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Multi-Sensor Fusion is founded on the principle that combin-

ing information from different sensors will enable a better under-

standing of the surroundings. However, it would be desirable to

evaluate how much one gains by combining different sensors in

a fusion system, even before implementing it. This paper presents

a methodology and tool that allows a user to evaluate the classi-

fication performance of a multi-sensor fusion system modeled by

a Bayesian network. Specifically, we first define a generic global

confusion matrix (GCM) to represent classification performance in

a multi-sensor environment, we then develop a methodology with

analytical convergence bounds to estimate the performance. The

resulting system is designed to answer questions such as: (i) What

is the probability of correct classification of a given target using

a specific sensor individually? (ii) What if a specific set of sensors

combined together are used instead? (iii) What is the performance

gain by adding another sensor to this set? and (iv) Which sensors

provide a better cost/benefit ratio? These questions are answered

based on the probability of correct classification that can be ana-

lytically estimated using Bayesian inference with the given sensor

models defined by confusion matrices. The principle that combin-

ing information enhances the understanding of the surroundings

is also supported by the analysis made in example models for air

target tracking and classification using the developed tool.
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1. INTRODUCTION

Fusion of information from multiple sources to

achieve performances exceeding those of individual

sources has been recognized in diverse areas [17] such

as reliability, forecasting, pattern recognition, neural

networks, decision fusion, and statistical estimation. In

engineering systems, the fusion methods have proven to

be particularly important since they can provide system

capabilities with multiple sensors significantly beyond

those of single sensor systems. Multi-sensor data fu-

sion allows the combination of information from sen-

sors with different physical characteristics to enhance

the understanding of the surroundings and provide the

basis for planning, decision-making, and control of au-

tonomous and intelligent machines. It seeks to com-

bine information from multiple sensors and sources to

achieve inferences that are not feasible from a single

sensor or source.

To fully exploit the capabilities of a fusion system,

modeling and performance evaluation methodologies

are critical in order to optimally design and effectively

evaluate fusion performance of multiple heterogeneous

sensor data. In particular, a systematic approach to eval-

uate the overall performance of the system is indispens-

able. To allow developers and users to assess their fusion

system performance under various conditions before a

data fusion system is deployed, a tool based on the Fu-

sion Performance Model (FPM) [8] was developed with

a focus on one of the most important performance mea-

sures, spatial and classification performance modeling

and prediction. Note that the purpose of the FPM is to

predict performance given sensor suite and operating

conditions.

For a sensor fusion system, typical questions that

could be asked would be “what is the best achievable

performance, and is it good enough?” The FPM will

be able to answer the first question and if the answer

is “not good enough,” a sequence of “what if” scenar-

ios can be added for FPM to conduct new assessments.

Those scenarios may include changing operating con-

ditions, such as signal-to-noise ratio (SNR), geometry,

and revisit rate, to name a few of the existing sensors

or adding new sensors. The assessment results can then

be used to better manage sensors and allocate system

resources.

While the FPM model described in [8] developed

a kinematic performance prediction methodology and

defined the classification performance model and [7]

described an analytical method to predict classification

performance and an efficient approximate formula to

estimate the average probability of correct classifica-

tion given sensor characteristics, there is still a lack of

effective tools to evaluate a fusion system performance

as described in [8] and [7] in an easy and accessible

way in order to make the assessment results promptly

available to better control sensors and allocate system

resources.

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 7, NO. 2 DECEMBER 2012 141



In particular, for the case of discrete reporting

elements–the sensor exploitation system’s estimate of

target type or activity, it is more complicated to pre-

dict fusion performance for target/activity identifica-

tion or situation assessment. For example, observations

of the target’s attributes, such as feature-modulation

frequency, radar emissions characteristics, and visual

image, may be used to establish target identity. They

are based on a transformation between observed tar-

get attributes and a labeled identity. Methods for iden-

tity estimation involve [15] pattern recognition tech-

niques based on clustering algorithms, neural networks,

or decision-based methods such as Bayesian inference,

Dempster-Shafer’s method, or weighted decision tech-

niques.

