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The Information Matrix Fusion (IMF) algorithm for nonlinear,

asynchronous (with arbitrary local tracker sampling times for full rate

as well as reduced-rate communication) and heterogeneous systems is

presented. The heterogeneous estimates from local trackers are in dif-

ferent state spaces with different dimensions and are related by a non-

linear and noninvertible transformation.Themain application of these

results is the fusion of tracks from radar and infrared/electrooptical

sensors. Different from Track-to-Track Fusion, the IMF does not re-

quire the cross-covariance between the local estimation errors. The

performance of the proposed algorithm is shown via simulation based

onMonte Carlo runs and is compared with the optimal solution—full-

rate centralized fusion for both full-rate fusion and reduced-rate fusion

for heterogeneous and asynchronous sensors.

I. INTRODUCTION

A sensor configuration with complementary sensors
at different locations (sensor network) is required in
most of the tracking systems to achieve the neces-
sary dependability and estimation accuracy. The best
target-state-estimation performance is obtained by a
centralized tracker/fuser (CTF), by directly sending to
the fusion center (FC) all the measurements of the local
sensors. However, CTF is not always available due to
the communication constraints in practical situations. In
this case, local sensors are capable of performing target-
state tracking with their information processing systems.
Such a system has a number of tracks that are sent to
the FC. High-level algorithms such as Track-to-Track
Fusion (T2TF) and Information Matrix Fusion (IMF)
are commonly used for their modularity, practicality and
scalability.

The IMF algorithm, as derived in [4] and originally
presented in [6] for the case where all the local sen-
sors are synchronized, is restricted to (i) linear systems,
and (ii) the local trackers (LTs) estimate the same state.
This algorithm belongs to the class of Track-to-Track
Fusion with Memory (T2TFwM) and is, if operating at
a “full communication rate,” algebraically equivalent to
the Configuration IV (centralized) tracker for linear sys-
tems.Unlike the Track-to-Track FusionwithoutMemory
(T2TFwoM) [4], the IMF algorithm does not need the
cross-covariance between the track estimation errors.

Asynchronous fusion was considered in [9] for the
case where the local trackers estimate the same state.
Aeberhard et al. [2] considered an asynchronous IMF
with applications for driver-assistance systems. Hetero-
geneous fusion was investigated in [10], where it was
shown how the linear minimum mean-square error
(LMMSE) estimator and an (approximate) equivalent
measurement based on a lower dimension local-state es-
timate can be used to update a higher dimension state es-
timatewhen these states are related by a nonlinear trans-
formation. However, the fusion algorithm from [10] did
not account for the common process noise. A modifica-
tion of the result of [10] was given in [1] by using the
unscented transform to evaluate the necessary covari-
ances. The recent work of Mallick et al. [7] considered
the problem of track fusion from heterogeneous sensors
(with sampling intervals of the radar a multiple of the in-
terval of the infrared/electrooptical (IR/EO) sensor) by
augmenting the lower dimensional state of the IR/EO
sensor with a number of range estimates based on a
priori information, thusmaking it of the same dimension
as the radar’s state estimate. The work [11] derived the
relationship between the process noise covariance ma-
trices of the two state vectors (to account for the com-
mon process noise) and provided the expression of the
covariance matrix of the heterogeneous estimation er-
rors, which is needed in T2TF.

In [12], the IMF algorithm was first derived for
nonlinear systems where the local filters are extended
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Kalman filters (EKFs), rather than Kalman filters (KFs),
estimating the same state and the conditions under
which it holds. The fusion equations for the asyn-
chronous case—arbitrary LT sensor sampling times—
with LT-driven communication as well as FC-driven
communication are also given for a system with homo-
geneous sensors.

