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In order to carry out data fusion, it is crucial to account for the

imprecision of sensor measurements due to systematic errors. This re-

quires estimation of the sensor measurement biases. In this paper, we

consider a three-dimensional multisensor–multitarget maximum like-

lihood bias estimation approach for both additive and multiplicative

biases in the measurements.Multiplicative biases can more accurately

represent real biases in many sensors; however, they increase the com-

plexity of the estimation problem.By converting biasedmeasurements

into pseudo-measurements of the biases, it is possible to estimate bi-

ases separately from target state estimation. The conversion of the

spherical measurements to Cartesian measurements, which has to be

done using the unbiased conversion, is the key that allows estimation

of the sensor biases without having to estimate the states of the tar-

gets of opportunity. The measurements provided by these sensors are

assumed time-coincident (synchronous) and perfectly associated. We

evaluate the Cramér–Rao lower bound on the covariance of the bias

estimates, which serves as a quantification of the available informa-

tion about the biases. Through the use of the iterated least squares, it

is proved that it is possible to achieve statistically efficient estimates.

I. INTRODUCTION

Bias estimation and compensation are essential steps
in distributed tracking systems. The objective of sensor
registration is to estimate the biases in sensor measure-
ments, such as scale (multiplicative) and offset (additive)
biases in range, azimuth, and elevation measurements,
clock bias, and/or uncertainties in sensor positions [4].
Owing to this, much effort has been devoted in the last
few years to bias estimation procedures for multisensor–
multitarget tracking systems.Biases in sensors have been
approximated in several ways, including error in sensor
pointing and additive biases in the measurements. How-
ever, real sensor biases can be more complex than such
approximations. One reason is a combination of both
multiplicative and additive biases inmeasurements.That
is, a bias may cause increased error in a target that is fur-
ther away from the sensor or on the periphery of the sen-
sor’s field of view.

In [19] and [20], a joint track-to-track bias estima-
tion and fusion approach based on equivalent measure-
ments of the local tracks was proposed. In [14], an ap-
proach is used to carry out track-to-track association by
assuming additive biases in 2DCartesian coordinates. In
[11], another approach based on pseudo-measurements
along with expectation–maximization (EM) to perform
joint fusion and registration was proposed. A different
method that uses a multistart local search to handle
the joint track-to-track association and bias estimation
problem was introduced in [21]. The concept of pseudo-
measurement was used in [15] for exact bias estimation
with further extensions in [16] and [17]. In addition, these
methods require perfect knowledge about each local fil-
ter and its dynamic model. Also, as the number of sen-
sors increases, the bias estimation problem suffers from
the curse of dimensionality because of the commonly
used stacked bias vector implementation [10]. In [5], [7],
and [9], pseudo-measurements are used with maximum
likelihood (ML) to estimate a combination of rotational
biases, position biases, and additive measurement biases
in addition to presenting the hybrid Cramér–Rao lower
bound (HCRLB) as ametric for evaluating estimator ef-
ficiency. This is expanded upon in [6] and [8] with EM
methods used instead of ML.

In this paper, the novelty is to use the method and
Cramér–Rao lower bound (CRLB) derived in [13] com-
bined with an ML method using iterated least squares
(ILS) to solve the problem of estimating both multi-
plicative and additive biases for three-dimensional (3D)
spherical sensors. The primary novelty of this work is
to extend the work in [15]–[17] to 3D sensors includ-
ing an unbiased conversion of the measurement covari-
ance found in [18]. This work also builds on previous
bias estimation research in [5], [7], and [9] by using a
nonlinear weighted ML method to avoid the problems
with biased estimates and lack of statistical efficiency.
Additionally, multiplicative biases are used instead of
the combination of rotational biases, position biases, and

98 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 1 JUNE 2019

mailto:michael.p.kowalski@uconn.edu
mailto:dbelfadel@fairfield.edu
mailto:yaakov.bar-shalom@uconn.edu
mailto:peter.willett@uconn.edu


additive measurement biases. The difficulty with this is
that it increases the complexity of the bias estimation
problem: now there are two sources of error in the mea-
surement other than noise and the error from the mul-
tiplicative bias varies depending on the location of the
target. More targets are required and it becomes neces-
sary for the targets to be spaced such that the multiplica-
tive bias can be differentiated from the additive bias.
Therefore, an analysis of the CRLB is made to deter-
mine whether this method can achieve accuracy in bias
estimates that is comparable to the error from noise.The
CRLB gives a lower bound on the accuracy of bias es-
timates when using the pseudo-measurements, allowing
analysis of performance when the measurement conver-
sion is used rather than the raw measurements. Through
the use of the pseudo-measurement model described in
[15]–[17], it is possible to avoid the need to estimate the
states of the targets and estimate only the sensor biases.
Once the sensor biases are estimated, they can be re-
moved from the measurements and the (nearly) bias-
free measurements can then be used in tracking systems.

