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Fully Decentralized Estimation
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Networks consisting of several spatially distributed sensor nodes

are useful in many applications. While distributed information pro-

cessing can be more robust and flexible than centralized filtering, it re-

quires careful consideration of dependencies between local state esti-

mates.This paper proposes an algorithm to keep track of dependencies

in decentralized systems where no dedicated fusion center is present.

Specifically, it addresses double-counting of measurement information

due to intermediate fusion results and correlations due to common

process noise and common prior information. To limit the necessary

amount of data, this paper introduces a method to partially bound cor-

relations, leading to a more conservative fusion result than the optimal

reconstruction while reducing the necessary amount of data. Simula-

tion studies compare the performance and convergence rate of the pro-

posed algorithm to other state-of-the-art methods.

COMMENT: RELATION TO PRIOR VERSIONS OF THIS
PAPER

This paper is an extended version of [1], which won
the Best Paper Award in the general category during
the 23rd Conference on Information Fusion. Sections II,
III, and IV have been improved to provide more clar-
ity. Furthermore, Section V.B has been updated with an
improved implementation of the previously used con-
sensus algorithms, and the resulting implications are
discussed.

I. INTRODUCTION

Considered problem: Sensor networks consist of sev-
eral spatially distributed sensor nodes that can coopera-
tively perform a variety of different tasks [2], e.g., track-
ing a moving target using a network of cameras. In this
paper, we consider the problem of fusing several state
estimates in discrete-time linear Gaussian systems with
multiple completely synchronized sensors with linear
Gaussian observations. While centralized processing of
measurements can be done optimally, network topology
and communication bandwidth often forbid processing
measurements in a central processing unit since nodes
can only communicate with their closest neighbors. Dis-
tributed estimation allows the processing of measure-
ments in a local processing unit. This local information
is then communicated and fused with information from
neighboring sensor nodes. It has been shown that the dis-
tributed processing of sensor data can be more robust,
flexible, and scalable [3]. However, it introduces depen-
dencies that need to be addressed carefully to ensure
consistent fusion results.

State-of-the-art: Within the past 40 years, many algo-
rithms [4] have been proposed to address the problems
arising in distributed estimation. This includes using the
information form of the Kalman filter [5]–[7] or formu-
lating an optimally distributed Kalman filter [8]–[10].
Other approaches propose to use local Kalman filters
and fuse their respective state estimates. Several publi-
cations address the correlations due to common process
noise and common prior information [11]–[14]. When
neglecting dependencies [15], fused estimates tend to be-
come inconsistent as the uncertainty is underestimated.
Covariance intersection [16]–[18] aims to find a conser-
vative fusion rule to always ensure consistent results. As
these are often too conservative, other approaches try
to find closer bounds, e.g., inverse covariance intersec-
tion [19], [20]. Specifically for different network topolo-
gies,other algorithms such as the channel filter (ChF) [3],
the information graph approach [21], or the information
matrix fusion [22], [23] were proposed.

Another class of algorithms aims to converge to
a global estimate by iteratively exchanging informa-
tion between neighboring nodes. Prominent repre-
sentatives include consensus on measurements [24],
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consensus on information [25], [26], or hybrid ap-
proaches [27], [28]. Consensus methods can be regarded
as suboptimal fusion rules [29] where the averaging of
the information does not represent the actual informa-
tion in the network and also does not consider redundant
information systematically. For simpler network topolo-
gies, several approaches trying to reconstruct the cross-
covariance matrix between state estimates using ensem-
bles, e.g., the common past invariant Ensemble Kalman
filter (CPI-EnKF) [30], or using samples [31]–[33] have
been proposed. Furthermore, a reconstruction of cross-
covariance matrices using square-root decompositions
was proposed by [34] and [35]. The reconstruction of
cross-covariances has advantageous properties as it al-
lows optimal fusion with consistent fusion results that
are generally more accurate and do not over- or under-
estimate the uncertainty. Yet, it requires the communi-
cation of additional information between sensor nodes,
leading to a trade-off between optimality and network
capacity.

Contribution: The square-root decomposition as ini-
tially proposed in [35] considers fusion in network
topologies with only one dedicated fusion center. In this
paper, we apply the decompositions to decentralized es-
timation tasks, where each node may sporadically serve
as a fusion center. Nodes can exchange their estimates
and fuse their local estimates with the received infor-
mation. For this purpose, each node must keep track
of correlations during its local processing steps. Not
only common process noise needs to be encoded in the
square-root decompositions,but also double-counting of
information poses a problem in decentralized network
topologies and needs to be tracked. Due to the storage
requirements and communication load associated with
the square-root decompositions, the nodes can reach a
compromise between fusion quality and resource de-
mands by introducing partial bounds on the correlations.

Outline: This paper is structured as follows. In
Section II, we first discuss the problem of fusing several
state estimates with correlated estimation errors. In
Section III, we revisit the previously proposed square-
root decomposition method [35] to reconstruct the
cross-covariance matrix between estimates in central-
ized sensor networks with only one dedicated fusion
center.Decentralized network topologies in the absence
of a dedicated fusion center are studied in Section IV.
The evaluation in Section V studies different scenarios
and also provides a comparison with consensusmethods.
Section VII concludes this paper.

