~
B ¢ Z Fi(@:x.%.6)- H M@(1, —X"X1,)y])
X-0 j=1

M
T =ehto@hon| - p, g, x.0).

i=1

(18)

THEOREM 1 For any ¢ € {0,1}M, such that D(¢) = PO

¢; < L,, the following recursive equation holds true for the
conditional density p, 4 y(x,0):

px,,(;,\y,(xs 0)

M
:Cl 3 [H[(lﬁ)“‘"‘”(@)””]

"oy Li=1

' ZNmD(w){)NCy;;(I)(¢)H (O)x, 2(9)G(O)GO) ()"}

X

Li—D(¢)
11 A([@(IL,QT&lL,)y,]p]

j=1
' / Ny, {6 A0, B(O)B©O) }
JRMn

’ Z [Hﬁepxl—]vgl—]m—l(xl’n)]dx, (19)

neMM
with normalization c,, Ny{-;x,p} a K-dimensional Gaus-
sian with mean x and covariance P, and the 2nd sum

running over all x = x®()) with x a D(¢) x D(¢) per-
mutation matrix and 1 € {0,1}¥ such that D() = D(¢).

PROOF IMM’s basic derivation [38, App. A] yields:

px,,e,\ylil(x,e) = /

J RMn

Z [Hnepxl—lv‘ql—lm—l (x’,n)]dx’.

ne{l,..N}M

Ny, {x;A(0)x', B(O)B(O)"}

(20)

Substituting (17) and (20) in (18) and rearranging the
summation over Y yields (19).
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Equation (19) is a recursive equation for the exact
Bayesian solution for tracking multiple targets from
possibly false and missing measurements. From (19) it
follows that if the initial density is a Gaussian mixture,
then the exact conditional density solution of recursive
equation (19) is a Gaussian mixture, the number of
Gaussians increasing exponentially with time.

REMARK 1 For jump-linear systems such recursive
filter equations have been characterized by [23], and
for jump-non-linear systems by [16], [3]. In [14] we
provide a version of Theorem 1 under the assumption
that A is homogeneous.

REMARK 2 Proposition 1 and Theorem 1 also apply
when the initial densities are permutation symmetric
over the targets, i.e. a situation studied by [32].

5. SIR JOINT PARTICLE FILTER

In this section a SIR joint particle filter of the exact
filter characterization of Theorem 1 is developed. In this
SIR joint PF a particle is defined as a triplet (u X j,9 j),
p; €10,1],x; € RM7, 0, € MM, j € [1,5]. One filter cycle
consists of the following steps:

o SIR joint particle filter Step 0: Initiation.
Each filter cycle starts with a set of S joint particles
in [0,1] x RM? x MM _ je.:

{(:uj,t—l = I/S’xj,t—l’ej,t—l); j e[S}

with, for7 =0, 6, ; and x; ; independently drawn from
Py, () and p, 4 (- | ;) respectively for each j € [1,S].

o SIR joint particle filter Step 1: Joint mode switching.
Determine the new joint mode per joint particle (1,
and x;, , are not changed)

{(:u’j’tfl’xj’tfl’e_j’[); .]e [I’S]}

by generating for each joint particle a new value 7 it
according to the transition probabilities:
Prob{f;, =00, , =0} =1I,;. 1)

e SIR joint particle filter Step 2: Prediction.
Determine the new state per joint particle (the weights
Mj . are not changed)

{(j,1.%;,.0;,); j € 1,51}

by running for each particle a Monte Carlo simulation
from (r — 1) to ¢ according to the model

X, = A X+ B oW

i1 (22)

e SIR joint particle filter Step 3: Measurement update.
Determine new weight per joint particle, i.e.

{(ﬁj,w)_cj,t’éj,t); JE ST
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with, for the new weights, using (17) and (18):

1 ~ o -
c Z F;(QS’X,XJ‘J’QJ'J)

/~L;z Hje—1-
' %o

L~D(®)
IT Araea, —x"x1,)y1)
i=1

M

JJta-eryto@her| @3
i=1

where

E(6,%,%,0) = [2m)""PDet{Q,(¢,0)}]""/?

-exp{— 177 (¢, %, %,0)0,(6,6) ' 7,(, X, x,0)}
(24)
with
7(6, %5 %,0) 2 Xy, — B($)H (O)x

0,(6,6) 2 2(O)GO)GO) ) ®(6)

and ¢, a normalizing constant such that

S
Zﬁj,; =1
j=1

e SIR joint particle filter Step 4: MMSE output equa-
tions:

S
ROEDPTIRTRC)

Jj=1

S
)Act(o)zzlht Xt 6 (©)
=1

S
EO) =) %, —%O1%;, —%O)11; )
j=1

5= 3 500
HcMM

B =3 AOIBO) + [30) - 313,60) - 5,171
feMM

o SIR joint particle filter Step 5: Resampling.
Generate the new set of joint particles

{(uj, =1/8.x;,.0, ) j€[1.51}

with 6, and x;, the jth of the § samples drawn inde-
pendently from the joint particle spanned conditional
densities for 6, given y, and for x, given ¥, and 6, = ¢/:

P,y (0) = 7,(0)

S
PaionC 10,02y ils (8565, C).
=1

In the next section we modify the enumeration of the
particles and adopt the particle resampling Step 5.