In the present work, which is an extension of [12],
the IMF algorithm is generalized to asynchronous het-
erogeneous systems where the local filters estimate dif-
ferent states (in different spaces of different dimen-
sions), related by a nonlinear transformation, and the lo-
cal sensors are running at different sampling rates. Such
a situation occurs when the first tracker, using radar
data, estimates the full Cartesian state of the target,
while the second tracker, using a passive sensor (e.g.,
IR/EO), estimates the (lower dimension) angular state
of the target. These two different-dimension states are
related by a nonlinear transformation with no inverse.
It is shown that one can combine state estimates of dif-
ferent dimensions in the IMF algorithm by construct-
ing a “mapped” information involving the Jacobian of
the nonlinear transformation that relates these states.
Specifically, the IMF algorithm for an asynchronous case
is derived for both an LT (full-rate) driven case and
an FC (reduced-rate) driven case. This is investigated
since the asynchronous case is motivated by the real-
world scenario where the sensors have different sam-
pling frequencies. In this work, we considered one-way
communication from LT to FC without feedback. Note
that there is no communication delay. In other words,
the time index used later in the IMF formulas repre-
sents the LT sensor observation time, LT update time, as
well as FC fusion time for the synchronous case. For the
asynchronous case, zero communication delay implies
that there is no out-of-order information received at FC
from LT.

Section II presents the IMF algorithm for nonlinear
filters with homogeneous sensors, i.e., the state estimates
are in the same state space. Section III introduces the
heterogeneous system in detail. The IMF algorithm for
synchronous heterogeneous sensors is shown in Section
IV .The asynchronous IMF for heterogeneous sensors is
discussed in Section V for both the LT-driven case and
the FC-driven case. Section VI presents the simulation
results of an asynchronous heterogeneous IMFand com-
pares them with the (i) optimal solution—centralized
tracking/fusion and (ii) T2TF solution. Conclusions are
presented in Section VII. Notations used in equations
are summarized in Table I.

II. NONLINEAR INFORMATION MATRIX FUSION

The IMFwith nonlinear filters for homogeneous sen-
sors, i.e., the states are in the same space, is discussed in
detail in [12] for both the synchronous case and the asyn-
chronous case. The derivations will not be repeated here

Table I
Notations Used for IMF Algorithm

Indices:
tk Times when the FC carries out fusion
k Discrete time index
T Sampling interval
i Sensor index
tr(tk) Most recent times prior to tk at which LT r sent

information to the FC
te(tk) Most recent times prior to tk at which LT e sent

information to the FC
tem Sampling time of EO sensor with index m
trl Sampling time of radar with index l
Parameters:
ne Dimension of state estimate from EO tracker
nr Dimension of state estimate from radar tracker
Ns Number of local sensors
Variables:
zi Measurement from sensor i
x̂i State estimate of track i, used in homogeneous IMF
Pi Covariance corresponding to x̂i, used in

homogeneous IMF
x̂e,Pe Estimate from EO sensor with dimension ne and

corresponding covariance
x̂r,Pr Estimate from radar with dimension nr and

corresponding covariance
x̂E ,PE Estimate obtained using the x̂e with dimension nr and

corresponding covariance
ŷE (k|k) Mapped information state
ŷE (k|k− 1) Mapped predicated information state

for the sake of brevity. In this section, it is assumed that
each local filter/LT uses the same target statemodel with
an EKF as the tracker, and they are synchronized.

Under full-rate communication, each LT communi-
cates to the FC its updates as they are obtained and the
FC then updates its fused state.

The LT-state update at sensor i at time tk (indicated
in the sequel by its index only) is given by [4]

x̂i(k|k) = x̂i(k|k− 1) + Pi(k|k)Hi[k, x̂i(k|k− 1)]T

·Ri(k)−1 [
zi(k) − hi[k, x̂i(k|k− 1)]

]
(1)

using the measurements

zi(k) = hi[k, x(k)] + wi(k), (2)

where wi(k) is the zero-mean white measurement noise
with covariance Ri(k) and hi is its measurement func-
tion, with Jacobian

Hi[k, x̂i(k|k− 1)] �= [∇x(k)h
i[k, x(k)]T

]T∣∣∣
x(k)=x̂i(k|k−1)

.

