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A novel approach to the track-to-track fusion (T2TF) of state esti-
mates from interacting multiple-model (IMM) estimators using inside
information [mode-conditioned estimates (MCEs) and mode proba-
bilities] is described in this paper. Fusion is performed on-demand, i.e.,
without conditioning on past track data. The local trackers run IMM
estimators to track a maneuvering target with switching process noise
and they transmit MCEs and mode probabilities to a fusion center. The
fused state posterior probability density is a Gaussian mixture, where
the parameters of the required likelihood functions can be computed
recursively. Mode probabilities are fused by transforming them to log-
ratios and using them as statistical information in the likelihood func-
tion of the mode. This results in consistent data fusion based on known
target and local tracker (IMM) parameters. Simulations show that this
method outperforms the fusion of the local IMM estimator Gaussian-
approximated outputs both in terms of error during target maneuvers
and in terms of the consistency of the mean-squared error (MSE). It is
a generalization of Gaussian T2TF with crosscovariance, and its per-
formance is close to that of centralized measurement fusion (CMF) —
by accounting for the error and log-ratio crosscovariances, the fused
covariance consistency matches the ideal consistency of CMF without
requiring memory of past fused tracks. The method is also shown to
be more accurate, informative, consistent in MSE, and of lower com-
putational and communication cost than Chernoff fusion, a recently

published method for Gaussian mixture fusion.
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[. INTRODUCTION

The interacting multiple model (IMM) estimator is a
powerful nonlinear state estimator for targets whose dy-
namic evolution model changes according to a discrete-
time, discrete-state Markov chain with known transition
probabilities, and it may be used in local estimators for
tracking maneuvering targets or other mode-switching
systems. In this work, the posterior probability density
function (PDF) of the state of a dynamic target, condi-
tioned on information from local trackers (LTs) imple-
menting the IMM estimation algorithm [4], is derived
for on-demand track-to-track fusion (T2TF). The LTs
provide Gaussian mixture track information from inside
their IMM algorithms [the current mode-conditioned
estimates (MCEs) and mode probabilities]. The fusion
center (FC) continuously updates a linearized system
description of the IMM estimator’s error and mode
probability behavior to compute the required parame-
ters of the likelihood functions of the state and mode.
The fused posterior state PDF is then approximated as
a Gaussian mixture.

When new measurements from every sensor can be
communicated to a FC at every measurement time, the
optimal solution is to stack all new measurements into
a single vector and run a single estimator, resulting
in optimal centralized measurement fusion (CMF) [5].
However, data may need to be sent at arbitrarily low
rates compared to the LT measurement intervals, requir-
ing the transmission of recursively computed local esti-
mates (and sometimes covariances). The problem is dif-
ficult because of the dependent nature of the received
state estimation errors. The correlation between the lo-
cal estimation errors was described in [2] and [3] as the
recursively-computed crosscovariance matrices for lin-
ear, Gaussian estimators, and their incorporation into
the standard fusion equations results in optimal fusion
(given only the on-demand tracks) and consistent fused
covariances. This method is termed Gaussian T2TF with
crosscovariance (GT2TFwXC) and requires knowledge
of the Kalman filter design parameters.

The recursive computations described in this pa-
per yield the required matrices (including crosstracker
and crossmode covariances) for IMM track fusion as
a multiple-model generalization of GT2TFwXC. For
a single mode, the algorithm reduces naturally to
GT2TFwXC. Just as GT2TFwXC requires knowledge
of the LT Kalman filter parameters and the target, this
paper’s proposed method also requires the parameters
of the LT IMM estimators and the target. To bound
the complexity of the problem, the proposed method
is derived for trackers that agree on the set of possi-
ble dynamic target maneuvering modes and the mode
transition probabilities. The information from the track-
ers is for the same times (i.e., it is synchronous). It is
also assumed that the target state transition matrix is
the same in both modes, so the method is ideal for tar-
get models that switch process noise covariance only.
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(Section III-E explains the difficulty encountered with
a switching transition matrix.) The assumptions stated
here serve to introduce important theory from which ad-
ditional complexities can be included in future work. The
proposed method, along with the theory supporting it,
are the foundations for on-demand T2TF from multiple-
model trackers.

For the fusion of IMM mode-conditioned informa-
tion, the extraction of track information from mode
probabilities (i.e., the mixture weights) is an additional
problem. This suggests that the received probabilities
should be treated as statistical information in the con-
ditioning of the posterior (fused) PDF. To account for
the dependency between the received probabilities, they
are transformed into infinite-support log-ratios (LRs)
of probabilities and a linear approximation of their
evolution is derived. Using this technique, the local
mode probabilities are successfully combined to form
the fused mode probabilities with the same number of
modes, allowing for mode inference based on the fused
information.

As an alternative, T2TF can be performed naively us-
ing the LT’s moment-matched IMM output estimate and
covariance [11], but that method has poor performance
during maneuvers and does not account for error cross-
covariance.

An alternate Gaussian mixture fusion approach
has been explored— Chernoff fusion, first proposed by
Mabhler [13] and Hurley [10], has received some atten-
tion in the literature, and is capable of minimizing the
fused mean-squared error (MSE) while assuring that
the fused covariance is greater than or equal to the ac-
tual sample MSE, without direct knowledge of the error
crosscovariances. A successful, computationally feasible
implementation for Gaussian mixtures using unscented
sigma points has been developed in [8] and used in
distributed fusion from IMM tracks in [9]. However,
Chernoff fusion is unable to exploit system model infor-
mation (i.e., target dynamic motion models and IMM
design parameters, assumed available in this paper) and
may produce fused covariance values that are too high,
though they acceptably represent the sample MSE of
the fused estimate (i.e., the covariances are consistent).
The sigma point implementation is still computationally
demanding due to the need to search for the optimal
fusion exponent, and requires the transmission of local
mode-conditioned estimate covariances. Just as the
IMM fusion proposed here generalizes GT2TFwXC,
Chernoff fusion generalizes the covariance intersection
method and solves the fusion problem when the crossco-
variance cannot be computed or because system param-
eters (local IMM parameters) are not available. While
ignoring crosscovariances altogether results in overly
optimistic fused covariances, Chernoff Fusion results in
conservative fused covariances, which are still not ideal,
meaning that the MSE is higher than what is possible
with a more optimal method. When the target and LT
system design parameters are known, the crosscovari-