II. PROBLEM FORMULATION

We consider a discrete-time linear time-variant
stochastic dynamic system with time index k and state
transition matrix Ak, state vector xk ∈ R

N of state di-
mensionN, and zero-mean white Gaussian system noise

wk with noise dimensionW = N and covariance matrix
Qk, i.e.,

xk+1 = Ak xk + wk ,with wk ∼ N (0,Qk) . (1)

The system is observed by a network ofNs sensor nodes.
The processing and sensing times of the sensor nodes are
synchronized. Each individual node i receives measure-
ments using the observationmodelCi and covarianceRi

k
according to

zik = Ci xk + vik ,with vik ∼ N (0,Ri
k) . (2)

Furthermore, we assume that the measurement noise
and the process noise are mutually independent. Each
node i computes a state estimate x̂ik|k with error covari-
ance matrix Pi

k|k = E
[
(x̂ik|k − xk)(x̂

i
k|k − xk)

T
]
.

A. Fusion of Estimates

Without loss of generality, we confine ourselves to
the fusion of two estimates as multiple estimates can be
fused sequentially. In the following discussions, we also
omit the time index k for the sake of clarity.

The fusion of two state estimates x̂i and x̂ j can take
place at an arbitrary time step k and is a linear combina-
tion with the fusion gains Fi and F j. Depending on the
chosen fusion algorithm, the gains can be determined ac-
cording to the Bar-Shalom/Campo formulas but can also
be fixedweightingmatrices.The fused estimate becomes

x̂f = Fi x̂i + F j x̂ j , (3)

with Fi+F j = I and the corresponding error covariance
matrix

Pf = FiPi(Fi)T + FiPi, j(F j)T + F jP j,i(Fi)T + F jP j(F j)T

= [
Fi F j

]
J
[
Fi F j

]T
. (4)

The joint error covariance matrix is

J =
[
Pi Pi, j

P j,i P j

]
,

where Pi, j = E
[
(x̂i − x)(x̂ j − x)T

] = (
P j,i

)T denote the
cross-covariances and characterize the correlated esti-
mation errors between the state estimates. Typically, the
fusion gains Fi and F j are computed to minimize the es-
timation error E

[
(x̂f − x)T(x̂f − x)

]
. In this case, we re-

fer to x̂f as the optimal fusion result. As discussed, e.g.,
in [37], the optimal fusion result can also be represented
as a weighted least-squares (WLS) estimate

x̂WLS = argmin
x

[m̂− H x]TJ−1[m̂− H x] , (5)

with m̂ = [
x̂i x̂ j

]T
and the matrix H = [

I I
]T, which

determines how the local states map into the global state
vector. The solution to formula (5) is a gain matrix ac-
cording to

K = [
Fi F j

] = (
HTJ−1H

)−1HTJ−1 .
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For two sensor nodes, the fusion gains can be calculated
according to the Bar-Shalom/Campo formulas [11] by

F j = (
Pi − Pi, j)(Pi + P j − Pi, j − P j,i)−1

and Fi = I − F j . (6)

Then, the fusion rule can be written as

Pf = (
HTJ−1H

)−1
, (7)

x̂f = Km̂ = PfHTJ−1m̂ . (8)

Furthermore, from (5), it follows that the fusion result
is unbiased. This formula can only be solved optimally
if the joint covariance matrix J is available. The entries
on the main diagonal are the covariances of the local fil-
ters and thus known. The entries on the off-diagonals,
on the other hand, are caused by the dependent infor-
mation shared between the individual sensor nodes, and
they are usually hard to keep track of.

There are several sources of correlated estimation
errors in distributed state estimation problems [13],
namely

1) common prior information,
2) common process noise, and
3) common measurement information.

Common prior information occurs when the local
KFs are initialized with the same information, e.g., the
same prior state estimate and the same prior covariance
matrix. But even with independent initialization of lo-
cal filters, every sensor node is affected by the same pro-
cess noise, which leads to correlated estimation errors
between state estimates. The local KFs assume condi-
tional independence of measurements, which are then
incorporated into the local state estimates. Due to the
spread of information throughout the network and fur-
ther processing, measurement information can be in-
corporated into several state estimates. This double-
counting of sensor data causes additional correlations.
Only proper treatment of these correlations allows cor-
rect and consistent fusion results.

Optimal fusion is an essential aspect of distributed
estimation, and several authors discussed the optimal-
ity of the fusion of state estimates, e.g., [36] and [37].
However, the fusion of state estimates is not equal to the
minimummean squared error (MMSE) sense in which a
central KF can utilizemeasurements.Therefore,wewant
to distinguish between a central KF and the optimal cen-
tralized fusion in this paper.

B. Correlations Due to Common Process Noise and
Common Prior Information

In systems with a central fusion node [see Fig. 1(a)],
state estimates are correlated due to common process
noise and common prior information.When all process-
ing steps are known, the cross-covariances between state
estimates can be calculated recursively [11]. During the
time update, the process noise is incorporated and the
cross-covariance matrix is updated, leading to the recur-
sive formula

Pi, j
k|k−1 = E[(x̂ik|k−1 − xk)(x̂

j
k|k−1 − xk)

T]

= E
[(
Akx̂ik−1|k−1 − (Akxk−1 + wk)

)
× (

Akx̂
j
k−1|k−1 − (Akxk−1 + wk)

)T]
= AkE

[(
x̂ik−1|k−1 − xk−1

)(
x̂ jk−1|k−1 − xk−1

)T]
AT
k

+E
[
wk(wk)T

]
= AkP

i, j
k−1|k−1A

T
k + Qk , (9)

where Pi, j
k−1|k−1 for time step k = 1 is the common prior

covariance P0|0. During the measurement update, the
cross-covariance is updated using the KF gain Ki

k by

Pi, j
k|k = E[(x̂ik|k − xk)(x̂

j
k|k − xk)

