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Advanced optimization-based algorithms for sensor resource

management have been the research focus area in multisensor track-

ing and fusion in the last decade. These algorithms for the most

part offer the potential for automating the sensor control process

in response to level 1 sensor data fusion (object or track-level) esti-

mates. However, previous studies have indicated that these types of

sensor resource management algorithms may have limited value in

certain operational scenarios involving multi-platform surveillance

and strike missions because the response is optimized for track

maintenance without any assessment of overall situation context.

In this paper, we will develop a framework for representing the

expected information value of planned sensor measurements as it

contributes to higher-level situation inferences. Specifically, a hier-

archical target valuation model that estimates target value on the

basis of not only a level 1 valuation function but also on the basis

of a level 2 valuation function will be presented. These algorithms

will provide for improved tracking and classification performance

when identifying higher-level units such as convoys of vehicles. The

valuation models rely on a computationally efficient implementation

of Bayesian modeling and inference algorithms. Note that the main

focus of the paper is on developing a hierarchical cost function that

captures both level 1 and level 2 objectives and is not on developing

sophisticated techniques for optimizing this objective. Simulation

results which validate the approach are also presented.
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1. INTRODUCTION

Current military Intelligence Surveillance and Re-
connaissance (ISR) systems employ agile, multi-mode
sensors, which are capable of producing variable scan
patterns within a surveillance region in response to ex-
ternal tasking [18]. A number of platforms are currently
available to carry out these missions. For example, long-
range surveillance is accomplished with aircraft capable
of high coverage rate, high signal to noise moving tar-
get indicator (MTI) and high range resolution (HRR)
modes (see Fig. 1). Additionally, these systems can per-
form long dwell synthetic aperture radar scans for pur-
poses of identification. A primary example of such a
sensor is a multi-mode, electronically scanned antenna
radar capable of tasking individual beams in terms of
pointing direction, dwell time, and waveform. As illus-
trated in Fig. 1, an enhanced radar is capable of not only
interleaving various radar beam modes (i.e., wide area
search (WAS), sector search (SS), high range resolution
(HRR), and synthetic aperture radar (SAR)), but will
also be capable of scanning the surveillance region in
an asynchronous fashion as the timeline suggests (e.g.,
irregular revisits could be due to sensor tasking to main-
tain tracks, search new areas, identify high-value targets,
etc.). For such systems, the dynamic management of
sensor mode control requires an automated process due
to the variable timeline for adaptation.
Exploitation of sensor data from multi-mode sensors

is capable of producing tactically significant informa-
tion that can contribute to battlefield situation aware-
ness. The multi-mode sensor data products contribute
attributes of target detection, location, and classifica-
tion together with environmental characteristics related
to clutter. These attributes provide evidence necessary
to produce a fused situation estimate. The challenge
of sensor resource management for such systems is to
characterize the exploitation and data production pro-
cess according to a consistent model that provides for
real-time adaptive sensor management.
In order to support the solution of the sensor man-

agement problem, several different solution approaches
have been previously developed. They include informa-
tion theoretic approaches [14], random set approaches
[12], and the methods based on stochastic dynamic pro-
gramming (SDP) [2—5]. The SDP algorithms were de-
veloped to address the problem of determining the op-
timal time sequencing of the radar’s SAR (for detecting
stationary objects) and MTI modes (for tracking mov-
ing objects) that maximizes the total information value.
A value function is basically a function of low level
tracking and classification quality states. The scheduler
operates in a feedback manner in real time; for example,
as objects are detected by the SAR, they may be elim-
inated from consideration by the scheduler so that the
remaining radar resources can be better focused on only
those objects remaining undetected or needing track im-
provement.
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Fig. 1. Advanced airborne surveillance radars will include capabilities to operate in multiple modes and interleave modes.

The output of the scheduler is to determine for each
instant of time whether the radar should

² operate in the SAR mode to image a single cell (for
a stopped target), or

² operate in the MTI mode to detect and update tracks
on all moving objects, or

² operate in the HRR mode to image a single cell
(for a moving target) in order to obtain identification
information (this is indeed the only way to obtain
classification information), or,

² not be used at all in order to meet some exposure
constraint.

The MTI mode typically requires the shortest dwell
times (and thus consumes the least amount of radar re-
sources); however, it has low range resolution and typi-
cally a low signal to noise ratio. The MTI mode is capa-
ble of detecting targets moving faster than the so-called
minimum detectable velocity (MDV) of the sensor. It
is well suited for problems such as tracking moving
vehicles, characterizing traffic flow, and lines of com-
munication using low-complexity (highest throughput)
algorithms. The HRR mode has slightly longer dwell
times (still shorter than SAR) but offers higher range
resolution and strong signal to noise performance again
for characterizing targets whose velocities exceed the
MDV of the sensor. It has been proven to be useful for
extracting coarse features (e.g. length and width) and
as a tool for low-confidence classification. The HRR
mode is eminently well suited for track maintenance
problems. Finally, the SAR mode is ideal for two di-
mensional, high confidence classifications of stationary
targets as well as change detection.
In the context of the Joint Director of Laboratories