ances can be computed recursively and Bayesian fusion
can be performed as shown in this paper without the
transmission of the local covariance matrices and with-
out the need for numerical optimization. The simulation
results show that although the fused covariance of the
Chernoff method match the MSE of the fused estimate,
the model-driven fusion with crosscovariance presented
here significantly outperforms Chernoff fusion in terms
of fused accuracy. Another advantage of the method in
this paper is that the fused probability density output
includes fused mixture probabilities, which directly pro-
vide inference about target dynamic maneuvering mode.
Chernoff fusion cannot provide this output information
because the number of mixture components in its fused
PDF is a product of the number of local components,
and such a mixture has no event-based interpretation in
the multiple-model target maneuvering scenario.
Another approach to the fusion of Gaussian mixture
filter outputs was developed in [14]. That paper intro-
duces the topic of crosscovariances for every mixture
component. However, that approach mainly treats prob-
lems with Gaussian mixture process noise and Gaussian
mixture measurement PDFs, both of which are unlike
the Markov chain switching processes involved in ma-
neuvering target tracking. Additionally, there is no con-
sideration of mixture component reduction strategies
that complicate the crosscovariance structure (such as
the mixing process of the IMM estimator); they assume
fully invertible state-to-measurement equations (unreal-
istic in target tracking applications where the state vec-
tor is longer than the measurement vector), and do not
consider the dependent, stochastic nature of local mix-
ture probabilities (weights) in their fused mixture prob-
abilities. The method developed in this paper accounts
for the Markov chain process of the target maneuvers
and the mixing process of the IMM, does not require in-
vertible measurement equations, and fully computes the
crosscovariances between all local mode-conditioned
state estimates and mode probabilities at the FC.
Though the present method does not require mem-
ory of past fused tracks, alternative data fusion schemes
exist that utilize memory of past fused tracks and decor-
relate the information being passed throughout a dis-
tributed sensing network. One of the first such algo-
rithms for Gaussian tracks was Information Matrix Fu-
sion [5]. See [6] and [7] for a general discussion of re-
cent advancements in distributed tracking. An approxi-
mate method to solve this for IMM tracks was developed
in [12]. A model-agnostic method for fusion of IMM
Gaussian mixture tracks with memory was also devel-
oped in [1]. These methods do not provide the cross-
covariance for fusion without past track information.
Given these distinctions, further comparison is outside
of the scope of this paper; however, it should be noted
that, theoretically fusion schemes with memory running
at full rate could yield the accuracy performance of CMF
(which is slightly more accurate than on-demand fu-
sion techniques [5]), but the results in this paper show
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that the present memoryless method still achieves fused
track accuracy close to that of CMF and with ideal MSE
consistency.

Even when using a suitable reduced-rate T2TF
method, the problem of initial fusion must still be
solved using an on-demand fusion scheme. Without it,
the FC has no initial condition (i.e., prior) for recur-
sive updating of the fused track. This resembles the
problem of running a Kalman Filter without a previ-
ous estimate and covariance [4], [5]. GT2TFwXC pro-
vides a consistent fused estimate without initial condi-
tions for linear Gaussian systems; likewise, this paper
shows how this is accomplished when the received tracks
come from IMM estimators tracking a maneuvering
target.

This paper is organized as follows: Section II intro-
duces the problem mathematically, Section III describes
the required Bayesian fusion theory, Section IV devel-
ops the algorithmic steps required to implement fusion
with IMM inside information, Section V summarizes
the algorithm and discusses computational complexity,
and Section VI presents Monte Carlo simulations and
results. A list of symbols and acronyms is provided in
Table 1 for reference.

[I. DESCRIPTION OF TARGET AND LOCAL TRACKERS

For clarity, only two LTs and two dynamic modes
will be considered, but the extension to multiple track-
ers and modes is possible. Local state estimation is per-
formed by two trackers obtaining noisy observations of
a target whose dynamics may switch between two dif-
ferent modes. Each tracker, indexed j = 1, 2, computes
MCEs and mode-conditioned covariances (MCCs) of
x(k) from modes indexed m = 1, 2. With Z* as the vec-
tor of all measurements at tracker j, up to and including
the present time step,

Zk = [2;(0) z;(1) ... z;(k)] . 1)
the N,-dimensional MCEs, conditioned on the current
target mode M (k) being m, are denoted and defined as

87 (klk) £ E[x(k) | Z§. M(k) =m], j=12, .
2
m=1,2
and with the MCE errors (MCEEs) defined as
X7 (k|k) = &7 (k|k) — x(k), ®3)

the MCCs are
PT(k|k) £ E[f(?’(k|k)i;"(k|k)’ | ZF, M(k) = m]. 4)
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The true state of the target, when in mode M (k) = n,
evolves linearly in time as!

X"(k +1) = Fx(k) + v (k). (5)

The N,-dimensional measurements of the target at each
tracker are obtained according to

2j(k) = Hyx(k) + w; (k). (6)

The trackers compute the probability of the target being
in mode m at time step k as

(7

The evolution of the target’s dynamic modes is modeled
as a Markov chain. Its known transition probability ma-
trix (TPM; [4]) is

W (k) £ P (M(k) —m| z’;) .

®)

and all of its rows must have a sum of 1.

Two key simplifying assumptions are made. First, as
can be seen in equation (5), mode changes affect the pro-
cess noise only and not the state transition matrix F. This
simplification was made because the theory required to
fuse with switching F becomes much more involved, es-
pecially if the state space of the models switches di-
mension. It is important to note that the methods de-
veloped in this paper are the foundations of a unique
methodology in on-demand T2TF that can be extended
to more complexities in future work (see Section III-E).
The Bayesian derivation of Gaussian mixture posteriors,
along with obtaining the parameters of the likelihood
function(s) through linearization and recursion of the
joint system describing the trackers and the target, con-
stitutes the powerful, yet fundamental, stochastic sys-
tems approach to T2TF proposed in this paper.

The second simplification in this paper is that mode
switching does not affect the measurement equation (6).
Mode-specific measurement parameters can be substi-
tuted if required, as long as they switch as part of the
same Markov chain process of the target. Given the
independence of the target motion and measurement
system(s), such examples are not typical in tracking sce-
narios, so treatment of this case is beyond the scope of
this paper.

[lI. BAYESIAN THEORY FOR IMM INSIDE
INFORMATION FUSION

A. The Posterior Fused State PDF

Omitting the time-step index k for brevity, the pos-
terior state PDF of the target state using the data from

INote that m is the index of the MCE at the LT. The FC must consider
the received MCE and probabilities under all mode hypotheses, so n
is used in the multiple-model inference process at the FC, while m is
used only to index the received data.
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Table 1
List of Symbols and Acronyms

(
G
(
(

~ N

d' (k)
D! (k)
F

g" (k)
G (k)
H;
Inven

j

I (k)

k

LR

LT

m

MCC
MCE(E)
MCI
MCP(E)
M(k)
Wit (k)
wj(k)
! (k)

n

Ok

Vit (k)
Nl
w;j(k)
Sz']."(k)
p()
P()
Pr(k)

P (k)
P (kik)
P (k|k)
Pkl — 1)
P (k)
o

Qn

R;

S\ (k)

St (k)

TPM

V' (k)

w;(k)
W7 (k)

xp (k)

% (k)

%7 (klk)

&7 (klk — 1)
7 (klk — 1)
&7 (klk)

%7 (klk)
x(k)

y" (k)

Y (k)
zj(k)

Mean of ()

Mixed initial condition of (-) (IMM algorithm)
Estimate of (-)

Error of ()

Gaussian-approximated process noise entering the LR
Covariance of d; (k)

State transition matrix

Additive noise of the linearized joint IMM system
Covariance of g(k)

Measurement matrix at LT j

N x N identity matrix

LT index (j = 1,2 — used as a subscript)
Transition Jacobian matrix of the joint IMM system
Discrete time step

Log-ratio(s) of probability pair(s)

Local tracker(s)

Target mode index of the received estimates and probabilities (m = 1,2 — used as a superscript)

Local mode-conditioned estimate covariance

Local mode-conditioned estimate (error)

Local mode-conditioned innovation (i.e. residual)

Local mode-conditioned prediction (error)

True target dynamic mode

Locally-computed probability of mode m

[l(k) k2G0T

Initial condition mixing weight (IMM algorithm)

Target mode index hypothesis under consideration at the FC (n =1, 2)
Any variable (-) derived under the hypothesis that the current mode is n
MCI

Spread-of-the-means term of a mixture’s covariance

LR of the mode based on u}(klk)

Covariance of [wy (k) w2 (k)]

Any probability density function (PDF)

Any probability mass function (PMF)

Covariance of the moment-matched fused estimate output error
Covariance of the fused nth MCEE