6. HYBRID SIR JOINT PARTICLE FILTER

In this section a hybrid SIR joint particle filter of the
exact filter characterization of Theorem 1 is developed.
The difference with the SIR joint particle filter is that we
now resample a fixed number of joint particles per joint
mode. A joint particle is defined as a triplet (u*/,x%/,0),
i €10,1], x% ¢ RM" g c MM, j € [1,5']. One cycle
of this hybrid SIR joint particle filter consists of the
following steps:

e Hybrid SIR joint particle filter Step O: Initiation.
Each filter cycle starts with a set of S = NS’ joint
particles in [0,1] x RM" x MM | i.e.:

{0,607 =6y, jell,8], 6. MM}

with, fort = 0, /Lo’j = pg,(0)/S', and xg’j independently
drawn from p, , (- | 0) for each j € 1,...,5".

e Hybrid SIR joint particle filter Step 1: Mode switch-

ing.
Determine the new mode per particle (uf’fl and xffl
are not changed)

{7 ,007); j € 11,871, 0 € MM}

by generating for each joint particle a new value el

according to the model
Prob{6}” =06} =0} =11, (25)

e Hybrid SIR joint particle filter Step 2: Prediction.
Determine the new state per joint particle (the weights
(", are not changed)

{(:u[ ]7

by running for each particle a Monte Carlo simulation
from (¢t — 1) to ¢ according to the model

X767y, je[1,8, 6 e MM}

X = AGPH + BOw, . (26)

e Hybrid SIR joint particle filter Step 3: Measurement
update.
Determine new weight per joint particle, i.e.

(i 37,607y, jel1,8'], 6 € MM}

with for the new weights, using (17) and (18):

i = g —Z F(6,%%7.6/")
“ 5o
L—D(¢)
[T raea, —x"x1.,)y.1)

i=1

M
. H[(l _ Eji)(lfdﬁi)(].ﬁi)@]

i=1

27)
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7.

where
1:}(95’5(,)6, 0) = [(ZW)mD(Q)Det{Q,(@9)}]’1/2

-exp{— 151 (6, %.%,0)0,(6,0) ' 7,(6,%,x,0)}
with (28)
7(6, % %,0) £ Xy, — B(S)H (O)x

0,(6.0) = B(H)GOGO))B(9)
and ¢, a normalizing constant such that

.
> -t

feMM j=1

Hybrid SIR joint particle filter Step 4: MMSE output
equations:

g
’%(9) = Z Z /_l:]’] 19’:%/’ (9)

neMM j=1

S/
O =YY ' x150000)

neMM j=1

S/
BO)= Y Y i IEY = 2O — 2017 15.0)

neMM j=1

k=) 40)%00)
HeMM

B =" AOEB0) + [20) — X [3,0) - 3, 17].
feMM

Hybrid SIR joint particle filter Step 5: Resampling
per mode.
Generate the new set of joint particles

{7 =43,0)/8",x7.6)7 = 0); je[l,8, MM}

with xf’j the jth of the S’ samples drawn indepen-
dently from the particle spanned conditional density
for x, given ¥, and 6, = 6:

S/
PainrC 1O Y Y i 1500(0)650: ().

neMM [=1

For homogeneous A, this hybrid SIR joint particle
filter has been introduced in [11] under the name Joint
IMMPDA particle filter.

IMMJPDA ASSUMPTIONS

The assumptions that are underlying to the

IMMIPDA of [18] are:

22

C1) pypy, 0) =TT, Py, (0
C2) pygn, x| 0) =TI Py, (| 69);
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Poy (0D = B(6,%m)

C3) Pyijgiy,_, (x | 6" is Gaussian with mean )‘C;'(gi) and

covariance P'(6").

Application of these assumptions, to the exact equa-

tions of Proposition 1 yields the following theorem.