(JDL) terminology [17], it is observed that the track fu-
sion models previously considered only address level 1
fusion (Object Assessment). Previous studies also indi-
cated that sensor resource management algorithms uti-

lizing only level 1 information may have limited value in
certain operational scenarios involving multi-platform
surveillance and strike missions because the response is
optimized for track maintenance without any assessment
of overall situation context [1, 13]. We contend that the
problem of effective SRM for agile, multi-mode sensors
will require improved representations of the process
exploitation through level 2 information to adequately
address the benefits of agile sensor tasking.
In this paper, we present a description of an algo-

rithm that could be used to provide hierarchical target
valuation based on not only level 1 (e.g., object or track)
information, but also level 2 (e.g., groups of objects) in-
formation. This algorithm has the potential to improve
the target valuation function used in a sensor resource
manager by adding a valuation component related to the
ability to identify a group of objects, such as convoys.
This algorithm builds upon earlier results [10] that only
addressed target valuation based on level 1 fusion infor-
mation. The valuation algorithm is based on a Bayesian
approach where a recursive composition inference algo-
rithm was used to compute the hierarchical value func-
tion [10]. We have developed an efficient approximation
algorithm to solve the combinatorial problem present in
the original approach [7—8]. We have also developed an
evaluation environment to analyze the performance of
this valuation algorithm given a set of ground moving
targets. The preliminary simulation results demonstrate
the validity of our approach.
Note that the focus of this paper is on developing

the hierarchical valuation function, not on deriving a
sophisticated optimization algorithm. Essentially, any
appropriate optimization algorithm can be applied to
obtain the optimal solution. Although the stochastic
dynamic programming approach mentioned before [3—
5] seems to be a very suitable one. The remainder of the
paper is organized as follows. Section 2 introduces and
formulates the problem. Section 3 presents a complete
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description of the valuation function and solution pro-
cedure. Section 4 describes the evaluation environment
and the test scenarios followed by a set of simulation
results given in Section 5 to demonstrate the new ap-
proach. Finally, our contribution and future research di-
rections are summarized in Section 6.

2. PROBLEM DESCRIPTION AND SOLUTION
CONCEPTS

Current Intelligence Surveillance and Reconnais-
sance (ISR) sensors can detect and take measurements
on individual entities, such as moving vehicles and in-
stallations. These measurements can be used to infer the
particular class of these individual entities. However,
very few collection assets provide direct measurements
on the hierarchical force structure of units that the en-
tities comprise. Consequently, it is desirable to develop
the capability to produce inferences on the hierarchi-
cal structure of military units based on inferences and
measurements of individual entities and sub-units.
In many cases, the optimality of a sensor allocation

policy is defined in terms of reduced tracking error and
the best policy is determined through the solution of
an optimization problem. While significant progress has
been made in this area in the past, there remain open
issues in the synthesis and validation of an approach to
sensor resource management capable of utilizing high
level fusion information.
A technique that can be used to assess the relative

merit of aggregate force hypotheses from observations
of a set of entities was presented in [10]. The technique
draws inferences about the type of military unit that is
present given partial observations of entities that com-
prise the units. Furthermore, making inferences about
the type of military unit provides contextual informa-
tion that enables improved inference about the type of
individual vehicles. However, it was pointed out in [10]
that the inference process involves intensive computa-
tions where the enumeration of an exponentially grow-
ing set is needed. In general, this could be very time
consuming and may not be practical. In this paper, we
develop an efficient approximate algorithm to resolve
the combinatorial problem.
In a hierarchical data fusion functional model, high

level processing includes estimation and prediction of
relations among entities, force structure and cross force
relations, communications and perceptual influences,
physical context, etc. The goal of this paper is to develop
models that estimate relations among entities which
can contribute to force structure/composition assess-
ment and to do this in a manner that enables the adap-
tive sensor management algorithms that have been pre-
viously developed.
Herein, we present a hierarchical value function

(encompassing both level 1 and level 2 utility) using
Bayesian Networks (BNs) [9] to implement sensor re-
source management algorithms. The valuation function

includes both track level and higher-level (entity, con-
voy, group, scenario, etc.) information. Although sig-
nificant research has been done in the area of sensor
resource management as well as BNs with sensor fusion
applications independently, to our knowledge, these two
technologies have not been previously applied together
to date to solve the higher-level fusion for sensor man-
agement problem.

3. SENSOR RESOURCE MANAGEMENT
ALGORITHMS

As discussed earlier, the sensor has a capability of
determining whether to collect MTI data at a dwell, or
instead to collect HRR data on part of a dwell. The
sensor management decisions will be based on informa-
tion reported by a MHT (Multiple Hypothesis Tracker)
[11, 15] which processes the sensor measurements.1

This MHT also includes an ATR capability [6] which
provides information on object estimated classifications
based on the HRR measurements. The SRM algorithm
can be considered as a controller which uses sensor ac-
tions to control the evolution of the information incorpo-
rated into the MHT algorithm. In order to make “good”
sensor management decisions, it is important to model
this evolution so that the SRM algorithm can predict the
consequences of the alternative decisions.
However, the set of possible information states re-

ported by the MHT for each track is very large. It con-
sists of continuous variables with uncertainty (position,
velocity, etc.), plus a set of probability distributions over
target type, and discrete variables such as number of
missed detection and status. Furthermore, the evolution
of this information is highly uncertain, depending on
the specific values of the future sensor measurements.
For a large number of targets, the set of possible in-
formation states is the cross product of individual target
states, leading to a large-dimensional continuous-valued
state space. Designing feedback controls using such a
state space would not lead to a practical real-time sen-
sor management algorithm. An alternative approach is
to characterize the information relevant to a track us-
ing an aggregate discrete-valued “information quality
state” [1]. The model state has two components: track-
ing and classification quality. Each of these components
can take a discrete number of values; thus, its evolu-
tion in response to sensor actions can be described by
a finite-state Markov chain.