An important metric when using pseudo-
measurements is the HCRLB that is discussed in [5], [7],
and [9] and evaluated using ML methods. The HCRLB
is the CRLB but calculated using all measurements and
a parameter vector including the bias variables and all
nuisance variables. In this case, the nuisance variables
that are included are the target states. The removal of
the target state in the calculation of the CRLB may
result in a higher metric than the true lower bound
that takes into account all the nuisance parameters
available to the estimator. This means that it is nec-
essary to include this metric in simulation results to
understand how much accuracy is lost using the pseudo-
measurement model. It is important to note that the
HCRLB is a lower bound and may not be achieved by
an estimator; however, EM approaches can be used to
improve results such that they are closer to the HCRLB
[6], [8]. Furthermore, estimating every nuisance variable
may be computationally intensive, which would make
the pseudo-measurement method attractive despite the
loss of accuracy. Finally, calculating the CRLB does not
require information about the target state, unlike the
HCRLB that requires an estimate of the target states.

The paper is structured as follows. The bias model
and the assumptions for bias estimation are discussed
in Section II. In Section III, a review of the exact bias
estimation method is given. The key to create the bias
pseudo-measurements in Cartesian coordinates, which
allows avoiding the need to estimate the states of the
targets of opportunity, is to use the unbiased transfor-
mation from spherical to Cartesian [18]. The pseudo-
measurement model is presented in Section III-A and
the ILS estimator is described in Section III-B. Sec-
tion III-C presents the calculation of the CRLB for
the proposed method. Section IV demonstrates the per-
formance of the method for synchronous sensors and
compares the root mean squared error (RMSE) of the

estimator with the CRLB. Conclusions are discussed in
Section V.

II. PROBLEM FORMULATION

A. Coordinate Frames and Measurement Space

In a typical 3D sensor, the measured values of posi-
tion are in spherical coordinates—range, azimuth, and
elevation. Assume there are NS synchronized sensors,
with known positions, reporting range, azimuth, and el-
evation measurements in spherical coordinates of t =
1, . . . ,NT targets in the common surveillance region
with K total time steps. The true range, azimuth, and
elevation are represented by rs,t (k), θs,t (k), and αs,t (k),
respectively. The noise- and bias-free measurements
originating from target t for sensor s at time k are

rs,t (k) =
√
xs,t (k)2 + ys,t (k)2 + zs,t (k)2

θs,t (k) = tan−1
(
ys,t (k)
xs,t (k)

)

αs,t (k) = tan−1

(
zs,t (k)√

xs,t (k)2 + ys,t (k)2

)
. (1)

Each sensor views the target using its own sensor refer-
ence frame; therefore,

xs,t (k) =

⎡
⎢⎣
xs,t (k)

ys,t (k)

zs,t (k)

⎤
⎥⎦ =

⎡
⎢⎣
xt (k) − xs(k)

yt (k) − ys(k)

zt (k) − zs(k)

⎤
⎥⎦

= xt (k) − xs(k) (2)

where xt (k) = [xt (k), yt (k), zt (k)] is the true position
in Cartesian coordinates of target t at time step k and
xs(k) = [xs(k), ys(k), zs(k)] is the true position in Carte-
sian coordinates of sensor s at time step k. Transforming
(1) to a Cartesian coordinate frame yields

xcs,t (k) = rs,t (k) cos (θs,t (k)) cos (αs,t (k))

ycs,t (k) = rs,t (k) sin (θs,t (k)) cos (αs,t (k))

zcs,t (k) = rs,t (k) sin (αs,t (k)) . (3)

For a given sensor, each measurement is modeled as a
function of the actual (true) target state, systematic er-
rors (biases), and random errors (noise). The model for
the measurements originating from a target with addi-
tive and multiplicative biases at time k in spherical coor-
dinates for sensor s is

zs,t (k) =

⎡
⎢⎣
rms,t (k)

θms,t (k)

αms,t (k)

⎤
⎥⎦

=

⎡
⎢⎣

[1 + εrs (k)] rs,t (k) + brs + wr
s(k)[

1 + εθ
s (k)

]
θs,t (k) + bθ

s + wθ
s (k)

[1 + εα
s (k)]αs,t (k) + bα

s + wα
s (k)

⎤
⎥⎦

s = 1, . . . ,NS, t = 1, . . . ,NT (4)
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where rms,t (k), θ
m
s,t (k), and αms,t (k) are the measured range,

azimuth,and elevation, respectively,brs,b
θ
s , and b

α
s are the

offset biases in the range, azimuth, and elevation, respec-
tively, and εrs (k), ε

θ
s (k), and εα

s (k) are the scale biases in
the range, azimuth, and elevation, respectively.The mea-
surement noises wr

s(k), wθ
s (k), and wα

s (k) in range, az-
imuth, and elevation are zero mean with corresponding
variances σ 2

r , σ
2
θ , and σ 2

α , respectively, and are assumed
mutually independent. The bias vector for sensor s is