THEOREM 2  Assume C1, C2 and C3 are satisfied. Then
B.(#,X,0) of Proposition 1 satisfies:

Li—D(¢)

550 =| ] M, -3"x1,)y1)
i=1

M
T @ %60 =Y @) - pyy, O] /e,
i=1

(29)

with, for ¢' = 0: f(¢,X,0") = 1, and for ¢' = 1:

f(,%.6)

= [(2m)"Det{Q](6)}] "

k=1

Ly
-exp {% Z([@(@T],-*i*ku;‘"(e")’[Q;’(b’“)l1v,"k(€"))}
(30a)
VRO = y* — n(0HXi(0) (30b)

Q6" = K (BB ()R ) + g'(9")g' (") (30c)

where [<I>(¢)T]i* and X, are the ith row and kth column
of ®(¢)T and X, respectively. Moreover pxﬂg;-’yr(x" | 6%,
i€[1,M], is a Gaussian mixture,Awhile its overall mean
xi(0") and its overall covariance P'(6') satisfy:

(31a)

&
=6

Ll
(0 = X(0") + Wi(0") <Z 6;’"(9")4’"(9")) (31b)

k=1

L
Bi(8) = B0 — W/ (@)W (@)E (@) (Z ﬂ;'k(e"))

k=1

L
+ W/tl(ol) <Z ﬂtik(ei)ytik(ei)ytik(ai)T) ‘/Vti(ei)T

k=1

Lz
A (Z 6;*(0")1/;"(9"))

k=1
L T
: (Z 65"’(9")4"’(9!‘)) WioH" (3lc)
k=1
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with:

W/ (@) = PI@HR @) 10!0)] ! (31d)

i (07) 2 Prob{[B(¢) 1., [X,],, = 1| 6 = 6.7}

= 3 [9(D) 1. X B Ko 1) Py (8-
it

(31e)
PROOF See Appendix B.

Equation (30a) replaces six nested equations of
[18, eqgs. (18) and (20)—(24)]. As a direct consequence,
Theorem 2 leads to a more compact version of
IMMIPDA, the detailed steps of which we give in the
next section.

8. TRACK-COALESCENCE-AVOIDING IMMJPDA
FILTER

Fitzgerald [24] has shown that less likely permu-
tation hypotheses pruning provides an effective strat-
egy towards reducing JPDA’s sensitivity to track co-
alescence if A =0 and Pdi = 1. In [8] we have shown
that for A >0 or P < 1, the appropriate strategy is to
prune per (¢,,,)-hypothesis all but the most likely x,-
hypothesis prior to measurement updating. This hypoth-
esis pruning strategy is now extended as follows: eval-
uate all (¢,,1,,0,) hypotheses and prune per (¢,,%,,0,)-
hypothesis all but the most-likely x,-hypothesis. For ev-
ery ¢, ¢ and 6, satisfying D(¢)) = D(¢) < min{M,L,},
the most likely y hypothesis satisfies the mapping
R 0.0,6):

Ru(10,0) éargmeﬁ,(ab, X (), 0)

where the maximization is over all permutation matrices
x of size D(¢) x D(¢).

The pruning strategy of evaluating all (¢,,0)-
hypotheses and only one x-hypothesis per (¢,1,6)-
hypothesis implies that we adopt the following pruned

hypothesis weights Bt(¢, ¥, 0):
B(6.10,0) = B,(6, (.1, 0) D().0) /2,
if 0<D(¢)<min{M,L,}

= 6,0}, {}.0)/¢,
=0

if D(¢)=0
else

with ¢, a normalization constant for 3,; i.e. such that

ST B0 =1

D,0
D()=D(¢)

Through combining the equations of Theorem 2
with the above step, we arrive at the track-
coalescence-avoiding IMMIPDA, for short IMMIPDA*:

IMMJPDA* Step 1: For each target this comes
down to the interaction step of the IMM algorithm [7]
for all i € [1,M]: Starting with

ni i A ; .
7t—1(9)=p9:’7]‘y,71(0 ) 0 eM

i iy A i i i i
X ()=E{x,_, |0, ,=0.Y_}, 0 e M

PLOYRE{x_, —%_,(0))]

X =X O 6, =07}, 0'eM

one evaluates the mixed initial condition for the filter
matched to 0 = 0’ as follows (due to (4)):

N
G H,",,»,@i A )
ni=1
N
)?j_,‘ﬁg(@’) = I i - A ()X () /70"
17i=1
N
BL @)= T AL, Gl

ni=1
LB () + R, () = & (6)]
B 0 =&, 00171/3,6).

