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As technology continues to advance, services and capabilities
become computerized, and an increasing amount of business is
conducted electronically, there is an interesting need for real-time
decision-making systems with many capabilities in various domains.
In this paper we introduce INFERD (INformation Fusion Engine
for Real-time Decision-making), an adaptable information fusion
engine which performs fusion at levels zero, one, and two to provide
real-time situational assessment. The advantages to our approach
are threefold: (1) The level of abstraction in which the analyst
interacts with the engine, (2) the speed at which the information
fusion is presented and performed, and (3) our ability to give the
user the choice to disregard ad-hoc rules or a priori parameters,
which have both advantages and disadvantages. We present both
a parameterized approach founded in statistical mechanics theory
and a non-parameterized approach using concepts in entropy as

understood in the context of information theory.
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1. INTRODUCTION

1.1. INFERD

INFERD was created in the context of cyber secu-
rity [25] as a decision aid tool to improve the analyst
understanding of the situation and ultimately expedite
their processing. To cope with the volumes and data
rates of current sensed environments such as cyber se-
curity and others, decision aid tools must provide their
assessment of the situation in a very time efficient man-
ner. In most cases, this time constraint eliminates the
possibility of some non polynomial approaches such as
optimal inexact graph matching and must instead rely
on heuristics to provide good results in a timely manner.
INFERD’s hierarchical fusion approach was developed
to do such a task. The two forms of input to INFERD
are in the form of a Guidance Template (a priori), and
sensor data (runtime). The actual fusion process, both a
parameterized and unparameterized approach, and how
these two forms of input produce valuable output will
be addressed throughout the paper.

INFERD’s unique approach to Information Fusion
can arguably provide these basic advantages: (1) The
flexibility of the system to be transitioned to different
environments, (2) the level of abstraction of the output
of the system compared to the specificity of the models,
and (3) the rate at which INFERD can process data and
produce results.

1.2. Parameterization v. Non-Parameterization

Parametric approaches are typically general enough
to be applied to a variety of environments. Deploy-
ing a parametric system to networks of varying topolo-
gies usually consists of retraining the system on test
data obtained for that environment. The problem of
systems using parametric approaches based on train-
ing data sets is a sensitive one that can often lead to
large numbers of false positives or inaccuracies when
working on data not in the training set. The two clas-
sical cases of overfitting and overtraining can arise
when a parameter vector v is obtained that configures
the system to be very accurate on the training data
but generalizes poorly to non-training data. The accu-
racy/generality tradeoff problem is a well-studied one
in many academic areas such as statistics (known as the
bias-variance tradeoff [15]), Bayesian inference (known
as penalized likelihood [6], [19]), and in pattern recog-
nition/machine learning (known as minimum message
length [39]).

Rule-based approaches are expressive in the way
that the security analyst provides system configuration.
Rules are created or modified in accordance with the en-
vironment in which the system is running. This method-
ology, however, has arguable deficiencies in that every
possible condition for the environment in which the sys-
tem is running must be accounted for in its rule set.
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TABLE 1.2.1
Methodology Comparison

Methodology ~ Advantages Disadvantages
Parametric Portability Need for a priori training process
Generality Accuracy variance

Rule-Based  Expressiveness  Accuracy variance

Rule sets become unwieldy

Many domains provide very dynamic systems; on any
given day there may be topology changes in the tem-
plates (to be explained later), patches applied making
certain vulnerabilities dissipate or even materialize as a
side effect, discovery of new exploits, realization of new
attacking strategies, the list goes on. With such frequent
changes in the environment, the rule sets can quickly
become too complex and unwieldy to remain synchro-
nized with the latest changes. As rules are left out and
changed the chances of system accuracy being main-
tained diminish and the system becomes legacy provid-
ing no benefit to the present.

See Table 1.2.1 for an overview of the advantages
and disadvantages of parametric and rule-based sys-
tems. In summary, we wish to solve the problem of
performing real-time detection of complex, multistage,
systems in such a fashion that minimizes a priori settings
and is sustainable across the breadth and frequency of
changes that can occur within the deployment environ-
ment.

1.3. Information Fusion Overview

In order to address the problems in data fusion, the
US Joint Directors of Laboratories (JDL) developed a
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JDL fusion model.

five-level Data Fusion Model, shown in Figure 1.3.1
[33]. Level 1 on Object refinement seems to have re-
ceived the most attention. Level 1 processing functions
include: data alignment, association, tracking, and iden-
tification. Less mature are Level 2 processing [16] [30],
situation assessment, which seeks a higher level of infer-
ence above Level 1 processing, and Level 3 processing
which performs threat assessment. Threat assessment is
an iterative process of fusing the combined activity and
capability of enemy forces to infer their intentions and
assess the threat that they pose. Level 1 is very often
called “low-level” processing, and the others as “high-
level” processing.

Higher level fusion problems are generally more dif-
ficult than Level 1 because they involve higher dimen-
sionality corresponding to the relationships among en-
tities identified at Level 1. Higher level fusion also con-
cerns modeling behavior of aggregate entities, through
the understanding of their individual behaviors and re-
lationships. Some commonly recognized relationships
are spatio-temporal relationships, part/whole relation-
ships, organizational relationships, various casual re-
lationships, semantic relationships, similarity relation-
ships, etc.

e Level 0: (Sub-Object Data Association & Estimation)
—This deals with signal level data association and
characterization.

e Level 1: (Object Refinement)—This deals with track-
to-truth and track-to-track association, kinematics es-
timation and target type and ID prediction.

e Level 2: (Situation Assessment)—This deals with
object clustering and relational analysis, to include
structure and relations, communications and physical
context.
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e Level 3: (Impact Assessment or Threat Assessment)
—This deals with threat intent estimation, conse-
quence prediction, susceptibility and vulnerability as-
sessment.

e Level 4: (Process Refinement)—This is an adaptive
search and processing step.

Level O is a special case of Level 1, where entities
are signals/features. Level 3 is a special case of Level 2,
where relations are cost impact. Level 4 is a special case
of Resource Management. Here we will be looking at
computational techniques applied in Level 2 and Level 3
data fusion.

1.4. Approaches to High Level Data Fusion

There have been many approaches to performing
high level data fusion (L2+) which have been devel-
oped, extended, modified, and refined over the years.
Many of these approaches which will be discussed
shortly have seen success through modification to spe-
cific problems, but no single approach has proven to
be a single solve-all solution. Every approach has its
advantages and disadvantages and the key is to exploit
these properties in an optimal fashion for the problem
at hand. The various INFERD terms used within this
section will be defined and discussed in Section 2 of
this paper.

