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The problem of localizing an unknown number of stationary tran-

sient emitters using passive sensors in the presence of missed detec-

tions and false alarms is investigated. Each measurement is based on

one detection by a passive sensor and consists of a time of arrival and

a bearing. It is assumed that measurements within a short time inter-

val have to be associated before estimation. Both a Bernoulli mea-

surement model and a Poisson measurement model are considered

for each target. These two measurement models lead to two differ-

ent proposed problem formulations: one is an S-dimensional (S-D)

assignment problem and the other is a cardinality selection problem.

The former can be solved by the Lagrangian relaxation algorithm re-

liably when the number of sensors is small. The sequentialm-best 2-D

(SEQ[m(2-D)]) assignment algorithm, which is resistant to the ghost-

ing problem due to the estimation of the emitter signal’s emission time,

is developed to solve the problem when the number of sensors be-

comes large. Simulation results show that the SEQ[m(2-D)] assign-

ment algorithm is efficient for real-time processing with reliable asso-

ciations and estimates. In the cardinality selection formulation, a list of

measurements is modeled as either realizations of a random variable

with a uniform–Gaussian mixture (UGM) density or a Poisson point

process (PPP).Because of an efficient way of incorporating false alarm

rate, the UGM formulation is shown to be a useful alternative to the

Manuscript received March 20, 2016; revised August 19, 2016 and
January 18, 2018; released for publication July 8, 2019.

Refereeing of this contribution was handled by Ramona Georgescu.

Authors’ addresses: W. Dou, R. W. Osborne, III, and Y.
Bar-Shalom are with the Department of Electrical and Computer
Engineering, University of Connecticut, Storrs, CT 06269, USA (E-
mail: wenbo.dou@uconn.edu, richard.osborne@engineer.uconn.edu,
ybs@engr.uconn.edu).
J. George and L. M. Kaplan are with the U.S. Army Research Lab-
oratory, 2800 Powder Mill Rd., Adelphi, MD 20783, USA (E-mail:
jemin.george.civ, lance.m.kaplan.civ@mail.mil).
This research was supported by ARO Grant W991NF-10-1-0369.

1557-6418/19/$17.00 © 2019 JAIF

PPP formulation. Simulation studies show that both UGM and PPP

formulations, which are based on the expectation–maximization algo-

rithm, require the right initial estimates to yield reliable localization

results.

I. INTRODUCTION

This paper considers the problem of multiple tran-
sient emitter (target) localization using a group of pas-
sive sensors.One particular application is to utilize a net-
work of acoustic gunfire detection systems on a group
of soldiers to localize adversaries in a battlefield [12],
[20]. It is assumed that the targets are stationary during
the time window of interest but the number of targets is
unknown. The sensors can measure line of sight (LOS)
angles to the targets by detecting their emitted acoustic
signals and record the times of arrival of the detected sig-
nals.Missed detections and false alarms are present due
to the imperfection of the sensors. Furthermore, the as-
sociation between the measurements and the targets is
unknown; that is, each sensor does not know from which
target (or clutter) a particular measurement originates.
Before estimating the position of any target, one has to
associate the measurements from all the sensors. There-
fore, the quality of data association is critical to the over-
all localization performance.

The problem of data association has been studied ex-
tensively in tracking multiple targets. Methods includ-
ing multiple hypothesis tracking [6], joint probabilistic
data association filter [11], and probability hypothesis
density filter [16] are recursive algorithms that require
persistent measurements and provide solutions to a dy-
namic data association problem. Therefore, they cannot
be employed to solve the static data association problem
considered in the situation of multiple transient emitter
localization.

There are two different philosophies—hard data as-
sociation and soft data association (see [4, Sec. 2.4.3])—
in solving the static data association problem considered
in this paper.Hard data association either assigns a mea-
surement to one and only one target or condemns it as
a false alarm; in other words, the probability of a mea-
surement coming from a target is either 0 or 1 (discrete).
In contrast, soft data association assigns the event that a
measurement originates from a target to a (continuous)
probability, which can be any value between 0 and 1.