The focus of this paper is on developing a method-

ology and software tool to model and evaluate perfor-

mance of a multi-sensor classification system. Specif-

ically, we define a generic classification performance

metric for multi-sensor fusion, called global confusion

matrix (GCM), from the local sensor confusion matri-

ces described by Bayesian network models. We then

develop a stochastic simulation methodology with ana-

lytical convergence bounds to estimate the performance.

Based on the methodology, a software tool is devel-

oped to help a decision maker answer the following

questions: (i) What is the probability of correct clas-

sification of a given target using a specific sensor in-

dividually? (ii) What if a specific set of sensors com-

bined together is used instead? (iii) What is the perfor-

mance gain by adding another sensor to this set? and

(iv) Which sensors provide a better cost/benefit ratio?

We apply Bayesian network (BN) to model the relation-

ship between target variable and various levels of ob-

servables and compute the defined performance accord-

ingly. We assume that the BN model is given, should

that be created from expert knowledge, learning from

past data or any other method, and our goal is to as-

sess its performance. In other words, the methodology

is generic and independent of the source of the model.

However, if the model itself is inaccurate due to limited

training data or insufficient domain expertise, then we

have to take into account the model uncertainty when

assessing the performance. We demonstrate the types

of evaluation and conclusions that can be achieved with

this tool using an example model from a model-based

identification (MBID) component described in [5].

The evaluation process described was implemented

as an extension of a free, Java based, and open-

source probabilistic network framework, UnBBayes

[2—4, 10, 13]. This framework proved to be an inter-

esting alternative since it already had Bayesian net-

works representation, simulation, and inference algo-

rithms built-in, making the development of the evalu-

ation module much easier and faster.

This paper is organized as follows. Section 2 reviews

the main concepts concerning the Fusion Performance

Model described in [7, 8]. Section 3 describes the tech-

nical approach used to implement the method to pre-

dict classification performance based on the FPM. Sec-

tion 4 derives an analytical convergence property of the

evaluation methodology and predicts number of simu-

lation trials needed in order to achieve a desirable error

bound. Section 5 shows an overview of the probabilis-

tic network framework used, UnBBayes, to implement

the evaluation module. Section 6 presents the evaluation

tool and its use in several example models. Finally, Sec-

tion 7 relates the main contributions of this paper and

some future work.

2. MODELING CLASSIFICATION FUSION
PERFORMANCE

Currently, data fusion systems are used extensively

for target tracking, automated identification of targets,

situation assessments, and some automated reasoning

applications [15]. This paper uses a Bayesian network

model that is a part of a model-based identification

(MBID) component of an effort to design a decision-

theoretic sensor management system. This model, de-

scribed in [5], is used for incorporating target identifi-

cation (ID) into a multiple-hypothesis tracking (MHT)

system in a multi-sensor environment.

Bayesian networks [9] are directed acyclic graphs

(DAGs), where the nodes are random variables, and the

arcs specify the independence assumptions that must

hold between the random variables (the arc points from

the parent to the child node). These independence as-

sumptions determine what probability information is re-

quired to specify the probability distribution among the

random variables in the network.

To specify the probability distribution of a Bayesian

network, one must give the prior probabilities of all root

nodes (nodes with no parents) and the conditional prob-

abilities of all other nodes given all possible combina-

tions of their parents. Bayesian networks allow one to

calculate the conditional probabilities of the nodes in

the network given that the values of some of the nodes

have been observed.

In addition to the convenient and flexible represen-

tation, a major benefit of using BNs is the existence of

many powerful probabilistic inference algorithms, such

as the distributed algorithm [16], the influence diagram

algorithm [18], the evidence potential algorithm [14],

simulation algorithms [11, 20], and the symbolic prob-

abilistic inference (SPI) algorithm [19].

For MBID system mentioned earlier [5], the BN is

used to relate the target states to the detected measure-

ments at the sensors. Each evidence node represents the

detected observation from a source at a given sensor.

The conditional probabilities depend on the propaga-

tion from the target to the sensor, array gain, detection

thresholds, etc. Other information such as relative ge-

ometry between target and sensor, the strength of the

target, and the transmitted energy can also be summa-

rized in the conditional probability of the received mea-

surement given the target state.
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Fig. 1. A Bayesian network model example for a model-based identification (MBID) system.