βs = [brs bθ
s bα

s εrs εθ
s εα

s ]
T (5)

and is modeled as an unknown constant over a certain
window of scans (nonrandom variable). Consequently,
the ML estimator [2] or the least-squares estimator [1]
can be used for bias estimation. On the other hand, a
Gauss–Markov random model [22] can also be used, in
which case a Kalman filter can be adopted for bias esti-
mation.We model the measurement equation (4) as

zs,t (k) =

⎡
⎢⎣
rs,t (k)

θs,t (k)

αs,t (k)

⎤
⎥⎦ +Cs,t (k)βs +

⎡
⎢⎣

wr
s(k)

wθ
s (k)

wα
s (k)

⎤
⎥⎦ (6)

where

Cs,t (k)
�=

⎡
⎢⎣
1 0 0 rs,t (k) 0 0

0 1 0 0 θs,t (k) 0

0 0 1 0 0 αs,t (k)

⎤
⎥⎦ . (7)

Here, themeasured azimuth θms,t (k),elevation αms,t (k),and
range rms,t (k) can be utilized in (7) without any significant
loss of performance [15]–[17].

The problem is to estimate the bias vectors βs for
all sensors. After bias estimation, all the biases can be
compensated for to obtain the state estimates. Since
the motion equations of targets are naturally expressed
in Cartesian coordinates, if the spherical measurements
can be converted to Cartesian (via nonlinear trans-
formation) without introducing coordinate conversion
bias and obtaining the correct covariance for the con-
verted measurements, one can then perform the state
estimation within a completely linear framework. Then,
sensor s has the measurement equation in Cartesian co-
ordinates (with the sameHs(k) = H(k) for all sensors)

zcs,t (k) = H(k)xt (k) + Bs,t (k)Cs,t (k)βs + xs(k) + ws(k)

(8)

where the state vector is

xt (k) = [
xt (k) yt (k) zt (k)

]T (9)

and H(k) is the measurement matrix given by

H(k) =

⎡
⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎦ �= H. (10)

Using themeasured azimuth θms,t (k), elevation αms,t (k),
and range rms,t (k) from sensor s, the Jacobian of theCarte-
sian measurements with respect to the biases in each co-

ordinate, Bs,t (k), can be written (omitting subscripts s
and t, superscript m, and time step k for simplicity) as

Bs,t (k) =

⎡
⎢⎣
cos θ cosα −r sin θ cosα −r cos θ sinα

sin θ cosα r cos θ cosα −r sin θ sinα

sinα 0 r cosα

⎤
⎥⎦.

(11)

The transformation of themeasurements from spher-
ical to Cartesian coordinates that has to be used is the
unbiased one [18]. This was found necessary to ensure
the accuracy of the bias estimates and is discussed in
more detail at the end of the section.

The unbiased conversion converts the original mea-
surements with the following equations:

xc,ms,t (k) = λ−1
θ λ−1

α rs,t (k) cos θs,t (k) cosαs,t (k) + xs(k)

yc,ms,t (k) = λ−1
θ λ−1

α rs,t (k) sin θs,t (k) cosαs,t (k) + ys(k)

zc,ms,t (k) = λ−1
α rs,t (k) sinαs,t (k) + zs(k) (12)

zc,ms,t (k) =

⎡
⎢⎣
xc,ms,t (k)

yc,ms,t (k)

zc,ms,t (k)

⎤
⎥⎦ . (13)

The new (unbiased) covariance matrix of the mea-
surements in Cartesian coordinates (omitting indexesm
and k in the measurements for simplicity) is given by

Rs,t (k) =

⎛
⎜⎝
Rs,t
xx Rs,t

xy Rs,t
xz

Rs,t
xy Rs,t

yy Rs,t
yz

Rs,t
xz Rs,t

yz Rs,t
zz

⎞
⎟⎠ (14)

Rs,t
xx = (λ−2

θ λ−2
α − 2)r2s,t cos

2 θs,t cos2 αs,t

+1
4
(r2s,t + σ 2

r )(1 + λ′
θ cos 2θs,t )(1 + λ′

α cos 2αs,t )

Rs,t
yy = (λ−2

θ λ−2
α − 2)r2s,t sin

2
θs,t cos2 αs,t

+1
4
(r2s,t + σ 2

r )(1 − λ′
θ cos 2θs,t )(1 + λ′

α cos 2αs,t )

Rs,t
zz = (λ−2

α − 2)r2s,t sin
2
αs,t

+1
2
(r2s,t + σ 2

r )(1 − λ′
α cos 2αs,t )

Rs,t
xy = (λ−2

θ λ−2
α − 2)r2s,t sin θs,t cos θs,t cos2 αs,t

+1
4
(r2s,t + σ 2

r )λ
′
θ sin 2θs,t (1 + λ′

α cos 2αs,t )