T]

= E
[(
x̂ik|k−1 + Ki

kz
i
k − xk

)(
x̂ jk|k−1 + K j

kz
j
k − xk

)T]
= E

[(
x̂ik|k−1 + Ki

k(v
i
k − Ci

kx̂
i
k|k−1) − xk

)
× (

x̂ jk|k−1 + K j
k(v

j
k − C j

kx̂
j
k|k−1) − xk

)T]

Fig. 1. Different network topologies with sensor nodes (blue), nodes only dedicated to fusion (gray), and sensor nodes with fusion capabilities
(blue and gray).
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= (
I − Ki

kC
i
k

)
E

[(
x̂ik|k−1 − xk

)(
x̂ jk|k−1 − xk

)T]
× (

I − K j
kC

j
k

)T + E
[
vik(v

j
k)

T
]

= Li
kP

i, j
k|k−1(L

j
k)

T , (10)

where Li
k = I − Ki

kC
i
k and E[v

i
k(v

j
k)

T] = 0 because the
measurement noises are mutually independent. This re-
cursive formulation can also be rewritten explicitly as a
sum of the covariances:

Pi, j
k|k = Ti

0,kP0|0(T
j
0,k)

T +
k∑

τ=1

Ti
τ,kQτ (T

j
τ,k)

T , (11)

where at every time step τ we include the new process
noise Qτ . The matrix Tτ,k denote the individual matrix
transformations that are a result of the local KFs [see
equations (9) and (10)]. In large sensor networks, keep-
ing track of these correlations can be cumbersome and
often infeasible as it requires full communication of all
processing steps. Therefore, the methods in [34] and [35]
propose the use of square-root decompositions to keep
track of correlated estimation errors.

III. SQUARE-ROOT DECOMPOSITION OF COMMON
PROCESS NOISE

The following section revisits our previous work
about the square-root decomposition algorithm. It was
originally formulated only for the fusion in centralized
sensor networks with only one dedicated fusion cen-
ter. The basic idea is a sliding window mechanism for a
square-root decomposition of the track correlations.Ev-
ery node updates and saves its history of processing steps
in a matrix containing all square-root decompositions of
common prior information and common process noise.
During the fusion step, every node transmits its state es-
timate, covariance matrix, and square-root matrix. The
square-root matrix allows us to reconstruct the joint co-
variance matrix to fuse the local estimates according to
(7) and (8).The recursive formula of (11) is reformulated
as a square-root decomposition as

Pi, j
k|k = Ti

0,k

√
P0|0(

√
P0|0)T(T

j
0,k)

T

+
k∑

τ=1

Ti
τ,k

√
Qτ (

√
Qτ,k)T(T j

τ )
T

=
k∑

τ=0

�i
τ,Q(�

j
τ,Q)

T .

Each sensor node stores its square-root terms in the
matrix

Sik,Q =
[
�i

0,Q,�i
1,Q, . . . ,�i

k,Q

]
,

which includes all noise terms until the current time step
k and has the dimensionM = N ×D = N × (N + (k−

1) ×W ). The calculation of this matrix can be done re-
cursively. At time step k = 0, it is initialized with

Si0,Q = �i
0,Q =

√
P0 ,

and the matrix is then linearly transformed by the time
update, and a new noise term �i

k,Q = √
Qk is included.

Furthermore, the matrix is then updated using the gain
matrix of the KF update Li

k = I − Ki
kC

i
k

Sik,Q = Li
k

[
Ai
kS

i
k−1,Q, �i

k,Q

]
.

When the fusion step is reached, the cross-covariance
matrix between node i and node j can be reconstructed
as

Pi, j
k,Q =

k∑
m=0

�i
m,Q(�

j
m,Q)

T = Sik,Q(S
j
k,Q)

T . (12)

By including a new process noise term at every time
update, the square-root decomposition matrix Sik,Q will
continue to grow linearly in size. Since communication
bandwidth is limited in sensor networks, we need to find
a trade-off between the optimal decomposition of corre-
lated estimation errors and the communication capacity.

A. Limiting the Number of Square-Root Decomposition
Terms for Process Noise and Common Prior
Information

In order to keep the number of entries in the square-
root decompositionmatrix constant, the square-rootma-
trix is decomposed [35] into two parts:

Sik = [
Sik,TQ , Sik,�

]
,

where Sik,TQ is a moving horizon square-root decomposi-
tion matrix

Sik,TQ =
[
�i
k−TQ+1,�

i
k−TQ+2, . . . ,�

i
k] , (13)

which will only include the dependent noise terms up
to a user-defined time horizon TQ. The remaining noise
terms will be removed from the square-root matrix and
summarized in a residual Sik,�. This residual has to be
bounded in order to obtain a consistent fusion result. To
formulate the fusion rule, we consider the optimal joint
covariance matrix

Jk =
[
Pi
k Pi, j

k

P j,i
k P j

k

]
.

We can now decompose this matrix into a part Pi, j
k,TQ that

we can reconstruct and a part Pi, j
k,� that is correlated but

whose exact correlation we cannot reconstruct anymore,
i.e.,

Jk =
⎡⎣ Pi

k Pi, j
k,TQ + Pi, j

k,�

P j,i
k,TQ + P j,i

k,� P j
k

⎤⎦ .