1.4.1. Knowledge Based Expert Systems

Knowledge Based Systems (KBS) are computer sys-
tems that contain stored knowledge and solve prob-
lems like humans would. KBSs are drawn from the
broad discipline of artificial intelligence (AI) where
a knowledge base is defined in terms of rules, facts
and meta-knowledge. These systems are utilized for
combining expert knowledge and sensor information
to form a knowledge base which is used for reason-
ing about the current situation or threat. They are sym-
bolic programs which solve problems by symbol manip-
ulation. Base techniques of knowledge-based systems
are rule-based techniques, inductive techniques, hy-
brid techniques, symbol-manipulation techniques, case
based techniques, qualitative techniques, model-based
techniques and temporal reasoning techniques.

There are many advantages of using knowledge
based expert systems. In expert systems the changes
in field of interest are well-tracked and increase the
expert’s ability and efficiency. In addition to advantages,
there are some limitations to knowledge based expert
systems. Their knowledge is from a narrow field of
interest and they don’t know the limits to which it
can extend. There can be many exceptions and this
can increase the size of knowledge base and eventually
the running time of the algorithm. The answers from
the expert systems are not always correct, hence the
advice has to be analyzed before actually applying it.
The expert systems don’t have common sense and so
all of the self-evident checking has to be predefined.

Some examples of applied expert systems for decision
support can be found in [3], [42], [1], and [2].

It is typical for expert based knowledge to be re-
quired in the classification of observables into detailed
domain specific concepts. Otherwise, complex inference
processes and a large ontology must be defined, mak-
ing the solution intractable for time critical applications.
The Guidance Templates in INFERD contain Feature
Nodes that define a set of constraints which (when satis-
fied) map sensor data into events. This allows INFERD
to take advantage of the speed efficiencies of classifica-
tion in the same manner as KBS for low level fusion,
but does not require the definition of complex and in-
terrelated rules needed for higher levels of fusion.

1.4.2. Graph Based Matching Techniques

Graph based matching techniques [10] have been
used as a powerful tool for a number of decades, but
most notably in the early eighties. Graph based pattern
recognition or graph matching is the process of finding
a correspondence between the nodes and the edges
of two graphs that satisfies some constraints ensuring
semantic and syntactic relationships. Graph matching
techniques are divided into two broad categories: (1)
the exact graph matching method that requires stringent
correspondence among the graphs to be matched and (2)
the inexact graph matching method, where two graphs
can be compared even though they are semantically or
topologically different.

Graph matching has been used in high level fusion
to abstract complex situations from large amounts of
data. The ease of representation of graph patterns and
the cognitive advantages of representing situations as a
matching between graph based patterns has made the
approach increasingly popular with the introduction of
new high powered computers. The fundamental prob-
lem however, is the theoretical complexity of the graph
matching problem. The matching problems mentioned
above are all NP-complete, with the exception of at-
tributed graph matching in which the nodes are guaran-
teed to have distinct attributes. In this case the problem
becomes polynomial.

To take advantage of the expressiveness and ease
of defining graph based patterns, the INFERD Guid-
ance Template has adopted a graph based structure. The
structure will be detailed in Section 2, but the similari-
ties stop here in terms of INFERD’s fusion process in
comparison to graph matching techniques. Because of
the theoretical complexities of the matching process, the
research team investigated and developed an alternative
approach. Remember that the motivation was to pro-
vide timely hypothesis generation. These high level hy-
potheses can very well be linked to graph matching pat-
terns, effectively producing a ranked list of patterns to
be matched. This linkage between INFERD and graph
matching techniques makes the matching problem more
time tractable when there are large numbers of patterns
to be matched to a given data graph.
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1.4.3. Bayesian Belief Networks

In recent years there has been a surge in use of
Bayesian Belief Networks (BBNs) to solve the problems
of situation and impact assessment. BBNs have become
a popular knowledge inference scheme for probabilisti-
cally related evidence and inferences. Their attractive-
ness lies in the fact that BBNs provide both a sound
theoretical framework and a conceptually simple inter-
pretation for representing and manipulating knowledge
graphically in a probabilistic domain. BBNs are directed
acyclic graphs (DAG), which provide a framework for a
structured representation of knowledge about uncertain
quantities [12] where nodes and arcs represent condi-
tional probabilistic dependency between variables.

The sound theoretical foundation of BBNs in
Bayesian theory can be either an advantage or a disad-
vantage depending upon the application. In well known
environments, BBNs can work very well, however this
is not the case in highly dynamic or unknown environ-
ments. BBNs are highly dependent upon, and only as
good as, the conditional probability tables which are
defined. In unknown environments where some or all
of these conditional probabilities are not known, or can
only be grossly estimated, the accuracy of the BBN will
suffer. INFERD does not rely on likelihood functions
for this reason. An example of a BBN used in a decision
support problem can be seen in [14].

1.4.4. Fuzzy Logic

Fuzzy Logic (FL) is an inferencing methodology
that is directed toward vague relationships between ev-
idence and assertions. Fuzzy inference is the process of
formulating the mapping from a given input to an out-
put using FL. Because of its multidisciplinary nature,
fuzzy inference systems are associated with a number
of names, such as fuzzy-rule based systems, fuzzy ex-
pert systems, fuzzy modeling, fuzzy associative mem-
ory, fuzzy logic controllers, and simply (and ambigu-
ously) fuzzy systems.

Fuzzy logic systems have the advantage of introduc-
ing more flexibility into the processing layer to sym-
bolic manipulations or calculations through the defini-
tion of fuzzy membership functions which can be useful
in making decisions in light of information that is im-
precise and/or incomplete. Fuzzy logic techniques have
become popular to address various processes for multi-
sensor data fusion. Examples include the following:
fuzzy membership functions for data association [29]
[34], evaluation of alternative hypotheses in multiple
hypothesis trackers, fuzzy-logic-based pattern recog-
nition (target identification) [18], and fuzzy inference
schemes for sensor resource allocation [23].

A future extension to INFERD could incorporate
fuzzy logic into the mapping process of observables into
events. Currently observables are mapped to events on
a {0,1} basis, this could be extended to allow multiple
mappings in a fuzzy sense ([0,1]) relaxing INFERD’s
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fusion process to be a multi-hypothesis evaluation sys-
tem.

1.4.5. Genetic Algorithms

Genetic Algorithms (GAs) are a type of evolutionary
algorithm which are the result of studying the natural
adaptation of living organisms and are a way of in-
corporating a similar adaptation into computer systems.
They try to mimic environmental factors such as repro-
duction, random variation, competition, and selection
of competing individuals. Genetic algorithms are now
widely applied in science and engineering as adaptive
algorithms for solving practical search problems par-
ticularly suited to multidimensional data where global
solutions are found within multiple local minima.