Rs,t
xz = (λ−1

θ λ−2
α − λ−1

θ − λθ )r2s,t cos θs,t sinαs,t cosαs,tv

+1
2
(r2s,t + σ 2

r )λθλ
′
α cos θs,t sin 2αs,t

Rs,t
yz = (λ−1

θ λ−2
α − λ−1

θ − λθ )r2s,t sin θs,t sinαs,t cosαs,t

+1
2
(r2s,t + σ 2

r )λθλ
′
α sin θs,t sin 2αs,t (15)
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where

λθ = e−σ 2
θ /2

λ′
θ = e−2σ 2

θ = λ4
θ

λα = e−σ 2
α /2

λ′
α = e−2σ 2

α = λ4
α. (16)

The debiasing coefficients (16) are used in the cal-
culation of the converted covariance matrix and this
conversion bias interferes with the estimation of the con-
sistent measurement biases. If the debiasing coefficients
are zero, then the converted covariance matrix results
in negative values, which causes negative values in the
CRLB. Furthermore, the conversion bias adds to the er-
ror resulting from the measurement biases. The estima-
tor has difficulty in differentiating this error from the er-
ror from the biases. If there is no noise or extremely little
noise, it is possible to use the standard conversion to esti-
mate the biases, but without CRLB efficiency.This is un-
reliable though and results may vary depending on the
number of targets, their positions, and the magnitude of
the biases, and in any case, the unbiased conversion adds
little numerical complication.

Additionally, the calculation of the covariance ma-
trix is necessary for use inMLmethods in order to avoid
biased estimates and to generate the CRLB. If a least-
squares method is used but with identity noise rather
than an accurate measurement noise matrix, it is likely
to result in statistically inefficient estimates and poten-
tially biased estimates [5], [7], [9].

III. SYNCHRONOUS SENSOR REGISTRATION FOR
THE 3D CASE

In this section, the bias estimation method intro-
duced in [15]–[17] for synchronous sensors with known
sensor locations is reviewed and extended to the 3D case,
with various simulations and the calculation of the lower
bounds for bias estimation in multisensor–multitarget
scenarios.

The estimator uses a batch of measurements from
a number of time steps to estimate the biases. The pa-
rameter vector to be estimated consists of the biases,
and pseudo-measurements are used to measure the ef-
fect of the biases.The pseudo-measurements remove the
true target states in order to only measure the effect of
the biases. The target states are not estimated with this
estimator.

The dynamic equation for the target state is

x(k) = [
xt (k)T, ẋt (k)T, ẍt (k)T

]T
(17)

x(k+ 1) = F (k)x(k) + v(k) (18)

where F (k) is the transition matrix and v(k) is a zero-
mean additive white Gaussian noise with covariance
Q(k).

Because the local trackers are not able to estimate
the biases on their own, they yield inaccurate estimates
of tracks by assuming no bias in their measurements.
Hence, the state space model considered by local track-
ers for a specific target t and sensor s is

xt (k+ 1) = xt (k) + Ft (k)
[
ẋt (k)Tẍt (k)T

]T + v(k)

(19)

zs,t (k) = H(k)xt (k) + ws(k) (20)

where Ft (k) is a submatrix of F (k). In this method, the
transition matrix can be unknown as the target state is
not estimated. The difference between (4) and (20) is
that the latter has no bias term and, as a result, the lo-
cal tracks are bias-ignorant [15]–[17]. Note that this mis-
match should be compensated for.

A. The Pseudo-Measurement of the Bias Vector

In this subsection, a discussion on how to find an in-
formative pseudo-measurement by using the local tracks
for the case NS = 2 synchronized 3D sensors is pre-
sented, generalizing the method given in [15]–[17].

The pseudo-measurement of the bias vector is de-
fined as

zpt (k) � zc1,t (k) − zc2,t (k) (21)

In the above equation, the true position of the target is
eliminated because of cancellation since each such posi-
tion is multiplied by the same matrix (24). This results in
the following equation:

zpt (k) = B1,t (k)C1,t (k)β1 − B2,t (k)C2,t (k)β2

+w1(k) − w2(k). (22)

The pseudo-measurement of the bias vector can be writ-
ten as

zpt (k) = Ht (k)b + w̃(k) (23)

where the pseudo-measurement matrix H, the bias pa-
rameter vector b, and the pseudo-measurement noise
w̃(k) are defined as

Ht (k) �
[

(B1,t (k)C1,t (k))
T

(−B2,t (k)C2,t (k))
T

]T

(24)

b �
[
βT
1 , βT

2

]T (25)

and

w̃(k) � w1(k) − w2(k). (26)

The bias pseudo-measurement noises w̃ are additive
white Gaussian with zero mean, and their covariance is

Rt (k) = R1,t (k) + R2,t (k). (27)

The key property of (26) is its whiteness, which results
in an exact bias estimate. In this approach, there is no
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approximation in deriving (23)–(27) unlike the methods
previously proposed in [12], [23], and [24]. This was one
of the main contributions of [15].