A. Track Quality State

In order to represent the behavior of the tracker al-
gorithm, one way is to represent the track quality as a
combination of tracking quality and classification qual-
ity. For example, in [1], the tracking quality state con-

1Note that the SRM algorithm could take information from any
tracker, not necessary a MHT tracker.
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sists of: Undetected, Detected, New Track, Continuing
Track, Coast 3 to go, Coast 2 to go, Coast 1 to go,2

and Dropped. The transition probabilities between these
Markov states were given by parameters, which depend
on the specific sensor mode being used by the radar,
the sensor beam geometry for the track position indi-
cating its probability of detection, and MHT parame-
ters describing how tracks are nominated, promoted and
dropped.
The target classification quality was modeled using

a similar approach. For example, the classification in-
formation can be aggregated into four confidence lev-
els: Unclassified, Low Confidence, Medium Confidence,
and High Confidence. Note that the classification qual-
ity does not depend on the specific identity of an ob-
ject; instead, it represents confidence in the identity as-
sertion. Thus, the evolution model predicts the confi-
dence improvement which results from specific sensor
actions.
In [1], the transition probabilities of the two models

were treated independently and computed as a function
of the sensor mode separately. However, it is clear that
the tracking and classification quality are correlated and
should not be considered independently. We therefore
develop a joint tracking and classification (JTC) qual-
ity state and develop a Markov model accordingly. By
considering all the feasible combinations, the resulting
model consists of 24 states as shown in Table I. The
values (last column) assigned for each JTC state in Ta-
ble I represent the relative preference of each state by
the user. They are assigned heuristically and can be eas-
ily modified. More on the quality state value will be
described in the next section. The Markov model tran-
sition diagram is shown in Fig. 2 and the corresponding
transition matrix is given in Table II. Each entry in Ta-
ble II represents the transition probability between two
JTC states. Note that each row in the matrix needs to
be normalized in order to make all the outgoing arcs
from a state sum to 1.0. Also note that depending on
the sensor mode, the transition matrix will be obtained
based on the sensor parameters accordingly. The de-
tailed description of the transition probabilities is given
in Appendix A.
Given the representation of the information state de-

scribed above, we can express the sensor management
objectives as follows. First, we define the Tracking and
Classification (TC) quality states and assign a numer-
ical value V(TC state) for every possible TC quality
state. For example, a high numerical value would be
assigned to a tracking quality of Continuing Track and
a classification quality of High Confidence, whereas the
lowest value would be assigned to a tracking quality of
Dropped Track (see Table I). It may be more important
to track objects having a priority classification assess-

2Coast 1 to go is the last tracking quality state before the track will
be dropped.

TABLE I
24 State JTC Markov Model

Index JTC Tracking Classification Values

1 J11 Undetected Unclassified 0
2 J21 Detection Unclassified 1
3 J22 Detection Low confidence 2
4 J31 False Unclassified 0
5 J41 New track Unclassified 2
6 J42 New track Low confidence 3
7 J43 New track Medium confidence 4
8 J51 Continuing track Unclassified 7
9 J52 Continuing track Low confidence 8
10 J53 Continuing track Medium confidence 9
11 J54 Continuing track High confidence 10
12 J61 Coast 3 to go Unclassified 6
13 J62 Coast 3 to go Low confidence 7
14 J63 Coast 3 to go Medium confidence 8
15 J64 Coast 3 to go High confidence 9
16 J71 Coast 2 to go Unclassified 5
17 J72 Coast 2 to go Low confidence 6
18 J73 Coast 2 to go Medium confidence 7
19 J74 Coast 2 to go High confidence 8
20 J81 Coast 1 to go Unclassified 4
21 J82 Coast 1 to go Low confidence 5
22 J83 Coast 1 to go Medium confidence 6
23 J84 Coast 1 to go High confidence 7
24 J91 Dropped track Unclassified 0

ment, such as time critical targets. Thus we assume that
there are values assigned to the different object classes.
We then define an objective function which represents
an overall tracking quality value given a sequence of
sensor manager decisions. Note that the advantage of
this method is that the aggregate Markov chain repre-
sentation of information quality allows for fast predic-
tion of MHT performance. The result is a practical, pre-
dictive model which can be used to evaluate trades be-
tween alternative sensor management decisions in real
time.

B. Sensor Management Objectives

The SRM algorithm is based on an open-loop feed-
back approach. The basic idea is that at frame t, we
generate the desired sequence of decisions for frames t,
t+1, : : : , t+H, where H is the planning horizon, based
on the aggregate evolution represented by the informa-
tion quality Markov chains in Fig. 2. We then collect
the information from frame t, and receive updated track
information from the MHT algorithm. Given this new
information, we repeat the process and select decisions
for frames t+1, t+2, : : : , t+H+1, receive new infor-
mation from the MHT and continue the iteration. Thus
at each frame t, we compute sensor management deci-
sions for several frames ahead, but use only the next
frame’s decisions to resolve the SRM problem. An im-
portant aspect of the sensor management methodology
is that it decides immediate sensor mode commitments
with a view towards how these decisions will affect the
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Fig. 2. Markov transition diagram of the joint tracking and classification quality state.