This residual can be calculated recursively and includes
all correlated noise terms not included in the square-root
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matrix Sik,T . With the residual, we obtain

Sik,�
(
Sik,�

)T = �i
k,Q . (14)

We now aim to find a bound according to⎡⎢⎣
1
ω
�i
k,Q 0

0 1
1−ω

�
j
k,Q

⎤⎥⎦ ≥
[
�i
k,Q Pi, j

k,�

P j,i
k,� �

j
k,Q

]
.

Finally, we can now formulate the new suboptimal joint
covariance matrix

J̃k=
⎡⎣Pi

k−�i
k,Q Pi, j

k,TQ

P j,i
k,TQ P j

k−�
j
k,Q

⎤⎦+

⎡⎢⎣
1
ω
�i
k,Q 0

0 1
1−ω

�
j
k,Q

⎤⎥⎦ ≥ Jk,

(15)

which we will use for the fusion step according to formu-
las (3) and (4). The weighting factors ω can be found by
minimizing the fused covariancematrix according to for-
mula (7).Alternatively, an approximate solution such as
the one proposed by [34] and [38] can be used.Although
suboptimal, we used the latter approach for its simple
implementation and fast execution time. The weighting
factor can be calculated by

ω = 1/tr(�i
Q)

1/tr(�i
Q) + 1/tr(� j

Q)
.

Afterwards, the formula given in (6) yields

F j =
(
Pi + 1

ω
�i
Q − Pi, j

TQ

)

×
(
Pi + 1

ω
�i
Q + P j + 1

1 − ω
�

j
Q − Pi, j

TQ − P j,i
TQ

)−1

.

Last, the fused covariance and fused state can be calcu-
lated according to equations (7) and (8).

IV. EXTENSION TO THE FUSION IN DECENTRALIZED
SENSOR NETWORKS

The square-root decomposition enables the nodes to
encode correlated process noise and correlated prior in-
formation in a distributed fashion. The central node in
Fig. 1(a) does not need to keep track of the correlations,
processing steps, or number of nodes as all the required
information is provided by the nodes themselves. Mod-
ifications to the square-root decomposition are neces-
sary when nodes are organized in hierarchical network
topologies, as shown in Fig. 1(b), where intermediate fu-
sion nodes exist. Each fusion step alters the correlation
structure among the nodes, which has to be encoded
properly and is discussed in Section IV.A. The decen-
tralized network architecture depicted in Fig. 1(c) ex-
hibits cycles that lead to double-counting of information.
Section IV.B discusses how additional data structures

can be introduced to cover correlations due to double-
counting of measurements and thus correlated measure-
ment errors.

A. Hierarchical Fusion

In a hierarchical fusion architecture, nodes may fuse
estimates and pass them to the upper layer for a subse-
quent fusion step.Hence,such intermediate fusion nodes
have to take into account correlations for the fusion but
simultaneously have to compute an updated square-root
decomposition for the subsequent fusion steps. Each
node i can fuse its estimate with an estimate received
from node j by using the fusion formulas (3) and (4).
The required cross-covariancematricesPi, j = (

P j,i
)T are

obtained by the square-root decomposition, i.e., by us-
ing (12).

For the subsequent fusion layer, the square-root de-
composition needs to encode the correlation structure
of the fusion result x̂f. The cross-covariance matrix for
this fusion result x̂f and the estimate x̂l of a third node l
yields

Pf,l = E[(x̂f − x)(x̂l − x)T]

= E[(Fi x̂i + F j x̂ j − x)(x̂l − x)T]

= Fi Pi,l + F j P j,l .

The dependencies Pi,l and P j,l are given by the corre-
sponding square-root decompositions, i.e.,

Pi,l = SiQ
(
SlQ

)T and P j,l = S jQ
(
SlQ

)T
.

Hence, the fused square-root decomposition for the Pf,l

has the form

SfQ = FiSiQ + F jS jQ , (16)

which gives Pf,l = SfQ(S
l
Q)

T for any l.
For a finite horizon TQ, Sf only partially covers the

correlations, and the fusion node also has to update the
residual term (14). According to the chosen weight ω

in (15), the residual becomes

�f
Q = 1

ω
Fi�i

Q

(
Fi

)T + 1
1−ω

F j�
j
Q

(
F j)T

≥ Fi�i
Q

(
Fi

)T + Fi�i, j
Q

(
F j)T

+F j�
j,i
Q

(
Fi

)T + F j�
j
Q

(
F j)T , (17)

which is a bound since any information about �
i, j
Q has

been discarded.

B. Double-Counting

Double-counting occurs when two nodes i and j fuse
their estimates for a second time. In other words, the in-
formation sent out by node i circles back to this node
over possibly multiple hops and processing steps. Not
only common process noise then leads to correlations,
but also measurements incorporated in the estimates
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reappear at the nodes and introduce additional corre-
lations. In the latter case, two estimates are to be fused
that share the same information. The cross-covariance
matrix between the fused estimate x̂f and the estimate x̂i

of node i yields

Pf,i = E[(x̂f − x)(x̂i − x)T]

= E[(Fi x̂i + F j x̂ j − x)(x̂i − x)T]

= Fi Pi,i + F j P j,i .

