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Analysis of Costs for the GNP
Problem

MARK LEVEDAHL
JOHN D. GLASS

Track-to-track data association in a multisensor framework

involves score functions to determine a solution. When sensor er-

rors include both random noise and unknown bias terms, several

options are available. Of these, two options are the global near-

est pattern match (GNPM) and marginal track-to-track association

(MTTA) scores. The former involves a joint likelihood of bias and

association hypothesis and the latter is the result of integrating the

total probability space over the unknown bias to remove the bias

likelihood. Analytically, we show that the difference between these

scores is the determinant of the a-posteriori bias covariance, and

that the same bias estimation is inherent in both. Using a simple

numerical example, we compare the weight each score formulation

apportions to track assignment hypotheses based on the quality of

the bias estimate, and show that GNPM tends to favor hypothe-

ses with low a-posteriori bias covariance. Additionally, through eval-

uation of the incremental cost structure, we argue that the non-

assignment cost used in both scores is nearly optimal, in the sense of

correct associations, for GNPM. However, the same non-assignment

cost is not optimal for the MTTA score, and the significance depends

upon the uncertainty of bias and the number of associations made.

I. INTRODUCTION

ASSOCIATING sets of observations from sensor
systems is fundamental in multi-sensor tracking. With
reliable multi-sensor track assignment, track fusion can
achieve improved accuracy and allow handover of data
from one sensor to another [4]. Furthermore, distributed
sensor systems allow coverage of larger areas with differ-
ent viewing angles and facilitate the formation of a com-
plete track picture [6]. Basic complications that prohibit
perfect track-to-track association are unknown residual
bias errors, random errors contained in the observations
of a sensor, unknown true target motion, and hetero-
geneous sensor coverage. Residual bias may arise from
imperfections in sensor registration, transformation er-
rors, and other sources, whereas random errors arise
from stochastic effects of sensor systems such as ther-
mal noise. Missed detections are often the result of sen-
sor sensitivity/phenomenology and other aspects such
as sensor resolution, thus causing heterogeneous sensor
coverage.Unknown target motionmay also induce error
in the estimated track state, regardless of other errors,
yielding cross-correlated error across sensors. Mathe-
matical models of these sensor errors form the founda-
tion of modern track-to-track association algorithms.

Track association in a multisensor framework in-
volves score functions to assess alternate association hy-
potheses. Any hypothesized association of tracks im-
plies a set of observed targets and locations, with the
score function providing the probability the given tracks
arise from common targets specified by the association
hypothesis. These score functions in general have un-
known, possibly random, parameters (e.g., location of
targets) implicitly set such that the score is maximized at
the observed values [12], [13],and thus evaluate howwell
each hypothesis fits the data. The classic formulation is
termed the global nearest neighbor (GNN) problem and
addresses randomerrorswith heterogeneous sensor cov-
erage, but assumes independent errors per track, ignor-
ing bias errors [5], [6], [16]. Since the assignment score
of a track tuple is independent of others, GNN is an
N-D assignment problem with costs in the form of nega-
tive log-likelihoods based on assumed statistical models.
Solving the two-sensor case is very efficient with solvers
such as the auction or Jonker–Volgenant–Castanon al-
gorithms. For a survey on solution methods to GNN see
[22]. To handle heterogeneous sensor coverage, GNN
algorithms include the cost of particular tracks not as-
signing, based on a-priori assumptions by which targets
may appear. Uniform spatial distribution of targets in
the surveillance volume with the total number of targets
as Poisson distributed are standard assumptions in the
literature.

When multiple sensors track the same target, errors
of those tracks can become cross-correlated, assuming
these errors arise due to common process noise. The
basic ideas are in [2], including discussion of handling
more than two sensors. As shown in [2], the scores of
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track tuples remain independent with inclusion of cross-
correlated errors of this form, maintaining the ability
to use GNN solution methods. A more difficult prob-
lem arises when there are cross-correlated errors across
a set of tracks from a sensor, herein called “bias” er-
rors, though these errors need not be time-invariant nor
100% cross-correlated. This problem is very important
when the magnitude of the residual bias errors is signifi-
cant compared to the sum of target spacing and indepen-
dent errors in tracks. A simple mitigation with a GNN
algorithm is to inflate covariances to cover both the ran-
dom errors and the residual bias. However, as shown in
[16], the method of covariance inflation gives poor asso-
ciation performance as the magnitude of bias grows.Ap-
proaches that are more sophisticated attempt to recog-
nize the bias and provide specific treatment. Early tech-
niques involved sequential methods that first attempt to
estimate and remove the bias, then use GNN as if the
tracks are unbiased [24]. More recent techniques jointly
solve for residual bias and assignments within the math-
ematical formulation of the problem.

A full treatment of bias errors requires different scor-
ing functions than used in GNN. The global nearest pat-
tern match (GNPM) function, presented in [16] for the
case of two sensors, includes the most probable bias per
hypothesis in the score.A variant of this approach based
upon marginalizing the bias estimate, termed marginal-
ized track-to-track association (MTTA), is presented in
[20], again for the case of two sensors. These scoring
functions facilitate solutions to what we call the global
nearest pattern (GNP) problem. Compared to early so-
lutions to the GNP problem that focused on indepen-
dent bias estimation and assignment steps, the novelty of
GNPM and MTTA is in the explicit treatment of sensor
bias in the scoring functions, leading to joint assignment
and bias estimation [16], [20].As shown in [16], this joint
approach can provide significantly improved data asso-
ciation performance compared to GNN even when bias
errors are a small fraction of the independent random
errors.The work of [7] and [14] extends theGNPM func-
tion for the N-sensor case, including cross-correlation
due to process noise.

The GNP assignment problem is much more difficult
to solve than the related GNN problem as the costs are
not separable into independent costs per track pair. In-
stead, GNP gives coupled costs based upon the hypoth-
esis dependent bias estimate, breaking the assumption
underlying use of standard assignment solvers for this
problem. For problems with only a handful of hypothe-
ses to choose from, a feasible solution is to enumerate
and score all. However, in many real-world cases, this
approach is infeasible. The 6 × 8 association problem
we investigate in Section III gives 93,289 possible hy-
potheses, illustrating how even a handful of tracks give a
high number of total hypotheses. Addressing this prob-
lem, Levedahl in [17] provides a Dijkstra shortest path
technique for providing the K-best solutions to the GNP
problem, applicable to both the GNPM and MTTA cost

functions, and discuses performance (both runtime and
accuracy) compared to GNN in [16]. Papageorgiou in
[21] provides additional specialized mathematical pro-
grams for solving these problems, again including dis-
cussion of accuracy and runtime issues. The techniques
discussed above have proved practical and useful in real
time for problems much larger than the 6 × 8 problem
included here.