(3)
The covariance-update equation in the information ma-
trix form is (see [3, eq. (5.2.3-16)])

Pi(k|k)−1 = Pi(k|k− 1)−1 +Hi[k, x̂i(k|k− 1)]T

·Ri(k)−1Hi[k, x̂i(k|k− 1)]. (4)
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The EKF information-state update at sensor i is [11]

Pi(k|k)−1x̂i(k|k)
= Pi(k|k− 1)−1x̂i(k|k− 1) +Hi[k, x̂i(k|k− 1)]T

·Ri(k)−1 [
zi(k) − hi[k, x̂i(k|k− 1)]

]
+Hi[k, x̂i(k|k− 1)]x̂i(k|k− 1), (5)

which gives (by rearranging)1

Hi[k, x̂i(k|k− 1)]TRi(k)−1 [
zi(k) − hi[k, x̂i(k|k− 1)]

]
+Hi[k, x̂i(k|k− 1)]x̂i(k|k− 1)

= Pi(k|k)−1x̂i(k|k) − Pi(k|k− 1)−1x̂i(k|k− 1). (6)

The full-rate information-state fusion equation is

P(k|k)−1x̂(k|k) = P(k|k− 1)−1x̂(k|k− 1)

+
Ns∑
i=1

[
Pi(k|k)−1x̂i(k|k)

−Pi(k|k− 1)−1x̂i(k|k− 1)
]
, (7)

whereNs is the number of sensors.The differences of the
predicted and updated information states in the summa-
tion above are the “new information” from each of the
sensors.This new information is exactly equivalent to the
innovation in the KF in the linear case—see (6)—and,
thus, it is uncorrelated with the past information.

The information matrix fusion equation is

P(k|k)−1 = P(k|k−1)−1+
Ns∑
i=1

[Pi(k|k)−1−Pi(k|k−1)−1],

(8)
i.e., the same as in the linear case but subject to the
approximations (linearization).

III. HETEROGENEOUS STATES

The IMF algorithm, as shown in (7), requires the
addition of the information vectors (Pi)−1x̂i across the
local trackers, i.e., they have to have the same dimen-
sion. In the case where one sensor is a radar (with the
corresponding target estimate of dimension nr and its
covariance, superscripted by r) and the other sensor is
an IR/EO one (with the corresponding target estimate
of dimension ne and its covariance, superscripted by e),
the two estimated state vectors have different dimen-
sions (they are in different spaces). Consequently, the
corresponding new information, based on the different-
dimension local information states, cannot be added as
required by (7).

The smaller dimension (ne) state is related to the
higher dimension (nr) state according to

xe = g(xr, pr, pe), (9)

1Note that equations (5) and (6) in [12] have typos and the correct ones
are, respectively, given in (5) and (6) in this paper.

where the time arguments are omitted for simplicity,
and pr and pe are the position vectors of the radar
and the EO sensor, respectively. Since g(·) maps the nr-
dimensional vector xr to the (lower) ne-dimensional vec-
tor xe, it is not invertible, i.e., one cannot obtain an esti-
mate of the full Cartesian state (of dimension nr) based
on the angular state estimate from the EO sensor.

Consider the estimate x̂e from the EO sensor (local
track) as an “observation” z of the nr-dimensional state
vector xr (truth) related by

z = g(xr) + w, (10)

where w is a zero-mean noise with covariance matrix Pe.
The solution (desired estimate) of the above system is
defined as x̂E (of dimension nr), where the superscript E
indicates the estimate obtained using the observation x̂e

through the nonlinear relationship g(·).2 The (hypothet-
ical3) least-squares (LS) estimate of dimension nr based
on (10) (following [3, eq. (3.4.4-11)], using the radar es-
timate x̂r since the true state is not available, is given by

x̂E = (G′R−1G)−1G′R−1(z− h(x̂r)) + x̂r (11)

and the covariance corresponding to x̂E is

PE = (G′R−1G)−1, (12)

where G is the Jacobian evaluated at x̂r and

G(x̂r) �= [∇xrg[xr]T
]T∣∣∣

xr=x̂r
(13)

is the (ne×nr) Jacobian.Note thatG′R−1G is not invert-
ible because the right-hand side of (12) has rank ne < nr,
and the covariance matrix does not exist. In this case,
one cannot obtain an estimate of the full Cartesian state
(of dimension nr) based on the angular-state estimate
from the EO sensor.However, the above equations pro-
vide the motivation for the following implementable al-
gorithm that can overcome the unequal-state-dimension
problem: Instead of the “mapped” estimate (11) and
covariance matrix (12), one can calculate the “mapped
new information” directly, which is what the IMF equa-
tions need.The following approach is taken to overcome
the incompatibility of state dimensions and singularity
of (12).