The cross-covariance P j,i can be calculated as discussed
in Section II.B. The matrix Pi,i represents the correlated
estimation errors of sensor node i and is equal to the co-
variance matrix

Pi
k|k = E[(x̂ik|k − xk)(x̂

i
k|k − xk)

T]

= E
[(
x̂ik|k−1 + Ki

kz
i
k − xk

)(
x̂ik|k−1 + Ki

kz
i
k − xk

)T]
= E

[(
x̂ik|k−1 + Ki

k(v
i
k − Ci

kx̂
i
k|k−1) − xk

)
× (

x̂ik|k−1 + Ki
k(v

i
k − C j

kx̂
i
k|k−1) − xk

)T]
= Li

kP
i
k|k−1(L

i
k)

T + Ki
kR

i(Ki
k

)T
,

with the KF update Li
k = I−Ki

kC
i
k. For this reason, each

node i needs to keep track of an additional list of mea-
surement noise terms

Sik,Ri =
[
�i

0,Ri ,�
i
1,Ri , . . . ,�

i
k,Ri

]
, (18)

to account for double-counting of measurements. It is
initialized at time step k = 1 with

Si1,Ri = �i
1,Ri = Ki

1

√
Ri

1 ,

where Ri
1 is the measurement covariance matrix of the

first measurement (2) acquired by node i. The matrixKi
1

is theKalman gain used in thismeasurement update.The
matrix Sik,Ri is recursively updated according to1

Sik,Ri = [
Li
kA

i
kS

i
k−1,Ri , �i

k,Ri

]
(19)

with

�i
k,Ri = Ki

k

√
Ri
k .

When two sensor nodes exchange estimates for fusion,
they also pass on all the square-root matrices. These ma-
trices need to be kept separate from each other to trace
back possible sources of double-counting. Node i that
receives an estimate from node j then also keeps and
manages the set Sik,Rj ,which is the corresponding set (19)
from node j. The own and the received square-root ma-
trices are updated similarly to (16) and (17) by

SfRi = FiSiRi + F jS jRi ,

SfRj = FiSiR j + F jS jR j .

1Note that Lik in [1] should be inside the brackets.

Bookkeeping of the received Sik,Rj resembles (19).How-
ever, it differs in that it is filled with zeros during further
processing according to

Sik,Rj = Li
k

[
Ai
kS

i, j
k−1,Rj , 0

]
(20)

as the measurement noise affecting node j is uncorre-
lated with the estimation errors at node i for the follow-
ing time steps.

The square-root matrix Sik,Ri can be used in a later
fusion step to retrieve the cross-covariances stemming
from the previous fusion step by

Pi, j
k,R = Sik,Ri (S jk,Ri )

T + Sik,Rj (S jk,Rj )
T , (21)

where S jk,Ri is the common information with node i that

has been tracked in node j. More precisely, S jk,Ri is the
corresponding set to (20) that was generated by node j
when it received information from i. The reconstructed
cross-covariance matrix (21) has to be combined with
Pi, j
k,Q representing the common process noise, which fi-

nally results in the full cross-covariance matrix

Pi, j
k = Pi, j

k,Q + Pi, j
k,R .

The amount of data that need to be stored and up-
dated by each node grows linearly over time. Espe-
cially in networks with many sensor nodes, conservative
bounding techniques can allow the nodes to surpass this
burden.

1) Limiting the Number of Square-Root Decomposi-
tion Terms forMeasurement Noise: Following the con-
cept in Section III.A, we limit the number of process-
ing steps encoded in the square-root decompositions to
a fixed time horizon TR. The matrix (18) becomes

SiR = [�i
R,k−TR+1,�

i
R,k−TR+2, . . . ,�

i
R,k] ,

which has a constant number of entries. The remainder
of the matrix is summarized in the residual term �i

R.
When two estimates are fused, a bound on the residual
matrix as in (17) has to be computed by

�f
R = 1

ω
Fi�i

R

(
Fi

)T + 1
1−ω

F j�
j
R

(
F j)T .

This bound also has to be combined with the residual
bound (17) for the process noise.

2) Keeping Track of Uncorrelated Measurements:
The treatment of correlated measurement information
and double-counting can be simplified by computing
a more general bound on the measurement covari-
ance. This approach circumvents the explicit bookkeep-
ing (18) of the information shared through the fusion of
estimates.

The local covariancematrix of sensor node i is rewrit-
ten as

Pi = PQ,TQ + PQ,� + PR ,

where PQ,TQ accounts for the reconstructable cross-
covariance matrix using (13), PQ,� accounts for the
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residual (14),andPR represents possibly correlatedmea-
surement noise.We further separate this into

PR = P+
R + P−

R ,

whereP+
R denotes correlatedmeasurement noise andP−

R
denotes uncorrelated measurement noise.We can safely
assume that measurements that have been obtained be-
tween fusion steps and thus have not been shared are
uncorrelated. Therefore, only the part accounting for in-
formation that has been shared with other sensor nodes
before is correlated and needs to be bounded. The un-
correlated measurement noise residual P−

k,R can be cal-
culated recursively:

P−
k,R = LAP−

k−1,RA
TLT + Ki

kR
i
1

(
Ki
k

)T
.

To ensure the correctness of this assumption,P−
k,R will be

reset to the zero matrix when the fusion step has been
executed or the information has been shared with other
sensor nodes. The correlated measurement residual is
calculated by

�i
R = Pi − SiQ

(
SiQ

)T − �i
Q − P−

R .

The bounded part of the joint covariance matrix be-
comes

�i
k = �i

k,Q + �i
k,R .

The rest of the fusion step is analogous to (15).

V. EVALUATION

The following section features three distinct ex-
amples to highlight the performance of the proposed
algorithm under different conditions. First, we discuss
an example using only two sensor nodes that constantly
exchange information, which leads to highly correlated
estimates. Second, we discuss the convergence rate of
the proposed algorithm and compare it with standard
consensus algorithms. Last, a tracking example using
25 heterogeneous sensor nodes in a sparse network but
with synchronized fusion steps is analyzed.