B. The ILS Method

If the biases are constant for each measurement over
the batch of scans, then an ILS method can be used. This
estimator finds the ML estimate [3] of the bias vector b.
This estimator uses the Jacobian calculated previously in
(24) for the pseudo-measurements of the bias vector as
well as the noise covariance matrix (27). The measure-
ments and matrices must be stacked in a batch for the
estimator. The measurement batch is

zp = [
zp1 (1)

T, . . . , zp1 (K)T, zp2 (1)
T, . . . , zpNT

(K)T
]T

. (28)

The Jacobian matrix batch is defined for each estimator
iteration j as

H j = [H j
1(1)

T, . . . ,H j
1(K)T,H j

2(1)
T, . . . ,H j

NT
(K)T]T.

(29)

The noise covariance for the batch is a diagonal matrix
composed of the individual covariance matrices

R =

⎡
⎢⎢⎢⎢⎣
R1(1) 0 0 0 0

0 . . . 0 0 0
0 0 R1(K) 0 0
0 0 0 . . . 0
0 0 0 0 RNT (K)

⎤
⎥⎥⎥⎥⎦ . (30)

The equation for each iteration j of the estimator is

b j+1
e = b j

e + [H jTR−1H j]−1H jTR−1[zp − h(b j
e)]. (31)

At each iteration, the current state estimate is used to
generate a predicted measurement vector to compare to
the actual measurements

h(b j
e) = H jb j

e. (32)

When the state no longer changes significantly, then the
estimator stops and takes the final iteration as its esti-
mated parameter. To initialize the estimator, the biases
are assumed to be zero

b0e = [0, 0, . . . , 0]T. (33)

In order for the estimator to be observable, a bare min-
imum of measurements is needed to satisfy the require-
ment that therewill be at least one pseudo-measurement
per parameter vector element. This results in the follow-
ing inequality:

3KNT (NS − 1) ≥ 6NS. (34)

This inequality can be simplified to

KNT − KNT

NS
≥ 2. (35)

In practice, more measurements than this are required
together with measurement diversity to obtain satisfac-
tory accuracy. In order to have sufficient measurement

diversity, there must be targets spaced such that for one
target the error from themultiplicative bias is larger than
the error from the additive bias and for another target
the error from the additive bias is larger than the error
from the multiplicative bias.

C. CRLB for the Biases

To investigate the performance of the estimator, it is
necessary to calculate the CRLB. The CRLB is defined
[3] as the inverse of the Fisher information matrix.

CRLB = J−1 = [HTR−1H]−1. (36)

The CRLB is based on the batch of Jacobians that is cal-
culated in (29) and (24) as well as the batch of noise co-
variance matrices calculated in (30), (27), and (14). The
calculation of the CRLB does not require any knowl-
edge of the target state, although the spherical measure-
ments are used in calculating (11) and (7). It will be
shown in the next section that the covariance of the bias
estimates attains the CRLB; i.e., the ML estimator is ef-
ficient for this problem.

We additionally calculate the HCRLB that is a more
accurate lower bound as some of the information in the
3D spherical measurements has been eliminated to pro-
duce the pseudo-measurements. The HCRLB takes into
account the nuisance variables not originally estimated,
in this case the target positions.The parameter vector for
the HCRLB is

ψ = [
bT, xt1(1), . . . , xt1(K), . . . , xNt (K)

]T
. (37)

The HCRLB is defined as

HCRLB = [HT
ψR

−1
ψ Hψ ]−1 (38)

where the Jacobian and covariance associated with the
HCRLB are defined as

Hψ = ∇ψz

= ∇ψ

[
zs1,t1(1)T, . . . , zs1,t1(K)T, . . . , zNs,Nt (K)T

]T
(39)

Rψ =

⎡
⎢⎢⎢⎣

σ 2
r 0 0 . . .

0 σ 2
α 0 . . .

0 0 σ 2
ε . . .

. . . . . . . . . . . .

⎤
⎥⎥⎥⎦ . (40)

For brevity, the individual derivatives are not included.
The HCRLB is calculated using the true values of the
biases and target states.

In situationswhere the targetmotion is unknown, the
HCRLB tends not to deviate far from the CRLB as the
information about the target states is not very accurate
compared to the large amount of data contributing to
the biases.
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Figure 1. 125-target layout with projections. The × symbols
represent sensors and the ◦ symbols represent targets. (a) 3D plot. (b)

X–Y projection. (c) X–Z projection. (d)Y–Z projection.
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Figure 2. 27-target layout with projections. The × symbols represent
sensors and the ◦ symbols represent targets. (a) 3D plot. (b) X–Y

projection. (c) X–Z projection. (d)Y–Z projection.
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IV SIMULATION RESULTS

Simulations are made to test the performance of the
approach proposed. Estimation of the biases can be dif-
ficult as a number of distinct targets must be used in or-
der to differentiate the effects of the multiplicative and
additive biases. In our simulation, sensor 1 is fixed at
(0,0,0) km, sensor 2 is fixed at (25,100,0) km, and tar-
get velocity is (−300, 0, 0) m/s. The target positions are
set up in a cone extended from sensor 1. The ranges are
in [50, 500] km, the azimuths are in [−1, 1] rad, and the
elevations are in [0.1, 1.5] rad. The additive and mul-
tiplicative biases, as well as the noise variances, are in
range [20 m, 10−4, 100 m2], and in azimuth and eleva-
tion [3 mrad, 3 × 10−3, 1 mrad2].