In the information fusion community, GAs are be-
ing utilized in many different applications relative to
the threat assessment. One of the challenges in a GA
based course of action (COA) optimization system is
the ability to generate and evaluate thousands of candi-
date COAs in order to generate the best solution. This
consists of two key aspects: the ability to encode the en-
emy COA into a set that comprises the GA population
under evaluation and the ability to quickly evaluate each
COA to determine which survives to the next genera-
tion. Because the key to success for a GA is evaluating
many candidates, it is necessary to be able to abstract
the battlefield in order to be able to both encode the
situation as a solution string and to be able to rapidly
war game each COA in order to evaluate it. Examples
of GAs used in high level information fusion problems
can be found in the following references: [32], [24], [8],
[4], and [5].

As stated in Section 1.4.2, there will be a future need
for generation of Template Graphs within certain prob-
lem domains. Genetic Algorithms along with Graph
Matching could provide a means for creating such tem-
plates.

1.4.6. Neural Networks

Artificial Neural Networks (ANNs) are computa-
tional systems premised upon the principles of biologi-
cal neural systems. In general, this means that ANNs
are characterized by having many low-level process-
ing units with a high degree of interconnectivity. It is
difficult to characterize the field of ANNs succinctly,
because the approaches and the results are so diverse.
Recently fuzzy logic is been used extensively along with
neural networks [20] [9]. Fuzzy logic uses approximate
human reasoning in knowledge-based systems while the
neural networks aim at pattern recognition, optimization
and decision making. A combination of these two tech-
nological innovations delivers better results than when
used independently.

The advantage of ANNSs is that when trained appro-
priately they produce accurate results for similar prob-
lems without the need of any type of parameterization.
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The disadvantage of neural networks is that their results
are contingent upon their level of training. Often in the
information fusion community realistic data sets are un-
available or scarce at best. In these situations, neural
networks will not be the best solution approach.

Wang and Archer [40] have proposed a neural net-
work based fuzzy set model to support organizational
decision making under uncertainty. The model makes
use of single back propagation neural network to gen-
erate a crisp fuzzy membership function. The authors
[41] have used a connectionist approach to multi criteria
decision making.

2. THE INFERD ENGINE

2.1.  General Fusion Methodology in INFERD

Great care has been taken in the processing struc-
ture of the INFERD engine to minimize necessary com-

Meaning

INFERD high level information flow diagram.

putation time. In many domains, data rates produced
by sensors are computationally intensive to process, so
there is not much overhead to spare. The fusion being
performed in INFERD is bottom-up in a hierarchical
fashion at Levels 0, 1, and 2 according to the JDL model
for information fusion [17]. Figure 2.1.1 shows the gen-
eral terminology and how our system and terminology
maps. In the INFERD fusion framework, each subse-
quent level of fusion feeds off of the previous levels
output. This is not a requirement of the JDL model, but
suited our system and its network and sensor environ-
ment well.

For a summary of the overall fusion processes in
INFERD consider the information flow diagram in Fig-
ure 2.1.2 as it would apply to the cyber security prob-
lem. In this diagram, we can see the flow of basic sensor
information, to ultimately, a set of tracks of that infor-
mation.

The first stage of processing, performed by the Input
Manager, wraps incoming sensed observables (sensor
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<?xmi version="1.0" encoding="UTF-8"?>
<IDMEF-Message version="1.0">
<Alert ident="728">
<Analyzer analyzerid="0">

</Analy2('-3r>
<CreateTime ntpstamp="0xc1f5a4d0.0x0">2003-02-13 15:53:12</CreateTime>

<Target ident="0" decoy="unknown">
<Node ident="0" category="unknown">
<location>SAMPLE_Net</location>

<Address ident="0" category="ipv4-addr™>

Target.Node.location | SAMPLE_Net <address>123.456.789.0</address>
— </Address>
Target.Service.port |80 </Node>
<S¢ ident="0">
Classification.name | Web-MISC count.cgi access <port>80</port>

<protocol>NU</protocol>

</Service>

</Target>

<Classlfication origin="unknown">
<name>WEB-MISC count.cgi access</name>

<url>-<furl>

Fig. 2.1.1.1.

output) into Sensor Messages, a format which is under-
stood by the Model and Track Fusion Processes. By iso-
lating the fusion processing from the I/O architecturally,
INFERD is able to fuse information from sensors of
radically different formats and types but still define the
Guidance Templates in a common language. In the case
of cyber security the Input Manager would transform
the sensor alerts into an XML object and provide a
common referencing method to retrieve values from the
object.

The second stage of processing, performed by the
Model Fusion Process, assigns model-based meaning to
the Sensor Messages. In this stage of processing, Guid-
ance Templates, or a priori models, classify the Sen-
sor Message into a higher level event type and expose
valid relationships to other previously classified alerts.
This newly added information to the Sensor Message,
forming a Correlation Message, is then understood by
and sent to the Track Fusion Process. In the cyber se-
curity example, this process might reference the target
IP address, and signature found within the Sensor Mes-
sage and classify it as a Scanning Reconnaissance at-
tack on the corporate web server. It would also add
the knowledge that this could be a predecessor step
for a number of intrusion type attacks on that ma-
chine.

The third stage of processing, performed by the
Track Fusion Process, takes the Correlation Message and
fuses it to the existing runtime set of tracks already
in existence, possibly resulting in a new track. By
fusing piecemeal event steps into unified event tracks,
INFERD offers similar advantages to ground target
tracking systems, but in a multi-int environment and
in new fusion application domains. By analyzing tracks
instead of low level sensor events, the analyst is able to
prune his search space much more efficiently and have
a better understanding of the situation when it is time
to make decisions.
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Example feature node definition.

Sections 2.1.1 through 2.1.3 will now detail the
fusion process in more specificity.

2.1.1. Level O Fusion—The Atomic Element

Level O fusion is the first processing that occurs
once a piece of information is accepted as input into
the engine. This piece of information can be of any
type such as numeric, text, or file based information.
Input to the LO process is taken in raw data form and
then necessary information is extracted by generalized
data objects which connect the abstracted data types
to the actual sensor message data values. In many
instances, more information is taken into the system
than is required to analyze what is happening within
the desired domain. These desired pieces of information
are arranged into Feature Nodes in a tree-structure
as understood in basic graph theory. This structure is
described later in the fusion discussion.

Once a piece of information (discrete sensor mes-
sage) is published to a Feature Node, the Critical Atomic
Values contained in the message are checked against
those specified in the Feature Node in the form of con-
straint satisfaction. These constraints can take a number
of forms such as greater than, less than, equality, string
equality, regular expression pattern matching, etc. If all
of the defined constraints are satisfied then that Fea-
ture Node becomes asserted. The credibility values of
Feature Nodes are binary (0, 1) with respect to their as-
sertion state.

In addition to specifying Critical Atoms and Ceriti-
cal Atomic Values, each Feature Node has a specified
lifetime associated with it. These lifetimes indicate the
maximum amount of time the Feature Node should stay
in the asserted state since the time of the last piece of
incoming information correlated to it. If Feature Nodes
did not de-assert themselves in some fashion, the cred-
ibility values of the Template Graphs containing them
would never decrease and there would be no temporal
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aspect to the INFERD engine. In many domains, it is
important that the relative timing of incoming informa-
tion be considered as to its relevant effects on the system
at hand.