TABLE II
JTC Markov State Transition Matrix

information state H frames in the future. The size of H
reflects a tradeoff between the desire to account for fu-
ture actions versus the unpredictable evolution of future
target motions. Larger values of H introduce more pre-
diction uncertainty into future target positions, thereby

making it harder to predict the effect of future sensor
actions.
The SRM uses this information as follows. First,

for each SRM track created from an MHT track, the
classification probabilities of each track are used to
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assign a value to this SRM track, as follows:

V(SRM Track) =
X

class2classes
V(class)P(class jMHT Track)

(1)

where class 2 fclassesg represents each of the possible
target classification, V(class) represents the decision
maker’s preference/priority on each target class and is
assumed to be available.
The SRM objective for decisions selected at frame t

is as follows. Given a set of SRM decisions for frames
t, t+1, : : : , t+H, for each SRM track, we can predict the
probability distributions for the track quality state, PQ( ),
after the information from frame t+H is processed.
Denote these decisions as ut,ut+1, : : : ,ut+H , the overall
value of this sequence of decisions is computed as [1],

J(ut,ut+1, : : : ,ut+H)

=
X

SRM Track
2SRM Tracks

V(SRM Track)

£
X
JTC state
2JTC states

PQ(JTC state j SRM Track)V(JTC state)

(2)

where SRM Tracks is the set of all SRM Track and
JTC States is the set of all JTC State. In (2), it is im-
plicit that the track quality probabilities depend on the
sequence of decisions. The SRM objective function de-
scribed above represents an assignment of value to in-
formation quality and to classification of objects. This
formulation couples the values of tracking and classifi-
cation quality.
We will next show how to extend the target valuation

models to include a hierarchical structure. The approach
will be to modify the target valuation function (2) to
include a higher level (cluster or unit) component. We
rewrite (2) as

J(ut,ut+1, : : : ,ut+H)

=
X

SRM Cluster
2SRM Clusters

V(SRM Cluster)

24 X
Cluster Track
2Cluster Tracks

V(Cluster Track)
X
JTC state
2JTC states

P(JTC state j Cluster Track)V(JTC state)
35
(3)

where

V(SRM Cluster)

=
X

Unit types

V(Unit Type)P(Unit Type jCluster Tracks)

(4)
and SMR Cluster is a group of tracks, denoted as
Cluster Tracks, linked together by proximity of a par-
ticular type of military unit.

As shown in (3), a hierarchical target valuation model
is a function of both level 1 (Object Assessment) and
level 2 (Situation Assessment) fusion quantities. The
model is developed as follows:

1. First, we group the current MHT tracks into clusters.

2. For each cluster, we use a force structure model
to infer unit type. We will construct a stochastic
model by representing uncertainty (e.g. detection
probability and unit composition variation).

3. We then develop a unit-level value function in ad-
dition to the entity level tracking and classifica-
tion value functions as shown in (3). Note that the
unit-level valuation function consists of two parts,
V(Unit Type) and P(Unit Type j Cluster Tracks), as
given in (4). V(Unit Type) is the default value spec-
ified by the decision maker based on their pref-
erence/priority on each unit type and P(Unit Type j
Cluster Tracks) is the Unit Type probability given a
set of tracks computed by the BN force structure
model to be discussed in the next section.

C. Bayesian Network Force Structure Model

With Bayes rule, the Unit Type probability given a
cluster of tracks can be computed by,

P(Unit Type j Cluster Tracks)

=
1
c
P(Cluster Tracks jUnit Type)P(Unit Type):

(5)

The solution to (5) represents one of the key contribu-
tions described in [10]. P(Unit Type) represents the prior
probabilities, and P(Cluster Tracks jUnit Type) can be

computed as follows:

P(Cluster Tracks jUnit Type)
=

X
d2D(n,r+1)

P(Cluster Tracks j d)P(d jUnit Type):
(6)

In (6), D(n,r+1) is the set of all possible distributions
of the n detected vehicles into the r+1 possible vehicle
classes (including the false-alarm class), which is a
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Fig. 3. A Bayesian network model for composition inference.

space with (r+1)n elements, P(Cluster Tracks j d) is
the likelihood of tracks classification states given the
specific detection composition d, and P(d jUnit Type) is
the probability of detection composition given the unit
type (see (8)). Note that in (6),

p(Cluster Tracks j d)
=
X
a

p(Cluster Tracks j a)P(a j d)

=
X
a

"
nY
k=1

p(Cluster Track(k) j vk)
#
P(a j d) (7)

where in (7) p(Cluster Track(k) j vk) is the likelihood of
producing a track classification state Cluster Track(k)
given a class vk vehicle, and a is the joint assignment
of a set of vehicles types to a set of tracks. Assuming
all joint assignments consistent with the composition
constraint are equally likely, then

P(a j d) =
½
1=j−(d)j, a 2 −(d)

0, otherwise
where

j−(d)j= Cn(d)n(1;d),:::,n(r;d) =
[n(1;d) + ¢ ¢ ¢+ n(r;d)]!
n(1;d)! ¢ ¢ ¢n(r;d)!

is the set of all joint assignments in which n(v;d) is the
number of detected class v vehicles in d.
Also in (6), from the detection model (for simplicity,

u´Unit Type will be used in the following equations),

P(d j u) = po(n(0;d);¸FA)
rY
v=1

P(n(v;d) j n(v;u)): (8)

In (8), n(0;d) is the number of false detections, n(v;u)
is the number of class º vehicles in a type u unit,3

po(k;¸) = ¸
ke¡¸=k! is the Poisson distribution for false

alarm detection probability, and

P(n(v;d) j n(v;u))

=
min[n(v;u),n(v;d)]X

k=0

B(k;n(v;u),PD(v)) ¢po(n(v;d)¡ k;¸C(v))

(9)