The hard data association for S lists of measurements
with one list from each sensor,1 assuming a Bernoulli
measurement model that the number of measurements
from each target received at each sensor is a Bernoulli
random variable with parameter equal to the probabil-
ity of detection, leads to an S-dimensional (S-D) assign-
ment problem, which can be formulated as a discrete

1In a multisensor localization application, as in this paper, the number
of lists is the same as the number of sensors.
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constrained optimization problem aiming to find out the
set of S-tuples of measurements that minimizes the over-
all association cost. The number of possible S-tuple sets
for T targets and S sensors in the absence of missed de-
tections and false alarms is (T !)S−1, from which it can be
seen that S-D assignment problem is nondeterministic
polynomial-time (NP) hard with S ≥ 3. Therefore, it is
of great interest and importance to find robust subopti-
mal algorithms.

The Lagrangian relaxation-based approach [8],
which is termed as the S-D algorithm in this paper, pro-
vides a measure of how close the final solution is to the
(unknown) optimal solution in terms of the association
cost. The application of the S-D assignment algorithm
on a multiple shooter localization problem using a small
number of sensors was presented in [19]. Although it
does not explore the entire space of the S-tuple sets, it
needs to calculate the cost of candidate S-tuples. The
cost calculation involves finding the maximum likeli-
hood (ML) estimate of the target locations and can take
most of the computational time. The number of candi-
date S-tuples for T targets and S sensors in the absence
of missed detections and false alarms is TS, which in-
creases exponentially with the number of sensors. Since
more sensors generate more accurate estimates in the
fusion center, computationally efficient algorithms are
required when a large number of sensors are deployed.

The S0-D + SEQ(2-D) algorithm [23], which per-
forms the S-D assignment algorithm on S0 lists of mea-
surements before applying the modified auction algo-
rithm [21] for 2-D assignments on the remaining lists
sequentially S − S0 times, is a more efficient algo-
rithm than the S-D assignment. The number of can-
didate associations increases quadratically (rather than
combinatorially/exponentially) with the number of sen-
sors. Because of the ghosting problem [4], the S0-D step
requires, in general, at least three lists to achieve reliable
association. However, since in the present problem one
also has arrival times, one can use S0 = 2.

The problem of multiple shooter localization using a
single sensor [13] or usingmultiple sensors [14] is formu-
lated as a cardinality (number of targets) selection prob-
lem that assumes a Poissonmeasurement model that the
number of measurements from each target received at
each sensor is a Poisson random variable with parameter
equal to the probability of detection. The measurements
at a single sensor fromall targets and the clutter aremod-
eled as a Poisson point process (PPP) [7]. For each pos-
sible selected cardinality, one solves a subproblem based
on the learning expectation–maximization (EM) algo-
rithm [9] to select the best cardinality based on an in-
formation criterion [1], [22]. During every iteration of
the EM algorithm, each measurement will be assigned
a probability of having originated from a target, which is
an example of the soft data association.

In this paper, we discuss two classes of algorithms,
each for a specific measurement model in the multiple
passive transient emitter localization problem. For the

Bernoulli measurement model, the SEQ[m(2-D)] algo-
rithm [2], the m-best version of the fastest sequential
algorithm SEQ(2-D), is shown to be able to yield as-
sociations as good as the S-D assignment. The ghost-
ing effect for a pair of sensors is no longer present
due to the estimation of the signal emission time, which
makes SEQ[m(2-D)] practical.For the Poissonmeasure-
ment model,we discuss both uniform–Gaussian mixture
(UGM) [5] and PPP modeling of the lists of measure-
ments for the cardinality selection formulation. In the
previous work on PPP [14], both the range and bearing
measurements are assumed available and the initializa-
tion in the EM-based algorithm uses a finite set includ-
ing target locations that are close to the truth. Since the
range measurement and prior information for a “good”
initialization is not always available in the real world,
this paper considers bearing and time of arrival mea-
surements and presents some measurement-driven ini-
tialization approaches for the EM-based algorithms. In
the UGM formulation, the probability of detection (as-
sumed not known) and the expected number of false
alarms per sensor (which can be known or unknown) are
incorporated into the mixture coefficients and the max-
imization step in the EM algorithm is developed such
that the constraint that the resulting probability of de-
tection is not larger than unity is always satisfied.