Locally-computed covariance of X7 (klk) (MCC)
Locally-computed covariance of X' (klk)

FC-computed complete covariance/crosscovariance of i’]" (klk—1)
FC-computed complete covariance/crosscovariance of the MCEE
Received data from LT j

Markov Chain transition probability from mode / to mode m
Covariance of the process noise under mode n

Covariance of measurement error at LT j

FC-computed complete covariance/crosscovariance of the MCI
Locally-computed covariances of v’ (k)

Transition probability matrix of Markov chain

Zero mean process noise under mode n

Zero mean measurement error at LT j

Locally computed Kalman gain matrices

Moment-matched fused estimate output

Fused nth MCE

mth mode’s mixed initial conditions (from IMM algorithm)
Local tracker MCP

Local tracker MCPE

Local tracker MCE

Local tracker MCEE

True target state

“State vector” of the joint IMM system, computed at the FC
Covariance of y" (k)

Measurement at LT j
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two trackers is a mixture density described by

p(X | ¢17 ¢2)

2
=Y p(xl¢1, 62, M=n)P(M=n|¢,¢)

n=1

)

with the received data from the two trackers (MCE and
mode probabilities) defined as

¢; = [Xj(kIk), &5 (Klk), 1 (K)},

where ,u?(k) is ignored in equation (10) due to its
redundancy.

The FC does not have access to any z;(k) or any
past X7'(k|k), but should provide the best fused esti-
mate and its error covariance when receiving the lat-
est MCE and mode probabilities from all LTs. To do
this, the posterior fused mode-conditioned densities
p (X | ¢1, 2, M = n) and posterior fused mode probabil-
ities P (M = n | ¢1, ¢») will be derived next.

The LT MCCs P7'(k|k) are not part of the data used
for fusion in equation (10) (see Appendix: Property 7),
although the authors are not discouraging the transmis-
sion of these data if system parameters are unavailable.
The fused MSE and covariance consistency from the
Monte Carlo simulations of Section VI are extremely
close to that of CMF and this offers empirical evidence
that the MCCs do not contain significant information
about the target state, so considerable communication
savings can be achieved if the covariances are not trans-
mitted.

i=12 (10

B. The Fused Mode-Conditioned State Estimates

We claim that, conditioned on the received MCE, the
received mode probabilities do not contribute additional
information about any mode-conditioned state vector.
This is proved for the linearized joint system model in
Section III-C and Property 3 of the Appendix. So, the
fused posterior mode-conditioned PDFs from equation
(9) are approximately

p (x| o1, ¢2,1) %p(x|f(%,i(%,f(%,i§,M=n)

1
ol o2 ol &2
=;p(x1,x1,x2,x2|M=n,x)

xp(x|M=n), n=1,2, (11)

with a a normalizing constant and p(x | M = n) con-
sidered noninformative (i.e., diffuse) because there is no
initial condition about the target state at the FC (the key
assumption for on-demand fusion).? The likelihood of

2The prior is diffuse because the state vector is composed of position
and velocity only, which are integrated states of a white noise accel-
eration (WNA) driven model (i.e., they are nonstationary processes).

the state in equation (11) is the PDF of the LT MCE, con-
ditioned on the true state x(k) and true mode M (k) = n,

given as
p(X. %], %, %5 | M = n,x) (12)

with mean
e[ Gy @y Y] 1 =nx|
=[xxx x’]/ (13)

and covariance (to be computed recursively at the FC as
described in Section IV-B)

P
ME) RE) MG Sy
L |BEy ey swy s@y| |
B delyv slie2y <lely wlgeav| X (14)
Xz(xl) Xz(xl) X2 Xz) Xz(xz)
BE) HBE) BE) BE)

With equation (14) computed, the solution to equation
(11) is the standard linear minimum mean-square error
(LMMSE) fusion given by (see [5])

_ _1-1_ o
(k) = [L/(P'”)‘lL] L@EnHX  15)
and the corresponding fused covariance given by
_ _1-1
Pi(k) = [L'(P") L] (16)
with
L 2 [Iyon, Inoxn, Inocn, Inosv, ]’ (17)
The 4N, -element vector X in equation (15) is
X =[G @) &) @] (18)

The LMMSE estimator is equivalent to the Bayes esti-
mator under the Gaussian likelihood assumption with a
diffuse prior [5]. Its use is justified because the state vari-
ables, position, and velocity are integrated from WNA
and the FC has no prior track data, so their prior PDF is
diffuse.

C. The LR Transformation of Mode Probabilities

Local mode probabilities are computed at the LT by
multivariate Gaussian PDF likelihoods evaluated at the
latest local measurements. Therefore, the probabilities

Before any data arrive, the priors on these states are diffuse. If a target
mode contains states that follow a stationary process,such as Ornstein—
Uhlenbeck acceleration, then the acceleration is a stationary process
with a proper prior. This may also be true if the F matrix is unique
for each mode. While fusion can still be performed in a sub-optimal
manner by assuming diffuse priors on the target state, the problems of
accommodating switching F and optimally treating stationary process
states will be treated in future work.
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are themselves stochastic processes. Since finding a para-
metric joint PDF of these nonlinear transformations is
not feasible, a solution is to transform the probabilities
into LRs and use a multivariate Gaussian approxima-
tion of the transformed variables. This approximation is
appropriate because LRs have infinite support and the
multivariate Gaussian density can capture dependencies
by nonzero covariances. The means variances and co-
variances are then readily computed as those of the dif-
ference of quadratic forms of Gaussian random variables
(the innovations).

The single LR at LT j, denoted as w;, is selected to
be the log of the ratio of the mode 1 probability to the
mode 2 probability as

(19)

Note that only a single LR w; uniquely determines the
probability pair, so the second log-ratio does not need
to be included in the analysis of the likelihood function
as it certainly does not provide additional information.
If there are more than two modes, then any mode prob-
ability can serve as the common denominator for all the
LRs, but the rest of this paper will concentrate on the
two-mode scenario only.

The LR transformation is one-to-one, and the prob-
abilities can be recovered using

evi 1
] evi +1 J e? +1

(20)

The transformation allows the new variables to
be represented as a nonlinear first-order Markov pro-
cess driven by the wide-sense white MCI v’}(k) (see
Appendix: Property 1) with LT-computed covariances
§7(k). At the LT, the mode probabilities are com-
puted as posterior probabilities using Gaussian likeli-
hood functions [4]:

(k) = anm i

sy te tbrwl o] o 1)
C

Using equation (21), the normalizing constant c is can-
celed in the ratio and equation (19) becomes

Heoi(k=1) 4 21

712e05(k=1) J 722 P

N 1S3 (k)]
1S}kl

a),(k) =In

+§v§(k)’s§(k)*1u§(k) — —v J(kYSH(k) wi(k). (22)

The means of the LR processes wi(k), wn(k) are
nonzero, and they have a finite variance and nonzero
correlation. The first term in equation (22), conditioned
on mode n has the first-order Taylor series expansion
around a) "(k — 1) (the mixed initial condition—see

Section IV-C)

110 (k= D4 g2
In

71262 " (le=1) + 22

|: 11 (k=1) 12,6} (k=1)

e’
- — ol'(k—1)
712697 (k=1) 4 122

1) — @k - 1)] " (k - 1).

v|n

1107 (k=1) 4 721
=[]~
(23)

The u[j’"'" are the (actual) initial condition mixing

weights at the local IMMs, which are functions of the LR,
all conditioned on mode n:

1mln glme w‘.”(k_1)
Mj (k B 1) 1m (k 1) 2m
lme®; + 7 4)
2m|n n.2m
M (k—1)=

g lme® ](k 1)+7[2m

and /ilj'"'”(k — 1) are computed according to equation
(24) by using d)‘j" (k — 1) instead of a)ljn(k —1).