Whenever a Feature Node changes state, the parent
nodes in the Feature Tree containing that node and sub-
sequently the Template Node specified by that Feature
Tree re-calculate their credibility values. This credibility
calculation will be discussed in Section 2.1.2 as the L1
fusion process, but it is important to note the bottom
up processing which occurs in INFERD. The publish-
subscribe service for information input to the system
saves a great deal of computation time by not perform-
ing the Critical Atomic Value comparisons for the pos-
sibly thousands of Feature Nodes which can ignore the
alert.

2.1.2. Level 1 Fusion—The Feature Tree

Level 1 fusion processing or Template Node cred-
ibility calculation takes over once a Feature Node
changes assertion state. The input to the L1 fusion pro-
cess or Fused Element Level is the Feature Node which
has changed assertion state, the Vertex Model is the Fea-
ture Tree containing that Feature Node, and the output
or Fused Vertex Level of L1 fusion processing is the
credibility value or estimated likelihood of occurrence
of the Template Nodes who’s Feature Tree contains that
Feature Node which has changed assertion state. The
calculation of L1 credibility values is inherent in the
structure of the Feature Tree and the values of the Re-
lation Nodes within that tree.

Every Relation Node specifies a function determin-
ing how its children relate to each other. We use Yager’s
Generalized Ordered Weighted Average (GOWA) func-
tion as a means of calculating the relation [43, 44,
45]. Assume {A,,A,,...,A,} are n criteria of concern
in this multi-criteria decision problem. These are the
criteria described in the atomic elements above. Let
us further assume that the values a,,a,,...,a, represent
credibilities associated with the above set A of n ele-
ments. We can then construct a function F(a,,a,,...,a,)
that will be used to aggregate its children at the re-
lation node. Yager describes many properties of such
a function. His OWA operators are designed by intro-
ducing two vectors B and W. Let B be an ordering
vector that “rearranges” the credibilities a,,a,,...,a, in
descending order. Let W be a weighting vector such
that Ziewwi =1, w; > 0. In vector form, the OWA op-
erator is expressed as F(aj,a,,...,a,) = W! B. Numeri-
cal examples are shown in Yager’s referenced papers.
The theory is carried out further to describe a concept
known as “attitudinal character” that describes the level
of “ANDness and ORness” that the W vector takes on.
The attitudinal character is described by the follow-
ing: AC(W) = Z;zl w;(n—j)/(n—1). For example, if
W =11,0,0,...,0], then AC(W) = 1 thus saying that we
have the greatest possible “ORness” since this would
give us a maximization function. This is true since

we are multiplying W and B where only the first ele-
ment of B would be considered (since w; = 1). Note the
first element of B is max(g;). Similarly, we have maxi-
mum “ANDness” when W = [0,0,...,0,1]; AC(W) = 0.
Finally, we simply compute the average value when
W =[1/n,1/n,...,1/n]; thus AC(W) = 1/2. Such a gen-
eral function has unlimited possibilities and can be ap-
plied to any domain using aggregation functions.

The Feature Tree used in INFERD consists of a
Template Node at the “top” of the tree. Below it may be
a series of child nodes. Each of these child nodes may be
a series of child nodes to them (or grandchild nodes to
the Template Node). The above GOWA function is used
to describe the relationships between the child nodes
and their respective parents. To calculate the values of
the Template Node (or parent node as it is known in
graph theory), INFERD begins with understanding of
the child nodes at the very bottom of the tree, then
it works its way upward. The “bottom-most” nodes of
the tree are the pieces of information taken in via LO
fusion discussed in the above section. Once these binary
values are obtained, we can apply the OWA function to
obtain the probabilistic value of their parent nodes. This
process continues up the tree structure until a value is
figured for the Template Node and further used in the
L2 fusion steps.

We will now introduce an example of a system that
could be analyzed using INFERD. We will continue us-
ing this example throughout the paper. Airport Security
is an increasingly important issue in today’s society.
There are many measures taken to prevent unsafe sit-
uations. We will present a somewhat simplified way to
answer the question: Is this passenger of any danger
to their fellow passengers? This question will be an-
swered probabilistically through determining its Cred-
ibility Factor (discussed later in the paper). There are
many different considerations in answering this ques-
tion; to describe the Feature Tree, we will look into the
verification of a passenger’s identity. The node in the
Template Graph is called “ID Verification.” We will see
later how this becomes a part of the Template Graph
and how it interacts with other nodes. For now, let us
look at its underlying Feature Tree such that we can
obtain credibility for the node. For our understanding,
let a higher credibility indicate a higher chance of this
passenger being an immediate danger. Figure 2.1.2.1
provides a visual of the Feature Tree.

For simplified understanding of INFERD, we will
consider only three measures taken to verify a passen-
ger’s identification prior to their boarding of a com-
mercial aircraft. Applying the GOWA function on our
Relation Nodes, we choose W = [1/n,1/n,...,1/n] to be
our measure, hence we will take a weighted average of
its immediate children, Risk Assessment, Photo ID, and
Biometrics. When a passenger books a flight, they may
be asked a series of personal questions that will lead to
an assessment of their risk. When this is completed, the
airline representative will then assess the risk based on
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Fig. 2.1.2.1.

the answers to the questions. To illustrate that any func-
tion may be used in this level of INFERD, we will intro-
duce a binary function such that each of the four levels
of risk assessment will be given a value in {0, 1} where
0 = the level of risk was not given to the passenger and
1 = the level of risk was given to the passenger. We
will then take a weighted average of the binary values
against the weights [0.00,0.33,0.67,1.00] for no risk,
unknown risk, elevated risk, and high risk respectively.
Next, when a passenger claims their boarding passes at
the airport, they are asked to show their photo ID. If that
ID matches all known information about the passenger,
we give a 0 value to that node; conversely, if there is a
discrepancy we will assign a value of 1. Finally, there is
a system being worked on and nearly in place in most
major airports called CAPPS II (Computer Assisted Pas-
senger Prescreening System). CAPPS II takes biometric
information about the passenger and attempts to verify
their identity. The system will test fingerprints, retinal
scans, and facial patterns of passengers. In our model,
we will assign a 0 value if there is no problem identi-
fying the passenger positively. However, if there is an
issue with these, we will assign the value 1. Under the
biometrics node we will take the maximum using the
GOWA function by setting W =[1,0,0,...,0].