IV. HETEROGENEOUS IMF FOR SYNCHRONOUS
CASE

Define an nr-dimensional “mapped (from the EO/IR
state space to radar state space) information state”

ŷE(k|k) �= PE(k|k)−1x̂E(k|k) (14)

and a “mapped predicted information state”

ŷE(k|k− 1) �= PE(k|k− 1)−1x̂E(k|k− 1) (15)

2This is (9) omitting the sensor positions for simplicity.
3To be defined in the sequel—this estimate cannot be obtained since
ne < nr.
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in order to obtain the “mapped new information”
ŷE(k|k) − ŷE(k|k − 1). Although ŷE(k|k) and
ŷE(k|k − 1) cannot be obtained since x̂E and PE

are not available, they are not necessary and only their
difference—the “mapped new information”—will be
needed in the information-state-fusion equation, as it
will be shown in the sequel.

The state update equation for (10) with the time ar-
guments, based on (1), can be written as

x̂E(k|k) = x̂E(k|k− 1) + PE(k|k)G[k, x̂E(k|k− 1)]T

·Pe(k|k)−1 [
x̂e(k|k) − g[k, x̂E(k|k− 1)]

]
,

(16)

where

G[k, x̂E(k|k− 1)] �= [∇xg[x]T
]T∣∣∣

x=x̂E (k|k−1)
(17)

is the (ne × nr) Jacobian, the evaluation of which is dis-
cussed in the sequel. The covariance update equation in
the information matrix form, based on (4), is

PE(k|k)−1 = PE(k|k− 1)−1 +G[k, x̂E(k|k− 1)]T

·Pe(k|k)−1G[k, x̂E(k|k− 1)]. (18)

The “mapped new information” from the sensor of di-
mension ne into the space of dimension nr > ne can be
obtained, by substituting (16) and (18) into (14) and (15)
and following (6), as4

ŷE(k|k) − ŷE(k|k− 1)

= G[k, x̂E(k|k− 1)]TPe(k|k)−1

· {x̂e(k|k) − g[k, x̂E(k|k− 1)]

+ G[k, x̂E(k|k− 1)]x̂E(k|k− 1)
}

(19)

≈ G[k, x̂(k|k− 1)]TPe(k|k)−1{
x̂e(k|k) − g[k, x̂(k|k− 1)]

+ G[k, x̂(k|k− 1)]x̂(k|k− 1)
}
, (20)

where the approximate equality above is obtained by the
substitution x̂E → x̂. The evaluation of the Jacobian (17)
and state prediction in (19) can be done using the FC es-
timate x̂ rather than x̂E (since the latter is not available).
In this case, we useG[k, x̂(k|k− 1)] and g[k, x̂(k|k− 1)]
instead of G[k, x̂E(k|k − 1)] and g[k, x̂E(k|k − 1)], re-
spectively. Therefore, (20) will be used to obtain the syn-
chronous heterogeneous information state fusion equa-
tion with full-rate communication by modifying (7) as
follows:

P(k|k)−1x̂(k|k)
= P(k|k− 1)−1x̂(k|k− 1)

+{
Pr(k|k)−1x̂r(k|k) − Pr(k|k− 1)−1x̂r(k|k− 1)

}
4In (6),we substituteHi → G,Ri → Pe, zi → x̂e,hi → g, and x̂i → x̂E .

+ {
ŷE(k|k) − ŷE(k|k− 1)

}
. (21)

Note that the entire right-hand side of (21) has dimen-
sion nr, i.e., the problem of unequal state dimensions has
been eliminated. The corresponding synchronous het-
erogeneous informationmatrix fusion equation, based on
(18) and (8), is

P(k|k)−1

= P(k|k− 1)−1 + {
Pr(k|k)−1 − Pr(k|k− 1)−1}

+{
PE(k|k)−1 − PE(k|k− 1)−1}

= P(k|k− 1)−1 + {
Pr(k|k)−1 − Pr(k|k− 1)−1}

+{
G[k, x̂E(k|k− 1)]TPe(k|k)−1G[k, x̂E(k|k− 1)]

}
.