The last two terms of equation (22) are the difference
of quadratic forms of the innovations, which are corre-
lated between the modes and sensors. Since they are un-
known to the FC and they are stochastic, they are consid-
ered to be a common additive noise for the LR of both
sensors, and the mean and covariance of this noise are
readily computed to form a Gaussian approximation.

Omitting k again, the mean and covariance of the LR
additive noise can be derived by first defining the stacked
vector of the zero mean (see Appendix: Property 1) in-
novations as

pin — I:(vl\n)/ (vZ\n)/ (v1|n)/ (v2|n):| .

The covariance of equation (25) is S, derived in
Section IV-B. Together with the selection matrices

L= 0 0 0] L2=[0 T 0 0]
Li=[0 0 I 0] Li=[0 0 0 1]

(25)

(26)

the quadratic forms can be written as
(V?In)/(sﬁ)—lviln _ (v}\n)/(s})—lv}\n
= oy [() @ - (1) s v
= (V" )yMp" £ d" (27)
with
M, 2 (2) )L - (L) 8D 'LL @28)

The hidden matrix 7" is computed at the LT and
its expected value can be computed at the FC using
the algorithm in Section IV-D and is different from
the elements of S”. The two-dimensional (2D), white,
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xllewi(k=1) 4 721

: F 2 H; H( %)—» -W! (k)

: 2 X (klk — 1) Vit
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; nlledi(k=1) 4 721
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v'(k) < 2 o1(k)

Fig. 1. Block diagram of the linearized model of the mode-conditioned errors and LRs of two IMM LTs (with only one shown explicitly)
tracking the same target, from which the computation of the mode-conditioned error covariance, LR mean, and LR covariance can be derived.
The evolution of the stochastic matrices S?" (k) and W;" (k) are not shown. Note that this block diagram describes the behavior of the LT but
does not describe the fusion algorithm itself. z~! represents a unit delay to indicate variables from the previous time step.

nonzero mean Gaussian random process d will approx-
imate the quadratic form noise (27), having mean and
variance/covariance found by (see [4])

|:E [v’Mlv]:| _ |:tr [M1S|”]:| @)
E [VM,v] tr [M,S!"]

D" £ E[(d—d)(d—d) |n]

d"2 E[d|n] =

2tr [(Mlsl”)z] 2tr (M S"M,S™)
= . (30)
2tr (M S"MLS”)  2tr | (MoS”)’ |

The covariance between a zero mean Gaussian vec-
tor and a quadratic form in the same vector is zero [15] —
this means that d is not correlated to the innovations,
the process noise, or the measurement noise. See the
Appendix for further details regarding this.

D. Fused Mode Probabilities

The received MCEs X7 do not contain information
about the target mode M (k) (see Appendix: Property 4).
Using Bayes’ theorem and omitting the time step & for
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brevity, the posterior fused-mode probabilities are?

e =P(M= n| u},u%,u%,ui)

=P(M=n|o,w)

_p(a)2|a)1,M=n)P(M=n|wl) (31)
B b
_p(wLwZv | M:n)/’L;L

bp(w | M = n)

with b the normalizing constant and the likelihood func-
tion of the mode based on the LR represented as

p(a)l, w) | M = I’l) (32)
The goal here is to find the prior mean [cb'l"(k) oy (k)]
and the covariance Q"(k), conditioned under target
mode n, of the Gaussian approximation of equation (32)
before any data arrive. From this, the marginal in the de-

3The representation of equation (31) is not unique —either mode prob-
ability can be used as the prior, or the prior can be noninformative. The
attractiveness of using a received probability as a prior is the ability to
use as much information in the data as possible before the Gaussian
approximation. In other words, the ability to directly factor in a prob-
ability as a prior can be advantageous from an accuracy perspective.
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nominator of equation (31) is easily found and the like-
lihood can be evaluated for each mode n = 1, 2.

E. The LT MCEEs

Recursive covariance computations can be used to
find the covariance of the zero mean MCEE. At every
step k, there are two mode hypotheses, represented by
n=1,2.AsinFig.1, the error of the mode m prediction
at tracker j, conditioned on mode 7 being the true mode,
is

K11 (k + 11k) £ Fx(k) + v" (k) — B (k|k)
—F [x(k) . [M}m‘"ﬁ}‘"(km + u?’”‘"ﬁ?‘"(mk)]]
+v'(k)
—F [u}m'”i}"’(km) i M?m'"ifl”(klk)]

+ v (k).

(33)

The MCEEs are propagated from the previous mode-
conditioned prediction errors (MCPEs) as

X1 (klk) = x(k) — 7" (k|k)
= (1= W' (OH)E" (kIk — 1)

— Wi (k)w;(k). (34)
Since the LRs are system states, the weighting of the
MCEE by the mixing probabilities in equation (33) is
a nonlinear function of the state variables, which can
be linearized by using Jacobians (see Section IV-A).
Notice in equations (33) and (34) that as long as F is
properly matched to the target’s dynamics and previous
errors and noise terms are zero mean, all MCEEs are
Zero mean.

E [i;"'”(mk)] —0. (35)

It is evident why a target whose dynamic mode
switching includes changing F is more difficult to ana-
lyze: because F is common to both terms in equation
(33), it can be factored out, yielding an expression in the
MCEE. This is required for recursively computing the
likelihood function parameters. Switching F requires ad-
ditional analysis and algorithmic complexity to describe
the evolution of nonzero mean MCEE and is beyond
the scope of this paper. The Kalman gains le(k) are
unknown to the FC directly, but expected values can be
used in their place (see Section IV-D).

Note that the MCEE are never computed at the LT
(the MCE are); equations (33) and (34) are only a prob-
abilistic analysis of the errors for the purpose of finding
the likelihood function parameters. Upon linearization,
the MCEEs are jointly Gaussian stationary processes
(see Section IV-A).

F. The System State of the IMM Trackers

The vector of the MCEEs and LRs describes the in-
ternal behavior of two IMM trackers estimating the state
of the same target for the purpose of computing the re-
quired parameters of equations (12) and (32). Condi-
tioned on mode #, it is defined as

¥ (k) £ %] (kIkY &' (kIKY o' (k) o' ()] (36)
with the stacked vector of errors from each sensor writ-
ten for compactness as

& (kk) 2 [x;'"(kuc)' ;ﬁ‘"(iqk)’] . (37)
The mean of equation (36) is (considering that the MCE
have zero mean error according to Section III-E)
/

V)2 E 0] =[0 &'k al®)]. (9
The covariance of equation (36) is
P (k)

Y"(k) £ E[y"(k)y" (k)] = 39
(k) £ E[y"(k)y" (k)] [ 0 Sl"(k):|’( )
where the zeros on the off-diagonal blocks are a re-
sult of the block-diagonal Jacobian and additive noise
covariance to be derived in Sections IV-A and IV-B,
respectively. Recursions yield y" (k) and Y"(k), under
each hypothesis n = 1, 2, from which the parameters of
the likelihood functions, equations (12) and (32), can be
computed. This will be developed in Section I'V-B. These
parameters are not conditioned on any previous track
information, but they do require knowledge of the mea-
surement models, the dynamic models, and the TPM.*

A linearized system description of two parallel IMM
LTs is depicted in Fig. 1. This diagram shows the util-
ity of the model: the white sequences, v"(k) and d'" (k),
act as common inputs to both IMM subsystems, the
measurement errors w;(k) act as independent inputs to
cach IMM, and the MCEE X7'(k|k) and LRs w;(k) act
as the outputs. It is the mode-conditioned, Gaussian-
approximated PDF parameters of these outputs that are
of interest.