Let us assume that the passenger being screened
when purchasing their tickets was given a risk assess-
ment of “unknown.” When they arrived at the airport,
their photo ID matched up. However, when CAPPS 1I
was used there was an identification discrepancy with
the retinal scan and the facial pattern (the fingerprint
appeared to be correct). The node for Risk Assessment
would be given a value 0x0+ 1x0.33 + 0x0.67 + 0 =
1 = 0.33. The photo ID node would have a value of 0.
The biometrics node has a value of max{0,1,1} = 1.
Hence, we take the average to obtain the credibility
of the Template Node (j=1), ID Verification. ¢, =
(0.33+0+ 1)/3 =0.443. We will use this value going
forward.
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The feature tree underlying the ID verification node.

2.1.3. Level 2 Fusion—Template Credibility
Calculation

Level 2 fusion or Situation Refinement is currently
the highest level being implemented in the INFERD en-
gine. The input or Fused Vertex Level to L2 are the
credibility values of the Template Nodes, the model is
the given template and the output or Fused Graph Level
is an overall credibility value for that template. It is these
credibility values coupled with the ranking of the tem-
plates that provides the system analyst with a situational
estimation of their system’s current environmental sta-
tus.

Credibility Values exist for each node in the Tem-
plate Graph (Feature Nodes and Template Nodes) and
the Template Graph itself. While the methods of calcu-
lation of these values vary, the meanings of the values
remain consistent. A credibility value is simply a likeli-
hood of occurrence that INFERD produces. For Feature
Nodes, this value is in {0, 1} because either the observ-
able captured by that node was input to the system or
it was not. For Template Nodes which can represent
events, objects, or abstract concepts the value is in [0, 1]
because this is a much more fuzzy process. The same
argument is made for Template Graph credibility calcu-
lation as well.

The INFERD engine has imbedded into it, by the
system user, templates specific to the given system be-
ing studied suggesting the way it works within its envi-
ronment. Each Template Node may have an underlying
Feature Tree that gives INFERD its credibility via LO
and L1 fusion described earlier. The functions applied to
the children in the Feature Tree are chosen by the user,
the following figure shows maximum and weighted av-
erage. The Template Nodes are then linked to each other
as deemed reasonable to make up the Template Graph.
See Figure 2.1.3.1 for an illustration.

These Template Nodes connect to one another to
form a Template Graph. There are three types of nodes
that can exist in the graph as defined by their links to
other nodes. Extrinsic Nodes are those that have no
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Fig. 2.1.3.1. Illustration of L1 and L2 fusion within INFERD.

precursor Template Nodes. Their credibility value or
likelihood of occurrence is based solely on the Feature
Nodes contained within its Feature Tree. Intrinsic Nodes
are those that have one or more precursor nodes, and
also are not reported on at any level by any sub-
structure. These nodes can only be possible if triggered
by another node connecting to it in the Template Graph;
there is no underlying Feature Tree. Bi-trinsic Nodes are
those that are reported on at some level by LO fusion
and also have precursor nodes. The credibility value of
nodes of this class can leverage data from its Feature
Trees along with its precursor nodes.

For example, let us say we have a cyber network
alert system [35] being monitored by INFERD; we may
have Attack Templates imbedded into the engine. Each
of the Template Nodes would be some sub-situation that
could imply a possible attack on ones network. Hence,
underlying these Template Nodes would be the Feature
Tree including the steps possibly leading up to this part
of an attack happening. Note that there can, and most
likely will be, many more than one single Template
Graph being analyzed by INFERD at any given time.

Continuing our Airport Security example, we design
a Template Graph containing seven nodes that each has
an important contribution to understanding the cred-
ibility of a passenger’s safety. INFERD stores many
Template Graphs and analyzes them at the same time.
Hence, in this example, individual passengers would
have their own Template Graph. However, in many

other domains there may not be a consistency among
Template Graphs; there could be many with different
factors. Figure 2.1.3.2 illustrates our Template Graph
with node numberings in parentheses.

In our example, we will consider ID Verification
among other actions taken by the passenger, most of
which are understood in context. When in an airport,
one is not allowed under law to speak of “terrorism,”
“bombs,” “guns,” etc. Hence, we include node 7 as
“forbidden” words. Underlying each of these Template
Nodes, there may be a Feature Tree giving a credibility
factor denoted by ¢; where j=1,...,7. Notice how
some Template Nodes also have influences from other
Template Nodes in the Template Graph. From above,
we have ¢; = 0.443; let ¢ = [0.443,0.55,1,0.01,0.4,0.1,
0.15]. We will work with this Template Graph in the
next sections.

Now we describe two approaches that can be used to
determine the credibility factor of the Template Graph
in the INFERD engine. The first method described
will be a parametric approach with the advantages and
disadvantages discussed above. The second approach
will be the Entropy approach used to combat many of
the drawbacks of the parameterized approach.

2.1.3.1. The Parameterized Approach for Credibility
Factor

Our first L2 algorithm uses concepts in Statistical
Mechanics. During the late 1800s, M. L. Boltzmann
and J. W. Gibbs studied in the field of thermodynam-
ics and pioneered what we now know as statistical me-
chanics. While thermodynamics (in the classical sense)
deals with a single system called a macrostate, statisti-
cal mechanics studies the sub-components of this sys-
tem, called microstates. Statistical mechanics is the ap-
plication of probability theory to the field of mechan-
ics for large populations of particles with respect to
their motion subject to forces. The greatest benefit of
such a methodology from a physics point of view is
that statistical mechanics contains the ability to make
macroscopic predictions based on microscopic proper-
ties. This ability lends itself directly to a Data Fusion
system since raw data enters the system as microscopic
properties and the desired result of Situation Awareness
is a macroscopic prediction based on the raw data.

Luegaee Poss ession
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Strange Items an Person
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One of the very first applications of statistical me-
chanics to optimization was in the field of Simulated
Annealing. Simulated annealing is a generalization of
a Monte Carlo method for examining the equations of
state and frozen states of n-body systems [27]. The con-
cept is based on the manner in which liquids freeze or
metals recrystalize in the process of annealing. In an
annealing process a melted material, initially at high
temperature and disordered, is slowly cooled so that the
system at any time is approximately at thermodynamic
equilibrium. As cooling proceeds, the system becomes
more ordered and approaches a frozen ground state. The
original Metropolis scheme was that an initial state of
a thermodynamic system was chosen at energy E and
temperature 7', then by holding T constant the initial
configuration is perturbed and the change in energy dE
is computed. If the change in energy is negative the new
configuration is accepted. If the change in energy is pos-
itive it is accepted with a probability given by the Boltz-
mann factor e~%€/T_ This process is repeated a sufficient
number of times to give good sampling statistics for the
current temperature, and then the temperature is decre-
mented and the entire process repeated until a frozen
state is achieved at T = 0. By analogy the generalization
of this Monte Carlo approach to combinatorial problems
is straight forward [21]. The current state of the ther-
modynamic system is analogous to the current solution
to the combinatorial problem—the energy equation for
the thermodynamic system is analogous to the objective
function, and the ground state is analogous to the global
minimum. Hence, this notion of simulated annealing can
be used in optimization problems that are NP-hard as
a brilliant heuristic approach. The basic components of
simulated annealing are in statistical mechanics, thus
showing a strong tie between the fields of statistical me-
chanics and optimization. We therefore recommend its
use for our purposes in data fusion and as a heuristic for
situation state estimation. Claude Shannon found deep
links between information theory and thermodynamics.
Following the same reasoning a possible link can be
drawn between the probability of occurrence of the ac-
tivity of track of hacker behavior in a noisy environ-
ment and the heating and cooling of a metal to a steady
state. Thus we investigate this approach as applied to
the problem of computer network security.