IMMJPDA* Step 2: Prediction for all i€ [1,M],
6" € M:

X0 = a"(ef)fcjfw,;(e") (32a)

éi(ai) — ai(ei)él;llg;_(oi)ai(ei)T + bi(ei)bi(ai)T

(32b)

010" = H(@)BI(HH () + g'(0)g' (0D,  (32¢)

IMMJPDA* Step 3: Gating, which is based on [5].
Identify for each target the mode for which Det Q!(6)
is largest:

0 = argmglx{Deth(G)}

and use this to define for each target i a gate G! € R”
as follows:

GI2{d € IR™[Z — K(OHR O
LU0 2 — KRG < k)

with x the gate size. Now we define L, to denote the
number of measurements y, that are in one or more of
the gates G;.
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IMMJPDA* Step 4: Evaluation of the detection/
association/mode hypotheses is based on Theorem 2;
for all ¢ € {0,1}M, ¥ € {0,1}P@*L MM,

L—D(¢)

[T raea, —x"x1,)y,1)
i=1

B, x.0) =

M
i=1

(1= PO )PP ()P e,
it X1, = lpy,
=0

else (33a)

with for ¢ = 0: fi(¢,%,60") = 1, and for ¢ = 1:
[0, %6
¥ [(2m)"Det{Q;(6)}] *

k=1

L
1 Y = -
'exp{z § [‘1>(¢)T]i*x*k1/,’k(9’)T[Qi(é”)]_'l/,’k(9’)]}

(33b)

vk (0" = y* — K (0)X(0). (33¢)

IMMJPDA* Step 5: Track-coalescence hypothesis
pruning.

First, evaluate for every (¢,,0) such that 0 < D(v))
= D(¢) <min{M,L,}:

Ru(10,0) éargmgx@w,x%(w),e).

Next, evaluate all x,(¢,1,0) hypothesis weights:

B(6:1,0) = B(6.X,(6,.0) @(1),0) /¢,
if 0<D(®)=D(¢)<min{M,L}

= B,{OM.{}".0)/¢,
if D) =D(¢)=0
=0 else

where ¢, is a normalizing constant for 3,.

IMMJPDA* Step 6: Measurement update equations
(also based on Theorem 2); for all i € [1,M], 6/ € M,

SHEED P CRIR)

(34a)

1
R0 = 70 + W0 <Z B;‘kwf)u;"‘(ef)) (34b)

k=1
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L,
Bi(0) = P'(6") — Wi(0)h' (9)E! (') (Z 6;"‘(9"))

k=1

L
+ W/;l(gt) (Z Btik(ei)ytik(gi)l/tik(ai)T) V‘/;i(gi)T

k=1

Lr
A (Z ﬂ;’k(e")u;‘kw"))

k=1

L T
: <ZB§"’(0">V;”<0")> VACHY (34c)
k'=1
with
W/ (6" = Bi(9") R (0)T Q6] (34d)

A,""(Qi) = ( Z [2(0) 1, [, (0 0. )T @(W)] 4
sk

-@(W/w)) / SACA)

where [.],; is the kth column of [.] and [.],, is the ith
row of [.].

(34e)

IMMJPDA* Step 7: Output equations:

N
&= 36" X0

0i=1

(35a)

N
Bl = 3" AONE O + [3(0)) - &1 [*(©) - X17).
=1
(35b)

REMARK 3 By deleting the track coalescence hypoth-
esis pruning Step 5 from IMMIPDA*, and by replac-
ing B(¢ﬂ/),77) by B(¢,1,n) in Steps 6 and 7, we get the
compact IMMIPDA filter. As already announced in Re-
mark 2, the reason to refer to compact IMMIPDA is that
(33b) replaces six nested equations in the IMMIPDA of
[18, eqgs. (18) and (20)—(24)].

9. MONTE CARLO SIMULATIONS

In this section some Monte Carlo simulation results
are given for the two novel joint particle filters, for
the (compact) IMMIPDA and IMMIJPDA* filter
algorithms, and for a multi-target tracker using an
IMM-PDA for each track. The two particle filters ran on
a total of S = 10* joint particles. The simulations aim
at gaining insight into the behavior and performance
of the filters regarding track maintenance when two
targets move in and out of close approach situations,
while giving the filters enough time to converge after
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a maneuver has taken place. In the example scenarios
there are two tracked targets, each modeled with two
possible modes. The first mode represents a constant
velocity model and the second mode represents a con-
stant acceleration model. It is assumed that both targets
are initially tracked well, that for their initial track esti-
mates there is no uncertainty regarding which track be-
longs to which target. Both objects move towards each
other, each with constant initial velocity Vi ;..,. At a cer-
tain moment in time both objects start decelerating with
—50 m/s” until they both have zero velocity. The mo-
ment at which the deceleration starts is such that when
the objects both have zero velocity, the distance between
the two objects equals d (see Fig. 1). After spending
a significant number of scans with zero velocity, both
objects start accelerating with 50 m/s’ away from each
other without crossing until their velocity equals the op-
posite of their initial velocity. From that moment on the
velocity of both objects remains constant again (thus
the final relative velocity Vi fina = Viel, initial)- INOte that
d < 0 implies that the objects have crossed each other
before they have reached zero velocity. In each simula-
tion the filters start with perfect estimates and run for 40
scans. Examples of the trajectories for d >0 and d < 0
are depicted in Figs. 1(a) and 1(b) respectively.