V. ALGORITHM IMPLEMENTING BAYESIAN FUSION
USING IMM INSIDE INFORMATION

While the previous section discussed important pre-
liminary fusion theory, this section develops the algo-
rithm for fusion with IMM Inside Information.

4Due to the recursive algorithm, initial conditions for § (k) and Y (k)
do need to be provided. Standard covariance initialization methods can
be used (see [4]) and the mode-conditioned mean of the LR can be
initialized to zero. This can be accomplished offline.
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A. The System State Transition Jacobian

From equations (33) and (34), the Jacobians of the
MCPE:s with respect to the previous MCEE are

i;”‘” (k+1]k)

(k) = i (k)Fs,.
where §;_; is the Kronecker Delta function (i.e., the
crosssensor Jacobians in equation (40) are zero).

The Jacobians of the MCPEs with respect to the pre-
vious LR, evaluated at the mean of the errors (which are
Zer0), are zero:

K7V (kt-11k)
a)‘}"(k)

(k)

v |n
7Tlm7T2m€wf

=~ FE[x]" (ki) — " (k1K) | = 0. (41)

lme®j + p2m

The Jacobians of the LR with respect to their pre-
vious values can be derived from equation (23). The
Jacobians of the LR with respect to the previous MCE
are zero since the partial derivative of the quadratic form
of innovations with respect to an innovation is scaled by
that innovation, which is zero mean. This is in agreement
with the claim that d;(k) can be treated as white, additive
noise. Omitting k, the complete Jacobian is

wE E 0 0 0
A" E P F 0 0 0
| 0 "F 3'"F 0
0 0 "F g"F 0
0 0 0 0 I
) (42)
with

~Aln _ ~12]n 0
oV (k1) _ |:/‘1 Hq ] 43)

wh(k) T 0 lill\n _ /:LlZ\n
2 2

according to equation (23).

B. Recursion for the System Mode-Conditioned Means
and Covariances

Having computed J"(k), the linearized system de-
scription for equation (36) under mode n becomes

y" (k+1) = K(k)I" (k)y" (k) + T(k)g"(k), ~ (44)
with
K(k) 2 diag (K}, K2, K., K’;‘) )
KT(k) = - W’j"(k)Hj.
The noise vector
g" (k) = [v'(k) wi(k) wao(k) d(k)]  (46)

has mean
g"(k) = E[g(k) | M(k) =n] =[0d"(k)],  (47)

where d" (k) is defined in equation (29). The covariance
of g"(k) is

G" (k) = E[[g(k) — 8" (k)][g(k) — g" (k)] | M(k) = n]

= diag[Q", Ry, Ry, D" (k)] (48)
and
[I-W.(OH, Wi(k) 0 0]
1-W2(kH, W2(k) 0 0
T(k)=|T-Wi(k)H, 0  Wi(k) 0. (49)
I-Wi(kH, 0 Wik) 0
i 0 0 0 I

Note that K(k)J'" (k) has eigenvalues inside the complex
unit circle so the recursion should always converge. So,
after K(k), J""(k), and I'(k) are computed, the mean of
the LR is updated as

"k +1) = K" (k)y" (k) + T(k)g" (k). (50)

where y" (k) is a mixed initial condition of the system re-
cursion with covariance Y (k).
The system’s covariance update is

Y (k+1)

= K(k)J"(k)Y" (k)" (k) K(k) + T(k)G" (k)T (k) .
(51)

The first block on the diagonal of equation (51) is the
covariance of the MCEE. With?
P"(k+11k) & [J‘”(k)Y'”(k)J‘”(k)/]‘W*

X (52)

representing the covariance of the local MCPE,
where only the first 4N, rows and columns of

I (k)Y (k)J" (k) are selected, the covariances and
crosscovariances of the MClIs are computed as

R, 0
§"(k+1) = HP"(k+1/k)H + Ly | L, (53)
0 R,
with
H = diag(H;, H;, H,, Hy), (54)
I 10 0]
Ly = . (55)
0 011

5The notation k 4 1|k used in covariances computed at the FC serves
only to show that they are related to the state predictions made at the
LT. It is not intended to mean that the computations at the FC are
conditioned on past measurements.
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C. The Mixing Process for Hypothesis Merging

Before every recursion update step (50)—(51), the hy-
potheses from the previous step must be merged, just as
they are in the IMM estimation algorithm. In the ab-
sence of any previous observations, the time-invariant
mixing probabilities are computed at the FC from
the steady-state Markov chain probabilities ul , 12, as
priors [4]:

I}
In T n“’

l
i = o (56)

nlnl’Loo + 772”/1%0

With M(k+1) = n the event that the next mode is n, the
mixed initial conditions are

2
¥k = E[y(k) | Mk +1) =nl = ) u3" (),
- (57)
¥ (k)
= E[[y(k) - ¥" (0] [y(k) = 3" ()] | Mk +1) =n]

2
-3 [Y”(k) 7 - § 0] [ K) - y"(k)]].
. (58)

D. Expected Values of the LT Stochastic Matrices

The local mode-conditioned innovation covariances
§"(k) and Kalman gains W' (k) are required for equa-
tions (27), (45), and (49). To proceed, it should be first
noted that both §7'(k) and W' (k) are stochastic matri-
ces, computed from a mixed covariance matrix that in-
cludes the spread-of-the-means (SOM) of the Gaussian
mixture. The SOM results in a covariance update that
is measurement-dependent [4]. Because the local MCE
and mode probabilities depend on these stochastic ma-
trices, the covariances as computed by the LT IMM al-
gorithm behave like “state variables” of the system and
are recursively updated. The expected value of each ma-
trix can be computed through linearization, mixing, and
recursion, then treating the resulting matrices as having
zero variance (see Appendix: Property 8). This can be ac-
complished by expanding the FC recursion process to in-
clude finding the matrix means of the mixed initial con-
dition covariances 13’]7’ (k—1]k—1) and using them to find
S;” (k) and W;” (k) using standard Kalman equations.

First, it is noted that mixed initial conditions X" (k|k)

and IV"]ﬁ (k|k) do not depend on the state or mode at k +
1. Then, the recursion for the matrix mean of the local
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mixed initial condition matrix can be linearized as

B (kIk) 2 E [P;"(k|k)]
- {Z“ (k) [P’(k|k)+N(k)]}
2
= ZE{ >l (k)[Pl(k|k)
n=1 =1

+ N (k) | M(k) = n:| } .P[M(k) =n]

2 2
~ Y [Z R ) E [P (kIk) | M (k) = ]
n=1 - [=1
v Im|n Im _ n
i OE [N |06 =] [t
(59)

In equation (59), ul'”(k) can be taken out of the expec-
tation (as a first- order linear approximation) and evalu-
ated using &)lj" (k) and equation (24); N’jm(k) is the SOM.

The expectation in the first term can be computed by

PL(klk) 2 E [P§(k|k) | M(k) = n] —E [Pj(/qk)]

1 ! L1y

— W, (k)S;(k)W;(k)".
(60)

ol v !
= FP(k — 1|k — )F + Q

Omitting the step k, the expected value of the SOM can
be derived starting with

E [Nl;” | M(k) = n]
—E [[x . i(']”] [f{’] . x] | M(k) = n:| (61)

and expanding the difference as

2
omeg o
Z KX

Al owm &
X, X] =X

<~

o=1
62
2 [ﬁ} —323] if1=1 (62)
b [x; - f;}.] ifl=2.
Since the two MCEs have the same mean, X,
E [Ni.’” | M(k) = n]
v 2mN2 11|n 22|n 12|n 21|n . _
(;Li ) ij + P —Pj]. _P// ifl=1
v 1m\2 11|n 22|n 12|n 21|n : _
(M].m) P.]. P —P].j —ij ifl =2
(63)

where each Plj'j’."" is a respective block of equation (14).