One of the more important results discovered by
Gibbs and Boltzmann describes the probability of a mi-
crostate being within a certain energy state. We denote
the energy state as E_; under the assumption of the sys-
tem at hand being independent of other systems, we can
write the probability as follows:

e Es/T

Z(T)

P(E)) =

where T denotes the temperature of the system and Z(T)
is a partition function which normalizes probabilities

across all states such that ) ¢ P(E,) = 1.
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This concept has been used in various applications
in Information Theory [31], Optimization [21], and
Decision Theory [13]. The application of the Gibbs-
Boltzmann Equation in INFERD begins with defin-
ing the Template Graph as the system’s macrostate.
It’s sub-components (Template Nodes) represent the
microstates. Let G(N,A) be the macrostate (Template
Graph) where N is the set of Template Nodes and A is
the set of arcs connecting the nodes. Each node j € N
has a probability of belonging to one of four possible
energy states:

H _ .
E;" =High
E} = Medium
EJL = Low

E]Q = Insignificant(Zero).

Given the discrete nature of the energy states, we
must introduce thresholds to determine to which energy
state each Template Node j belongs. Hence, we are
introducing a parameter that may be set by the INFERD
user as they see fit within their system. Let THY, THY,
and THE denote the threshold values between the high,
medium and low energies respectively. Note that TH- <
TH™ <TH!, and 0<TH' <1 for all i in {L,M,H}.
Let c; denote the credibility of node j coming from
the Feature Tree in L1 fusion described above. We can
determine the credibility (or probability of a Template
Node occurring), P, using equation (2.1.3.1.1):

efofz

P(E)= ———F———, ¢, €[TH" 1]
J |N\ Z?:() e,m(h]) J
-1
e~
P(EY) = ————, ¢, €[TH",TH")
J ‘N|Z?:0 ei(}—(l—]) J
P =
J 670{—0
P(EY)y = —————, c, € [THE,THM)
J |N‘Z?:Oe,a—(l—]) J
1
e~
P(E)) = ——F—, ¢; €[0,TH")
J ‘N'Z;LO ei&—(:—]) J
(2.1.3.1.1)

These thresholds and the constant a (o> 1), will
allow for a parametric approach in determining the
energy level of each Template Node j. A higher value of
« results in more emphasis being placed on the higher
energy states and vice versa. The assigning of value «
can be attributed to many different reasons specific to
each user; however we suggest that if the user believes
their LO sensors (information detection sensors) are
highly reliable, they may opt for a higher « value. In
contrast, if the user has less confidence in their sensors
detecting incoming information, they may wish to use
an « value closer to 1.

We define our partition function as Z(T) =
|N| Z?:o ¢""" such that the sum of the probabilities
over all energy states is equal to 1, hence meeting the
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basic axioms of probability:

IN|

SOPE) =D (PES) + PEN) + P(ED) + P(ED) = IN|(P(EJ) + P(E}) + P(EF) + P(ED)

SES j=1

-2 -1

0 1

e @ e @

e @ e @
IN| 3 —
N[> ige "

Now that we have the probabilities of each Template
Node in G(N,A) being in a certain energy state, we
use them to obtain an overall credibility factor (CF)
for the entire Template Graph. The probability of the
state of a node j that has other nodes directed to it (Nj)
will be affected by its neighboring nodes as long as the
last occurrence of the two events depicting the node (at
times r; and r;) are within a desirable time frame as
set by the user, denoted 7,. It is necessary to define a
new set of probabilities for each Template Node that
not only take into account its own state probability, but
also the current states of the Template Nodes directed
to it. Equation (2.1.3.1.2) defines Q; as these desired
probabilities:

>

heNj,|rj—r|<tj

_ 0 h .
Qj_)\ij+ )\th YV JEN.

(2.1.3.1.2)

Y

+ 3 —(i-1) + 3 —(i-1) + 3 —i-1) =1
IN[> icpe™® IN[> isoe™ IN[> isoe™

G(N,A) cannot contain any directed cycles. In partic-
ular, there will always be at least one sequence for ob-
taining the revised probabilities, such that no Q; that
depends on another is calculated without the proper ad-
justment.

Now that we have obtained probability values for
each node of the Template Graph considering the topol-
ogy of G(N,A), we can introduce the overall Credibility
Factor (CF) as seen in equation (2.1.3.1.3):

> Mo

e’ .
3 — a1
>im0€®

The denominator of equation (2.1.3.1.3) simply nor-
malizes the overall Credibility Factor so that when the
probabilities of all of the Template Nodes are equal and
in the high-energy state, then:

CF =

(2.1.3.1.3)

SN e e’
_ TN S e AN

CF = = =
e
< Yige )

The parameters A are the constraints used to obtain
a weighted sum of the state probabilities, such that:

N+ M=1, VvV jeN, with
heN;

0

Ni>0 VvV heN, and V jeN.

These A values represent the importance of connect-
ing nodes as desired by the user. For instance, in some
application domains, it can be such that the influence
of the Feature Trees with respect to Template Nodes
be weighted heavily, and the correlation influence of
connected nodes be only marginally considered. In this
case, )\? can be set close to 1, and the )\5' values closer
to 0. Note that each individual )\ﬁ-‘ value does not neces-
sarily have to be equal; one can place different weights
on each node directed at the node in question.

It is important to note that in order for a con-
sistent calculation of the Q ; values to be possible,

e
3 —a-G-D
>imo€

= =1.

-2
e
3 D
(Z,-zoe “ )

Let us continue our Airport Security example re-
ferring back to Figure 2.1.3.2 showing our Template
Graph. Recall ¢ = [0.443,0.55,1,0.01,0.4,0.1,0.15]. We
will set our parameter o = 2 and our set of thresholds
as TH' =[0.25,0.5,0.75] for low, medium and high re-
spectively. Then using equation (2.1.3.1.1), we can see
the probability of being in high, medium, low, and in-
significant energy states are [0.059,0.046,0.028,0.010]
respectively. Now we can find the Q; values given
(2.1.3.1.2) and the parameters as follows:

AQ:{I’ if Nj=®}

/ 0.5, 0.W.

0.5
h _ . 1
,\J._‘le V he{N;:N;#0}, and V jeN.