3Note that the composition of each unit type is assumed to be given.

is the probability of target detection with B(k;n,p) =
Cnk p

k(1¡p)n¡k, a Binomial distribution, where ¸C(v) is
the density of confusers of class º vehicle.
To implement the hierarchical valuation function,

one way is to use the BN model constructed based on
(6)—(9) as shown in Fig. 3. Many efficient algorithms
exist for BN probabilistic inference [16]. However, (6)—
(9) involve intensive computations where the enumera-
tion of an exponentially growing set is needed. In gen-
eral, this could be very time consuming and may not
be practical. We have thus developed an approximate
method to simplify the approach, namely,

P(Cluster Tracks jUnit Type)
¼ P(d(Cluster Tracks) jUnit Type) (10)

where d(Cluster Tracks) is defined as the joint detection-
classification state by collapsing all the track classifica-
tion probability distributions into one. Namely,

d(Cluster Tracks) =
X

Cluster Track
2Cluster Tracks

PC(Cluster Track),

where PC(Cluster Track) is the classification probabil-
ity distribution of the track Cluster Track. Note that
d(Cluster Tracks) is the expected number of targets of
each class. Essentially, the approximation amounts to
replacing the distribution over numbers of each vehicle
type by the mean number of each vehicle type. Then

P(d(Cluster Tracks) jUnit Type)

=
rY
v=1

PB(n(v;d(Cluster Tracks)) j n(v;u))

(11)
where PB(n(v;d(Cluster Tracks)) j n(v;u)) is defined sim-
ilarly to (9). However, since d(Cluster Tracks) is a vec-
tor of positive real numbers (not necessary integers), it
may not be possible to perform the calculation in (9).
We therefore approximate it by

PB(n(v;d(Tks)) j n(v;u))¼N(n(v;d(Tks)); n̄,¾2n)
(12)

where N(n; n̄,¾2n) is a Gaussian distribution, n̄= n(v;u)
¢PD(v) +¸C(v) is the expected number of detected class
º targets, and ¾2n =max[¾min,n(v;u)PD(v)(1¡PD(v)) +
¸C(v)] is the approximate associated variance. With
(10)—(12), the composition inference becomes signifi-
cantly simpler and much more efficient to compute.

4. SENSOR RESOURCE MANAGEMENT
EVALUATION ENVIRONMENT

In order to test our target valuation algorithms, we
implemented a simple test system as shown in Fig. 4.
Note that the purpose of this architecture was not to
provide high fidelity modeling conditions; rather, it was
designed to be quickly constructed for the purpose of
evaluating the proof-of-concept target valuation algo-
rithm(s) that were developed in this paper.
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Fig. 4. A SRM system architecture.

The architecture contains an outer loop where at
each instant of time, the system simulator creates and
sends the current scenario information (related to the
targets and sensors) to the simulated tracker. The sim-
ulated tracker then produces the simulated tracks with
proper joint (tracking and classification) quality states
and classification vectors based the Markov transition
model as well as the true target/sensor parameters. The
simulated tracker then sends the track results to the eval-
uator. The evaluator uses the tracking results to deter-
mine the best sensor mode and pointing direction for
next instant of sampling time and sends that decision
back to the system simulator. In the remainder of this
section, we will provide a description of each of the
components in Fig. 4.

A. System Simulator

The system simulator is the overall driver of the
system. It generates the ground truth scenarios including
target trajectories, group/convoy composition, sensor
placements, and sensor observations based on sensor
mode/characteristics, as well as sensor/target geometry.
Note that the two important aspects of the simulator
are: (a) the ability to simulate group/convoy behavior,
and (b) the ability to switch sensor operating modes
based on the information supplied by the Performance
Evaluator and SRM components.
The system simulator sends parameters such as the

number of targets, their locations and classes, group
composition/identity, sensor mode, detection probabil-
ity, false alarm density, target density, and confusion
matrix/classification probability to the Simulated Track-
er. The relative target/sensor geometry (which accounts
for a target dropping below the sensor’s Minimum De-
tectable Velocity (MDV) for MTI) is incorporated by
the system simulator to produce the required operating
parameters.
For simplicity, we leave the burden of represent-

ing the convoys/units to the system simulator. Namely,
the system simulator will send both target and con-
voy/group information to the simulated tracker. In the
simulation, we assume coverage of all targets in the test
scenario area of interest (AOI) when the sensor is in
the MTI mode. On the other hand, the HRR mode has
a more limited FOV depending on the sensor pointing
direction.

B. Simulated Tracker

The purpose of this module is to produce simulated
tracking results for performance evaluation without im-
plementing a real tracker. The simulated tracker receives

inputs such as ground truth, sensor models, etc. from
the system simulator and produce a set of tracks each
with tracking and classification joint quality state. Note
that for every ground truth target, there is a “track”
which will be in one of the joint quality states at each
instance of time. For test and validation purposes, we
did not attempt to use a complete Multiple Hypothe-
sis Tracker (MHT) for tracking moving ground targets.
Rather, the simulated tracker was designed to estimate
the joint tracking and classification quality state for each
target track.
As described in Section 3, the track quality states

behave according to a Finite State Markov transition
model based on sensor mode and operating conditions.
There are three choices available to the SRM: to use
the MTI mode, to use the HRR mode, or to not use
the sensor at all. Each sensor mode represents an action
that the sensor can take to observe targets. Note that this
is a simplified form of the state transitions that were
presented earlier, which were chosen on the basis of
their ease of implementation.
In addition to the joint quality states, in order to