(22)

At initialization, one needs the radar’s (full-state) esti-
mate to evaluate the Jacobian G.

The fusion architecture for a synchronous heteroge-
neous IMF is shown in Fig. 1, where the dashed circle in-
dicates the mapping of the new information from angle
space to Cartesian space.

V. HETEROGENEOUS IMF FOR ASYNCHRONOUS
CASE

A. LT-Driven Asynchronous Case

With LT/local filter-driven communication, the fu-
sion in an asynchronous system (e.g., with tracks from
radar and IR/EO sensors) is carried out whenever the
FC receives new information. In this case, the system is
updated with full rate. As shown in Fig. 2, sensor r is as-
sumed to be the active one (radar) with the state vector
in the larger state space (of dimension nrx) and sensor e
is the passive EO/IR with the state vector in the smaller
state space (of dimension nex < nrx). For the FC, the fu-
sion times are equal to the times when new information
is obtained. From Fig. 2, we have

tk = tem (23)

and, with l � trl < tk,

tk−1 = max{trl , tem−1}, (24)

where l andm denote the respective LT sampling indices.
LT-driven asynchronous fusion (full rate) is carried out
whenever an LT has new information delivered to the
FC.

The “mapped new information,” based on (20), is

ŷE(tk|tk) − ŷE[tk|te(tk)]

= G
[
tk, x̂E[tk|te(tk)]

]T
Pe(tk|tk)−1

· {x̂e(tk|tk) − g
[
tk, x̂E[tk|te(tk)]

]
+ G

[
tk, x̂E[tk|te(tk)]

]
x̂E[tk|te(tk)]

}
. (25)
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Fig. 1. Fusion architecture for synchronous heterogeneous IMF.

Fig. 2. FC times and LT times in asynchronous IMF—LT driven,
update with latest information from sensor e.

Based on the above and discussion about the asyn-
chronous but homogeneous system in [12], the asyn-
chronous heterogeneous information state fusion
equation becomes

P(tk|tk)−1x̂(tk|tk)
= P(tk|tk−1)−1x̂(tk|tk−1)

+{
Pr(tk|tk)−1x̂r(tk|tk)

−Pr[tk|tr(tk)]−1x̂r[tk|tr(tk)]
}
χ r(tk)

+ {
ŷE(tk|tk) − ŷE[tk|te(tk)]

}
χ e(tk), (26)

where tr(tk) and te(tk) are the most recent times prior
to tk at which LT r and LT e have sent information to
the FC (its previous communication), respectively, and
χ r(k) and χ e(k) are the communication indicator func-
tions for LTs,

χ r(k) =
{
1 if LT r sends information to FC at tk

0 otherwise
(27)

and

χ e(k) =
{
1 if LT e sends information to FC at tk

0 otherwise
.

(28)
Note that if χ e(tk) = 1 and χ r(tk) = 0, (26) carries out
the update with the latest information only from sensor
e, as illustrated in Fig.2. Ifχ e(tk) = 0 andχ r(tk) = 1, then
(26) carries out the update with the latest information
only from sensor r.

The corresponding information matrix fusion equa-
tion is (modifying (22)) given by

P(tk|tk)−1 = P(tk|tk−1)−1

+{
Pr(tk|tk)−1 − Pr[tk|tr(tk)]−1}χ r(tk)

+{
G

[
tk, x̂E[tk|te(tk)]

]T
Pe(tk|tk)−1

·G[
tk, x̂E[tk|te(tk)]

]}
χ e(tk). (29)

To implement the above method, the approximations

G
[
tk, x̂E[tk|te(tk)]

] ≈ G
[
tk, x̂[tk|te(tk)]

]
(30)

and

x̂E[tk|te(tk)] ≈ x̂[tk|te(tk)] (31)

are used in (25), (26), and (29).
The fusion architecture for an LT-driven asyn-

chronous heterogeneous IMF is shown in Fig. 3, where
the dashed circle indicates the mapping of the new in-
formation from angle space to Cartesian (25).