A. Two Sensor Nodes

We consider two sensor nodes A and B, which ob-
serve the discrete-time time-invariant linear stochastic
system in (1) with the parameters

A =
[
1 �T

0 1

]
, Q =

[
1 0

0 1

]
, �T = 0.1 .

Both sensor nodes draw observations using the linear
measurement model (2), where every measurement is
corrupted by additive-white Gaussian noise vik with co-
variance matrix RA = RB = 50 and measurement ma-
trices

CA = [
1 0

]
, CB = [

0 1
]

.

Both sensor nodes are initialized with P0 = 5Q and x̂0 =[
0 0

]T. The data exchange between the two nodes is
performed as follows:

1) both sensor nodes execute a local filter update,
2) node A sends its local information to node B,
3) node B fuses information according to the selected

fusion method and reinitializes its local state and co-
variance matrix with new fused information,

4) both sensor nodes execute a local filter update,
5) node B sends its local information to node A,
6) node A fuses information according to the selected

fusion method and reinitializes its local state and co-
variance matrix with new fused information,

7) repeat from beginning.

We calculate the MSE of both sensor nodes and
then calculate the average. Fig. 3(a) shows the averaged
MSE of both sensor nodes for 1000 Monte Carlo runs
(MCRs). The results are compared with the optimal
fusion result. The optimal fusion result is obtained by
optimally keeping track of the cross-covariancematrices
between the state estimates and performing the fusion
step in one dedicated fusion center using a centralized
network topology. After the fusion step is executed,
the local state estimates and covariances matrices
are reinitialized with the fusion result. This approach
shows the lowest MSE as expected. The MSE of the
naïve fusion, which neglects the correlations between
state estimates, immediately diverges. The proposed
square-root decomposition (SqDF) is shown in several
configurations. The time horizon for the square-root
matrix is TQ = 5. The square-root decomposition with-
out bounding (SqDFno) shows a relatively high MSE as
it does not account for older process noise or any corre-
lation due to measurement noise. Bounding of process
noise (SqDFQb) performs a bit better in comparison as
it does bound the process noise but also does not ac-
count for possibly correlated measurements.Covariance
intersection performs better than SqDFno and SqDFQb,
but its performance is limited as it cannot account for
uncorrelated parts. Using the proposed algorithm with
partial bounding of measurement noise (SqDFRbp, see
Section IV.B2) shows better performance than covari-
ance intersection, as it can find a tighter bound. The
proposed method from Section IV.B1 using the limited
time horizon TR for the track-keeping of correlatedmea-
surement noise is also compared to the other methods.
The square-root decomposition using a time horizon
of TR = 5 (SqDFRb1) shows a lower MSE compared
to all other methods. The square-root decomposition
using a smaller time horizon of TR = 2 (SqDFRb2) is
comparable to the performance of CI.

Fig. 3(b) shows the averaged normalized estimation
error squared (ANEES) over both sensor nodes. The
ANEES is a measure to determine whether the ac-
tual uncertainty matches the expected uncertainty [39].
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TABLE I
Abbreviations and Parameterizations for Two Sensor Nodes Example

Method Short Parameterization

Covariance intersection [16] CI –
Naïve fusion [15] Naïve –
Optimal fusion [11] (central) Optimal –
Square-root decomposition (Section III) SqDFno TQ = 5
Square-root decomposition (Section III.A) SqDFQb TQ = 5
Square-root decomposition (Section IV.B2) SqDFRbp TQ = 5
Square-root decomposition (Section IV.B1) SqDFRb1 TQ = 5, TR = 5
Square-root decomposition (Section IV.B1) SqDFRb2 TQ = 5, TR = 2

An ANEES below 1 indicates a conservative fusion
estimate, while an ANEES above 1 indicates an un-
derestimation of the actual uncertainty. Naïve fusion
again diverges very fast and is therefore not included
in the plot, and covariance intersection is overly con-
servative.Both methods without bounding (SqDFno and
SqDFQb) are inconsistent as it would be expected. The
algorithm with partial bounding is close to 1, meaning
that the actual MSE of the fused results matches the
covariance matrix. The proposed methods using a lim-
ited time horizon to keep track of correlated measure-
ment noise (SqDFRb1 and SqDFRb2) are very close to
the optimal fusion result but slightly more conservative,
where SqDFRb2 shows similar performance to the pro-
posed method with the partial bounding of correlated
measurement errors (SqDFRbp).

A summary of all used abbreviations and parameter-
izations of the used methods can be found in Table I.

B. Consensus between States

In the following example, we discuss how fast the
proposed algorithm converges toward a global consen-
sus. Consensus problems have been intensively studied
inmany different contexts [24]. Instead of accounting for
dependencies within the network, consensus algorithms
average the information of neighboring nodes iteratively
until all sensor nodes have converged asymptotically to
a global estimate [29]. While finding a consensus is usu-
ally not the goal of fusion algorithms, it is an interesting
problem to investigate the effect of double-counting in
sensor networks. This section demonstrates that a care-
ful consideration of dependencies improves the conver-
gence rate toward a global consensus. We define the av-
eraged consensus estimate error (ACEE), which indi-
cates the degree of consensus among estimates from all
nodes in the network (see also [28]), as

ACEE = 1
Ns

Ns∑
i=1

(
x̂i − x̄

)
, x̄ = 1

Ns

Ns∑
i=1

x̂i .