evaluate the track valuation function, each track needs
to have an a posteriori classification probability distri-
bution. The simulated tracker produces the classification
probability vector based on the true target class, previ-
ous track class probability, and the current sensor mode
and operating conditions. For example, at the beginning
of the simulation, each track is at untracked/unclassified
state with a uniform classification probability. Depend-
ing on the sensor mode (of the next sampling time)
and operating characteristics, the track quality state at
the next sampling time will be simulated stochastically
based on a Finite State Markov transition model. The
track classification probability is also updated (accrued
over time) using the confusion matrix of the particu-
lar sensor mode and the simulated sensor observations.
For example, the confusion matrix for GMTI mode is a
matrix consisting of uniform probabilities since GMTI
mode has no ability to classify target. On the other hand,
each row of the HRR mode confusion matrix is the
probability of observed classification given a true tar-
get class. Note that for the kinematic state, the simu-
lated tracker does not represent the tracks in the target
state space, but rather only on the quality state space.
The simulated tracker then sends the track results to the
evaluator.

C. Performance Evaluator

As mentioned previously, larger values of H (the
planning horizon) introduce more prediction uncertainty
into future target positions, thereby making it harder to
predict the effect of future sensor actions. However, for
test purpose we assumed that H = 1, (i.e., a one-step
look ahead) in order to simplify the implementation (this
avoids the need for implementing a dynamic program-
ming algorithm) and to focus on validating the higher
level valuation algorithm.
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The evaluator receives track results from the sim-
ulated tracker. In the results, there is a set of clus-
ters/groups/convoys where each group contains a set
of tracks. As described before, each track has a joint
quality state and a classification probability vector. The
evaluator will use the track results to determine the best
sensor mode and pointing direction for the next detec-
tion time. In order to do so, in addition to the informa-
tion from the tracker, truth-related domain knowledge
such as unit composition, decision maker’s preference
value (for each target class and convoy/unit type) are
needed as well. The evaluator first finds all the possi-
ble detected compositions (based on the possible unit
types) and map these to the track compositions of each
cluster, which are produced by the simulated tracker. It
then computes the value function based on a hierarchi-
cal Bayesian model/inference (as described in Section
3) which takes into account the track classification like-
lihood of a joint state assignment. The evaluator then
produces a best sensor mode decision (HRR or MTI)
and pointing direction based on the resulting informa-
tion value and sends these decisions back to the SRM to
be used by the system simulator for the next sampling
time.
Note that to evaluate the overall system performance,

the probability distributions of each unit and individual
target are produced by the simulated tracker based on
the selected sensor decision. The tracking results are
then averaged over multiple Monte Carlo runs as will
be described in the next section.

5. SIMULATION RESULTS

We implemented the system described in Fig. 4
and also defined a set of metrics that can be used for
evaluation purposes:

² Sensor allocated resources–the percentage of time
that the sensor is operating in HRR mode (HRR Rate)

² Average probability of correct unit classification–the
average correct unit classification probability over the
simulation time (Pcc)

² Average percentage of correctly identified targets–
the average percentage of correct target classification
in each unit over the simulation time (Trk Rate)

In order to test these algorithms, we implemented a
simple ground moving target scenario containing con-
voy units, each consisting of a different combination of
target types. There are a total of 4 possible types of unit:
Scud (class 1), C2 (class 2), Tank (class 3), and Un-
known, as well as 6 target classes: UAZ-469 (class 1),
ZIL-151 (class 2), GAZ-66 (class 3), MAZ-543 (class
4), T-72 (class 5), and Other (class 6). However, in this
particular scenario, ground truth only contains two units
and four target classes: unit 1 (containing 2 UAZ-469
vehicles, as well as one of ZIL-151, GAZ-66, and MAZ-
543 each) and unit 2 (containing 5 UAZ-469 vehicles).
The parameters used for the simulation are sum-

marized in Appendix B. We made several test trials

with different value functions and strategies. Specifi-
cally, in each of the combinations below, the notation
“Case xy” refers to x= unit type and y = target class.
Also, the notation [a b c d] refers to the valuation
of each unit (since there are 4 possible units for this
particular scenario) and the notation [a b c d e f g]
similarly refers to the valuation of individual targets,
since there are 6 possible targets. Note that for sim-
plicity, the target valuation is assumed to be a “binary”
variable (i.e., valued at either 0 or 1); other combina-
tions of target values are certainly possible, but were
not considered here. This means that, for this particu-
lar scenario, there are a total of 15 possible combina-
tions, as follows: 2 (unit classes) ¤ 4 (target classes) +
4 (level 1 valuation only) +2 (level 2 valuation only) +
1 (neither level 1 nor level 2 valuation) = 15. Also, we
assume the cost of using the HRR mode is about twice
as expensive than the MTI mode.