The remaining sections of this paper are organized
as follows. Section II describes the problem of localizing
an unknown number of transient emitters.Section III as-
sumes a Bernoulli measurement model for each target,
formulates an S-D assignment problem, and presents
two assignment algorithms. Sections IV and V present
the UGM and PPP formulations both of which assume
a Poisson measurement model for each target. Simula-
tion results are shown and analyzed in Section VI and
the conclusions are drawn in Section VII. For the con-
venience of the reader, the list of notations used in this
paper is given in Table I.

II. PROBLEM DESCRIPTION

Consider a scenario where there are N targets lo-
cated in R

2. The target locations (fixed) are denoted as

T = (T1, T2, . . . , TN ) =
([

Tx1
Ty1

]
,

[
Tx2
Ty2

]
, . . . ,

[
TxN
TyN

])
(1)

and the emission times are denoted as

te = (te1 , t
e
2 , . . . , teN ) . (2)

The number of targets and their locations are unknown
quantities of interest, to be estimated.A total number of
Ns stationary sensors with known locations at

S = (S1, S2, . . . , SNs ) =
([

Sx1
Sy1

]
,

[
Sx2
Sy2

]
, . . . ,

[
SxNs
SyNs

])
(3)

are able to observe transient acoustic events that oc-
curred at target locations at the emission times and
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TABLE I
List of Notations

Notation Definition

S Dimension of the assignment problem
T Set of target position vectors
Ti Position vector of target i
te Set of emission times
tei Signal emission time of target i
S� Position vector of sensor �

n� Number of measurements at sensor �

z� j jth measurement at sensor �

N Number of targets
Ns Number of sensors
Nfa Expected number of false alarms per sensor
T0 The clutter
� The range of the sensor field view
Z� Augmented measurement list at sensor �

z�0 Dummy measurement at sensor �

Zj1 j2 ... jNs
An Ns-tuple of measurements, one from each sensor

c j1 j2... jNs Cost of associating Zj1 j2... jNs
with a target

ρ j1 j2 ... jNs
Binary variable denoting whether Zj1 j2... jNs

is an
association in the final assignment

pd� Detection probability for sensor �

m Number of top solutions to be kept in the
SEQ[m(2-D)] assignment algorithm

K Set of all k� j
k� j Association variable of z� j in the UGM formulation
πi Mixing coefficient of the UGM
κ Set of all κ� j
κ� j Association variable of z� j in the PPP formulation

measure the bearings to these targets and the time of
arrival of the observed acoustic signals. For events and
measurements that are separated significantly in time,
there is no data association ambiguity, so it is assumed
that onlymeasurements fallingwithin a certain timewin-
dow of interest need to be associated. Let n� denote the
number of such measurements (one measurement is de-
fined as a vector consisting of both a bearing and a time
of arrival due to one acoustic signal in this context) ob-
tained by the �th sensor within the time window.

The jth measurement (a direction of arrival and time
of arrival) received by the �th sensor, if it corresponds to
the event at tei from the ith target, is

z� j(Ti, tei ) = h� (Ti, tei ) + w� j, i = 1, . . . ,N;
� = 1, . . . ,Ns; j = 1, . . . ,n� (4)

where w� j is a zero-mean white Gaussian measurement
noise with known covariance matrix R� and

h� (Ti, tei ) =
[
θ�i

t�i

]
=

⎡
⎢⎣ arctan

[
Tyi−Sy�
Txi−Sx�

]
tei +

√
(Txi − Sx�

)2 + (Tyi − Sy�
)2

c

⎤
⎥⎦ (5)

where tei is the unknown emission time of the acoustic
signal from Ti and c is the known speed of sound.

To incorporate false alarms, we denote a clutter tar-
get (with index 0) as T0. A false measurement detected
by the �th sensor consists of a bearing θ0, which is uni-
formly distributed in the field of view of the �th sen-
sor, and its arrival time t0, which is uniformly distributed

in the interval [0,W ]. The number of false alarms from
each sensor is assumed to be a Poisson random variable2

with mean
Nfa = λfa�W (6)

where � is the range of field of view and is assumed to
be the same for each sensor and λfa can be interpreted
as the temporal–spatial density.