We can see from the values given by the ¢ vec-
tor, nodes 4, 6, and 7 have insignificant energy lev-
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els; nodes 1 and 5 have low energy; node 2 has
medium energy; and node 3 has a high energy level.
Hence, we use the P] values calculated above along
with the P, values for each node of the Template
Graph with the appropriate weighting to determine
the Q; value for each node j in N. We get O =
[0.028,0.037,0.059,0.024,0.044,0.021,0.01]. Then we
compute the credibility factor as:

S,

e’
3 —(i—1)
—Q
Y0

~0.028 +0.037 + 0.059 + 0.024 + 0.044 + 0.021 + 0.01
B 0.412

CF =

0223
T 0412

Hence, in our example, under the statistical me-
chanics with parameterization methodology, we obtain a
Credibility Factor of 54.13%, suggesting that this given
passenger is about 54% probable to be a danger to oth-
ers in the airport or on the aircraft. It is left to the user’s
discretion as to what is a large enough credibility in
their given system in order to react accordingly.

=.5413 = 54.13%.

2.1.3.2. The Entropy Approach for Credibility Factor

To liberate our system from the parametric and
rule-based deficiencies listed in Table 1.2.1, we have
implemented a novel approach of using Entropy, or
a measure of randomness, to calculate the credibility
values for our Template Graphs. By determining the
inherent level of randomness in a template, and relating
it to the maximum amount of randomness possible, we
can derive meaning about how likely (credible) that
particular template graph is taking place.

The theory of statistical mechanics is governed pri-
marily through the second law of thermodynamics, bet-
ter known as entropy. Entropy was first used as a mea-
sure within the study of thermodynamics, but has since
been shown to be valuable in many other areas includ-
ing psychodynamics, thermoeconomics and information
theory. Information theory is useful in many disciplines
but is most basically defined as a means to measure the
amount of data that can be stored in a communication
type medium. Claude Shannon, in 1948, composed a
famous work [31] wherein he began to understand the
transmission of information through a noisy channel.
His fundamental results include the “source coding the-
orem” which states that the average number of bits of
information required to represent the result of an uncer-
tain event is given by entropy. Shannon’s “noisy channel
coding theorem” suggests that reliable communication
is possible over noisy channels provided that the rate of
communication is below a certain threshold. INFERD is
a fusion system where a large amount of information is
input, some of which is valuable and some of which is
not. This non-valuable information can be considered
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noise in Information Theoretic terms. Since entropy
measures amounts of valuable information throughout
a channeling system, it seems appropriate to use such a
measure for Situational Assessment within INFERD.

The study of entropy has evolved greatly throughout
the years. It has been shown that there are many types of
entropy that can be used in many domains. Tsallis [36,
37] introduces a generalized entropy function based on
a parameter gq.

I—Zzlp? .
Hq:qu, Zpizl’k>0 .
i=1

The question arises as to what the value of q should
be in any given domain. In [37], Tsallis discusses three
optimization methods that can be used to find the opti-
mal g. In [36], he discusses how in many optimization
algorithms and information theory domains, ¢ — 1. He
later suggests that while considering a Gaussian distri-
bution, ¢ — 1 thus is the case for many natural phe-
nomenon. Hence, we use the above Tsallis General En-
tropy Function with ¢ — 1. This gives us Shannon’s En-
tropy Function as seen below.

Claude Shannon studied the discovery of statistical
knowledge about a source by use of proper encoding of
the information and defined entropy in cooperation with
Boltzmann’s famous H-Theorem as shown in equation
(2.1.3.2.1), where H is entropy, p; is the probability
of being in state i and K is a constant (Boltzmann’s
constant in thermodynamics) [31].

H=-K» plog,p,. (2.1.3.2.1)

i=1

Shannon’s application of entropy to information the-
ory allows one to find the total amount of random-
ness embedded in a state-system process. In doing so,
there must be an existing alphabet with known probabil-
ities of symbols. Consider the example where we have
an alphabet consisting of four symbols with the fol-
lowing probabilities (1/2 1/4 1/8 1/8). Using equa-
tion (2.1.3.2.1) we get H = (1/2)log,2 + (1/4)log,4 +
(1/8)log, 8 + (1/8)log, 8 = 1.75 bits/symbol. Next con-
sider the case where the probabilities of each sym-
bol are at equality (1/4 1/4 1/4 1/4). Using equa-
tion (2.1.3.2.1) we get H = 2.0 bits/symbol. Next con-
sider the case where we have the following probabili-
ties (0 0 O 1). Equation (2.1.3.2.1) gives H = 0.0 bits/
symbol. Note that as the probabilities of each symbol
move to equality, the entropy moves to a maximum.
This corresponds intuitively with the idea of random-
ness in a system—as each symbol in the alphabet be-
comes equally likely to occur, the symbols in the words
constructed from that alphabet become less predictable.
Also note that as the number of symbols in the alphabet
increases, so does the randomness. This follows intu-
itively as well—if there are more symbols to choose
from, predictability becomes more difficult.
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Our system does not use alphabets and alphanumeric
symbols as discussed in Shannon’s paper, but our ap-
plication in INFERD is in line with the requirements
of entropy as defined by Shannon. Here, the “system”
is our Template Graph, and the “symbols” are the Tem-
plate Nodes within the Template Graph. We measure the
entropy of the Template Graph by growing or shrink-
ing the Total State Space defined below according to
the credibilities of the Template Nodes and keeping
the probabilities of each state within each sub-space at
equality. By altering the size of the Total State Space to
determine entropy as opposed to altering probabilities
of states within the space, we develop a monotonically
increasing H function with respect to the credibilities of
the Template Nodes (¢ j).

Before we describe the entropy method for calcu-
lating the Credibility Factor we must take into account
the topology of the Template Graph. This is a simi-
lar procedure to the “Q-function” used in the Statistical
Mechanics Methodology in Section 2.1.3.1. In fact, the
only parameters used in the Entropy Approach are the
same A values as defined in the previous section. We
will use the following equation to determine the new
Cj* (the ¢; values that take the directions of the Tem-
plate Graph edges to nodes into account) values to be
used in the entropy calculation.

>

heN;,|rj—r|<tj

0 h _
A+ M =1,
heN;

c.*z/\?cj+ v jGN

h
; )\jch*

VY jeN, with

>0, MN>0 vV heN, and V jeN.

We have a Template Graph G(N,A) with a node set
N and an arc set A, where the jth node has a normalized
credibility factor value of c¢;. We seek a normalized
scalar aggregation function that approaches zero when
all node credibilities tend to zero and approaches unity
when all node credibilities tend to unity, and does not
require us to take account of the arc set A (which would
require an extensive parameterization of the aggregation
function.)