Level 1 value function only, unit class value [1 1 1 1]
² Case 01: Focus on target class 1, track class value:
[1 0 0 0 0 0]

² Case 02: Focus on target class 2, track class value:
[0 1 0 0 0 0]

² Case 03: Focus on target class 3, track class value:
[0 0 1 0 0 0]

² Case 04: Focus on target class 4, track class value:
[0 0 0 1 0 0]

Level 2 value function only, target class value [1 1 1 1 1 1]
² Case 10: Focus on unit class 1, unit class value:
[1 0 0 0]

² Case 20: Focus on unit class 2, unit class value:
[0 1 0 0]

Level 1 and 2 value functions
² Case 11: Focus on unit class 1, [1 0 0 0], and target
class 1, [1 0 0 0 0 0]

² Case 12: Focus on unit class 1, [1 0 0 0], and target
class 2, [0 1 0 0 0 0]

² Case 13: Focus on unit class 1, [1 0 0 0], and target
class 3, [0 0 1 0 0 0]

² Case 14: Focus on unit class 1, [1 0 0 0], and target
class 4, [0 0 0 1 0 0]

² Case 21: Focus on unit class 2, [0 1 0 0], and target
class 1, [1 0 0 0 0 0]

² Case 22: Focus on unit class 2, [0 1 0 0], and target
class 2, [0 1 0 0 0 0]

² Case 23: Focus on unit class 2, [0 1 0 0], and target
class 3, [0 0 1 0 0 0]

² Case 24: Focus on unit class 2, [0 1 0 0], and target
class 4, [0 0 0 1 0 0]

Neither level 1 nor level 2 value functions
² Case 00: unit class value, [1 1 1 1], and target class
value, [1 1 1 1 1 1]

Note that for Case 00, in order to ignore target (or
unit) value, all of the entities are equally valued and
have a value of 1, e.g., a target class of [1 1 1 1 1 1].
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TABLE III
Performance Results using Only Level 1 Value Function

Case HRR U1 Rate HRR U2 Rate U1 Avg Pcc U2 Avg Pcc U1 Trk Rate U2 Trk Rate

00 0.0032 0.0020 0.5671 0.5466 0.3173 0.3140
01 0.0000 0.0260 0.5000 0.8596 0.2500 0.8585
02 0.0036 0.0000 0.5838 0.5000 0.3405 0.2500
03 0.0068 0.0000 0.6502 0.5000 0.4242 0.2500
04 0.0076 0.0000 0.6656 0.5000 0.4243 0.2500

TABLE IV
Performance Results using Only Level 2 Value Functions

Case HRR U1 Rate HRR U2 Rate U1 Avg Pcc U2 Avg Pcc U1 Trk Rate U2 Trk Rate

00 0.0032 0.0020 0.5671 0.5466 0.3173 0.3140
10 0.0236 0.0000 0.9746 0.5000 0.8150 0.2500
20 0.0000 0.0236 0.5000 0.8925 0.2500 0.7777

TABLE V
Performance Results using Both Level 1 and Level 2 Value Functions

Case HRR U1 Rate HRR U2 Rate U1 Avg Pcc U2 Avg Pcc U1 Trk Rate U2 Trk Rate

10 0.0236 0.0000 0.9746 0.5000 0.8150 0.2500
11 0.0240 0.0000 0.9868 0.5000 0.8162 0.2500
12 0.0224 0.0000 0.9127 0.5000 0.7482 0.2500
13 0.0212 0.0000 0.9181 0.5000 0.7790 0.2500
14 0.0244 0.0000 0.9695 0.5000 0.8148 0.2500
20 0.0000 0.0236 0.5000 0.8925 0.2500 0.7777
21 0.0000 0.0336 0.5000 0.9288 0.2500 0.9088
22 0.0008 0.0056 0.5182 0.6089 0.2721 0.3922
23 0.0000 0.0048 0.5000 0.5730 0.2500 0.3586
24 0.0004 0.0068 0.5000 0.6219 0.2500 0.4301

With 50 Monte Carlo simulations, the average per-
formance for several different cases are summarized in
the following tables. Table III shows the performance
results using only level 1 valuation functions. Note
that case 00, by definition, contains neither level 1 nor
level 2 valuation functions. In the table, the HRR rates
(percentage of time spent in HRR mode versus GMTI
mode) for unit 1 and unit 2 are shown in columns 2 and
3, average correct classification probabilities for unit 1
and unit 2 are given in cloumns 4 and 5, and the average
correct track classification probabilities of each unit are
shown in the last two cloumns respectively.
The results show that the classification performance

of both units are in the range of 50—60%. Both unit
1 and unit 2 classifications improve somewhat when
adding the “right” level 1 valuation. For example, when
adding target class 2, 3, and 4 valuation functions, unit 1
classification increases from 50+% to around 60+%
while unit 2 classification drop slightly from 55% to
50%. Similarly, when adding a target class 1 valuation
function, unit 1 classification decreases to 50% while
unit 2 classification increases significantly to 86%. This
is understandable since unit 1 consists of all 4 classes
of targets and unit 2 contains only class 1 targets.
Table IV shows the corresponding performance re-

sults using only level 2 value functions. It can be

seen that the classification performance improves sig-
nificantly compared to the level 1 performance. For
example, for case 10, since the emphasis (i.e., valua-
tion) is on unit 1, the resulting sensor strategy improves
the unit 1 classification performance significantly from
57% to 97%. Similarly, for case 20, unit 2 classifica-
tion increases from 55% to 89%. Note here that the
track level classification probabilities also improve sig-
nificantly from around 30% to 80% despite no level 1
valuation being used.
Table V shows the performance results using both

level 1 and level 2 value functions. It can be seen
that the classification performance values are similar to
those obtained using only level 2 value functions. For
example, in cases 11 through 14, since the emphasis is
on unit 1, the unit 1 classification performance is similar
to that of case 10. However, for cases 21 through 24,
only case 21 performs similarly to case 20–the others
perform significantly worse in being able to classify
unit 2. This is because, interestingly enough, unit 2
includes only target class 1. Adding a level 1 track
value function of the other target class (not included
in unit 2) not only does not help in classifying unit 2,
but it also manages to confuse the sensor manager and
subsequently deteriorates the performance (relative to
case 20) significantly.
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Fig. 5. Unit 1 average Pcc with level 1 and level 2 valuation
functions.