The probability density function (pdf) of measure-
ment j from sensor �—the likelihood function [3] of the
target location and its emission time based on the mea-
surement3—is

p(z� j|T0) = p(θ0)p(t0) = 1
�W

� 	(T0; z� j) (7)

p(z� j|Ti, tei ) = |2πR�|− 1
2

· exp
{

− 1
2

[
z� j − h�(Ti, tei )

]′
R−1

�

[
z� j − h�(Ti, tei )

] }

� 	(Ti, tei ; z� j), i = 1, . . . ,N (8)

where (7) is the pdf of a measurement from the clutter
(a false alarm) and (8) is the pdf of a measurement from
a true target.

The problem is to estimate N and T = {Ti, i =
1, . . . ,N} given the complete set of observations Z =
{z� j, � = 1, . . . ,Ns; j = 1, . . . , n�} in the presence
of missed detections and false alarms and without the
knowledge of the true data association.

III. THE S-D ASSIGNMENT ALGORITHM

A. Formulation

The S-D assignment problem formulation assumes a
Bernoulli measurement model that the number of mea-
surements from a real target received by a sensor is
a Bernoulli random variable. Note that the number of
false alarms is modeled as a Poisson random variable.

An augmented list of measurements at the �th sensor
is defined as

Z� �
{
z�0, . . . , z�n�

}
(9)

where z�0 is a dummy measurement4 representing
missed detections. An association of Ns measurements
(Ns-tuple) consisting of one measurement from each
augmented list will be denoted as

Zj1 j2... jNs = {z1 j1 , z2 j2 , . . . , zNs jNs

}
(10)

where j� ∈ {0, 1, . . . ,n�} represents the index of themea-
surement from the augmented list Z�, which is included
in the association.5

2While for targets we consider two measurement models (Bernoulli
and Poisson), for clutter only a Poisson model is considered.
3If the source is clutter, it has no emission time, only an arrival time.
4Please see [20, Fig. 2] for the illustration of dummy measurement and
Ns-tuple.
5Recall that j� = 0 represents the dummy measurement, so (10) need
not containNs “real”measurements; i.e.,missed detections are allowed
in the association.
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Assuming that the measurements in Zj1 j2... jNs origi-
nated from the same target at the location Ti and emis-
sion time tei , the cost of this association will be given by
the (physically dimensionless) negative log-likelihood
ratio

c j1 j2... jNs = − ln
	(Ti, tei ;Zj1 j2... jNs )
	(T0;Zj1 j2... jNs )

(11)

where the numerator is calculated based on (8) and the
denominator (the likelihood that they are all false) is cal-
culated using (7).

Assuming themeasurements are (conditioned on the
true target locations) independent across the sensors, i.e.,
uncorrelated measurement noises, the likelihood func-
tion that the measurements in Zj1 j2... jNs originated from
the same target at the location Ti and emission time
tei is

	(Ti, tei ;Zj1 j2... jNs ) =
Ns∏
�=1

(1 − pd�)
1−u( j�)

· (pd� p(z� j� |Ti, tei ))
u( j�) (12)

where pd� is the probability of detection for the �th sen-
sor (assumed the same for each real target) and the in-
dicator function u( j�) is

u( j�) �
{
0, if j� = 0
1, otherwise . (13)

Since the target location Ti and the emission time tei are
unknown,we replace them by their ML estimates T̂i and
t̂ei that are obtained by maximizing (12), that is,

T̂i, t̂ei = argmax
Ti,tei

	(Ti, tei ;Zj1 j2... jNs ). (14)

Therefore, (11) is modified to a generalized negative log-
likelihood ratio given by

c j1 j2... jNs = − ln
	(T̂i, t̂ei ;Zj1 j2... jNs )
	(T0;Zj1 j2... jNs )

. (15)

The likelihood that all the measurements in Zj1 j2... jNs
are false alarms is

	(T0;Zj1 j2... jNs ) =
Ns∏
�=1

(
1

�W

)u( j�)
. (16)