It is assumed that in the system, there are two types

of sensors: electronically scanning radar (ESA) and

Infrared search and track (IRST). In addition to the

regular search and update capabilities, the ESA radar

is modeled to have three identification modes: ultra-

high-resolution radar (UHRR), radar signal modulation

(RSM), and radar electronic support mode (RESM).

Since the radar detection and observation processes are

fairly complicated and cannot be easily expressed in a

simple form, a Bayesian network is used to model the

processes and compute the association likelihoods as

well as manipulate the target state distribution. In this

system, a centralized fusion architecture is assumed, i.e.,

data collected from multiple sensors are pooled together

in a central site where they are combined.

UHRR is an active technique and is basically an

imaging technique that will be able to identify features

of an airplane and therefore infer the target type. RSM

is an active technique that can detect a target feature-

modulation frequency. RESM is a passive technique

that can observe the characteristics of the target’s radar

emissions. Based the observed features of the radar

signal, the MBID system will infer a radar mode that

will, in turn, be an evidence for a target type.

Figure 1 shows the BN that contains all three identi-

fication modules. Note that at any given moment, only

one module can be active. In other words, only one type

of evidence can be attached to the network. In the figure,

the UHRR module is represented by the node “UHRR

Confusion,” RSM is represented by the node “Modu-

lation Frequency” (MF), and RESM is represented by

the remaining three nodes, “Center Frequency” (CF),

“PRI,” (pulse repetition interval) and “PRF” (pulse rep-

etition frequency). Note that in all three radar modes, the

observation is dependent on the probability of detection

represented by the node “Detected.” Probability of de-

tection is a function of target range and aspect angle.

The measurements from the three radar modes can ei-

ther be discrete or continuous values. For example, the

observation of UHRR is the actual target type, which

can only be one of the given values. On the other hand,

the observations for other radar modes have continu-

ous values and can assume any value within the defined

ranges.

Despite these qualitative notions and quantitative

calculations of improved system operation by using

multiple sensors and fusion processes, actual implemen-

tation of effective data fusion systems is far from sim-

ple. In practice, the combination of sensor data may

actually produce worse results than could be obtained

by tasking the most appropriate sensor in a sensor suite.

This is caused by the attempt to combine accurate (i.e.,

good data) with inaccurate or biased data, especially if

the uncertainties or variances of the data are unknown

[15]. Before a data fusion system is deployed, develop-

ers and users need to be able to assess their fusion sys-

tem performance under various conditions. This paper

develops a tool based on the Fusion Performance Model

(FPM) described in [8]. The focus is on predicting the

classification performance. To do so, first we define the

following terminologies [7].

Local Confusion Matrix (LCM): Local confusion

matrices are the ones based on single sensor classi-

fication system observations. There are two types of

LCMs–feature level LCM defined as the conditional

probability/likelihood tables of the observable/evidence

nodes given their parent nodes, and label (target ID)

level LCM, Pr(Obs j T = j), defined as the conditional
probability tables of the observable/evidence given true

target ID. It is the latter that will be used to obtain the

global confusion matrix (GCM).

Global Confusion Matrix (GCM): Global confu-

sion matrix is obtained based on multiple sensor clas-

sification observations with a given LCM over time.

Each element in the GCM is defined as the proba-

bility of inferred1 target class given true target class,

GCM(i,j) = Pr(I = i j T = j). Note that the GCM is ap-

plicable to both single sensor and multiple sensor sys-

tems.

1The posterior probability of the target class being true given the

sensor observations.
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TABLE I

“Target Type” Node’s Global Confusion Matrix Example

B1 B2 R1 R2 N Unk

B1 0.80 0.02 0.10 0.02 0.02 0.04

B2 0.02 0.70 0.02 0.14 0.08 0.04

R1 0.10 0.02 0.80 0.02 0.02 0.04

R2 0.02 0.14 0.02 0.70 0.08 0.04

N 0.02 0.15 0.04 0.15 0.60 0.04

Unk 0.04 0.04 0.04 0.04 0.04 0.80

Average Probability of Correct Classification (Pcc):

Average probability of the class corresponding to the

true class of the associated target. It is the average value

of the diagonal elements of GCM, computed as,

Pcc=
1

k

X
i

GCM(i, i) =
1

k
Trace(GCM) (1)

where k is the total number of target classes.