We consider a network of ten sensor nodes with ring
topology [see Fig. 2(a)]. The system description is sim-
ilar to the one in Example 1, but the measurement co-
variances are reduced to RA = RB = 0.2 to decrease

oscillation.The sensor nodes alternate between themea-
surementmodel of nodeA and nodeB,which can also be
seen in the figure. The sensor nodes first perform ten fil-
tering steps independently and then communicate their
local information toward their neighbors multiple times.
The fusion algorithms are also compared with consensus
algorithms, specifically consensus on measurements [24]
(ConsM), consensus on information [26] (ConsI), and a
hybrid consensus method called DHIWCF [28], which
performs a consensus on measurement on the first itera-
tion and a consensus on information afterward.All con-
sensusmethods are performed usingMetropolis weights.
We would like to point out that many consensus algo-
rithms have been proposed in recent years and that the
utilized algorithms may not be best tailored to the con-
sidered problem. A summary of all used abbreviations
and parameterizations of the usedmethods can be found
in Table II. Fig. 4(a) shows the convergence rate of the
state estimates. Covariance Intersection (CI) and naïve
fusion show very similar convergence rates. All consen-
sus methods converge only slightly slower. The hybrid
consensus algorithm DHIWCF lies between consensus
on measurements and consensus on information. Fur-
thermore, we see that the square-root decomposition of
the measurement noise improves the convergence rate.
Keeping track of all measurements (SqDFOpt) leads to
the fastest convergence, followed by the square-root de-
composition with a time horizon TR = 3 (SqDFRb1) and
using a time horizon TR = 1 (SqDFRb2), thus show-
ing that even a short time horizon for the measurement

Fig. 2. Network topologies. Magenta nodes are using one
measurement model and blue nodes are using the other

measurement model.
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TABLE II
Abbreviations and Parameterizations for Consensus Example

Method Short Parameterization

Covariance intersection [16] CI –
Naïve fusion [15] Naïve –
Optimal fusion [11] (central) Optimal –
Square-root decomposition (Section IV.B2) SqDFRbp TQ = 11
Square-root decomposition (Section IV.B) SqDFOpt TQ = 11, TR = 10
Square-root decomposition (Section IV.B1) SqDFRb1 TQ = 11, TR = 5
Square-root decomposition (Section IV.B1) SqDFRb2 TQ = 11, TR = 2
Consensus on measurements [24] ConsM Metropolis weights
Consensus on information [26] ConsM Metropolis weights
Hybrid consensus filter [28] DHIWCF Metropolis weights

noise might make a huge difference.The time horizon of
the square rootmatrix keeping track of the process noise
is TQ = 11. Therefore, process noise and common prior
information are fully tracked.

For further comparison, we computed the MSE for
all sensor nodes and showed the averaged MSE in
Fig. 4(b). Compared with all other fusion methods, the
optimal track keeping of correlations achieves the low-
est MSE fastest and almost approaches the centralized
optimal fusion result. The square-root decomposition
with a smaller time horizon, SqDFRb1 and SqDFRb2,
also performs well but converges more slowly. Consen-
sus on information does not show any performance im-
provements in comparison to the other fusion methods.
On the other hand, consensus on measurements con-
verges slightly slower but outperforms all other meth-
ods after 18 time steps. The hybrid method DHIWCF
shows slightly lower performance.Both consensusmeth-
ods reach a lower average MSE because the utilization
of measurement information is more effective than the
exclusive fusion of state estimates.

Lastly, in Fig. 4(c), it can be seen that the aver-
age ANEES over all sensor nodes in the network is
close to the optimal fusion result for SqDFRb1, SqDFOpt,
and SqDFRb2. All square-root decomposition-based al-
gorithms that bound the measurement partially or fully
are very close to the performance of covariance intersec-
tion and, therefore, overly conservative. Consensus on
information shows similar performance to covariance in-
tersection but performs slightly worse becauseMetropo-
lis weights do not minimize the trace or determinant of
the fused covariance matrix. The performance of con-
sensus on measurements depends on the utilized cor-
rection weights to mitigate the averaging of measure-
ments [40]. We chose the correction weight as 2 in the
first consensus step when only two measurements are
available to the sensor node. Then, we increment the
correction weight by 1 in every consensus step until 10
to account for the ten measurements once a consensus
is reached. Because of the averaging characteristics, the
ANEES will start to rise as some measurements have
higher weights than others during the averaging, leading
to double-counting. Once the consensus is approached,

the ANEES will converge toward 1 again, meaning that
the method will be consistent after a certain amount
of time. DHIWCF shows slightly less conservative re-
sults than covariance intersection. This means that it can
reach a relatively low MSE while still achieving consis-
tent results, which is an interesting finding. Yet, the best
trade-off between convergence rate, MSE, and consis-
tency can be achieved using the proposed method.

C. Large-Scale Sparse Network

In our last example,we consider a simple tracking ex-
ample featuring 25 sensor nodes in a sparse network, as
depicted in Fig. 2(b). Nodes always receive information
from the three closest sensor nodes. The movement of
the tracked object is described by

xk+1 = Ax + wk with wk ∼ N
(
0,Q

)
,

A =

⎡⎢⎢⎢⎢⎣
1 0 �T 0

0 1 0 �T

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ ,

Q = 0.1

⎡⎢⎢⎢⎢⎣
1
3�T 0 1

2�T 0

0 1
3�T 0 1

2�T
1
2�T 0 �T 0

0 1
2�T 0 �T

⎤⎥⎥⎥⎥⎦ , �T = 0.1 .