The assignment problem is formulated as

min
ρ j1 j2 ... jNs

n1∑
j1=0

n2∑
j2=0

· · ·
nNs∑
jNs=0

c j1 j2... jNs ρ j1 j2... jNs (17)

subject to

n2∑
j2=0

n3∑
j3=0

· · ·
nNs∑
jNs=0

ρ j1 j2... jNs = 1, j1 = 1, 2, . . . ,n1 (18)

n1∑
j1=0

n3∑
j3=0

· · ·
nNs∑
jNs=0

ρ j1 j2... jNs = 1, j2 = 1, 2, . . . ,n2 (19)

...
...

n1∑
j1=0

n2∑
j2=0

· · ·
nNs−1∑
jNs−1=0

ρ j1 j2... jNs = 1, jNs = 1, 2, . . . ,nNs

(20)

where ρ j1 j2... jNs ∈ {0, 1} and ρ j1 j2... jNs = 1(0) means
Zj1 j2... jNs is (not) an association in the final assignment.

Note that if c j1 j2... jNs > 0, then Zj1 j2... jNs will not be an
association in the final assignment since the overall cost
will be smaller for the decision that all the real measure-
ments in Zj1 j2... jNs are false (cost = 0) than for the deci-
sion that they are from the same real target.

The �th constraint set in (18)–(20)
n1∑
j1=0

· · ·
n�−1∑
j�−1=0

n�+1∑
j�+1=0

· · ·
nNs∑
jNs=0

ρ j1 j2... jNs = 1,

j� = 1, 2, . . . ,n� (21)

enforces that each measurement (except the dummy) is
associated with a single measurement from each other
list, yielding a “target.” Once the minimization problem
(17) is solved, based on the assumption that each tar-
get is associated with one and only one measurement
in each sensor list (including the dummy measurement),
the number of associations will be equal to the number
of targets (some will be real and some false). Associa-
tions with less than τ real measurements will be con-
sidered as from the clutter. The remaining associations
will be deemed from real targets. The corresponding lo-
cations and emission times will be the ML estimates as
obtained in (14).

B. The Optimization via Lagrangian Relaxation

The optimization problem (17) is NP hard when
Ns ≥ 3. One suboptimal algorithm is the Lagrangian
relaxation-based S-D assignment algorithm as shown in
Fig. 1,which solves the original problem as a series of re-
laxed 2-D subproblems. The rth (r = Ns,Ns − 1, . . . , 3)
constraint set is successively relaxed and appended to
the cost with Lagrange multipliers ur. At stage r = 3,
one has a 2-D problem, which can be optimally6 solved
using the modified auction algorithm.

The constraint sets are then reimposed one at a time
(r = 3, 4, . . . ,Ns), and the corresponding Lagrange mul-
tipliers are updated to unewr ; at each stage, the cost Jr
of the resulting feasible solution is computed, until all
constraint sets are met. The duality gap—difference be-
tween the cost J∗

2 from the maximally relaxed problem

6Up to the rounding error, i.e., quasi-optimally.
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Start

Relax
constraint
set S via

Lagrangian
multiplier uS

· · ·

Relax con-
straint set
r+1 via

Lagrangian
multi-

plier ur+1

· · ·

Relax
constraint
set 3 via

Lagrangian
multiplier u3

Solve the 2-D
subproblem
optimally

Enforce
constraint

set 3
(a 2-D

problem) and
update u3

· · ·

Enforce
constraint set
r+1 (a 2-D

problem) and
update ur+1

· · ·

Enforce
constraint

set S
(a 2-D

problem) and
update uS

Relative
approximate
duality gap ε

=
|JS − J∗

2 |
J∗

2

Is ε
sufficiently

small
(< 0.05)?

End

Succesive constraint relaxation phase

S-D
problem

(S-1)-D
subproblem

(r+1)-D
subproblem

r-D
subproblem

3-D
subproblem

Constraint enforcement and Lagrangian multiplier update phase

J∗
2

J3, unew
3Jr, unew

rJr+1, unew
r+1JS−1, unew

S−1JS, unew
S

No

Yes

Fig. 1. Flow chart of the Lagrangian relaxation-based S-D assignment algorithm.

and JS from the fully constrained one—is calculated and
the iterations continue until this gap is small enough
(usually 5% of the cost from the fully constrained one).
See [8] and [21] for the detailed description.