It is worth noting that, in general, these techniques
assume the targets within a single GNP problem have a
common bias offset represented in the same dimension
of the state space. Strictly speaking, the assumption of
a common relative bias offset to the sets of data is sel-
dom true in practice. For example, a registration bias is
often modeled as additive constants in the measurement
space of range and angle as in [19], which affects Carte-
sian tracks in a non-linear fashion. Thus, a small azimuth
bias δθ affects position as rangemultiplied by δθ ,but also
the velocity as the latter vector estimate has been rotated
by δθ . So long as the targets are not widely dispersed,
an assumption of common bias is reasonable. We pre-
fer to think of the common bias assumption as a linear
approximation of a non-linear bias model about the cen-
troid of the targets of interest. Conversely, a non-linear
bias model of specific range and azimuth offsets for each
sensor needs wide dispersion among targets to yield
favorable observability [19], and requires non-linear
estimation techniques. In addition, widely dispersed tar-
gets tend to unambiguous association problems where
GNN covariance inflation approaches may suffice. GNP
methods are appropriate where bias errors are signifi-
cant compared to the noise error and inter-target spac-
ing, and targets in the problem are not widely dispersed
such that the common bias model is unreasonable. Re-
gardless, the common bias representation is an approxi-
mation made by numerous authors, including [7], [8], [9],
[14], [16], [17], [20], and [24], and is the focus of this work.
We leave any extensions to non-linear bias models as fu-
ture work, in part because such extensions preclude the
closed-form solutions essential to the comparisonsmade
in this paper.

The key objective of this paper is to understand the
full mathematical foundation and relationship ofGNPM
and MTTA, along with sound mathematical rationale
for selection between them. Therefore, we ignore any
extension to greater than two sensors, and ignore any
extension to general cross-correlated errors beyond sen-
sor bias. Generally speaking, GNPM assumes that the
most probable bias is a key variable in the association
problem, while MTTA treats bias as a nuisance parame-
ter andmarginalizes bias in the score. Ferry in [8] and [9]
also makes arguments based in Bayesian methodology
in agreement with Papageorgiou’s treatment of bias, but
Ferry incorporates fundamentally different a-priori tar-
get assumptions, most importantly that targets appear
spatially according to a Gaussian distribution rather
than uniform as GNPM/MTTA assumes. A benefit
of the Gaussian assumption is closed-form integrals
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rather than the approximations needed for the uni-
form case, but results in equations much more complex
than GNPM/MTTA and are hard to decompose in a
fashion that allow efficient solution. We note that the
perceived value of bias marginalization by the authors
of [20] is in ambiguity management, claiming that bias
likelihood can be a corrupting presence in correctly
determining the probabilities of various association
hypotheses. Other authors have attributed the difficulty
of reliable probability determination to the integral
approximations inherent in the posterior [15], precisely
the integral targeted in the work of Ferry in [8] and
[9]. Although the work of [15] demonstrates that this
integral approximation becomes less accurate in dense
target scenarios where ambiguity management is crit-
ical, the role this integral plays was not discussed in
[20]. We further note that the key metric used in this
work, association accuracy, directly scores whether the
highest probability hypothesis is most correct, and is a
necessary but insufficient criterion to achieving correct
hypothesis probabilities. For the problems investigated
here, our findings show MTTA is sometimes worse, and
never better, than GNPM in association accuracy.

We investigate GNPM/MTTA against the key crite-
rion of maximizing the number of correct assignments,
as that is the fundamental objective of data association.
In Section II of this contribution, we start from the basic
assumptions of the track association problem in the pres-
ence of bias to derive the exact difference between the
GNPMandMTTA score functions.A part of this deriva-
tion includes expressing the GNPM and MTTA scores
as a new, yet equivalent, stacked Gaussian density equa-
tion. We show that although MTTA has the bias term
removed through integration, the same relative bias es-
timation of GNPM is implicit in the MTTA assignment
score. Intuitively, we show that the difference between
the two scores is the determinant of the covariance of
the a-posteriori bias estimate, very similar to the conclu-
sionsmade in [12] formarginalization of target locations.
Leveraging this result, in Section III we elaborate on
the practical differences between theGNPMandMTTA
scores through analytic and numerical examples. Crit-
ically, we evaluate association performance for various
non-assignment costs and show that the non-assignment
cost often cited in the GNN/GNP literature is nearly op-
timal for GNPM in the sense of maximizing the proba-
bility of correct association.However, as the uncertainty
of residual bias grows, this non-assignment cost can be
far from optimal for MTTA. The covariance of the a-
posteriori bias estimate in theMTTAcost is precisely the
source of sub-optimal assignment performance, there-
fore any adjustments made toMTTA that maximize cor-
rect assignments give GNPM. Our findings show that
GNPM can be much more accurate than MTTA for few
assignments or large bias errors, and MTTA is never
more accurate than GNPM. Therefore, we recommend
the use of GNPM for the problems described here. We
provide concluding remarks in Section IV.

II. GNP SCORES AND COSTS

In this section,we start froma basicmathematical de-
scription of the track association problem and derive the
necessary total and conditional distributions required to
reveal the relationship between the GNPM and MTTA
assignment scores. For the nomenclature used in this pa-
per, N (μ, �) denotes a multivariate normal distribu-
tion of mean μ and covariance �. All vectors are as-
sumed column vectors denoted in lowercase bold, and
matrices are uppercase bold. To reduce nomenclature
complexity, we use 0 to denote either the zero matrix or
the zero vector, which is obvious in the context of usage.

A. Observation Model

Assume nt targets denoted as xt, t = 1, ..,nt , ob-
served by sensors A and B, each observing a potentially
different subset of targets.Assume sensorA developsm
distinct observations and B develops n distinct observa-
tions with no false or redundant observations from ei-
ther sensor. Without loss of generality, assume the ob-
servations satisfy m ≤ n ≤ nt . Sensor A observations
are corrupted by zero-mean random noise with covari-
ance SA,i, uncorrelated for each observation. Therefore
the observations from A take the form

xAi = xαi + nAi , (1)

p
(
nAi
) = N (0, SA,i) , (2)

where αi is an unknown index to the target tracked. Ob-
servations from sensor B follow a similar model but with
errors specific to that sensor including an unknown rel-
ative bias term b. Therefore

xBj = xη j − b + nBj , (3)

p
(
nBj
)

= N (0, SB, j) , (4)

where η j is an unknown index to the target tracked for
sensor B. The single relative bias term (relative to the
coordinate frame of sensor A) is assumed common to
all observations from sensor B and has the probability
distribution

p (b) = N (0, R) . (5)

The covariances SA,i, SB, j, and R are all assumed
to be symmetric positive-definite matrices, and the di-
mension of all sensor observations is assumed to be of
dimension d.