Fig. 3. Fusion architecture for LT-driven asynchronous heterogeneous IMF.
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Fig. 4. FC times and LT times in asynchronous IMF—FC driven.

B. FC-Driven Asynchronous Case

In this case, it is assumed that the FC updates its state
at intervals τk (length of the fusion window); namely, if
the current update is at tk, the previous update was at
tk − τk = tk−1. The fusion window ending at tk is thus the
semiclosed interval (tk − τk, tk] of length τk, which is at
the discretion of the FC. The system is updated with a
reduced rate. The fusion times at the FC and the latest
LT sampling times are shown in Fig. 4.

The information state fusionwith FC-driven commu-
nication is

P(tk|tk)−1x̂(tk|tk)
= P(tk|tk−1)−1x̂(tk|tk−1)

+{
Pr[tk|tr(tk)]−1x̂r[tk|tr(tk)]

−Pr[tk|tr(tk−1)]−1x̂r[tk|tr(tk−1)]
}

+ {
ŷE[tk|te(tk)] − ŷE[tk|te(tk−1)]

}
(32)

and the counterpart of (25) is

ŷE[tk|te(tk)] − ŷE[tk|te(tk−1)]

= G
[
tk, x̂E[tk|te(tk−1)]

]T
Pe[tk|te(tk)]−1

· {x̂e[tk|te(tk)] − g
[
tk, x̂E[tk|te(tk−1)]

]
+ G

[
tk, x̂E[tk|te(tk−1)]

]
x̂E[tk|te(tk−1)]

}
(33)

≈ G
[
tk, x̂[tk|te(tk−1)]

]T
Pe[tk|te(tk)]−1

· {x̂e[tk|te(tk)] − g
[
tk, x̂[tk|te(tk−1)]

]
+ G

[
tk, x̂[tk|te(tk−1)]

]
x̂[tk|te(tk−1)]

}
, (34)

where tr(tk), te(tk) and tr(tk−1), te(tk−1) are the times of
the most recent update of LT r and e prior to tk and
tk−1, respectively. The approximation5 in (39) is needed
to evaluate the Jacobian matrix since x̂E is not available.

The terms in the braces in (32) represent the accu-
mulated new information from sensors r and e during
the fusion window (tk−1, tk] and are mapped directly to
the fusion time tk. Note that if the most recent update
of LT r or LT e prior to tk occurs prior to tk−1, i.e., there
is no new information from this LT during the window
(tk−1, tk], then the terms in the braces corresponding to
each LT will be equal and thus cancel—the “new infor-
mation” from this LT during this window is zero in this
case.

5G
[
tk, x̂E[tk|te(tk−1)] ≈ G

[
tk, x̂[tk|te(tk−1)]

]
, x̂E [tk|te(tk−1)] ≈

x̂[tk|te(tk−1)].

The corresponding information matrix fusion equa-
tion is

P(tk|tk)−1

= P(tk|tk−1)−1 + {
Pr[tk|tr(tk)]−1 − Pr[tk|tr(tk−1)]−1}

+{
G

[
tk, x̂E[tk|te(tk−1)]

]T
Pe[tk|te(tk)]−1

·G[
tk, x̂E[tk|te(tk−1)]

]}
(35)

≈ P(tk|tk−1)−1 + {
Pr[tk|tr(tk)]−1 − Pr[tk|tr(tk−1)]−1}

+{
G

[
tk, x̂[tk|te(tk−1)]

]T
Pe[tk|te(tk)]−1

·G[
tk, x̂[tk|te(tk−1)]

]}
. (36)

The “new information” terms in the braces in (36) are
not uncorrelated from the past information even in the
linear case—the uncorrelatedness holds only for full-
rate communication. Their use for “decorrelation” from
the past is only approximate.

The fusion architecture for an LT-driven asyn-
chronous heterogeneous IMF is shown in Fig. 5, where
the dashed circle indicates the mapping of the new in-
formation from angle space to Cartesian (39).