C. The SEQ[m(2-D)] Assignment Algorithm

When Ns = 2, (17) becomes a 2-D assignment prob-
lem. By using Murty’s ranking algorithm [18], one can
find the top m best assignments instead of only the best
one. The SEQ[m(2-D)] assignment algorithm can be de-
scribed as follows. Initially, one selects two lists of mea-
surements and obtains the top m best 2-D assignments
with each assignment being a set of 2-tuples. Next, for
each of these one continues to solve an m-best 2-D as-
signment, which yields a set of 3-tuples, between any
one of the previous m association results and a third list
of measurement. After this second step, one has m2 as-
signments available, out of which the top m solutions in
terms of the association cost will be selected for the next
step. This procedure (shown in Fig. 2) is repeated until
all the Ns lists of measurements are processed and the
final assignment will be a set of Ns-tuples.

Note that it is possible to have an associationZj1 j2... jNs
with c j1 j2... jNs > 0 in the final assignment once the
SEQ[m(2-D)] algorithm terminates. Such associations
will be discarded before any association with less than
τ real measurements is removed.

IV. UGM FORMULATION

If one assumes a Poisson measurement model that
the number of measurements from a real target re-

ceived by a sensor is a Poisson random variable, then
one can model a list of measurements as realizations
of a random variable with a UGM density [5] or a
PPP. The UGM formulation is presented in this sec-
tion and the PPP formulation will be presented in
Section V.

A. Formulation

Assume (temporarily) the number of targets, N, is
given. Since the association between a measurement z
(without subscript, for simplicity) and the targets is un-
known, we introduce an (N + 1)-dimensional random
binary-valued association vector

k = [k0, k1, . . . , kN] (22)

to indicate the target from which the measurement z
originates. In our formulation, the random variable z is
observed. The random variable k is not observed, thus
is called a latent variable.7 The entries ki of the vector k
satisfy the following conditions:

N∑
i=0

ki = 1 (23)

ki ∈ {0, 1} ∀ i (24)

that is, there areN+1 possible values for the vector k.Let
us use ei to denote the (N + 1)-dimensional vector with
1 in its ith entry and zeros elsewhere. The event {k = e1},
which is the same as the event {k0 = 1}, means that z is

7Latent variables are random variables whose values we do not ob-
serve or measure.
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SEQ[m(2-D)]
Z1
Z2

SEQ[m(2-D)]

SEQ[m(2-D)]

...

SEQ[m(2-D)]

A
∗(1)
2

A
∗(2)
2

A
∗(m)
2

Z3

Z3

Z3

Pick top m

associations

{A(11)
3 , . . . ,A

(1m)
3 }

{A(21)
3 , . . . ,A

(2m)
3 }

{A(m1)
3 , . . . ,A

(mm)
3 }

A
∗(1)
3

A
∗(2)
3

A
∗(m)
3

Legend
Z� : Augmented List �

A
∗(m)
L : The m-th best assignment using first L lists

Fig. 2. Initial iteration of the SEQ[m(2-D)] assignment algorithm.

a clutter-originated measurement. The event {k = ei+1}
with i > 0, which is the same as {ki = 1}, means that the
measurement z originated from the ith target.

The prior probability that z originated from the
ith target given that the acoustic signal has been de-
tected (assuming that a detected acoustic signal origi-
nates equally likely from all the targets) is

p(k = ei+1) = p(ki = 1) � πi = pd(Ti)∑N
i=0 pd(Ti)

,

i = 0, 1, . . . ,N (25)

where pd(Ti) is the probability of detection for the real
target i (i �= 0) and is assumed to be the same at each
sensor and

pd (T0) = Nfa. (26)

With abuse of notation, (26) is the expected number of
false alarms at each sensor. The probabilities πi, there-
fore, satisfy the following two conditions:

0 ≤ πi ≤ 1 (27)

N∑
i=0

πi = 1. (28)

Because of (23) and (24), the prior probability in (25)
can be equivalently expressed, in the form of a probabil-

ity mass function, as

p(k = ei+1) = p(ki = 1) = πi =
N∏
i=0

π
ki
i (29)

where the last equality holds because only the exponent
ki is equal to 1 while all other exponents are equal to 0,
and thus do not affect the product.