The goal of track-to-track assignment is to determine
the underlying truth commonality in the observations.
Truth commonality is represented as the i and j indexes
such that αi = η j. Since the actual ordering of the tar-
gets is arbitrary and unknown, we equivalently seek the
assignment of tracks from sensor A to sensor B. Define
the assignment vector as h = [h1 . . . hm]T of length m
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where the ith element indicates the index in B that is as-
signed to the ith observation in A. Unassigned observa-
tions inA are indicated with an hi of zero. Therefore, let
J = {i : hi �= 0} be the set of assigned track indexes and
na = |J | be the number of assignments in h.Assuming a
uniform prior on each xi location and that the number of
targets in the surveillance volume is Poisson distributed,
following the derivation in [14], the posterior probability
of an assignment hypothesis and bias can be written as1

Pr
(
h, b|xA1 , .., xAm, xB1 , .., xBn

)
= C

1√|2πR|e
− 1

2 b
TR−1b

× (βPAB̄)
n−na (βPĀB)

m−na (βPAB)
na (6)

×
∏
i∈J

1√|2πSi|
e− 1

2 (x
�
i −b)TS−1

i (x�
i −b),

with the difference terms and associated covariances
expressed as

x�
i = xAi − xBhi ,

Si = SA,i + SB,hi ,
(7)

for all i ∈ J . The β term is the spatial density of the
targets, PAB is the probability that both sensor A and B
observe a target,PAB̄ is the probability that sensorA but
not B observe a target, PĀB is the probability that sen-
sor B but not A observe a target, andC is a normalizing
constant.2 Of significance in (6) is the sufficient statis-
tic of an assignment hypothesis as the absolute differ-
ence between the track states, x�

i . As noted in Corol-
lary 1 of [14], incorporation of cross-correlated errors be-
tween xAi and xBhi due to common process noise involves
a simple subtraction term to Si, which can be easily in-
serted into (7). We choose to leave that term omitted
since we have not studied the effects of common pro-
cess noise in our numerical simulations, but anticipate
no impact upon the conclusions reached. As will be dis-
cussed in upcoming sections, GNPM is the joint poste-
rior of (6), while MTTA requires the additional step of
marginalizing b.

B. Probability Distributions of Bias and Errors

Any joint probability density has an equivalencewith
marginal and conditional densities. Block forms of the

1The authors in [14] generalized to more than two sensors, with a sep-
arate bias term per sensor instead of a single relative bias.
2A slight distinction with the derivation in [14] is the detection proba-
bilities as hypothesized in h, which are conditioned on the event that
at least one sensor detected the target (i.e., undetected targets do not
enter the assignment problem). Some authors have also made this dis-
tinction explicit as in [11] or [18].We also note thatC scales all hypoth-
esis scores equally so is not needed for finding the best hypothesis, and
in general is not determined as doing so may require enumerating all
possible assignment hypotheses.

random vectors described in the observation model al-
low the use of the fundamental equations of linear es-
timation [3] to give marginal and conditional densities.
Defining γ = [γ1, . . . , γna ] to be a length na vector that
contains an ordering of the indices inJ , the stacked vec-
tor of absolute differences of assigned tracks from (7) as

x� =

⎡⎢⎢⎣
x�

γ1

...

x�
γna

⎤⎥⎥⎦ , (8)

and the block identity matrix as

H =

⎡⎢⎢⎣
I
...

I

⎤⎥⎥⎦ , (9)

with na blocks of d × d identity matrices, the follow-
ing marginal and conditional distributions are derived in
Appendix A:

p (x�) = N (0, Qx�
) , (10)

p(x�|b) = N
(
μx�|b, Qx�|b

)
, (11)

p (b|x�) = N
(
μb|x�

, Qb|x�

)
, (12)

with the corresponding elements as

Qx�
= Qx�|b + HRHT , (13)

μx�|b = Hb, (14)

Qx�|b =

⎡⎢⎢⎢⎣
Sγ1 0 0

0
... 0

0 0 Sγna

⎤⎥⎥⎥⎦ , (15)

μb|x�
= PT

bx�
Q−1

x�
x� (16)

Qb|x�
= R − PT

bx�
Q−1

x�
Pbx�

, (17)

Pbx�
= HR. (18)

Each of these probability densities relate to the likeli-
hood of a track assignment hypothesis and bias. Upon
conversion into the block structure, (11) is the final term
in (6), therefore

Pr
(
h, b|xA1 , ..xAm, xB1 , ..xBn

)
= C(βPAB̄)

n−na (βPĀB)
m−na (βPAB)

na p (x�|b) p (b)
.

(19)
It is worth noting that p(x�|b) in (19) is the like-

lihood function of the bias and hypothesis given the
data, although the conditioning term only mentions b.
By inspection of (7), the x� notation depends on the
hypothesis, and therefore we do not add h as a condi-
tioning term. We use the p(x�|b) notation to identify
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that the likelihood is a function of the differences of as-
signed tracks in a particular hypothesis, in addition to
simplicity compared to the more formal, yet equivalent,
p(xA1 , ..xAm, xB1 , ..xBn |h, b). Careful readers may also no-
tice that (19) is not written explicitly as a function of
p(h). However, following the derivation in [14] p(h) is
part of the product of scalar terms in (19). More specif-
ically, the derivation of (6) in [14] involves conditioning
h to the abstract αi and η j indices from (1) and (3), re-
spectively, along with the unknown number of targets,
which upon simplification gives p(h) as being a contrib-
utor to the term C(βPAB̄)

n−na (βPĀB)
m−na (βPAB)na . Rig-

orous technical details of the posterior density deriva-
tion exist in previous literature, including [9] and [14].
We also note that many authors use the word “likeli-
hood” liberally when referring to posteriors and related
terms, sometimes by admission as the authors of MTTA
in [20]. In this work, we prefer to maintain more strict
terminology usage, particularly with the use of the word
likelihood as a specific contribution to the posterior.Fur-
thermore, we define the product of likelihood and bias
prior, p(x�|b)p(b), as the kinematic score.

The GNPM and MTTA scores differ only in
kinematic terms, which are those depending upon
x� or b. These terms reveal the relationship of the
GNPM/MTTA scores using p(x�) decomposed through
Bayes law:

p (x�) = p (x�|b) p (b)
p (b|x�)

, (20)

which is valid for any realization of b.