VI. SIMULATION RESULTS

The asynchronous heterogeneous IMF is evaluated
for two cases for the scenario detailed in the sequel: (i)
full-rate (LT-driven) asynchronous LTs and (ii) reduced-
rate (FC-driven) asynchronous LTs. The performance
of synchronous and heterogeneous LTs is also eval-
uated. The homogeneous and synchronous heteroge-
neous cases are discussed in [12] and will not be dupli-
cated here.

A. The State Models for the Active and Passive Sensors

In the ξ–η space, a radar located at [ξ r ηr] with, for
simplicity, direct Cartesian position measurements with
measurement noises wr 6 and an EO sensor located at
[ξ e ηe] with bearing measurements only,

θ e = tan−1[(η − ηe)/(ξ − ξ e)] + we, (37)

are considered for the IMF for a two-dimensional (2-D)
target. The measurement noises wr and we are assumed
to be independent zero-mean white Gaussians with cor-
responding standard deviations σ r and σ e.

The active sensor (radar) provides 2-D measure-
ments in 2-D Cartesian space (position) and a 4-D LT
state (position and velocity) with a discretized contin-
uous time white noise acceleration (CWNA) motion

6The radar’s measurements in polar coordinates can be transformed
into Cartesian coordinates with an unbiased consistent transformation
[3, Ch. 10.4.3].
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Fig. 5. Fusion architecture for FC-driven asynchronous heterogeneous IMF.

model [3] in Cartesian coordinates:

xr = [ξ ξ̇ η η̇]T (38)

with the discretized dynamic model to be

xr(trl+1) = Frxr(trl ) + vr(trl ), (39)

and measurement model

zr = Hrxr(trl ) + wr(trl ), (40)

where

Fr =

⎡
⎢⎢⎢⎢⎣
1 Tr 0 0

0 1 0 0

0 0 1 Tr

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (41)

Hr =
[
1 0 0 0

0 0 1 0

]
. (42)

The process noise vector has covariance matrix

Qr =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3 (T

r)3 1
2 (T

r)2 0 0

1
2 (T

r)2 Tr 0 0

0 0 1
3 (T

r)3 1
2 (T

r)2

0 0 1
2 (T

r)2 Tr

⎤
⎥⎥⎥⎥⎥⎥⎦
q̃, (43)

where q̃ is the power spectral density and q̃ = 3.8 m2/s3

in simulations.
The EO sensor uses a KF also based on a CWNA

model with a state vector involving the angle and angle
rate

xe = [θ θ̇ ]T. (44)

The discretized dynamic model is

xe(tem + 1) = Fexe(tem) + ve(tem), (45)

ze = Hexe(tem) + we(tem), (46)

where

Fe =
[
1 Te

0 1

]
, (47)

He = [
1 0

]
. (48)

The state vector (38) and the state vector (44) have
a nonlinear relationship

xe = α [xr] (49)

with explicit expressions

θ = atan
η − ηe

ξ − ξ e
, (50)

θ̇ = vsin(φ)
re

, (51)

where v is the target speed given by

v =
√

ξ̇ 2 + η̇2, (52)

re is the range with respect to the passive sensor’s loca-
tion given by

re =
√
(ξ − ξ e)2 + (η − ηe)2, (53)

and φ is the difference between velocity angle and posi-
tion azimuth angle given by

φ = atan
η̇

ξ̇
− atan

η − ηe

ξ − ξ e
. (54)

The process noise covariance matrix of the EO
tracker’s model at time tk has the following relationship

Fig. 6. Target trajectory (one realization) and sensor locations.

HETEROGENEOUS AND ASYNCHRONOUS INFORMATION MATRIX FUSION 107



Fig. 7. Full-rate (LT-driven) heterogeneous IMF RMSE from 500 runs.