The target positions include a swath of range, az-
imuth, and elevation that allows each bias to make its
effect apparent versus the other. In order to ensure this,
the targets are radially placed in a cone from one sensor.
In cases of high range, azimuth, and elevation values, the
multiplicative biases dominate, whereas in cases of low
range, azimuth, and elevation values, the additive biases
dominate. In our simulations, the targetsmove at 300m/s
across time steps with ten measurements at one mea-
surement per second. The sensor configuration is shown
in Fig. 1 for 125 targets and in Fig. 2 for 27 targets.

The results of the simulations include the CRLB,
RMSE from nMC Monte Carlo runs, and a probability
interval around the CRLB for each bias. The probabil-
ity interval is calculated for the 95% region using the
bias error samples from the Monte Carlo runs. The 95%

probability interval is calculated by the following equa-
tions where σSE is the standard deviation of the squared
error from the nMC Monte Carlo runs:

0.95 = P(a < RMSE < b) (41)

a =
√
CRLB − 1.96 · σSE√

nMC
(42)

b =
√
CRLB + 1.96 · σSE√

nMC
. (43)

A. Baseline Simulations

The first simulations are a baseline test to determine
the performance and efficiency of the estimator. To be-
gin, a simulation was performed with NT = 125 tar-
gets and K = 10 time steps, the results of which are
shown in Table III. In this simulation, it is shown that
it is possible to achieve RMSE values that are compat-
ible to the CRLB. The CRLB and RMSE are based
on the error in the final bias estimates. The RMSE
lies within the 95% probability interval around the
CRLB in all cases; thus, the estimator is proved to be
efficient [3]. Furthermore, the CRLB values are com-
pared to the true bias and the noise standard devia-
tion. Table III also contains the results that show that
the residual bias RMSE is consistently lower than the
noise standard deviation. Furthermore, the error from
RMSE is lower than the noise standard deviation for

TABLE I
nMC = 100 Runs,K = 10 Time Steps, and NT = 125 Targets

CRLB square HCRLB square 95% Probability interval Noise standard Uncorrected
Component root root RMSE around CRLB deviation bias

Sensor 1 range
additive

4.96 m 4.96 m 4.7 m [4.3, 5.5] m 10 m 20 m

Sensor 1 range
multiplicative

4.21 × 10−5 4.21 × 10−5 3.88 × 10−5 [3.66 × 10−5, 4.63 × 10−5] 10 m 10−4

Sensor 1 azimuth
additive

4.85 × 10−2 mrad 4.85 × 10−2 mrad 5.55 × 10−2 mrad [3.98 × 10−2, 5.45 × 10−2] mrad 1 mrad 3 mrad

Sensor 1 azimuth
multiplicative

7.89 × 10−5 7.89 × 10−5 7.56 × 10−5 [6.81 × 10−5, 8.80 × 10−5] 1 mrad 3×10−3

Sensor 1 elevation
additive

1.15 × 10−1 mrad 1.14 × 10−1 mrad 1.27 × 10−1 mrad [9.24 × 10−2, 1.33 × 10−1] mrad 1 mrad 3 mrad

Sensor 1 elevation
multiplicative

9.42 × 10−5 9.41 × 10−5 9.82 × 10−5 [7.74 × 10−5, 1.08 × 10−4] 1 mrad 3×10−3

Sensor 2 range
additive

5.67 m 5.67 m 5.4 m [5.0, 6.2] m 10 m 20 m

Sensor 2 range
multiplicative

4.43 × 10−5 4.43 × 10−5 4.33 × 10−5 [3.80 × 10−5, 4.92 × 10−5] 10 m 10−4

Sensor 2 azimuth
additive

8.44 × 10−2 mrad 8.44 × 10−2 mrad 9.32 × 10−2 mrad [6.65 × 10−2, 9.83 × 10−2] mrad 1 mrad 3 mrad

Sensor 2 azimuth
multiplicative

6.82 × 10−5 6.82 × 10−5 8.00 × 10−5 [5.33 × 10−5, 7.97 × 10−5] 1 mrad 3×10−3

Sensor 2 elevation
additive

9.66 × 10−2 mrad 9.66 × 10−2 mrad 1.00 × 10−1 mrad [8.18 × 10−2, 1.10 × 10−1] mrad 1 mrad 3 mrad