Referring again to Fig. 2(b), the blue nodes observe
the bearing toward a moving target and the red nodes
the range. Their observation is described by a nonlinear
measurement function

yi
k

= hi(xk) + vk ,

where nodes alternate between measuring the bearing
or the range toward a moving target:

hi(xk) =
⎧⎨⎩ atan2(xy,k − Piy , xx,k − Pix) if i is odd,√(

xx,k − Pix
)2 + (

xy,k − Piy
)2 if i is even,
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TABLE III
Abbreviations and Parameterizations for Large-Scale Network Example

Method Short Parameterization

Covariance intersection [16] CI –
Naïve fusion [15] Naïve –
Optimal fusion [11] (central) Optimal –
Square-root decomposition (Section III) SqDFno TQ = 5
Square-root decomposition (Section III.A) SqDFQb TQ = 5
Square-root decomposition (Section IV.B2) SqDFRbp TQ = 5
Channel filter [21] ChF

with measurement noise

Ri = ( 2π
180

)2
if i is odd, or Ri = 0.01m2 if i is even

at the sensor node position Pi = [Pix,P
i
y]

T. The nodes
are placed at random on a 10 m×10 m field. They per-
form a synchronized fusion step at every fifth time step.
Since the most recent five measurements are hence un-
correlated, a square-root decomposition of the measure-
ment noise is not needed as only oldermeasurements are
correlated and their influence is increasingly becoming
weaker. Therefore, we will utilize the additional infor-
mation about uncorrelatedmeasurements for the fusion.
A summary of all used abbreviations and parameteri-
zations of the used methods can be found in Table III.
Fig. 5(a) shows the average MSE over all 25 sensor
nodes. The time horizon for keeping track of process
noise is TQ = 5. The results of the partial bounding
SqDFRbp and the square-root decompositionwithout ac-
counting for correlated measurements SqDFQb have the
lowestMSE.As expected, the partial bounding SqDFRbp

is more conservative than SqDFQb as indicated by the
ANEES [see Fig. 5(b)].We also observe that SqDFQb is
even consistent, i.e., the ANEES is close to 1, which can
be due to correlations that cancel each other out because
of symmetries within the considered setup.

We also compared our proposed algorithm to the
ChF [21], [41], which can be seen as a first-order approx-
imation of the information graph technique. While the

ChF is suboptimal because it does not account for all
common information, it might be only slightly subop-
timal if the time between the occurrence of correlated
estimation errors and the current fusion step is large
enough. Furthermore, it requires very little additional
computation and communication. Fig. 5 shows that the
ChF’s MSE is very close to the fusion result using CI.
Yet, the ANEES indicates that the fusion result is con-
sistent.

VI. RESULTS AND DISCUSSION

The second example shows that the convergence
rate is improved when cross-covariances can be recon-
structed accurately. However, the fusion can lead to nu-
merical issues when sensor nodes are highly correlated
since the joint covariance matrix cannot be inverted
properly. While the additional square-root decomposi-
tion of the measurement noise is beneficial, it leads to
additional communication, which grows with the num-
ber of sensor nodes. It might be possible to discard
parts of these square roots when they traveled too far
from their source. Therefore, correlations would only
be tracked within a particular region of interest around
a sensor node, which might improve the scalability of
the algorithm. The choice of the time horizon deter-
mining the number of encoded dependent noise terms

Fig. 3. Comparison of the fusion results of different algorithms for 1000 MCRs.
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Fig. 4. Convergence of state estimates toward a common consensus and MSE for ring topology with 200 MCRs.

highly depends on the application and needs thorough
consideration.

VII. CONCLUSION

This paper aims at solving the problem of fusing
multiple state estimates in different network topologies
with unknown correlations. The proposed method uti-
lizes the square-root decomposition of correlated noise

covariances.The advantage of this approach is that every
node can keep track of its local processing steps indepen-
dently, and, thus, no dedicated fusion center is necessary
tomanage the sensor nodes or their communicationwith
each other.

The results show that the fused estimate remains
consistent in arbitrary network topologies and that
the fusion results of several sensor nodes converge
faster toward a consensus than other fusion methods

Fig. 5. Comparison of the fusion results of different algorithms for 100 MCRs.
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while yielding more consistent results than consensus
methods. The downside of this method is the increased
amount of additional information that needs to be
shared and constantly updated. Therefore, the choice
of the right time horizon might be crucial for the
performance in many applications.

The findings of this paper make several contribu-
tions to the current literature. First, the modification of
cross-covariances between state estimates due to inter-
mediate fusion steps is discussed. Second, the additional
dependency due to the double-counting of measure-
ment information is examined. The provided method
can be tailored to the needs of the application by tun-
ing the time horizon for the number of tracked cor-
related noise covariances to meet the bandwidth re-
quirements. Furthermore, the time horizon for com-
mon prior information and common process noise can
be chosen independently from the time horizon for
common measurement information. This allows to only
keep track of correlated estimation errors that con-
tribute the most to the cross-covariance. By choos-
ing a shorter time horizon, the fusion result becomes
more conservative while still being a tighter bound than
most other conservative fusion methods. In addition,
the time horizon can be adjusted within the sensor net-
work to provide more accuracy in certain areas where
it is needed while allowing for rougher estimates in
others.

Because of its flexibility, the method can even be
utilized in low-cost sensor networks. An exciting appli-
cation is the cooperative localization of robots, where
many sources of correlated estimation errors occur,
which are usually only addressed in a conservative
fashion.
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