Fig. 8. Reduced-rate (TFC = 0.4 s) heterogeneous IMF RMSE from 500 runs.

with the active process noise covariance matrix, as de-
rived and discussed in [12]7:

Qe(tk+1, tk) = A(tk)Qr(tk+1, tk)A(tk)′, (55)

where

A(tk) �
[∇xα(x)T

]T∣∣∣
x=Fr[tk+1,tk]xr(tk)

. (56)

B. Numerical Results

The sensor locations are [49 34] km and [−20 20] km
for the active sensor and passive sensor, respectively.The
target is assumed to have an initial position [−5 10] km
and velocity [200 20] m/s. The trajectory lasts for 200 s.
Fig. 6 shows the target trajectory (one realization) and
sensor locations. The standard deviations of measure-
ment noises are assumed to be σ r = 50 m for the ac-
tive sensor (direct position measurement in both coor-
dinates) and σ e = 0.4 milliradian (mrad) for the passive

7This process noise covariance mapping is similar to [8] except for the
linearization Jacobian,which is evaluated at the IMF fused state,while
[8] used a “worst-case”-based mapping.

sensor (azimuth angle). In all asynchronous cases, the ac-
tive sensor (radar) has sampling intervalTr = 1 s and the
passive sensor (EO) has sampling interval Te = 0.1 s.

Several FC sampling intervals (fusion rates) are used
in the simulation to compare the performance of the pro-
posed algorithm.The simulation results are based on 500
Monte Carlo runs. To evaluate the performance of the
IMF: (i) the full-rate centralized tracking/fusion is car-
ried out, which is the optimal one can achieve and (2)
the heterogeneous T2TF [13] is also carried out. Note
that the RMSE results in Figs 7–10 started at 9 s after
the convergence of LFs to avoid large plot scales.

The reduced-rate asynchronous heterogeneous IMF
is evaluated with multiple sampling rates at the FC:
TFC = 0.4, 0.8, and 1.6 s. The RMSEs for both position
and velocity are evaluated. Fig. 7 shows the RMSE of
the full-rate IMF. In this case, the rate is the that of a
higher rate sensor (10 Hz, since Te = 0.1 s). Simula-
tion results for TFC = 0.4, 0.8, and 1.6 s are shown in
Figs. 8, 9, and 10, respectively. The oscillations of the
position errors of the IMF are due to the fact that at its
update time it uses a predicted active LT (radar) state
since the FC is not synchronized with the radar. It can
be seen that with full-rate communication, the proposed

108 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 15, NO. 2 DECEMBER 2020



Fig. 9. Reduced-rate (TFC = 0.8 s) heterogeneous IMF RMSE from 500 runs.

Fig. 10. Reduced-rate (TFC = 1.6 s) heterogeneous IMF RMSE from 500 runs.

heterogeneous and asynchronous IMF achieves almost
the optimal result (the CTF result) for position.The per-
formance of the velocity fusion is somewhat off due to
the nonlinearity (linear motion in Cartesian space is not
linear in angle space), and approximation of the “new
information,” The results also depend on the geometry
between the sensors and the target trajectory. It can be
seen that a larger sampling interval at the FC will de-
grade the performance of the IMF; however, there is al-
ways a reduction in theRMSE compared to the casewith
an active sensor only for both position and velocity. In all
the cases considered, the proposed IMF has better per-
formance than T2TF by having a smaller RMSE for both
position and velocity.

VII. CONCLUSION

In this work, the IMFalgorithmwas extended to non-
linear, asynchronous, and heterogeneous systems. The
LTs from an active sensor and a passive sensor are
in different state spaces and are related by a nonlin-
ear transformation without inverse. Both the LT-driven
full-rate asynchronous case and FC-driven reduced-rate

asynchronous case are investigated. Although the pas-
sive (EO/IR) LT state with a lower dimension can-
not be used directly in the IMF, it has been shown
that its new information can be mapped to the high-
dimension state space and then used by the IMF at
the FC. With full-rate communication (LT driven), the
proposed IMF can almost achieve the optimal solution
(full-rate CTF).The performance of the FC-driven asyn-
chronous IMF is not optimal but still remarkable com-
paredwith the results from the active sensor (radar) only
and T2TF by achieving a smaller RMSE in both posi-
tion and velocity.Real data testing is not available at the
current stage; however, it will be investigated in future
works.
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