Finally, after computing lv”]" (k—1|k—1) using equations
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Fig.2. Block diagram of the proposed IMM inside information fusion algorithm. & is part of y” and Y is block-diagonal with P and @
as its respective blocks. The relevant Gaussian likelihood functions used for fusion are shown in the fusion blocks.

(59), (60), and (63), the required expected values of the
stochastic matrices can be computed as

P7(klk—1) =FP7(k— 1|k — 1)F + Q",  (64)
§7 (k) = H;P" (k|k — 1)H, + R}, (65)
=7 DN rQm -1
W (k) = P (klk — DHST (k)™ (66)

E. The Fused Estimate and Covariance Output

Omitting k for brevity, the fused estimate of the tar-
get state, in the minimum MSE sense, is the mean of the
posterior fused mixture (9):

2
=Y s (67)
n=1

122

and has expected MSE
2
Pr = Z ui [PE+ R — &r) (R — %p)'] . (68)
n=1
V.  SUMMARY

A.  Algorithmic Steps

A block diagram of the overall fusion method is de-
picted in Fig. 2. The outside information fusion, which
fuses the moment-matched IMM outputs, is depicted in
Fig. 3 for comparison.

The algorithm can be interpreted as an IMM com-
bined with an extended Kalman filter (EKF) whose
recursion is executed without track data. The goal of
the recursion is to compute the mode-conditioned co-
variance/crosscovariance matrix of the MCE (condi-
tioned on x) and the mode-conditioned mean plus
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Fig.3. Block diagram of conventional outside fusion method. The
Gaussian likelihood function used is written in the fusion block.

covariance/crosscovariance matrix of the LR to be used
in the fusion process when the data arrive. The state vari-
ables of the EKF/IMM-like algorithm are considered to
be the MCEE i;", LR wj, and the the local covariance
matrices P (where only the mode-conditioned mean of
the components of the latter matrices is computed). The
steps are as follows.
For n = 1, 2, initialize the following:

1) Set@!*(0) < 0, (0) « 0.

2) @"(0) <« I (where ¢ should be large enough to
cover the expected error — see [4]; a value of 1 is
used in the simulations of Section VI).

3) Diagonal blocks of P""(0) (the covariances of the
MCEE) are initialized the same as LT (see [4]), or us-
ing cI, where c is large enough to cover the expected
errors.

4) The off-diagonal blocks of P (0) are initialized with
zeros (i.e., the crosscovariances can be initialized to
Zero).

5) The expected values of the hidden local mixed ini-
tial condition matrices I_’;?(O|0), for j = 1,2, are ini-
tialized the same as LT and the diagonal blocks of
P (0).

6) Compute steady-state Markov chain probabilities
Moo

7) Setk =1.

Repeat the following for each k (synchronously with

LT oroffline)for j=1,2,/ =1,2,m =1,2,andn =1, 2:

1) Mixing: Compute y"(k — 1) and Y"(k — 1) using
equations (57) and (58).

2) Compute ;21;”‘" (k—1) using equation (24) (substitute
o' (k — 1) for ol (k — 1)).

3) Compute the mean of the local mixed initial condi-
tion matrices f’;”(k — 1|k — 1) using equation (59).

4) Compute the expected value of the local S;.” (k) and
W (k) using equations (64), (65) and (66).

5) Compute joint system state mean y" (k) using equa-
tion (50).

6) Compute joint system state covar Y (k) using equa-
tion (51).

If LT data (10) arrive at time step k,then forn = 1, 2:

1) extract ailll.”, j = 1,2, from y"(k) and P"(k), " (k)
from Y" (k). See equation (38) and (39);

2) compute fused MCE %} (k) using equation (15);

3) compute fused MCC PJ(k) using equation (16);

4) compute fused mode probabilities uf:(k) using equa-
tion (31);

5) compute output mean Xp(k) and MSE Pg(k) using
equations (67) and (68).

B. Computational Complexity

The algorithm described in this paper consists of two
main routines, which are both computationally feasible
for real-time performance. The first is the recursive com-
putation of ¥ (k), Y" (k) and the hidden stochastic ma-
trices S;” (k) and V_V;” (k). This algorithm is analogous to
an IMM track predictor with EKF mode predictors (i.e.,
an IMM with no data). Since this paper does not explic-
itly generalize the algorithm to more than two modes
and two LTs, the order of complexity will be discussed
in terms of the state dimension N, only. It can be seen in
equations (57) and (58) that there are 22 = 4 mixing op-
erations as in a two-mode IMM, where each mixing oper-
ation scales quadratically with N, due to the outer prod-
uct of equation (58). Each mode is approximately on the
order of O[(2 - 2N,)?] due to the FC’s EKF-like pre-
diction recursion (50), (51). The hidden matrix compu-
tations (59)—(66), where a matrix inversion is involved,
scale approximately as O[2 - 2N?], so the overall compu-
tational order is O[N?2]. Since the target and LT parame-
ters are time-invariant, these recursive computations can
be performed offline.

The second routine is the actual fusion of the data
when they arrive. Since Gaussian LMMSE fusion is per-
formed for each mode (see equations (15) and (16))
and matrix inversion dominates the order, its complex-
ity scales approximately as O[N3].

Chernoff fusion scales similarly for each selection of
the fusion exponent w due to the matrix inversion of the
least-squares parameter estimation [8]. The search for
the optimal w using a grid of N,, values on the interval
(0,1) means that the sigma point Chernoff fusion method
of [8] scales approximately as O[N,,N?].

VI.  SIMULATION RESULTS

The simulations have the local IMM estimators
tracking a target in 2D space observed by sensors that
are measuring its Cartesian position. Two LTs run IMM
estimators and use two dynamic modes described in the
sequel. Three scenarios are considered: the first has a
deterministic target trajectory (ground truth) using a
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Fig. 4. The fixed target trajectory of the first scenario.

coordinated-turn model (see [4]) and fusion at full rate;
the second has the same deterministic trajectory with
fusion at a reduced rate (as a sanity check since the
proposed method’s performance at fusion times is not
affected by fusion rate); and the third simulates random
trajectories driven by white noise, with a dynamic model
matching that of the estimators and with fusion at full
rate.

A. Ground Truth

The measurement interval is 7 = 1s. The target
starts at x = 0,y = 0 with X = 100m/s,y = 100m/s.
The target:

1) travels straight for 25.2 s;

2) performs a constant-rate left turn of 3°/s for 10.6 s;
3) travels straight for 18s;

4) performs a constant-rate right turn of —3°/sfor4.1s;
5) performs a constant-rate left turn of 1.3°/s 12.8 s;
6) travels straight for 22.6 s.

A plot of this constant-speed, variable-turn rate tra-
jectory is shown in Fig. 4.

B. Estimation Models

The state vector is composed of stacked position and
velocity

x(k) = [x(k) y(k) x(k) y(k)] . (69)

The estimator dynamic models are described as fol-

lows. Mode 1 is a 2D WNA model, discretized from the

continuous-time model [4]. It has a 2D process noise ac-

celeration with intensity (power spectral density) §' =
0.01°m?/s?, and Mode 2 is the same but with 5> =

35

30
= = =1+ 2 (Outside)
— 1 + 2 (Inside)

25|
o 20 i
1]
z
151
10t e
5t
L L A L S
0 10 20 30 40 5 60 70 8 9

time (s)

Fig.5. Position RMSE of local IMMs, CMF, outside fusion, and
inside fusion.