C. GNPM and p(x� ) Equivalence

In this section, we provide the relationship between
the GNPM score of [16] and the distribution of the to-
tal errors. First, with algebraic manipulations (16) can be
expressed as3

μb|x�
= PT

bx�
Q−1

x�
x�

= RHT(Qx�|b + HRHT )−1
x�

= RHT
(
I + Q−1

x�|bHRHT
)−1

Q−1
x�|bx�

= R
(
I + HTQx�|bHR

)−1
HTQ−1

x�|bx�

=
(
R−1 + HTQ−1

x�|bH
)−1

HTQ−1
x�|bx�. (21)

Recognizing that HTQ−1
x�|bH = 
m

i=1 S
−1
i , removal of the

block form in (21) reveals an equivalence to the x̄ from

3An algebraic step here uses the relationship (I + PQ)−1P =
P(I + QP)−1 from traditional literature on thematrix inversion lemma
[10].

[16]

μb|x�
=
(
R−1 + HTQ−1

x�|bH
)−1

HTQ−1
x�|bx�

=
(
R−1 +

∑
i∈J

S−1
i

)−1∑
i∈J

(S−1
i x�

i ) = x̄, (22)

which is the bias estimate that maximizes the kine-
matic score for a given assignment hypothesis. We sub-
sequently refer to μb|x�

as x̄, avoiding excessive use of
subscripts and to clarify connections to previous litera-
ture. By inspection of (6) and (8) in [16], nomenclature
translation allows theGNPMkinematic score to be writ-
ten as

KGNPM = 1√|2πR |e
− 1

2 x̄
TR−1x̄

×
∏
i∈J

1√|2πSi|
e− 1

2 (x�
i −x̄)TS−1

i (x�
i −x̄)

= 1√|2πR |e
− 1

2 x̄
T R−1x̄ (23)

× 1√∣∣2πQx�|b
∣∣e− 1

2 (x�−Hx̄)TQ−1
x� |b(x�−Hx̄)

.

Notice that the first term of (23) is (5) evaluated at b =
x̄ and the second term is (11), also evaluated at b = x̄ by
(14). Further observing from (22) and (12) that p(b|x�)
evaluated at b = x̄ gives 1/

√|2πQb|x�
|, the relationship

between KGNPM and p(x�) is

p (x�) = p (x�|b) p (b)
p (b|x�)

∣∣∣
b = x̄

= KGNPM

p(b|x�)|b = x̄
= KGNPM

√∣∣2πQb|x�

∣∣. (24)

D. MTTA and p(x� ) Equivalence

The derivation of MTTA in [20] began with GNPM,
shown in the previous section to be p(x�|b)p(b), fol-
lowed by integration of bias out of the score. There-
fore, due to ∫ p(x�|b)p(b)db = p(x�), we expect
the MTTA likelihood to be equivalent to the distri-
bution of the total errors. Here, we show the equiv-
alence using the expansion of (20) about the point
b = 0. As a preliminary step, we rewrite (17) into
an equivalent expression using the matrix inversion
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lemma and removal of the block form,

Qb|x�
= R − PT

bx�
Q−1

x�
Pbx�

= R − RHT(Qx�|b + HRHT )−1
HR

=
(
R−1 + HTQ−1

x�|bH
)−1

=
(
R−1 +

∑
i∈J

S−1
i

)−1

. (25)

Upon nomenclature translation, the MTTA kine-
matic score as given for (8) in [20] is

KMTTA =
√|2πV|√∏
i∈J ∗ |2πSi|

e− 1
2ζ, (26)

with

V =
(∑
i∈J ∗

S−1
i

)−1

, (27)

ζ =
(∑
i∈J ∗

(x�
i )

T
S−1
i x�

i

)
− uTVu, (28)

u =
∑
i∈J ∗

S−1
i x�

i , (29)

and the definitions S0 = R, x�
0 = 0, and J ∗ = {J , 0}.

From (22) and (25), we observe that V = Qb|x�
and u =

V−1x̄, therefore

uTVu = x̄TV−1VV−1x̄

= x̄TV−1x̄

= x̄TQ−1
b|x�

x̄, (30)

and the full expansion of ζ can be rewritten as

ζ =
(∑
i∈J

(x�
i )

T
S−1
i x�

i

)
− x̄TQ−1

b|x�
x̄. (31)

Substituting the expansions of V, ζ, and rearranging
terms in (26) to expose the specific Gaussian densities,
we demonstrate the desired equivalency of MTTA and
p(x�) following similar steps as in (23) and (24):

KMTTA =
√∣∣2πQb|x�

∣∣
e− 1

2

(
x̄TQ−1

b|x� x̄
)

×
∏
i∈J

1√|2πSi|
e− 1

2 (x
�
i )

TS−1
i x�

i

× 1√|2πR| (32)

=
(

1
p (b|x�)

× p (x�|b) × p (b)
) ∣∣∣∣∣∣b = 0

= p (x�) .

E. Remarks on GNP Assignment Scores

Combining (24) and (32) gives the key result relating
the kinematic scores and the distribution of the absolute
errors

KMTTA = KGNPM

√∣∣2πQb|x�

∣∣ = p (x�) . (33)

Consequently, although the MTTA formulation in-
tegrated the bias from the GNPM kinematic score, it in-
herently uses the same bias estimate that maximizes the
association hypothesis as in GNPM. This result for bias
mirrors the conclusions found for marginalizing the un-
known target locations by Kaplan in [12] and [13]. In
both cases, the difference between using the maximum
likelihood value versus marginalizing reduces to a fac-
tor of the a-posteriori covariance. Furthermore, (33) im-
plies the additional insight that bias estimation does not
need to be a separate step in the calculation of a GNP
score due to the equivalence with (10). In other words,
combining the terms raised to the exponent in (23) gives
an expression equivalent to xT�Q

−1
x�
x�. To solidify this re-

sult, we show the following equivalence algebraically in
Appendix B:

xT�Q
−1
x�
x� = (x� − Hx̄)TQ−1

x�|b (x� − Hx̄) + x̄TR−1x̄
(34)

which follows from the matrix inversion lemma along
with several algebraic manipulations.A corollary of (34)
is that (x� − Hx̄)TQ−1

x�|b(x� − Hx̄) + x̄TR−1x̄ is a chi-
square random variable with dna degrees of freedom,
since xT�Q

−1
x�
x� is a chi square random variable of di-

mension dna. This may not be immediately obvious at
first glance, since with removal of the block form of
the right hand side, (34) is the sum of (na + 1) terms.
In other words, degrees of freedom are lost through
the estimation of x̄ with the data. An additional ob-
servation of (34) is that the left hand side is a func-
tion of R, but the right hand side is a function of
R−1. This allows various interpretations and simplifi-
cations if R is assumed arbitrarily large or arbitrarily
small.