From (7) and (8), the conditional pdf of a measure-
ment z (without subscript, for simplicity) obtained by the
�th sensor given that it is associated with the ith target
is

p�(z|k0 = 1,T, te) = 1
�W

(30)

p�(z|ki = 1,T, te) = N (z;h�(Ti, tei ),R�) ,

i = 1, . . . ,N. (31)

For notational simplicity, let us denote8

g�i(z) = p�(z|ki = 1,T, te), i = 0, 1, . . . ,N. (32)

In a similar way as we derived (29), using (23) and (24)
we have

p�(z|k = ei+1,T, te) = p�(z|ki = 1,T, te) = g�i(z)

=
N∏
i=0

(g�i(z))
ki . (33)

8g�i(z|T, te) will be used when the conditioning needs to be explicitly
indicated.
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The joint density of a measurement z from sensor � and
its association vector k is therefore

p�(z,k = ei+1|T, te) = p�(z|k = ei+1,T, te)p(k = ei+1)

=
N∏
i=0

(πi g�i(z))
ki = πi g�i(z)

(34)

where the first equality holds because of the conditional
probability definition, the second equality holds as a re-
sult of direct substitutions of p(k = ei+1) from (29)
and p�(z|k = ei+1,T, te) from (33), and the last equal-
ity holds because only the exponent ki is equal to 1 and
other exponents are zero. The marginal density of z is
then obtained by summing the joint density over all the
N + 1 values of k as

p�(z|T, te) =
N∑
i=0

p�(z,k = ei+1|T, te) =
N∑
i=0

πi g�i(z)

(35)
where the first equality holds because of the total prob-
ability theorem and the second equality holds as a result
of substitution of p�(z,k = ei+1|T, te) from (34). There-
fore, the marginal density of one measurement is a mix-
ture (termed as “uniform–Gaussian” mixture in this pa-
per) of one uniform density and N Gaussian densities
with the parameters πi being themixing coefficients.The
conditional density of k given z is obtained using Bayes’
theorem as

p�(k|z,T, te) = p�(z,k|T, te)
p�(z|T, te)

=
∏N

i=0 (πi g�i(z))
ki∑N

i=0 πi g�i(z)
(36)

which is equivalent to

P(ki = 1|z,T, te) = πi g�i(z)∑N
i=0 πi g�i(z)

. (37)

Let (with k indexed as in (4))

K = {k� j, � = 1, 2, . . . ,Ns; j = 1, 2, . . . ,n�} (38)

be the corresponding set of association vectors (or latent
variables) for Z and

π = {πi, i = 0, 1, . . . , N}. (39)

From (34), the conditional independence of measure-
ments across all the sensors yields the joint density of
Z and K

p(Z,K|T, te) =
Ns∏
�=1

n�∏
j=1

N∏
i=0

(πi g�i(z� j))
[k� j]i (40)

where
[
k� j
]
i is the ith component of the association vec-

tor k� j. The marginal density of Z is obtained by sum-
ming the joint density (40) over all possible values of K
as

p (Z|T, te) =
Ns∏
�=1

n�∏
j=1

(
N∑
i=0

πi g�i(z� j)

)
(41)

and the posterior density (actually probability mass
function (pmf) since K is discrete) of K conditioned on
Z is

p(K|Z,T, te) =
Ns∏
�=1

n�∏
j=1

∏N
i=0 (πig�i(z� j))

[k� j]i∑N
i=0 πi g�i(z� j)

. (42)

B. The EM Algorithm

We are interested in finding the ML estimates of T
and te that maximize p (Z|T, te) or ln p (Z|T, te). How-
ever, it is difficult to obtain these estimates since the
data association between Z and T is unknown; that is,K
is not observed. Mathematically, setting the derivatives
of ln p (Z|T, te) with respect to T and te does not lead
to a closed-form solution, which suggests an iterative
approach.