Sensor 2 elevation
multiplicative

9.58 × 10−5 9.56 × 10−5 9.65 × 10−5 [8.15 × 10−5 1.07 × 10−4] 1 mrad 3× 10−3
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TABLE II
nMC = 100 Runs,K = 10 Time Steps, and NT = 27 Targets

CRLB square HCRLB square 95% Probability interval Noise standard Uncorrected
Component root root RMSE around CRLB deviation bias

Sensor 1 range
additive

7.7 m 7.7 m 8.3 m [6.5, 8.7] m 10 m 20 m

Sensor 1 range
multiplicative

8.84 × 10−5 8.84 × 10−5 9.15 × 10−5 [7.59 × 10−5, 9.84 × 10−5] 10 m 10−4

Sensor 1 azimuth
additive

1.12 × 10−1 mrad 1.12 × 10−1 mrad 1.05 × 10−1 mrad [9.65 × 10−2, 1.23 × 10−1] mrad 1 mrad 3 mrad

Sensor 1 azimuth
multiplicative

1.81 × 10−4 1.81 × 10−4 1.73 × 10−4 [1.56 × 10−4, 2.02 × 10−4] 1 mrad 3 × 10−3

Sensor 1 elevation
additive

2.28 × 10−1 mrad 2.28 × 10−1 mrad 2.19 × 10−1 mrad [1.93 × 10−1, 2.59 × 10−1] mrad 1 mrad 3 mrad

Sensor 1 elevation
multiplicative

1.82 × 10−4 1.81 × 10−4 1.72 × 10−4 [1.49 × 10−4, 2.08 × 10−4] 1 mrad 3 × 10−3

Sensor 2 range
additive

11.1 m 11.1 m 11.4 m [9.5, 12.4] m 10 m 20 m

Sensor 2 range
multiplicative

9.64 × 10−5 9.63 × 10−5 1.01 × 10−4 [8.21 × 10−5, 1.08 × 10−4] 10 m 10−4

Sensor 2 azimuth
additive

2.00 × 10−1 mrad 2.00 × 10−1 mrad 2.03 × 10−1 mrad [1.70 × 10−1, 2.25 × 10−1] mrad 1 mrad 3 mrad

Sensor 2 azimuth
multiplicative

1.53 × 10−4 1.53 × 10−4 1.47 × 10−4 [1.32 × 10−4, 1.71 × 10−4] 1 mrad 3 × 10−3

Sensor 2 elevation
additive

1.76 × 10−1 mrad 1.76 × 10−1 mrad 1.77 × 10−1 mrad [1.52 × 10−1, 1.98 × 10−1] mrad 1 mrad 3 mrad

Sensor 2 elevation
multiplicative

1.82 × 10−4 1.82 × 10−4 1.79 × 10−4 [1.56 × 10−4, 2.03 × 10−4] 1 mrad 3 × 10−3

TABLE III
nMC = 100 Runs,K = 1 Time Steps, and NT = 125 Targets

CRLB square HCRLB square 95% Probability interval Noise standard Uncorrected
Component root root RMSE around CRLB deviation bias

Sensor 1 range
additive

16.4 m 16.4 m 17.5 m [13.3, 18.8] m 10 m 20 m

Sensor 1 range
multiplicative

1.36 × 10−4 1.36 × 10−4 1.24 × 10−4 [1.16 × 10−4, 1.52 × 10−4] 10 m 10−4

Sensor 1 azimuth
additive

1.53 × 10−1 mrad 1.53 × 10−1 mrad 1.59 × 10−1 mrad [1.25 × 10−1, 1.72 × 10−1] mrad 1 mrad 3 mrad

Sensor 1 azimuth
multiplicative

2.53 × 10−4 2.53 × 10−4 2.32 × 10−4 [2.21 × 10−4, 2.80 × 10−4] 1 mrad 3 × 10−3

Sensor 1 elevation
additive

3.66 × 10−1 mrad 3.65 × 10−1 mrad 3.61 × 10−1 mrad [3.13 × 10−1, 4.12 × 10−1] mrad 1 mrad 3 mrad

Sensor 1 elevation
multiplicative

3.01 × 10−4 3.01 × 10−4 2.83 × 10−4 [2.65 × 10−4, 3.31 × 10−4] 1 mrad 3 × 10−3

Sensor 2 range
additive

18.7 m 18.7 m 17.8 m [16.1, 20.8] m 10 m 20 m

Sensor 2 range
multiplicative

1.43 × 10−4 1.43 × 10−4 1.27 × 10−4 [1.24 × 10−4, 1.59 × 10−4] 10 m 10−4

Sensor 2 azimuth
additive

2.68 × 10−1 mrad 2.68 × 10−1 mrad 2.83 × 10−1 mrad [2.19 × 10−1, 3.08 × 10−1] mrad 1 mrad 3 mrad

Sensor 2 azimuth
multiplicative

2.19 × 10−4 2.19 × 10−4 2.28 × 10−4 [1.81 × 10−4, 2.50 × 10−4] 1 mrad 3 × 10−3

Sensor 2 elevation
additive

3.09 × 10−1 mrad 3.09 × 10−1 mrad 3.02 × 10−1 mrad [2.68 × 10−1, 3.47 × 10−1] mrad 1 mrad 3 mrad

Sensor 2 elevation
multiplicative

3.05 × 10−4 3.05 × 10−4 3.05 × 10−4 [2.59 × 10−4, 3.43 × 10−4] 1 mrad 3 × 10−3
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all cases except range multiplicative bias at the larger
ranges.