For each target, the underlying model of the poten-
tial target measurements is given by (1) and (2), i.e.:

X =d@, )X+ b0, Hw!
2= h(O)x + g0

with for i € {1,2} and ¢! € {1,2}:

17,0 (1T, 377
dhy=(0 1 0|, d4d@=|0 1 T
0 0 0 0 0 1
0 [0
bi(ly=0o.- 10|, b @2)=0-]0
1 L0
R=[100], g=d,
_ 1-T /7 T./m
B T/ 1-T/m,

where 0! represents the standard deviation of accelera-
tion noise and ¢! represents the standard deviation of
the measurement error. For simplicity we consider the
situation of similar targets only; i.e., o/, = o , 0!, =0,
Pdi = P,. With this, the scenario parameters are Py, A, d,
Visidar Ty» Om» 04> T1> T2, and the gate size . We used
fixed parameters o,, = 30, 0, =50, 7, =50, 7, =5, and
~v = 25. Table I gives the other scenario parameter val-
ues that are being used for the Monte Carlo simula-
tions.

Trajectories ford = 0

1000
500
=
S A
= 0 d=0
Q
=9
-500
-1000
0 10 20 30 40
time
(a)
Trajectories ford < 0
1000
500
=]
g [}
k| 0 d<0
1)
2.
-500
—-1000 '
0 10 20 30 40
time
(b)
Fig. 1. Trajectories examples for d > 0 and for d < 0.
TABLE I
Scenario Parameter Values!
Scenario P A d Vinitial T,
1 1 0 Variable 75 1
2 1 0.001 Variable 75 1
3 0.9 0 Variable 75 1
4 0.9  0.001 Variable 75 1

I'IMMPDA’s A = 0.00001 for scenarios 1 and 3.

During our simulations we counted track i “OK” if
|hl%IT - hixH < 9Utn
and we counted track i # j “Swapped” if
|hli:lT - hij < 9Utn'

Furthermore, two tracks i # j are counted “Coalesc-
ing” at scan ¢, if

W& — W] <o, AWX —HWxl|>a,.

For each of the scenarios Monte Carlo simulations
containing 100 runs have been performed for each of
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the tracking filters. The initial track estimates are

(750
o=\ 75

L0

750
BO=|-75, 0e{1,2}

L0

100 0 0
Piy=| 0 1 o

Lo o0 &

100 0 0
B@=|0 1 o

Lo 0 %
A =09,  A2)=01  for i=1,2.

The results of the Monte Carlo simulations for the four
scenarios are shown in tables and figures as follows:

e The percentage of Both tracks “OK,” see Table II,
and Figs. 2(a), 3(a), 4(a) and 5(a).

e The percentage of Both tracks “OK” or “Swapped,”
see Table III, and Figs. 2(b), 3(b), 4(b) and 5(b).

e The average number of “Coalescing” scans, see Ta-
ble 1V, and Figs. 2(c), 3(c), 4(c) and 5(c).

e The average CPU time per scan (in seconds), see
Table V.

The results in Tables II-IV and Figs. 2-5 show that
for targets that come close to each other, IMMIPDA,
IMMIPDA* and the particle filters perform much better
than IMMPDA. As expected, these simulation results
show increased difficulty for P, = 0.9 when compared
to P, =1 and for A =0.001 when compared to A =0.
Furthermore A = 0.001 has more impact on the perfor-
mance than P, = 0.9. This can be explained by the fact
that for A = 0.001 a target track may diverge because
of false measurements. The SIR-H joint particle filter
suffers the least from this.

Measured in terms of “both tracks OK™ (Table II and
Figs. 2(a)-5(a)) the SIR-H joint particle filter performed
best, the IMMIPDA* second best, the SIR-H joint par-
ticle filter third and the IMMIPDA fourth. The both
tracks “OK” Figs. 2(a)-5(a) show a slight difference
for d < 0 and d > 0. This is because for d < 0 the target
trajectories cross each other before they have reached
zero velocity, while for d > 0 they do not cross (see
Fig. 1).