Table I illustrates a global confusion matrix example

for the “Target Type” node in Fig. 1, where the columns

represent the predicted class and the rows the true

class.2 Therefore, the diagonal elements represent the

probabilities of correct classification. In this example,

the probability of correct classification is 0.733.

3. COMPUTING CLASSIFICATION FUSION
PERFORMANCE

To compute the GCM is to infer the target ID/type

based on a series of sensor reports. This is similar to

state-estimation, where the state of a system is esti-

mated based on observed measurements. Similar to the

Kalman filter, which allows for off-line estimation of

the expected tracking performance (covariance matrix),

there is a need for a systematic approach to evaluate

the classification performance of a sensor, or multiple

sensors.

In order to predict classification performance with

a Bayesian network model, we need Pr(Obs j T = j),
the sensor target ID level LCM. This can be done by

“predicting” the observation distribution using forward

inference given a target ID with either a simulation

method or an exact (e.g., Junction tree [14]) algorithm

depending on the network configuration. Given the

LCM, the GCM can then be computed as,

GCM(i,j) = Pr(I = i j T = j)
=
X
Obs

Pr(I = i jObs,T = j)Pr(Obs j T = j)

¼
X
Obs

Pr(I = i jObs)Pr(Obs j T = j) (2)

where I is the inferred target ID, T is the true target ID,

and Obs is the sensor observation.3

2“B1” and “B2” are for Blue classes, “R1” and “R2” are for red

classes, “N” is for neutral class, and “Unk” is for unknown class that

do not belong to any other class.
3Note that to derive (2), a Markov chain property of TObs I is assumed.

Note that this will give us a square matrix where
each row indicates that if the target T = j is true, what
is the probability of the sensor/classifier inferring it as
I = i given a single report Obs from a sensor. The per-
formance measure can then be defined as the average
correct classification probability as described earlier.
When a total of n observations are reported by the sen-
sors, the expression in (2) will need to be summed over
all possible realizations of Obs, namely, an exponential
enumeration of all jObsjn possible realizations.
In general, the calculations for the elements of the

GCM are computationally extensive. There are two
ways to do so. One is to use the Monte Carlo approach
where we randomly simulate the sensor observations
based on a given BN model and recursively update the
target state probability. Another way is to use analytical
performance model.
Our goal here is to develop a mixed approach where

analytical calculations will be performed whenever fea-
sible. Otherwise, a stochastic simulation will be used.
We have developed a very efficient polynomial-time an-
alytical approach to approximate the GCM based on the
assumption that the sensor observations are condition-
ally independent given the target ID [21]. Due to po-
tentially high model complexity, we also developed an
approximation method based on stochastic simulation.
The algorithm is briefly summarized in Figure 2.

1. Select the target node, the corresponding
evidence nodes, the condition on which we want
to evaluate the BN, and the number of simulation
trials to be generated from the model. Note that,
in this implementation, only one target node is
allowed.
2. Simulate the data based on the number of tri-

als desired from the BN model using the stochas-
tic sampling algorithm (see [6, 11—12, 20—21] for
details). Note that in general the error of the esti-
mated probabilities is inversely proportional to the
sample size. More detail is given in Section 4.
3. Compute the approximate conditional

probabilities, based on its frequency of occur-
rence, of the evidence nodes given target node,
Pr(Obs j T = j).
4. Compute probabilities for predicted target

ID given evidences using the probabilities com-
puted in step 3.

Pr(I = i jObs) = Pr(Obs j I = i)Pr(I = i)
Pr(Obs)

=
Pr(Obs j I = i)Pr(I = i)P
j Pr(Obs j I = j)Pr(I = j)

(3)

where the prior probability Pr(I = i) is retrieved
from the marginal distribution of the target node.
5. Finally, compute the global confusion ma-

trix, as described in equation (2), by using the val-
ues computed in steps 3 and 4.

Fig. 2. Estimating GCM with stochastic simulation.
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Some of the nodes in the network are neither target

nor evidence nodes, however these “hidden” nodes are

essential to describe the sensor models. For sensitivity

analysis, they can be defined by “conditioning” on a

set of specific values. Although the estimation error

is inversely proportional to the sample size, its true

value also depends on the number of nodes (evidences

and target) considered and their size (number of sates).