This initial simulation contains many targets; there-
fore, another simulation is made with 27 targets instead.
The results are displayed in same manner as before

in Table I. The results show that the performance is
not reduced much more than the 125-target case. The
estimator is still efficient and has error in the angle bi-
ases that is lower than the noise standard deviation and
the full bias.The range biases are significantly worse, and
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Figure 3. Comparing RMSE and CRLB with number of targets,K = 10 time steps.
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125 Target Random Placement 3D Plot
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Figure 4. 125 random target layout with projections. The × symbols
represent sensors and the ◦ symbols represent targets. (a) 3D plot. (b)

X–Y projection. (c) X–Z projection. (d)Y–Z projection.

the error in the range additive bias is almost equal to the
noise standard deviation. The range multiplicative bias
has RMSE that is nearly equal to the full bias, mean-
ing that the estimation of this bias is comparable to not
estimating it at all. Finally, a simulation is performed in
which only a single measurement is available from each
time step andwith 125 targets.These results are provided
in Table II. In this simulation, we see the results are very
similar to the previous simulation with 10 time steps and
27 targets. The range bias estimates have RMSE that
is poor and comparable to the full bias. The angle bias
RMSE values are still lower than the noise standard de-
viation. The estimator is efficient although the CRLB it-
self is very poor for the range biases.

The HCRLB values for these simulations are nearly
identical to the CRLB values, meaning that very little
accuracy has been lost by using pseudo-measurements
instead of the original measurements. This shows that
when little information is known about the nuisance pa-
rameters, then the pseudo-measurement method is ef-
fective for avoiding the need to estimate the target state.

Efficient estimates are possible with this estimator
and it is possible to reduce the CRLB to reasonable lev-
els of variance by using measurements from many tar-
gets. In the case of only a single time step, the error
is larger than the magnitude of the bias, meaning that
it is necessary to include more measurements in order
to achieve reasonable results. Furthermore, it is possible
through bias estimation to reduce the error from the bi-
ases to levels that are less than the standard deviation of
the noise, as shown in Tables I–III.

B. Comparing Performance Versus Number of Targets

Additionally, it is important to evaluate the bias es-
timation performance versus the number of targets. To
simulate this, the number of targets is varied from 5 to
125 targets, starting with low-range targets and slowly ex-
panding outward according to the target cone shown in
Fig. 1. This means that range measurements have poor
diversity and the estimates for the range biases are less
accurate for small numbers of targets. The results of this
simulation are given in Fig. 3. The results show that at
around 45 targets the CRLB and RMSE are near the
lowest point, and that further addition of targets contin-
ues to improve the results at a slow rate. Furthermore,
we see that in the case of angle biases once there are 30
targets the bias RMSE values are about one-tenth of the
full bias value. It is likely though that in a different tar-
get layout the results may differ, as this layout includes
different combinations of range, azimuth, and elevation
to ensure that the multiplicative biases can be estimated
and not confused with the additive biases. To observe
this difference, another simulation is made with random
target placement.

In each Monte Carlo run, the targets are placed uni-
formly in a cube around the cone previously used. An
example of this placement is given in Fig. 4. The same
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Figure 5. Comparing RMSE and CRLB with number of targets,K = 10 time steps.

simulation is made as earlier and the results are shown
in Fig. 5. The results are nearly the same as before,
except for the range additive bias. This is a result of
the poor range diversity, especially of low-range targets.
Overall, these results show that it is important to have
measurement diversity to reduce the CRLB to reason-

able levels and it is useful to have a large number of
targets for this reason.

V. Conclusion

In this paper, an ML method is used to accurately
estimate both multiplicative and additive biases in a
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two-sensor scenario. Measurement data are converted
into pseudo-measurements to isolate the effects of the
biases in order to estimate them while ignoring esti-
mation of the target state. The results show that de-
spite the 12 separate estimated biases it is possible to
match the RMSE and CRLB of the bias estimates by
using a sufficient number of targets positioned in a man-
ner to differentiate the biases. This proves the method
is statistically efficient, although CRLB values are sub-
ject to the sensor and target geometry. In good condi-
tions, the estimator can reduce the error from RMSE
in bias estimates to a fraction of the noise standard
deviation.
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