Fig. 6. Unit 2 average Pcc with level 1 and level 2 valuation
functions.

Another useful comparison is to determine the pos-
sible benefit of adding a level 2 valuation function to the
level 1 function. This comparison is particularly relevant
because use of level 1 (target-based) valuation can be
considered to be the typical baseline or current operating
mode for most sensor management systems. In order to
perform this comparison, we extract comparable por-
tions of Table III and Table V and display these values
in Figs. 5 and 6, where the comparison is between case
0n with cases 1n and 2n respectively, where n= 1, : : : ,4.
Note that case 0n represents level 1 valuation that em-
phasizes target class n and case jn represents level 1
and level 2 valuations that emphasize unit type j and
target class n.
As seen from the figures, in all 4 cases, unit 1

Pcc improve significantly (from about 60% to 90%)
when adding level 2 valuation function. However, the
unit 2 Pcc only improve moderately (about 10%) when
adding a level 2 function that emphasizes unit 2 valua-
tion. Again, this is because unit 2 consists of only target
type 1, the combination of “inconsistent” unit level and
target level values (such as 22, 23, and 24) simply will
not help the classification performance.

In summary, as seen in the results, by adding a
level 2 valuation function, the performance improves
significantly. Particularly, without level 2 function, the
performance for unit level classification is mostly un-
satisfactory. It is interesting to note that, with a level 2
valuation function, the track level performance also im-
prove slightly when the objective functions of the two
levels are consistent. When the objective functions are
inconsistent or contradictory as we described above, the
performance may not improve as expected. Note that
since we are not comparing performance between the
proposed approach and an alternative baseline, the nu-
merical results imply, not so much that performance uni-
formly improves when optimizing the proposed objec-
tive criterion but that the objective criterion is a reason-
able one to optimize to meet both level 1 and 2 fusion
objectives.

6. SUMMARY

In this paper, we have presented an approach for dy-
namically choosing sensor mode and pointing direction
based on both level 1 and level 2 information. Specif-
ically, a hierarchical target valuation model based on
track quality value was presented. The valuation algo-
rithm relies on a Bayesian approach where a recursive
composition inference algorithm was used to compute
the hierarchical valuation function. This approach not
only will provide for adequate object identification and
tracking performance, but also can provide the ability
to be able to identify higher-level entities such as con-
voys.
We have also developed an evaluation environment

to analyze the performance of this valuation algorithm
given a set of ground moving targets. The preliminary
simulation results demonstrate the validity of our ap-
proach. In order to completely validate algorithm per-
formance, it will be necessary to implement the algo-
rithm in a higher fidelity modeling environment, in-
cluding more complex algorithms for the tracker and
SRM. Nevertheless, the algorithms presented in this pa-
per represent a significant step toward efficient sensor
management using higher level valuation and objec-
tive functions. Some useful future research directions
include extending the hierarchical valuation model to
account for level 3 (eg., intent assessment) function and
developing a analytical prediction model to estimate the
SRM performance without extensive Monte Carlo sim-
ulations.

APPENDIX A

The parameters in the transition matrix of the track-
ing and classification quality Markov chains are defined
as the follows.
(1) a1 = PnewPd (object, sensor mode), u1 = 1¡ a1,

s1 = 0, when a potential track is covered by the sensor
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beam, where Pnew is the probability of new target arrivals
per unit position, and Pd is the probability of detection
calculated based on the relative predicted target-sensor
geometry and the sensor mode as well as the target
radial velocity (for MDV purposes).
(2) u1 = a1 = 0 and s1 = 1 when a potential track is

not covered by the sensor.
(3) a3 = Pd (object, sensor mode) is the probability

that a second beam look results in an initial track,
u3 = 1¡ a3.
(4) a2 = Pd (object, sensor mode), r2 = 1¡ a2, s2 = 0,

when the object is covered by the sensor beam.
(5) When the object is unobservable, a2 = 0, r2 =

rate, s2 = 1¡ r2, where rate= 3Fd=Tdrop is the probabil-
ity an unobservable object will reach the dropped state
in Tdrop expected time. Note that Fd is the frame duration
and Tdrop is the maximum time that a track can be kept
coasting before the MHT algorithm drops the track.
(6) a4 (HRR) = Pimprove, a4 (MTI) = 0, s4 = 1¡ a4

where Pimprove is the probability that classification quality
will improve if an HRR model is used.
(7) u4 (MTI) = Pdegrade, u4 (HRR) = 0, s5 = 1¡ a4¡

u4, s6 = 1¡ u4 where Pdegrade is the probability that
classification quality will degrade if an MTI model
is used.

APPENDIX B

The parameters in the simulation are given as the
follows.
(1) probability of detection: Pd (GMTI) = 0:9,

Pd (HRR) = 0:5
(2) probability of classification: PC (GMTI) = 1=n,

PC (HRR) = 0:9
4

(3) probability of new target arrivals per unit posi-
tion: Pnew = 0:1
(4) the probability that classification quality will

improve with HRR mode: Pimprove = 0:8
(5) the probability that classification quality will

degrade with GMTI mode: Pdegrade = 0:8
(6) the probability an unobservable object will reach

the dropped state: rate= 0:1
(7) the values of joint quality state: given in the last

column of Table I.
(8) Decision maker’s preference value for each

tareget and unit: varied in each test case, see Sec-
tion 5.
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