7.52m?/s’:
10T 0
01 0 T
F= , (70)
00 1 0
00 0 1
s o0 41?0
13 142
S PO CAY
i o0 T 0
0 i1 0 T
The TPM is
0.95 0.05
= . (72)
0.05 095
The measurement parameters are
H, =H Lo (73)
01 0 of
R; = diag[(15m)?, (18 m)?], (74)
R, = diag[(20m)?, (25m)?]. (75)

C. Fusion Results

Figs. 5 and 6 show the position and velocity RMSE
for the inside information fusion, outside information fu-
sion (naive Gaussian fusion with no crosscovariances),
and CMF methods, along with the RMSE of the lo-
cal sensor tracks. The inside fusion is slightly out-
performed by the outside fusion during straight-line
motion, just as the centralized fusion is, but inside fu-
sion significantly outperforms outside fusion during ma-
neuvers. It is interesting to note the low RMSE during
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Fig.6. Velocity RMSE of local IMMs, CMF, outside fusion, and
inside fusion.

straight-line motion for naive outside fusion and that it
outperforms the method of this paper and CMF during
these times. This is explained by the fact that outside
fusion computes a small covariance matrix that signifi-
cantly reduces the overall filter “bandwidth” [4], but be-
cause of this, it performs very poorly during maneuvers
(i.e., it does not minimize the maximum error). Section
VI-E performs simulations with Monte Carlo randomly
generated trajectories that match the stochastic model
of the target, and those simulations show that, on aver-
age, CMF and the fusion with IMM inside information
do indeed outperform naive outside fusion.

The consistency is evaluated using the normalized es-
timation error squared (NEES, see [4]), divided by N,
(the state dimension) and this is plotted for every time
point in Fig. 7. Values near 1 are ideal and reflect a chi-
square quadratic form resulting from estimation errors

8 -
L IMMA
7r Fi —h— M2
[ 4 = Centralized

= = =1+ 2 (Outside)
w— 1 + 2 (Inside)

0 10 20 30 40 50 60 70 80 90
time (s)
Fig.7 NEES of local IMMs, CMF, outside fusion, and

inside-information fusion. Value is normalized by Ny to be 1 when
fused covariance matches sample MSE.
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time (s)
........... M1 (S1) ==dbem M1 (S2) =====M1(CMF)

M1 (lIF)

Fig.8. Computed probability of mode 1 from local IMMs (S1, S2),
inside information-fusion, and CMF.

that are zero mean and consistent with the state co-
variances. It is clear that the inside-information method
achieves better consistency.

In Fig. 8, the mode probabilities of the inside-
information fusion are compared to the local IMM mode
probabilities and the CMF mode probabilities. The fused
mode probabilities computed by the inside-information
fusion slightly lead the probabilities of the local sen-
sors when transitioning modes and, so, maneuvers can
be detected quicker than they can be at the LT. Although
the transient performance is encouraging, it can also be
seen that the method as described in this paper results
in fused mode probabilities that are “more sure” about
the mode —centralized fusion is more conservative and
only boosts this conviction slightly.

D. Reduced-Rate Fusion

As a sanity check, it should be shown that fusion per-
formance is not affected by the rate at which track data
are transmitted. An advantage to the T2TF using inside
information presented here is that it is not affected by
previous tracks. Outside information fusion is known not
to be affected by fusion rate because it utilizes the stan-
dard Gaussian fusion method without memory. As can
be seen in Fig.2,the LR mean/covariance and the MCEE
covariance (including crosscovariances between track-
ers) are recursively updated whether there is track infor-
mation or not, and received tracks are not used in that
computation (in the scenario presented here, y and Y
can even be computed offline).

Figs. 9-11 show the comparison of outside informa-
tion fusion to the inside information fusion at a reduced
rate of once every five measurement intervals, starting
at k = 4. Looking closely, the performance at the fu-
sion times matches the performance shown in Figs. 5-7.
Again, it can be seen that the inside information fusion,
like CMF, only outperforms outside information fusion
during maneuvers, but the consistency of the fused co-
variance is significantly superior for inside-information
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fusion. The next section demonstrates that, on average,
CMF and fusion with inside information are actually
more accurate.

E. Simulations Using Random, Model-Matched Target
Trajectories

While the simulations of the previous sections were
carried out using a single realization of the true target
trajectory, the trajectory simulations of this section are
randomized for every Monte Carlo run. This provides
a better comparison of the overall behavior of the al-
gorithms and highlights the consistency of the inside-
information fusion.

The random trajectories are created using the WNA
model driven by zero mean white noise having covari-
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Fig. 10. Velocity RMSE of outside information fusion and inside
information fusion at reduced rate, fusing tracks once every five
measurement intervals.
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fusion at reduced rate, fusing tracks once every five measurement
intervals.

ance given in equation (71).° The mode n is selected
according to realizations of the Markov chain having
TPM (72). The results are shown in Figs. 12-14. It can
be seen that the position RMSE is close to equal for
CMF, outside fusion, and inside fusion. Fusion with out-
side information has more velocity RMSE. Due to the
matched target and estimator parameters, the NEES,
normalized to nominal one, measures the overall MSE
consistency of the IMM trackers (where CMF is sim-
ply an IMM with stacked measurement vectors). Fusion
with inside information can be seen to be as consistent
as centralized fusion, demonstrating that it is a fusion
that accounts for error correlations (i.e., the crosscovari-
ances) and provides a consistent fused covariance out-
put. Outside-information fusion has NEES that is 50%
higher than the ideal NEES of inside-information fusion
meaning that the fused estimate covariance from outside
fusion is, on average, 33 % smaller than it should be given
the actual sample error covariance.

Figs. 12-14 also show the results of Chernoff fusion
using the sigma-point method of [8], where the weight
parameter is searched at every time step in the interval
[0.01, 0.99] using increments of 0.01. It can be seen that
although the Chernoff fused covariance closely matches
the actual sample MSE of the fused estimate (accord-
ing to the NEES), its RMSE is higher than both inside-
information and outside-information fusion. So in this
application, the MSE consistency of Chernoff fusion is
evident, but its inability to incorporate the known sys-
tem parameters renders it more inaccurate than the
model-based fusion using IMM inside information. On
average, fusion with IMM inside information performed

®White noise is a requirement for the state of the system to be a
Markov process, which is a requirement for the existence of an esti-
mator [4].
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approximately 100 times faster than Chernoff fusion
(see Section V-B for complexity analysis).

VII.  CONCLUSIONS

A system model of two IMM trackers estimating the
state of a maneuvering target was presented for T2TF
using information from inside the local IMM estimators.
The fusion estimator produces a posterior fused mean
and covariance that is reduced from a Gaussian mixture.
The mixture parameters are computed from IMM track
information from two LTs, with the target modeled as
jumping between two dynamic modes. The linearized
system model, together with the LR transformation
of the received mode probabilities, yields covariances
and crosscovariances of the local mode-conditioned
errors, and also yields the mode-conditioned means,
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Fig.13. Velocity RMSE of local IMMs, CMF, Chernoff fusion,

outside fusion, and inside fusion, using random, model-matched
target trajectories.
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variances, and covariances of the scalar LRs. From
these, the parameters of the likelihood functions of the
mode-conditioned state and the mode are derived. Each
fused mode-conditioned state estimate uses informa-
tion from all received MCE. The result is on-demand
Bayesian fusion capability with no previous fused track
information needed. Compared to the naive fusion
of moment-matched Gaussian track information (i.e.,
outside information fusion), the new method achieves
performance closer to the CMF method and outper-
forms the naive fusion in both RMSE and covariance
consistency, most notably when the target is in a ma-
neuvering mode. Fusion with inside information was
shown to be consistent on average as it accounts for the
crosscovariance of the local estimate errors and mode
probabilities, whereas fusion with outside information
and no crosscovariance has a computed covariance that
is 33% too small on average. Compared to Chernoff
fusion, the method is more accurate, consistent, provides
mode inference, and is computationally faster.