As an additional remark, equating the normalization
terms inherent in (33) gives

√∣∣2πQb|x�

∣∣
√|2πR|∏i∈J

√|2πSi|
= 1√∣∣2πQx�

∣∣ , (35)

which after removal of the square roots and factoring out
the constants, gives a simpler expression that relates the
determinant terms of the structuredmatrices in theGNP
problem:

∣∣Qx�

∣∣ = |R|∏i∈J |Si|∣∣Qb|x�

∣∣ . (36)
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F. GNP Costs

In this section, we provide the GNP costs in a form
that includes the non-assignment gate with the same
structure as found in [16] and [20]. Multiplying the
joint posterior of (6) by the hypothesis-invariant term
1
CP

−m
AB β−nP(m−n)

AB̄ (2π )d(m+1)/2√|R| gives4

Pr
(
h, b|xA1 , .., xAm, xB1 , .., xBn

)
∝ e− 1

2 b
TR−1b

(
PAB

(2π )
d
2 βPĀBPAB̄

)−(m−na)

×
∏
i∈J

1√|Si|
e− 1

2 (x
�
i −b)TS−1

i (x�
i −b). (37)

For a given hypothesis, the GNPM approach selects b
that maximizes the score, thus GNPM is (37) evalu-
ated at b = x̄. As a critical note, the results of [1]
stress the use of unitless likelihood ratios. Since the first
term in (37) is unitless and the units on the remaining
terms are Vna−m and V−na , respectively, where V is a
unit hypersphere of the surveillance volume, the units
of (37) are hypothesis invariant as V−m. Therefore, hy-
potheses with varying numbers of assignments have the
same units and one may safely use (37) within a spe-
cific GNP problem. However, if the GNPM cost is used
in a higher context application, for example, in a sub-
optimal solution for the association of more than two
sensor data, care must be taken with the units of (37).
We prefer to keep units in the score to be consistent with
[16] and [20].

Taking the negative logarithm of (37) evaluated at
b = x̄ and multiplying by 2 gives the GNPM cost as

CGNPM (h) = x̄TR−1x̄

+2 (m− na) logG0

+
∑
i∈J

[
log (|Si|) + (x�

i − x̄)TS−1
i

(
x�
i − x̄

)]
,

(38)

where

G0 = PAB

(2π )d/2
βPĀBPAB̄

(39)

is the non-assignment gate value used in track-to-track
assignment problems [5].5

Applying the equivalence from (33) and
multiplying by the hypothesis-invariant term

4The determinant identity
√|2π�| = (2π )d/2√|�| is used in (6) to

allow the 2π term to be factored.
5A minor difference in the gate compared to previous literature is the
density of false tracks, which we have taken as zero. For applications
that need false target densities, we recommend using the gate value in
[20], which is a trivial adjustment of (39).With false target densities as
zero, the gate value in [20] is exactly (39).

1
CP

−m
AB β−nP(m−n)

AB̄ (2π )dm/2√|R| gives
Pr
(
h|xA1 , .., xAm, xB1 , .., xBn

)
∝
√∣∣Qb|x�

∣∣e− 1
2 x̄

TR−1x̄

(
PAB

(2π )
d
2 βPĀBPAB̄

)−(m−na)

×
∏
i∈J

1√|Si|
e− 1

2 (x
�
i −x̄)TS−1

i (x�
i −x̄), (40)

which has different units than GNPM through the deter-
minant of the a-posteriori bias covariance.Converting to
cost format the MTTA cost is

CMTTA (h) = x̄TR−1x̄ − log
(∣∣Qb|x�

∣∣)
+ 2 (m− na) logG0

+
∑
i∈J

[
log (|Si|) + (x�

i − x̄)TS−1
i

(
x�
i − x̄

)]
.

(41)

Note that (41) is not written exactly as was provided [20],
but is equivalent through the result of (33) with hypoth-
esis invariant terms removed.

G. Equivalence with GNN

Intuitively, the GNP problem in both the GNPM and
MTTA form is expected to reduce to the classic GNN
problem as R → 0. However, this does not directly fol-
low from (38) due to the indeterminate 0/0 that arises
in x̄TR−1x̄. As shown in Appendix C, application of the
key results of Section II.E avoids this issue and both the
GNPM andMTTA costs reduce to GNN asR → 0, thus

CGNPM (h)
∣∣
R→0 = CMTTA (h)

∣∣
R→0 = CGNN (h) , (42)

where

CGNN (h) = 2 (m− na) logG0

+
∑
i∈J

[
log (|Si|) + (x�

i )
TS−1

i

(
x�
i

)]
. (43)

Therefore,whenR is sufficiently small, aGNNalgorithm
is suitable since GNPM and MTTA effectively give the
same answer as GNN, as demonstrated in [16].

III. PRACTICAL CONSIDERATIONS

In this section, we provide further insight into the
cost differences and elaborate on the practical rele-
vance. We begin with a discussion on behavior of non-
assignment costs, and then conclude with a discussion on
bias estimation within the costs.

A. Optimal Non-Assignment Costs

Motivated by solution algorithms, we prefer to think
of the track assignment problem in an incremental cost
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structure, which starts from no assignments and incre-
mentally seeks additional assignments that lower the
cost as in the algorithm of [17]. In light of this concept,
by inspection of (43), the incremental cost of adding
track tuple (i, hi) to the assignment set in GNN is
(x�

i )
TS−1

i (x�
i ) + log(|Si|). Therefore, the optimal de-

cision in GNN is to accept the assignment for con-
sideration if the statistical distance (of d degrees of
freedom) does not exceed the covariance-dependent
threshold

(x�
i )

TS−1
i

(
x�
i

)
< 2 logG0 − log (|Si|) . (44)

We interpret the physical meaning of the GNN as-
signment threshold as evaluating the probability that
the tracks in the pair are on different targets that
randomly appeared in the containment volume of the
covariance, based on the a-priori spatial density that
tracked targets may appear. Therefore, as the statisti-
cal distance of the pair increases, corresponding to a
larger containment volume, it is more likely that one
of the tracks is on a different target. Note that sat-
isfying this inequality does not necessarily guarantee
any particular assignment, as there may be other as-
signment pairs with lower cost. Once the best available
assignment fails this inequality, no additional assign-
ments may be added and all unassigned tracks remain as
singletons.