Figs. 2(a)-5(a) show that IMMIPDA and IMMIJPDA*
filters have oscillating variation in performance which is
lacking for SIR-H joint particle filter. This phenomenon
can be explained by the observation that the effect of
“overshoot” during a maneuver is for IMMIPDA and
IMMIJPDA* more profound than for the SIR-H joint
particle filter, because the latter filters perform time
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TABLE II
Average % Both Tracks “OK”

Scen. IMMPDA IMMIPDA IMMIJPDA* SIR Joint SIR-H Joint

1 19 66 73 70 75

2 10 56 68 65 70

3 6 63 69 70 72

4 4 41 50 43 57
TABLE III

Average % Both Tracks “OK” or “Swapped”

Scen. IMMPDA IMMIPDA IMMIJPDA* SIR Joint SIR-H Joint

1 28.3 99.96 100 97.8 96.2

2 18.9 92.5 96.8 91.6 94.6

3 8.5 99.8 100 97.6 95.8

4 5.6 76.6 80.96 66.0 82.3
TABLE IV

Average Number of Coalescing Scans

Scen. IMMPDA IMMIJPDA IMMIJPDA* SIR Joint SIR-H Joint

1 9.7 1.5 0.4 1.2 1.3

2 11.0 2.1 0.3 1.2 1.4

3 18.9 1.7 0.5 1.3 1.3

4 14.5 2.6 0.5 1.3 1.5
TABLE V

Average CPU Time Per Scan (in milliseconds)

Scen. IMMPDA IMMIPDA IMMIJPDA* SIR Joint SIR-H Joint

1 16 22 23 385 439
2 38 54 48 7245 7959
3 14 20 20 377 438
4 38 61 56 7170 7810

extrapolation from only one state estimate per mode,
whereas the SIR-H joint particle filter performs time
extrapolation for many particles per mode. The effect is
that for some d values IMMIJPDA and IMMIJPDA* ac-
tually benefit from overshoot in the sense that it keeps
the tracks separated, while for other d values the over-
shoot actually moves the tracks closer to each other.
This effect is less profound for the SIR-H joint particle
filters due to time extrapolation for many particles per
mode; hence oscillating variation in performance does
not occur.

Rather surprisingly, IMMIPDA* outperforms Hy-
brid SIR joint particle filter regarding the both tracks
“OK” or “Swapped” criterion (Table III and Figs. 2(b)—
5(b)) on the “easy” scenarios 1-3. Scenario 4 shows
that IMMIPDA* is outperformed on this criterion by
the SIR-H joint particle filter when missing and false
measurement conditions become more challenging.

Table IV and Figs. 2(c)-5(c) show that IMMJPDA*
performs best on track coalescence avoidance. Next best
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Both Tracks O.K.

percentage

—e—SIR—H joint
20} -2 - SIR joint

% IMMJPDA*
10f| - - IMMJPDA
o L2 IMMPDA
-10 -5

—e—SIR-Hjoint [\ /% i !
20H-B-SRjoint | ¥ . i !
- %-- IMMJPDA* ok | i
10| - -x--IMMJPDA P X
0 —©-IMMPDA | o X
-10 -5 0
dio
m
(a)
20—
18-
161
14+
§12—
St
° 10r
2
E 8
=}
6_
—e—SIR-H joint
4t|-B-SIR joint
~%-- IMMJPDA*
2| -<--IMMJPDA
——IMMPDA

Fig. 2. Simulation results for scenario 1. (a) Both tracks “OK” percentage. (b) Both tracks “OK” or “Swapped” percentage.
(c) Average number of “Coalescing” scans.

are the two particle filters, and fourth is IMMJIPDA.
The “dip” in “mean time in coalescence” around zero
is due to the definition of “coalescing tracks.” That is,
when the targets are actually moving very close to each
other, which is the case for small d values, there are
no coalescing scans counted. Scans are only counted
coalescing when the targets are separated from each
other far enough.

Table V indicates a significant CPU-time increase
for joint particle filters relative to the others. The in-
crease is one order of magnitude for scenarios without
clutter and two orders of magnitude for scenarios with
clutter.

It should be noticed that there are various comple-
mentary methods available that allow to reduce the num-
ber of particles and/or CPU time significantly without
reducing performance (e.g. [1], [38]). Hence when read-
ing Table V one should be aware that these methods
have not been investigated in this paper.

10. CONCLUDING REMARKS

In this paper we studied the problem of maneuvering
target tracking from possibly missing and false mea-
surements. The density of the false measurements was
assumed to be non-homogeneous. For this problem we
studied particle filtering as an alternative to multi-target
track maintenance versions of IMM in combination with
PDA or JPDA. The approach taken is to first character-
ize the problem in terms of filtering for a jump linear
descriptor system with both Markovian and i.i.d. coeffi-
cients, and next to use this for the derivation of the exact
recursive equation for the Bayesian filter (Theorem 1).
This result has been used to develop two SIR type parti-
cle filters, one which resamples a fixed number of joint
particles (SIR joint particle filter) and one which resam-
ples a fixed number of joint particles per joint mode
(SIR-H joint particle filter). We have also shown that
application of the approximating assumptions of [18] to
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Fig. 3. Simulation results for scenario 2. (a) Both tracks “OK” percentage. (b) Both tracks “OK” or “Swapped” percentage.