APPENDIX CORRELATION, DEPENDENCY, AND
STATISTICAL INFORMATION PROPERTIES

The following properties of the LT track parameters
and fused estimates establish some of the claims made
in this paper. For jointly Gaussian densities, uncorrelated
random variables are independent. Equivalently, if there
is no linear dependency among them, then the variables
are uncorrelated. The following claims are proved un-
der the multiple model, linear-Gaussian approximation
(Property 4 is proved without approximation):

Property 1: The locally computed, mode-conditioned
innovations are zero mean and wide-sense white se-
quences regardless of the true target mode. First, it is
noted that since the F is the same for both modes and
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the process noise is zero mean, all MCEE and innova-
tions are zero mean (see Section III-E). The whiteness
proof for single-mode systems is given in [4] using the
smoothing property of expectations. The following gen-
eralizes that proof because conditioning on mode M (k)
does not change this result. Let k; < k;, then

E[w (o)) (ki) | M(ks) =]

_E [E [v;”(kz)v;"(kl)/ | z’;ﬂ] | M(ks) = n]

—F [E [v;"(kZ) | z’;z—l] VI (ki) | M(k) = n]

= S}]M (k2 )8kz—k1
(A1)

Property 2: The LRs of the local mode probabilities
are orthogonal to the local MCEEs. Under the multiple-
model, linear-Gaussian approximation, the LR evolve as
a Markov process (22) driven by white noise that is un-
correlated to the noise that drives the MCEE process. In
Section III-C, the LR Gaussian white noise d(k) is ap-
proximated from the quadratic form of the innovations.
Likewise, conditioned on the target dynamic mode, the
MCEE evolve as a Markov process according to equa-
tions (33) and (34), where their additive white noise is
a linear combination of the process noise and the mea-
surement noise. Since the covariance between a vector
and its quadratic form is zero, the additive noises of the
LR and MCEE are uncorrelated. Additionally, the Ja-
cobian (42) is block-diagonal, where the MCEE do not
linearly depend on previous values of the LR and vice-
versa.

Property 3: Given the LT MCEs, the LRs of the re-
ceived mode probabilities do not contribute additional in-
formation about the mode-conditioned target state. Using
the principle of orthogonality [4], this is written as

E {[Zﬁﬂ R(kY | M) = n} —0. (A2)
This holds because % (k) is a linear combination of the
MCEE X7'(k),m = 1,2, j = 1,2 according to equation
(15). Because of Property 2 and this linear combination,
x.(k) is also orthogonal to the LR.

Property 4: The received MCE do not contain infor-
mation about the target’s mode probability. This can be
proved without the linear-Gaussian approximation us-
ing the fact that the likelihood of the mode based on the
received MCE is a diffuse (noninformative) PDF; the
state vector is composed of integrated (i.e., nonstation-
ary) position and velocity:

ol a2 ol &2

plX.X1.%5,. %5 | M=m]—- 0, m=1,2, (A3)

for any values of the MCE. Note that this property is not
necessarily satisfied if the state vector contains station-
ary process(es), e.g., discretized Ornstein—Uhlembeck
acceleration, autoregressive processes, or if the F matrix
switches with the mode.

Property 5: The components of the MCEE covari-
ance matrices are orthogonal to the MCEEs and the LRs.
In any single-mode linear-Gaussian system, this is eas-
ily proved since the computed state covariance matrix

does not depend on the observations. Let qu("’o) (k) =

qi,(o’")(k) denote the locally computed scalar error co-
variance of the n-th and o-th state components (i.e.,
the n-th, o-th and the o-th, n-th components of P’/.(klk)
as computed by the jth IMM estimator). This quan-
tity is understood to be the covariance of the error
of the [-th MCE conditioned on LT measurements
up to k and target mode / being in effect. It can be
stated as

¢ (k) £ E [i’(”)(k)i(k)l(o) | Z§, M(k) = l] . (A4)

Conditioned on mode » at the FC, the first correlation
to be analyzed is that of qé("‘o)(k) and any MCEE 7 (k).
Since any zero mean Gaussian random variable is uncor-
related to the product of any other two Gaussian random
variables,

E[q}"" (%) (k) | M(K) = n]

- E[E [;Z’(”)(k)il(")(k) | ZE, M(k) = 1]
(AS)

&(k) | M(K) = n]

=0,

and similar analysis can be used to also prove the lack of
correlation between qu("’o)(k) and [w; (k), w2 (k)]
Property 6: Given the LT MCEs, the received covari-
ance components qj.("’o)(k) do not contain any linearly
dependent information about the mode-conditioned tar-
get state x"(k). This can be proved using the princi-
ple of orthogonality: the fused mode-conditioned target
state estimate error Xj:(k) is a linear combination of the

MCEE, which are uncorrelated to qi(”‘o) (k) according to
Property 5.

Property 7: The received covariance components
qlf(”’o) (k) do not contain significant information about the
target dynamic mode M(k) or the mode-conditioned tar-
get state x" (k). Because of the nonlinear operations in-
volved in computing P’ (k|k), it is difficult to prove this.
However, an approximate argument can be made based
on the nature and intention of the IMM estimator. First,
it is stated in Section IV-D that the MCC do not de-
pend on the state or measurements at the current time
step, so not much information should be expected. They
do, however, depend on the previous MCE and mode
probabilities because of the SOM matrix term. But the
SOM is only a result of the mixing process that prevents
the exponential growth of mode history hypotheses, and
this method allows for feasible, yet suboptimal, multiple-
model estimation. Certainly, in single-mode Gaussian
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systems, or when using the infeasible optimal multiple-
model estimator [4], covariance/crosscovariance matri-
ces are deterministic, carry no statistical information,
and can be easily computed at the FC. For example, this
can be easily seen in the special case where the target is
known to be in a specific state at the previous time step:
there is no SOM in this case.

If system designers do not have access to LT de-
sign parameters or the target motion parameters, then
it makes sense why received covariance matrices would
be part of the fusion process. In such unfortunate scenar-
ios, the FC must utilize a highly approximate fusion al-
gorithm like covariance intersection or Chernoff fusion.
However, knowledge of the computational pipeline of
the LT track parameters allows for systematic, model-
based Bayesian fusion as presented here.

Property 8: Direct access to the locally-computed,
mode-conditioned Kalman gains and innovation covari-
ances does not improve the fused target state estimate or
the consistency of the fused estimate covariance; likewise,
computing and incorporating the covariance of these
locally-computed covariance components does not af-
fect the fused estimate or fused covariance. This is a di-
rect consequence of Property 5. It can be shown that
because the components of the MCC are uncorrelated
to the MCEE and the LR, then the MCEE and LR
covariances are unaffected by the covariance of the
LT Kalman gains and innovation covariance compo-
nents. Only the mode-conditioned means of these ma-
trices need to be computed at the FC as presented in
Section I'V-D.
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