Seeking an analogous threshold for the GNPM cost
of (38) is challenging since the acceptance of a new track
assignment adjusts the bias estimation within the hy-
pothesis. Recalling the equivalence found in (22), alge-
braic manipulations give the expected value of the bias
term x̄TR−1x̄ in (38) as

E[x̄TR−1x̄]

= E
[
tr
(
x̄TR−1x̄

)]
= tr
(
R−1E

[
x̄x̄T
])

= tr
(
R−1E

[
PT
bx�

Q−1
x�
x�

(
PT
bx�

Q−1
x�
x�

)T])
= tr
(
R−1PT

bx�
Q−1

x�
Qx�

Q−1
x�
Pbx�

)
= tr
(
R−1RHTQ−1

x�
HR
)

= tr
(
HT (Qx�|b + HRHT )−1

HR
)

= tr
(
HTQ−1

x�|b
(
I + HRHTQ−1

x�|b
)−1

HR
)

= tr
(
HTQ−1

x�|bHR
(
I + HTQ−1

x�|bHR
)−1
)

(45)

= tr
(
I −
(
I + HTQ−1

x�|bHR
)−1
)

= d − tr
((

I + HTQ−1
x�|bHR

)−1
)

= d − tr

⎛⎝(I +
∑
i∈J

S−1
i R

)−1
⎞⎠ ,

which is limited to [0,d] since each Si andR are symmet-
ric and positive definite matrices.6 Therefore, when the
final term in (45) vanishes, the incremental cost of the
ith assignment, in an expected value sense, is completely
contained in the log(|Si|) + (x�

i − x̄)TS−1
i (x�

i − x̄) term.
Thus, under this assumption and by inspection of (38),
the analogous threshold from GNPM follows the same
structure as GNN

(x�
i − x̄)TS−1

i

(
x�
i − x̄

)
< 2 logG0 − log (|Si|) , (46)

which is a statistical distance of d degrees of freedom
compared to a threshold that is dependent upon the co-
variance used in that statistical distance.

As discussed and demonstrated in [18], since GNPM
follows the same threshold decision structure as GNN,
G0 is a nearly optimal gate forGNPM.Critically, the gate
is optimal when the final term in (45) vanishes, which
occurs after several assignments are made or after the
first assignment when R 
 Si. In [18], an optimal gate
was provided for the case where only one assignment is
made, but we do not recommend this in practice since
intuitively the notion of a pattern match is only mean-
ingful with multiple assignments.

The determination of incremental cost for MTTA
is further complicated by the log(|Qb|x�

|) term in (41),
which introduces dependence upon the specific assign-
ments made, including the incremental addition of tuple
(i, hi). To allow an approximate analysis, we make the
simplifying assumption that each Si = S (this condition
is not required by GNPM or MTTA) and that enough
assignments are made such that the final term in (45)
vanishes. With these assumptions after na assignments
are made,Qb|x�

= (R−1 +∑i∈J S−1 )−1 ≈ (naS−1 )−1 =
S/na. Given na − 1 assignments made before incremen-
tally adding the tuple, an approximation of the incre-
mental cost of the − log(|Qb|x�

|) term is

− log (|S/na|) + log
(∣∣S/ (na − 1)

∣∣) = log
(

na
na − 1

)
.

(47)
Therefore, for MTTA, the approximate incre-

mental cost is log(|S|) + (x�
i − x̄)TS−1(x�

i − x̄) +
log(na/(na − 1)) and the analogous decision threshold
is

(x�
i − x̄)TS−1 (x�

i − x̄
)

< 2 logG0 − log (|S|)

− log
(

na
na − 1

)
, (48)

6We use the relationships (I + PQ)−1P = P(I + QP)−1 and
A(I + A)−1 = I − (I + A)−1 in (45).
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which does not take the same form as the GNN thresh-
old and G0 is therefore not an optimal gate for MTTA.
However, with many assignments, the log(na/(na − 1))
term eventually vanishes and we expectG0 to be nearly
optimal for MTTA in problems with a high number of
common targets.

The incremental cost of the ith assignment is not the
only mechanism of non-assignment behavior, the cost
of the null hypothesis (i.e., the hypothesis of no assign-
ments) also plays a significant role. Since the bias esti-
mate in the null assignment is x̄0 = 0 and recognizing
from (25) thatQb|x�

= R if there are no assignments, the
GNPM and MTTA costs for the null hypothesis h0 are

CGNPM (h0) = 2m logG0, (49)

CMTTA (h0) = 2m logG0 − log (|R|) . (50)

Therefore, with large R, the null hypothesis in MTTA
can dominate over other hypotheses. This trait is not
present with GNPM, which can generally be expected
to provide assignments using an arbitrarily large R.

We demonstrate the analytical results for non-
assignment behavior with numerical simulations. Con-
sider a scenario where sensorA observes six targets and
sensor B observes eight, with three targets in common.
By the formula given in [16], a 6 × 8 track association
problem has a total of 93,289 possible hypotheses. As-
sume that each of the 11 total targets are randomly gen-
erated in a hypersphere of dimension d = 3 with a uni-
form distribution, giving a target density of β = 11.These
numbers are sufficient to evaluate the parameters in G0

as PAB = 3/11, PĀB = 5/11, and PAB̄ = 3/11, and thus
G0 = 0.0127. Assume that the track covariances in each
hypothesis satisfy Si = S = σ 2I and that the bias co-
variance satisfies R = σ 2

b I. In Monte Carlo experiments,
we evaluate the probability of correct association,which
is the total number of correct entries in the most likely
assignment vector h as evaluated for the GNPM and
MTTAcosts. In theMonteCarlo experiments,a test gate,
Gtest , offset from the optimal gate of (39) is used in the
cost functions and 104 Monte Carlo trials are performed
for eachGtest . The structure of these experiments is very
similar to the numerical results of [23], which evaluated
the fraction of correct assignments using various non-
assignment thresholds.

In the first experiment, the Monte Carlo simulation
varies σ while maintaining σb = 5σ , and these results are
provided in Fig. 1.As shown,G0 gives very close to opti-
mal performance for GNPM, but a Gtest slightly larger
than G0 gives maximal probability of correct associa-
tion forMTTA.This illustrates the analytic result of (48)
which, with several assumptions, predicts thatG0 is gen-
erally not an optimal gate forMTTA,particularly if there
are few assignments made. The performance loss using
G0 for MTTA in this case is likely negligible as it causes
less than a percentage point from maximal performance
if that maximal performance is above 90%.

Fig. 1. Probability of correct track-to-track association for various
covariance sizes. In this case,G0 is a nearly optimal gate for GNPM.