Since the only data we intend to use in the aggrega-
tion function are the normalized credibility factors c;,
which can be interpreted as individual probabilities of
their corresponding Template Nodes being “true,” we
are motivated to consider the Shannon entropy function
as a convenient starting point for building our aggrega-

tion function. Shannon entropy is very simple to calcu-
late under the assumption that a system has K equiprob-
able states, and is given by H = logK in this case. (The
base of the logarithm is immaterial, as changing bases
only induces a constant factor multiplying H.)

Thus we consider a system having equiprobable
states, where the overall number of states is a decreas-
ing function of the variable x = Z‘j]\ill ¢;, L.e., the more
certain we are of the truth of our composite set of Tem-
plate Nodes (such that x — |N|), the lower the number
of states and hence the smaller the value of H; con-
versely, as the truth probabilities approach zero (x — 0),
the larger the number of states and the larger the value
of H.

A simple function for the number of states K that
satisfies these properties is

V|
K=|N[-) ¢+
j=1

In the two extreme cases, we have
Hmin = H()C = ‘ND = 10gK|cjzl v = IOg(l) = O
H,.. = H(x=0) =logK| oy, =1og(IN[+ D).

max

For all values 0 < x < |N|, we have log(|N|+ 1) >
H(x)>0.

Our desired credibility factor CF (x) for the Template
Graph should range monotonically between zero and
unity as x ranges between its maximum and minimum
values, respectively. The simplest function satisfying
these properties is similar to the work presented by
Pierce and John [28]:

H,.—Hx
CF() =m0 _H(.)
max min

log(|N| + 1) —log <|N| —lel\ﬁl c;+ 1)

log(JN| + 1)

Now let us continue our ongoing example and con-
sider the Template Graph with the same values given
before: ¢ =[0.443,0.55,1,0.01,0.4,0.1,0.15]. Here we
illustrate the entropy approach via example. First, we
must account for which nodes are pointed at which
(the topology of the Template Graph). We will define
our parameter A just as is done in the prior example
in Statistical Mechanics. Using the same routine, we
obtain ¢ =[0.433,0.492,1,0.288,0.7,0.285,0.15]. We
can now use the above equation to find the credibility
factor (CF).

CF(x) = Ho —HX) _ log(IN] + 1)_10g<|N| —Z‘fi‘l ¢+ 1>
YE Hmax_Hmin - 10g(|N| +1)

_ log(8) —log(7—(0.433 +0.492 + 1 + 0.288 + 0.7 + 0.285 + 0.15) + 1)

=0.261.

log(®)

SUDIT ET AL.: INFERD AND ENTROPY FOR SITUATIONAL AWARENESS 15



CF Trend

1 ——1 Node

/ ——2 Nodes
3 Nodes
4 Nodes

——5 Nodes

10 Nodes

% Maximum Cj

Fig. 2.1.3.2.2. CF Trends as node count increases.

Hence we say there is a 26.1% chance that this
particular passenger is a danger to those around him.

As mentioned before, CF is the credibility value of
the Template Graph and represents the likelihood that
the given scenario is taking place. This value is used
to rank the Template Graphs and is a simple indicator
to the analyst helping them in their decision process of
which situations to look into further.

A question can be raised to why a ten node Template
Graph is not ranked as credible as a 1 node Template
Graph when the sum of the credibilities of the nodes
contained within them are at the same percentage level
with respect to the maximum 3, yc;+ (refer to Fig-
ure 2.1.3.2.2). Recall that as this value increases and
decreases we determine the entropy for the graph by de-
creasing and increasing the size of 2, respectively. Each
state in this state space represents a piece of knowl-
edge defining the scenario that has not been detected
in the stream. Templates Graphs with more nodes have
more of these states when at the same .y c;* level,
which makes intuitive sense because we must detect
many more occurrences in the system to be of definite
certainty that it has taken place.

2.1.3.3. Other Credibility Factors

The above stated credibility factor calculations deter-
mine the reliability of information. However, we believe
that although this is a very valuable measure, it is not
all inclusive in terms of aiding the system user to make
a complete decision. There should be more measures
allowing a user to be more well informed of the current
situation.

We provide two examples of possible measures that
can be defined and embedded into a future version of
INFERD. Let’s consider the cyber domain as an exam-
ple. One helpful measure could be “Depth.” Cyber at-
tacks are usually accomplished in a progression toward
an end goal. This progression is understood, and thus
a measure can be defined in order to determine how
far into an attack a hacker may be at a certain time.
This helps explain the current situation (L2 fusion) as
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well as understand possible immediate ramifications of
a continued attack (L3 fusion). Another helpful measure
could be “Breadth” of an attack. Breadth would help un-
derstand the entire scope of an attack, thus providing the
user with information regarding how many possibilities
an attacker would have in the near future.

These credibility measures among others can be very
helpful to a user in terms of both situational awareness
and impact assessment and will be further explored in
future versions of INFERD.

3. CONCLUSIONS AND FURTHER WORK

In this paper we have described our INFERD sys-
tem in a general sense as it can be applied to various
domains depending on the needs of the consumer. We
offer a system that is flexible in that a user can adjust
the functions used at L1 and L2 fusion as well as in-
put their own scenarios as Template Graphs in order
to meet their needs. We describe the JDL definitions
used for information fusion and show how INFERD in-
corporates those steps into its analysis of the system at
hand. We offer two opposing viewpoints at the second
level of fusion (L2) along with the advantages and dis-
advantages of each. The Entropy approach we discuss
is a new and improved approach with direct ties into
information theory as pioneered by Shannon [31].

To initially test INFERD and its fusion capabili-
ties related to the cyber warfare domain, AFRL tasked
Skaion Corporation with the job of generating a num-
ber of synthetic cyber attack traffic data sets labeled
“Blind Tests.” These data sets are actual packet and
IDS alert information generated from attacks that were
run on a virtual computer network with common data
set components such as noise injected in. In this first
test, INFERD was able to handle 86.4 million alerts
over a 24 hour period. These data processing rates are
highly above even large computer networks allowing
us to claim real-time performance. Future tests will be
performed against ground truth information to assess
the “quality” of the generated hypotheses and the sen-
sitivity of the generated hypotheses as a function of the
parameters of the algorithm.

Advancements in the fusion process itself have been
considered and proposed as research for a future phase
of the project. Being able to determine credibilities in a
given system is just a first step in the process of being
able to successfully use that information to perform
a desired task with ones system. In the future, there
will be work done to make INFERD a self-acting, as
well as a self-learning, system. An upcoming stage
of our research will be to determine how to make
INFERD a self-acting engine for various applications,
hence creating a self-governing machine.

Currently, the user of the system must enter the
Template Graphs to be analyzed by INFERD. For many
application domains, it may be necessary to generate
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thousands or tens of thousands of these templates in
order to appropriately analyze the system. Hence, it
would be highly useful to create some sort of automated
Template Generation technique. The next stage of our
research will be to find a method to generate desirable
templates to be inserted into INFERD for analyzing.
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