Therefore, the estimation error obtained here might be

much smaller than its actual value.

4. ALGORITHM CONVERGENCE ANALYSIS

As mentioned above, due to high complexity and

possible hybrid nature (mixed variables) of the model,

we may have to apply approximate method to estimate

Pr(Obs j T = j) based on stochastic simulation and sub-
sequently compute the posterior probability according

to the Bayes rule, namely, (3). To do so, one critical

question to be answered is how fast the simulation algo-

rithm converges when estimating the GCM and does it

converge to the correct probability. This section derives

an analytical convergence rate of the FPM algorithm and

estimates the number of simulation trials needed in or-

der to achieve a desirable accuracy level (error bounds).

With (2), let YOj be the indicator function for estimat-

ing Pr(Obs j T = j), i.e., YOj = 1 when “Obs” is realized
given T = j in a particular simulation trial and YOj = 0

otherwise. Then it can be easily shown that when the

sample size n is large, the probability distribution of

XOj ´
P
YOj=n can be approximated by the normal dis-

tribution,

p(XOj)»N[XOj ;X̄Oj ,¾2Oj] (4)

where X̄Oj = POj ´ Pr(Obs j T = j) is the mean and ¾2Oj
= var(Xoj)¼ POj(1¡POj)=n is the variance of the ran-
dom variable Xoj respectively.

To estimate the probability of correct classification,

as shown in (1), we only need to focus on the diagonal

elements of the GCM. From (1)—(3), it can be easily

shown that,

GCM(i, i) = Pr(I = i)
X
Obs

Pr(Obs j I = i)2
Pr(Obs)

= Pr(I = i)
X
Obs

¾2Oi
Pr(Obs)

·
Pr(Obs j I = i)

¾Oi

¸2
:

(5)

Assuming the size of the state space of Obs is relatively

large, i.e., jObsj ´mÀ 1, and assuming that POi¿ 1

and PO ´ Pr(Obs)¼ POi,4 then

GCM(i, i) =
Pr(I = i)

n

X
Obs

·
Pr(Obs j I = i)

¾Oi

¸2
: (6)

4This approximation could be poor.

Let Gi,i be the indicator function of GCM(i, i), then the

sample mean of Gi,i can be approximated by,
5

Ḡi,i ¼
Pr(I = i)

n

X
Obs

·
XOi
¾Oi

¸2
(7)

where Z ´PObs[XOi=¾Oi]
2 follows a non-central Chi-

square distribution with Z̄ =m+¸ and ¾2z = 2(m+2¸),

where

¸=
X
Obs

"
X̄Oi
¾Oi

#2
=
X
Obs

"
X̄2Oi

X̄Oi(1¡ X̄Oi)=n

#

= n
X
Obs

"
X̄Oi

(1¡ X̄Oi)

#
(8)

In the case when POj is approximated by a uniform

distribution, X̄Oi ¼ 1=m, then ¸=mn=(m¡ 1)·mn,
and ¾2z = 2(m+2¸)· 2m(1+2n). Therefore, with Pi ´
Pr(I = i), the variance of Ḡi,i is,

¾2
Ḡi,i
= (Pi=n)

2¾2z < P
2
i

2m(1+2n)

n2
: (9)

Finally, assume Pr(I = i) is approximately uniform,

since from (1), PCC = (1=k)
Pk
i=1GCM(i, i), the variance

of the estimate P̂CC is ¾
2
CC = (1=k

2)
P
i=1,:::,k ¾

2

Ḡi,i
, where

k is the state space size of the ID node, then

¾2CC =
1

k2

X
i

(Pi=n)
2¾2z <

2m(1+2n)

k3n2
: (10)

With Chebyshev’s inequality, for any " > 0,

Pr(jPCC¡ P̂CCj< ")¸ 1¡
¾2CC
"2
: (11)

Equations (10)—(11) provide a performance bound for

the absolute error of the average correct classification

probability given the observation state space size, the

target state space size, and the number of simulation

trials. When PCC is normally distributed, then a tighter

bound can be obtained as follows,

Pr(jPCC¡ P̂CCj< ") = ® (12)

where "=©¡1((1+®)=2)¾CC, ® is the confidence level,
and © is the CDF of the standard normal distribution.