In the next experiment, we maintain σ as the single
value of 0.025, but set σb to values of 0.5σ , 5σ , and 60σ .
The results are provided in Fig. 2, which illustrates that
G0 is not an optimal gate for MTTA when σb is large,
while GNPMmaintainsG0 as a nearly optimal gate.This
illustrates the analytic result of (50), which states that
the null hypothesis can dominate over other hypotheses
if R is large. As discussed in the derivation of (48) and
(50), the effects of the log(|Qb|x�

|) term in the MTTA
cost cause performance loss with G0. However, by the
key result of (33), any removal of the effects log(|Qb|x�

|)
cause in the incremental cost structure for MTTA effec-
tively gives the GNPM cost.

Additionally, the result in Fig. 2 corresponding to the
lowest σb illustrates (42), which states that GNPM and
MTTA are equivalent as R → 0. As a final observa-
tion, maximal performance of both GNPM and MTTA
reduces as σb grows. This is the intuitive result that

Fig. 2. Probability of correct track-to-track association for various
σb values.With large σb,G0 is not an optimal non-assignment gate for

MTTA.

ANALYSIS OF COSTS FOR THE GNP PROBLEM 25



Fig. 3. 4 × 4 track assignment example. Targets 1 and 4 from Sensor
A and 3 and 4 from Sensor B have a variable covariance σ2I. All

other tracks have covariance 0.1I. Circles represent 90% containment
areas with σ2 =10−3.

some track association performance is lost when bias is
added to the GNN problem, and this was also reported
in [16].

B. A-Posteriori Bias Covariance

As evidenced by (33), the difference between the
GNPM and MTTA costs is in the a-posteriori bias co-
variance. Inspired by the example in [8], we use the 4
× 4, d = 2 numerical example in Fig. 3 to illustrate
the practical difference between the cost functions. A
4 × 4 track assignment problem gives 209 possible hy-
potheses. In this scenario, we let the covariance values
of tracks 1 and 4 from Sensor A and tracks 3 and 4
from Sensor B vary from very high to very low val-
ues, but let the others maintain the value of 0.1I. If the
variable covariances are large, the hypothesis of three
assignments, h∗ = [1 3 0 2] (i.e., A1 → B1, A2 →
B3, and A4 → B2 as illustrated in Fig. 3), is prefer-
able since the track states align and only a small shift
is needed for the alignment. However, as the variable
covariances shrink to very small size, the hypothesis of
h◦ = [3 0 0 4] becomes more probable. In other words,
given the a-priori assumptions that targets appear at ran-
dom locations in the surveillance volume, the probability
that the pattern difference [(A1 − A4) − (B3 − B4)]2 <

σ 2 occurs by random chance is essentially zero as
σ 2 → 0.

To illustrate the practical difference in the cost for-
mulations, we find the track covariance size for GNPM
and MTTA that gives h◦ as the definitive hypothesis.
Provided in Fig. 4 is the a-posteriori bias covariance
of the top hypothesis from the GMPM and MTTA
costs. For this numerical experiment, we let R = I and
G0 =19.2. As shown, GNPM determines the definitive
hypothesis with a larger σ than MTTA. This example
illustrates that GNPM generally tends to prefer (and

Fig. 4. A-posteriori bias covariance sizes of GNPM/MTTA
hypotheses from the track sets in Fig. 3. GNPM determines h◦ as the

best hypothesis near σ 2 = 10−3 and MTTA near σ 2 = 10−5.

score favorably) hypotheses that give smaller |Qb|x�
|.

Further illustrating this concept, we also provide the
posterior-weighted

√|Qb|x�
| in Fig. 4, using all 209 pos-

teriors (from (37) and (40)) normalized to sum to unity.
As shown, hypotheses with large a-posteriori bias co-
variance scored by GNPM have nearly zero weight as
σ 2 <10−4, while MTTA maintains significant on those
hypotheses.

IV. CONCLUDING REMARKS

GNP costs have their typical use in track-to-track
association problems. Compared to traditional litera-
ture for track-to-track association, the GNP problem in-
cludes unknown sensor bias into the observation model.
The two types of GNP costs discussed in this work are
the GNPM and MTTA costs. GNPM involves the joint
likelihood of both a hypothesis and a-posteriori bias es-
timate, while MTTA marginalizes bias from the prob-
lem. Here, we showed the intuitive result that the ana-
lytic difference between GNPM and MTTA kinematic
scores is the determinant of the a-posteriori bias covari-
ance. Several key insights arise through that result, in-
cluding equivalences with the distribution of total errors
and the role of bias estimation as a separate step in cost
calculations. Leveraging this result, through an inspec-
tion of the GNPM incremental assignment cost, we ar-
gue that the non-assignment cost G0 is nearly optimal
for GNPM and demonstrate with numerical examples.
However, through similar inspection of theMTTA incre-
mental cost,G0 is not optimal for MTTA and the signif-
icance diminishes for problems with many assignments
but grows with large R. Removal of the covariance of
the a-posteriori bias from the MTTA non-assignment
cost to give maximal probability of correct association
effectively yields the GNPM cost. Therefore, if the goal
of a GNP algorithm is to maximize the probability of
correct association, we recommend GNPM. As a final
experiment, through a simple two-dimensional exam-
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ple, we show that GNPM tends to favor hypotheses
with smaller a-posteriori bias covariance compared to
MTTA. In conclusion, the results contained here expand
upon previous literature to reveal important design con-
siderations for specific track-to-track association prob-
lems.

APPENDIX A

Provided in this appendix is a derivation of the
marginal and conditional densities for the random
vectors within the track assignment problem. Explic-
itly writing x�

i from (7) to expose the noise terms
gives

x�
i = xAi − xBhi

= xi + nAi − (xi − b + nBhi
)

(51)

= (nAi − nBhi ) + b,

since, given h is the correct hypothesis, each track is an
observation of xi. Defining the combined noise term as
ni = (nAi − nBhi ) which is zero mean with covariance Si =
SA,i + SB,hi , we have

x�
i = ni + b. (52)

Let γ = [γ1, . . . , γna ] to be a length na vector
that contains an ordering of the indices in J , which,
in other words, is simply a list of the track indices
from sensor A that are assigned to a track from sen-
sor B. Assuming all error terms are uncorrelated, the
stacked vector of error terms is a normally distributed
random vector with a block diagonal covariance,
expressed as⎡⎢⎢⎢⎢⎢⎢⎣

nγ1

...

nγna

b

⎤⎥⎥⎥⎥⎥⎥⎦ ∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Sγ1 0 · · · 0

0
...

...
...