(c) Average number of “Coalescing” scans.

the exact Bayesian filter equations (Theorem 2) leads to
a compact version of their IMMIPDA filter equations.
For this (compact) IMMIPDA filter we also developed
a track-coalescence-avoiding version (IMMJPDA*) by
introduction of a particular pruning of permutation hy-
potheses. All our four novel filter algorithms cover the
situation of non-homogeneous density of false measure-
ments.

Through Monte Carlo simulations for a series of
simple scenarios with two targets and two associated
tracks these four novel filters have been compared to
each other and to a filter which runs a single target
IMMPDA (per track). All four clearly outperformed
IMMPDA. The particle filters used 10* joint particles;
with this the SIR-H joint particle filter appears to ap-
proximate the Bayesian filter well, whereas the SIR joint
particle filter did not. On all scenarios, IMMIPDA* per-
forms significantly better than IMMIJPDA and some-
times even remarkably close to the performance of
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the SIR-H joint particle filter. Apparently, the perfor-
mance reduction by the IMMIPDA approximation of
the exact Bayesian filter can be partly compensated
by introducing the additional IMMJPDA* approxima-
tion. IMMIJPDA and IMMIJPDA* both perform less
well than the SIR-H joint PF on the following two
points:

e The performance of both IMMIPDA and IMMIJPDA*
varies heavily with changes in the geometry of en-
countering target paths; this varying kind of behavior
is not shown by the SIR-H joint particle filter;

e The SIR-H joint particle filter is least sensitive to
divergence of track because of switching to running
on false measurements; this advantage shows both
when targets are clearly separated from each other
and when target paths come close to each other.

Recently both [12] and [47] explored the poten-
tial effect on performance of extending IMMIPDA and
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IMMIJPDA* to joint tracking versions, i.e., to versions
where the multi-target states/modes are jointly esti-
mated. Tugnait [47] showed slightly improved sim-
ulation results for a particular example. In [12] we
showed examples where the joint tracking versions
performed better and examples where they performed
worse. On average, the joint tracking versions even
performed worse. In [14], [13] we showed that an
appropriate pruning of permutation hypothesis also
yields a track-coalescence-avoiding joint tracking ver-
sion. The two weak points listed above for IMMIPDA
and IMMIJPDA* also apply to these joint versions.
Because the computational load of IMMIPDA* is
one to two orders of magnitude lower than the compu-
tational load of the SIR-H joint particle filter is, this
may be a fair reason to prefer IMMIPDA* over the
SIR-H joint particle filter for particular applications.
One should also be aware that the efficiency of the
SIR-H joint particle filter can be significantly improved

by incorporating various methods from literature (e.g.
[1, 38, 42]).

In addition to the option of improving the efficiency
of the SIR-H joint particle filtering, it is an option to
improve the adaptation of the output equations. In this
paper we considered the mean and covariance of target
states only, and thus averaged over the states of all
particles. One alternative approach might be trying to
incorporate the permutation hypothesis pruning strategy
of IMMIPDA* within the output equations of the SIR-
H joint particle filter. Another direction [32] is to apply
clustering of particles prior to averaging.

There are several other interesting extensions pos-
sible for the jump-linear descriptor framework and the
novel exact and approximate filters. For example, to in-
corporate the target initiation and termination approach
of [39], or to incorporate unresolved measurements (e.g.

[31D.
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Appendix A Subsequently

PROOF If ¢ =0 we get

pxz‘el,@s;(hyz('x | 9’0’5(’) = px,|9,,Y,,1(x ‘ 9) (Al)

Else, i.e., ¢ # O:

= Py, x, (DX, 0)

= P2yl (D X0 [ i L)

= Py, 2bilontntia Vo X0 1 6,L)
Poy, @1 L)/ ¢

= pyr,iz\@,@,,Lz,YH (yt’je | 9’¢’Lt)

Pty ¥ 10:0:X)
= Paitrbnivyilti s & 1 0:0,X. Y, Ly)
= Patbririoynlegition & 1050 X:Y0 Lo XY,)
= Palosng oy & 0,0.xy,)

= pz:‘xr,e,,(/),(iYI | x,e’ (b) : Px,\e,,yH ()C | 9)/F['(¢9>2’9) If ¢ 7£ O’ we have Dt > 0 and

Loy @ LOpyy,  (0)/cr.