5. PERFORMANCE EVALUATION

Recall that the main objective of the tool developed

in this paper is to evaluate the fusion performance and

quantify how much one gains by combining different

sensors in a fusion system. Specifically, the system is

designed to help a decision maker answer the following

questions: (i) What is the probability of correct clas-

sification of a given target using a specific sensor in-

dividually? (ii) What if a specific set of sensors com-

bined together is used instead? (iii) What is the perfor-

mance gain by adding another sensor to this set? and

(iv) Which sensors provide a better cost/benefit ratio?

5Likewise, this could be a rough approximation.
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Fig. 3. UnBBayes’ evaluation module input panel.

Fig. 4. UnBBayes’ evaluation module output panel.

These questions can be answered by using the tech-

nical approach described in Sections 3—4. Figure 3

shows the necessary inputs that need to be specified

for the FPM evaluation module. The inputs are:

Target node: Select the target node of interest.

Evidence nodes: Choose the evidence nodes, they

are the sensor observables in a Multi-Sensor Classifica-

tion System.

Cost: The cost associated with the evidence node.

It is assigned heuristically or based on a priori knowl-

edge of the cost of allocating the corresponding sensor

resource.

Condition: Choose the state for the conditioning

nodes, which represent an optional artificial context for

sensitivity analysis. These nodes cannot be target or

evidence.

Sample size: The number of trials to be generated

from the model. The larger the number the more accu-

rate the result, however the longer it will take to com-

pute.

Error bound: In case the error bound is given, the

sample size will be automatically computed based on

the analysis given in Section 4.

Figure 4presents the outputs computed inUnBBayes’

evaluation module that can answer such questions. The

outputs include:

GCM: The global confusion matrix computed for

the selected target node and all the chosen evidence

nodes.

Error: As explained in Section 4, the error can be

approximately computed by equations (11) and (12).

Probability of Correct Classification (Pcc): The

probability of correct classification computed from the

GCM considering all evidence nodes.

Marginal PCC (MPCC): The probability of cor-

rect classification computed from the GCM given all

evidence nodes other than the one presented in the row

(see “Node” column).

Marginal Improvement (MI): The probability of

correct classification gained by adding the node pre-

sented in the row to the rest of other nodes,

MI = PCC¡MPCC: (13)

Individual PCC (IPCC): The probability of cor-

rect classification computed from the LCM considering

only the evidence presented in the row.

Cost Rate: The individual probability of correct

classification over the cost,

Cost Ratio =
IPCC

Cost
: (14)

Using the tool and its output just presented we were able

to analyze the example model described in Section 2

for air target tracking and classification. Recall that

in this example we have three identification modules

that represent the evidence nodes. UHRR is an active

technique and is basically an imaging technique that

will be able to identify features of an airplane and
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therefore infer the target type. RESM (represented by

nodes “Center Frequency”–CF, “PRF,” and “PRI”) is

an passive technique that can detect a target feature-

modulation frequency. RSM (represented by the node

“Modulation Frequency”–MF) is an active technique

that can observe the characteristics of the target’s radar

emissions. Based the observed features of the radar

signal, the MBID system will infer a radar mode that

will in turn be an evidence for a target type.

In the BN model, the target type node has 6 differ-

ent possible labels: [B1, B2, R1, R2, Neutral, Unknown]

with a given prior probability distribution. The feature

of UHRR is an identification of target type with condi-

tional probability of a UHRR ID given the true target

type. This confusion matrix is indexed by relative target

elevation, which we assume is known at the time of the

UHRR action. The detailed description of each node and

their conditional probability tables were given in [5].

As shown in the BN model, for all identification

modules, the observation is dependent on the probability

of detection represented by the node “Detected.” The

detection probability of each target is a function of the

relative geometry between the target and the sensor.

In reality, the values of the kinematic states need to

be assigned dynamically for each target. In the test

scenario, we selected the values of three kinematic state

nodes, “Range,” “Azimuth,” and “Elevation,” such that

the detection probability is approximately 0.95.