...
... Sγna

0

0 · · · 0 R

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (53)

Defining the stacked vector of error terms as

x� =

⎡⎢⎣ x�
γ1
...

x�
γna

⎤⎥⎦ , (54)

left multiplication of (53) by the transform matrix

V� =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 I

0
...

...
...

...

...
...

... 0 I

0 · · · 0 I I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (55)

gives the distribution of absolute error between the ob-
servations as a normally distributed random vector

p (x�) = N (0, Qx�
) , (56)

with covariance

Qx�
= V�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Sγ1 0 · · · 0

0
...

...
...

...
... Sγna

0

0 · · · 0 R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
VT

�

=

⎡⎢⎢⎢⎣
Sγ1 0 0

0
... 0

0 0 Sγna

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
R · · · R

...
...

...

R · · · R

⎤⎥⎥⎥⎦ . (57)

Next, we separate the distribution of absolute errors
into conditional distributions. Defining the joint vector
of absolute errors and bias as

xb =
[
x�

b

]
, (58)

left multiplication of (53) by a similar transformation
matrix

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 I

0
...

...
...

...

...
...

... 0 I

0 · · · 0 I I

0 0 · · · 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (59)

gives the joint distribution of absolute error and bias as
a zero mean normally distributed random vector

p (xb) = N (0, Q) , (60)

with covariance written in block partition form

Q = V

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Sγ1 0 · · · 0

0
...

...
...

...
... Sγna

0

0 · · · 0 R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
VT

=
[
Qx�

Pbx�

PT
bx�

R

]
. (61)

The cross-correlation matrix is the block matrix

Pbx�
=

⎡⎢⎢⎢⎣
R

...

R

⎤⎥⎥⎥⎦ . (62)

ANALYSIS OF COSTS FOR THE GNP PROBLEM 27



Applying the fundamental equations of linear esti-
mation from [3] gives the conditional distributions ac-
cording to both x� and b. Defining a stacked matrix of
identity matrices asH = [I . . . I]T , the conditional distri-
bution of the absolute errors given the relative bias is a
normally distributed random vector

p (x�|b) = N
(
μx�|b, Qx�|b

)
, (63)

with mean

μx�|b = Pbx�
R−1b

= Hb, (64)

and corresponding covariance

Qx�|b = Qx�
− Pbx�

R−1PT
bx�

= Qx�
− HPT

bx�

= Qx�
−

⎡⎢⎢⎢⎣
R · · · R

...
...

...

R · · · R

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
Sγ1 0 0

0
... 0

0 0 Sγna

⎤⎥⎥⎥⎦ .

(65)

Next we apply conditional density relationships to
(60) to write the converse distribution. The conditional
distribution of the bias given the absolute errors is a nor-
mally distributed random vector

p (b|x�) = N
(
μb|x�

, Qb|x�

)
, (66)

with mean and covariance

μb|x�
= PT

bx�
Q−1

x�
x�, (67)

Qb|x�
= R − PT

bx�
Q−1

x�
Pbx�

, (68)

thus completing the derivation of the desired probability
distributions.

APPENDIX B

In this appendix, we algebraically show the equiva-
lence of (34). To reduce cumbersome nomenclature, we
drop the subscripts used in (34).Specifically,we establish
the following equivalence:

xTQ−1x = (x − Hb)TS−1 (x − Hb) + bTR−1b, (69)

given b = (R−1 + HTS−1H)−1HTS−1x,Q = S+HRHT ,
and H = [I . . . I]T . Assume that all necessary matrix in-
verses exist.

Beginning with expression for b, multiplication of
both sides by (R−1 + HTS−1H) gives the useful prelimi-

nary relationship,(
R−1 + HTS−1H

)
b = HTS−1x

R−1b + HTS−1Hb = HTS−1x

R−1b = HTS−1x − HTS−1Hb.

(70)

Application of the matrix inversion lemma toQ−1 gives

Q−1 = (S + HRHT )−1

= S−1 − S−1H
(
R−1 + HTS−1H

)−1
HTS−1, (71)

therefore, the full chi-square term can be written as

xTQ−1x

= xT
[
S−1 − S−1H

(
R−1 + HTS−1H

)−1
HTS−1

]
x

= xTS−1x − xTS−1H
(
R−1 + HTS−1H

)−1
HTS−1x.

(72)

Since the expression for b appears in (72), we have

xTQ−1x = xTS−1x − xTS−1Hb. (73)

Recognizing that (73) is a portion of the quadratic ex-
pansion of (x − Hb)TS−1(x − Hb), rewriting to include
the addition of terms that complete the quadratic expan-
sion gives

xTQ−1x = (x − Hb)TS−1 (x − Hb)

+bT
(
HTS−1x − HTS−1Hb

)
. (74)

Substituting (70) into (74) gives the desired equivalency
of (69).

APPENDIX C

In this appendix, we establish the equivalence be-
tween the GNPM, MTTA, and GNN costs as R → 0.
Unfortunately, direct substitution of R = 0 into the
GNPM and MTTA costs of (38) and (41) gives indeter-
minate terms. Applying the key results of Section II.E
avoids this issue, and allows simplification to the GNN
cost. Converting the chi-square terms of GNPM into a
block structure followed by application of (36) gives the
following equivalence:

x̄TR−1x̄ +
∑
i∈J

(x�
i − x̄)TS−1

i

(
x�
i − x̄

)
= x̄TR−1x̄ + (x� − Hx̄)TQ−1

x�|b (x� − Hx̄)

= xT�Q
−1
x�
x� (75)

By inspection of (13), Qx�
= Qx�|b if R =

0, therefore, the limiting form of GNPM can be
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written as

CGNPM (h)
∣∣
R→0 = xT�Q

−1
x�|bx� + 2 (m− na) logG0

+
∑
i∈J

log (|Si|)

= 2 (m− na) logG0

+
∑
i∈J

[
log (|Si|) + (x�

i )
TS−1

i

(
x�
i

)]
≡ CGNN (h) , (76)

which establishes the desired equivalence of GNPM
with GNN. Evaluating MTTA as R → 0 involves the
additional complication of Qb|x�

, which includes R−1 by
inspection of (25). Rearranging (36) gives∣∣Qb|x�

∣∣
|R| =

∏
i∈J |Si|∣∣Qx�

∣∣ , (77)

which for R → 0 can be reduced to∏
i∈J |Si|∣∣Qx�|b
∣∣ =

∏
i∈J |Si|∏
i∈J |Si|= 1. (78)

Therefore, by reintroducing the hypothesis-invariant
term |R| into (40) and applying (75) and (78) gives the
MTTA cost as the same functional form of (76) since
log(1)= 0,which establishesCMTTA(h)|R→0 = CGNN(h).
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