B,(6,%.0) 2Prob{g, = ¢,%, = %.0, = 0| ¥}

(A4)

(A2)  Xi % = QW) XX @) = 2(4)" B(¢,) = Diag{), }.
with (AS)
A . Hence
F(6.5.0) = Pz 19,0, (XY 10, 9)- (A3) v, = Diag{y;}1,, = X/ X1,
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with 1, an L, column vector with L, 1-valued compo-
nents.
Moreover, because

LW = xT o) @) ="

this shows that the transformation from (¢,,,) into X,
has an inverse. For the first term on the right hand side
of (A.4) this implies:

p}'zs)}t‘enfanr,Yz—l(yt’XT(b(w) | 9’ ¢’Lt)
= pyl,y/;,,x,\ﬂ,,@,L,,Y,,l (YI’ 7/% X | 9’ ¢’Lt)'

Furthermore, because the transformation from (y,, v, x,)
into (z,,f,,%,,x,) is a permutation, we get for L, >
D(¢)>0

pY1’1°)I’XI‘9/~¢7z»LI~}';71 (Y,J/J»X ‘ 07 ¢7Lf)
= pZ;,ﬁ,w“y,x;\(?;,o;,L,,l/,,] (XTQ(w)yt’Q(lL, - w)vasx ‘ 03 ¢7Lt)-

(A8)
Substituting (A8) in (A7) and this into (A4) yields:

B0, X" ®(1)),0)
= D finnstroniny,, X @)Y, B, — )y, 0, x | 0,6,L,)
Poity @I LIPyy, O/ (A9)
Hence, for L, > D(¢) > 0, this yields:
B, X" @ (1)), 0)
= Pzjg.0,0, O @@y, | 0,0)
P ptonin (@, =0, | 6.)p 11, | D)
Do X L OPL, Ly | DDy (D)Pg, ., (O)/ "
(A10)

(A6)

(A7)

Evaluation of the terms in (A10) yields:
pft"q}t,’li'z,Lz(@(lL, - w)YI ‘ ¢’ ¢)

= pﬁ‘Ft"li't(q)(ILx - w)YZ | Lt - D(¢)’ ¢)
L—D(¢)

DAL prae, - byl

i=1
L,—D(¢)
= [[ praea,, —3"%1,)y1)

i=1
Piyjonr, W | 0.L) = D@L, — D(9)!/L,!
Pyie (x| 6) =1/D(&)!
Prio L, | #) = pr(L, — D($))

= (BB P D exp{~F}/(L, — D(6))!

(A11)

(A12)
(A13)

it L, >D(¢)
=0 if L <D(¢) (Al4)
M
Py, (9) = H[(Ef)“”(l —PH' . (A15)

i=1

Substituting (A3) and (A11) through (A15) into (A10)
and subsequent evaluation yields for L, > D(¢) > 0:

B0 X" @), 0) = F(¢, X" B(),6)

)  L=D®)
FEPO T ey, — ¥Ry
j=1

M
JTIEH? (1 =BHT21 pyy, (0)/c,
i=1

with ¢, a normalizing constant. It can be easily verified
that the last equation also holds true if L, = D(¢) or if
D(¢) = 0. Together with (6c) this yields (14).

Appendix B

PROOF From the proof of Proposition 1 we have
F;(¢’>259) = Pz,|e,,¢,()~éyt | 95 ¢)

= /RMn pz,‘x,ﬂr,q},,}’ril(XYI | x,0’¢)

' pr‘erswr,yz,l ('xa e)dx (B 1)

pzl‘x,’el,d)[(th | X, 07 ¢)

M
= [ Pz a (R(OXNys | ¥,6).  (B2)

Pl=1

This together with C2) yields:

M
F(,%.0) = [ [ f1(4.%.0)

(B3)
i=1
with
@70 = | pope p (Tt | .60
. pxﬂe;-,ypl(xf |0hdx if ¢ =1
-1 if ¢/ =0. (B4)

Together with C3) the last two equations yield (29) and
(30a,b,c).
Substitution of (B2) and C2) into (13) yields
px”@f,(p‘t,)?l,)’,(xi | 9i9¢7)2)
P g (P@OXy | X0 pajgry (|69
[ (@.%.0) '

(B5)
If px;lefaZ—l(Xi | 6') is Gaussian with mean xi(¢') and co-
variance P'(6"), then the density p. ;. ; 4 (X' |6,%,6') is

A

Gaussian with mean X/(¢, X,6') and covariance P'(¢,6")
satisfying for ¢’ # 0,

3, X, 0") = X0 + K/ (6,0)[[xy,]; — K (6)X(6")]
Pi(¢,0') = PI(6)) — K!(,60)H' (6)P'(6')
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and for ¢/ = 0:

X9, x,0") = %(0")
Pi(¢,0') = B(6)

Hence, pxﬂg:ﬂ’yr(. | ") is a Gaussian mixture, and all equa-
tions in Theorem 2 follow from a lengthy but straight-
forward evaluation of this mixture.
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