Table II shows different sets of evidence nodes used

to detect the node “Target Type” using exact and an

approximate (with an error strictly lower than 2%)

computation. To be concise we did not include all

the information computed in UnBBayes in this table,

but most of them can be derived from the table. For

instance, the MI for the node UHRR in the evidence set

UHRR+RSM is 65.36% minus the IPCC of the RSM,

which is also, in this case, the MPCC of the node UHRR

in this set. So MI for UHRR= 65:36%¡ 29:27%=
35:69%, while the MI for RSM= 65:36%¡ 61:90%=
3:46%.

With the information obtained in Table II, the deci-

sion maker is able to understand how the system works

and which set of sensors work better together by com-

paring individual performance as well as marginal im-

provements when more than one sensor is used. For

example, with RESM (CF+PRI+PRF) alone, the Pcc is

about 33%; with RSM alone, the Pcc is about 29%; and

with UHRR alone, the Pcc is about 62%. With the first

two together, the Pcc increases to only 43%, while with

all three of them, the Pcc increases to over 71%.

Another benefit of using the tool is that the decision

maker could analyze the cost/benefit ratio of each sensor

resource to determine the best allocation strategy. The

cost ratio can also be integrated into an automatic sensor

resource management (SRM) algorithm for changing

the sensor mode dynamically on a real time basis.

The Pcc is used to evaluate the performance of the

model given that the model is available and assumed

TABLE II

Classification Performance Prediction with Different Evidence Sets

# Ev. Pcc Pcc

Nodes Evidence Set Exact 2% Error

1 RESM (CF) 22.28% 22.88%

RESM (PRF) 23.73% 24.36%

RESM (PRI) 23.82% 25.01%

RSM 28.67% 29.27%

UHRR 61.02% 61.90%

2 RESM (CF+PRI) 27.85% 29.75%

RESM (CF+PRF) 27.81% 29.08%

RESM (PRI+PRF) 28.91% 30.18%

UHRR+RSM 65.48% 65.36%

3 RESM (CF+PRI+PRF) 31.72% 32.93%

RSM+RESM (CF+PRI) 38.76% 39.85%

RSM+RESM (CF+PRF) 38.72% 39.72%

RSM+RESM (PRI+PRF) 39.67% 40.70%

UHRR+RESM (CF+PRI) 65.61% 66.15%

UHRR+RESM (CF+PRF) 65.58% 66.37%

UHRR+RESM (PRI+PRF) 66.16% 66.39%

4 RSM+RESM (CF+PRI +PRF) 42.14% 43.30%

UHRR+RESM (CF+PRI+PRF) 67.55% 68.54%

UHRR+RSM+RESM (CF+PRI) 69.32% 70.14%

UHRR+RSM+RESM (CF+PRF) 69.31% 69.99%

UHRR+RSM+RESM (PRI+PRF) 69.78% 70.61%

5 UHRR+RSM+RESM (CF+PRI+PRF) 70.95% 71.72%

TABLE III

Pcc for Models with Different Evidence Nodes

Pcc

Noise Exact Approximate

0% 70.95% 72.73%

5% 67.82% 69.79%

10% 66.36% 68.37%

correct. However, it is not used to judge the accuracy of

the model. To test the robustness of the FPM evaluation

methodology, we evaluated the same structure model

but with different parameter values, meaning we kept

the nodes and arcs the same but changed the conditional

probability tables (CPT) by adding some noise to them.

The goal is to verify that even if the model is somewhat

imprecise, we can still apply the evaluation process

to obtain a reasonable result. The results in Table III

show that the estimated Pcc performance is relatively

insensitive to the model uncertainty. Note that the noise

level in Table III represents the uncertainty magnitude

in the model quantified by the random variations in

percentage of the conditional probabilities.

To compare the analytical performance bounds de-

rived in Section 4 and the simulation results, Figs. 5—7

show the relationship between sample size and the ab-

solute estimation error given different observation state

space sizes with 99% confidence bounds (®= 0:99) pre-

dicted by (12). The target state space size is assumed to

be fixed (k = 6). As can be seen from the figures, the

theoretical analysis provides good performance bounds
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Fig. 5. Absolute error as a function of sample size with m= 90.

Fig. 6. Absolute error as a function of sample size with m= 900.

under different conditions (i.e., various observation state

space sizes). The bounds work well particularly when

the sample sizes are relatively small or relatively large.

However, the analytical bounds are somewhat conserva-

tive otherwise due to various approximations employed

in the analysis.

Finally, we evaluated the fusion performance of

a classification system based on a Bayesian network
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Fig. 7. Absolute error as a function of sample size with m= 9000.

model used for Combat ID and threat assessment de-

scribed in [1] (see Fig. 8). According to [1] the model

can be used in a number of ways to infer information

about the Hostility, ID Platform and Threat variables.

Table IV shows the Pcc for different target nodes

given all evidence nodes or a subset of them, which

has the nodes IFF, ATR, ESM, Speed, OnDataLink, and

Intelligence. The Pcc values were all computed with a

sample size of 2.5M. If the classifications were selected

at random the Pcc for Hostility, ID Platform, and Threat

would be 16.66%, 12.50%, and 50.00%, respectively,

since Hostility has 6 possible states, ID Platform has

8, and Threat has 2 states. Therefore, it can be seen

that this model has almost the same performance for

the classification of Hostility and Threat as if the clas-

sification were being selected at random. Although the

Pcc for the ID Platform is slightly better, the decision

maker might still consider it low. Note that, however,

the correct classification performance is estimated with

a single sample observation from each sensor. For multi-

ple observations from different sensors or from a single

sensor over multiple sampling times, additional analysis

is required. For details, see [21].

With these two models analyzed, we can see the full

benefit of using our tool for performance evaluation.

We were not only able to detect when a model is useful

for classification but also able to detect when it is not as

efficient. Furthermore, the same model might not have a

good performance for classifying a specific target node,

but it might be good for classifying a different one.

6. CONCLUSIONS

In this paper, we present a tool that allows a user to

evaluate the classification performance of a multi-sensor

fusion system modeled by a Bayesian network. With

the Fusion Performance Model (FPM) described in [7]

and [8], we developed a new module and integrated it

with the free, open-source, and platform independent

probabilistic network framework UnBBayes.

We demonstrate the functionalities of the tool with

a model-based ID example for air target tracking and

classification. We were able to answer questions related

to probability of correct classification of a given target

using a specific individual sensor resource or a set of

resources. We were also able to evaluate the marginal

performance gain and cost/benefit ratio of each sensor

resource. This tool is very valuable for a decision maker

to analyze trade-off between performance and costs and

to select proper sensor suites according to requirements

and constraints. As far as we could tell, there is no

other tool available for evaluating a fusion system per-

formance as described in this paper.

We developed an analytical convergence analysis

where we derived theoretical formulae to estimate the

convergence rate and predict the number of simulation

trials needed in order to achieve a desirable accuracy

level (error bounds). We also compared the simulation
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Fig. 8. A simplified model of a Bayesian network used for Combat ID and threat assessment.

results with the analytical ones and we showed that the

bounds work well under different conditions.

We also showed that the tool developed is useful to

identify the quality of the classification models. More-

over, the performance of the model depends on the node

to be classified, i.e., the same model might not have a

good performance for classifying a specific target node,

but it might be good for classifying a different one.

This research was conducted as part of a larger ef-

fort to design an integrated multi-sensor tracking and ID

performance evaluation system. A major advantage of

using the current approach is the flexibility of modify-

ing the Bayesian models to account for various potential

environmental or sensor changes. One important future

research direction is to integrate the kinematic tracking

module into a combined track/ID performance evalua-

tion system and to extend the system to accommodate

for high level fusion. Additionally, we intend to incor-

porate other efficient analytical or simulation algorithms

to improve the computational efficiency of the tool. Fi-

TABLE IV

Pcc for Different Target Nodes Given all Evidence Nodes or a Subset

of Them (IFF, ATR, ESM, Speed, OnDataLink, and Intelligence)

Pcc Given Evidence Nodes
Target

Node All Subset

Hostility 38.99% 19.18%

ID Platform 61.35% 48.16%

Threat 65.64% 52.84%

nally, since the model itself might be inaccurate due to

limited training data or insufficient domain expertise, it

is important to take into account the model uncertainty

while assessing its performance.
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