The EM algorithm [9] is a two-step iterative opti-
mization technique to find the ML estimate from in-
complete data. In this context, {Z,K} are the complete
data set and the observed data Z are the incomplete
data available since the association variables in K are
unknown.

Each iteration of the EM algorithm has an expecta-
tion step (E step) and a maximization step (M step). In
the E step,we use temporary estimates ofT and te to find
the posterior distribution in (42) to “learn” about K.We
then use this posterior distribution of K to find the ex-
pectation of the joint density of Z and K in (40). In the
M step, we maximize the expectation obtained in the E
step to obtain updated estimates of T and te [5].

C. Optimization

1) Initialization: The EM algorithm is an iterative
method. The first step is to initialize the parameters T,
te, and π. Here, we assume that the mixing coefficients
πi are scalar quantities that need to be estimated along
with Ti and tei .

The EM algorithm guarantees that p (Z|T, te) in-
creases at each iteration. However, a poor initialization
can cause convergence to a local maximum as opposed
to the global one. As shown later, because of the rela-
tionship between πi and pd(Ti) in (25), the iterative pro-
cedures depend on whether Nfa is known. In either case,
pd(Ti) is initialized to be 1 and the initial values of πi
will be calculated according to (25). In this paper, three
initialization approaches for T and te are considered and
will be discussed in Section VI.D.

2) E Step: Let T(n−1), te,(n−1), and π(n−1) denote the
estimates from the previous step. In the expectation
step, we compute p(K|Z,T(n−1), te,(n−1)) and evaluate
the expected value of ln p(Z,K|T, te) conditioned on
p(K|Z,T(n−1), te,(n−1)), which is given by

Q(T, te
∣∣T(n−1), te,(n−1))

= E[ln(p(Z,K |T, te))|p(K |Z,T(n−1), te,(n−1))]

= QT (T, te|T(n−1), te,(n−1)) +Qπ (π|T(n−1), te,(n−1))
(43)
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where

QT (T, te
∣∣T(n−1), te,(n−1)) =

Ns∑
�=1

n�∑
j=1

N∑
i=0

ln (g�i(z� j))w
(n−1)
� ji

(44)

Qπ (π
∣∣T(n−1), te,(n−1)) =

Ns∑
�=1

n�∑
j=1

N∑
i=0

ln (πi)w
(n−1)
� ji

(45)
where

w
(n−1)
� ji = π

(n−1)
i g(n−1)

�i (z� j)∑N
i=0 π

(n−1)
i g(n−1)

�i (z� j)
(46)

g(n−1)
�i (z� j) = p�(z� j|ki = 1,T(n−1), te,(n−1)) (47)

w
(n−1)
� ji is the posterior probability that the measurement

z� j originates from the ith target, given that the target
locations are T(n−1) and the emission times are te,(n−1).

3) M Step: In the maximization step, we maximize
Q(T, te

∣∣T(n−1), te,(n−1)) over all feasible T, te, and π. In-
spection of (43) reveals thatQT (T, te

∣∣T(n−1), te,(n−1)) de-
pends only on the locations T and Qπ (π

∣∣T(n−1), te,(n−1))
depends only on detection probabilities through
mixing coefficients. Therefore, maximization of
Q(T, te

∣∣T(n−1), te,(n−1)) can be done by maximizing
QT (T, te

∣∣T(n−1), te,(n−1)) and Qπ (π
∣∣T(n−1), te,(n−1))

separately.
We define QT (T, te

∣∣T(n−1), te,(n−1)) as

QT (T, te
∣∣T(n−1), te,(n−1)) =

N∑
i=0

QTi (Ti
∣∣T(n−1), te,(n−1))

(48)
where

QTi (Ti
∣∣T(n−1), te,(n−1)) =

Ns∑
�=1

n�∑
j=1

ln (g�i(z� j))w
(n−1)
� ji .

(49)
Note thatQT0 (T0

∣∣T(n−1), te,(n−1)) is a constant, and there
is no functional relation between Ti1 and Ti2 for i1 �= i2
Therefore, each target location Ti can be obtained sepa-
rately by maximizing QTi (Ti

∣∣T(n−1), te,(n−1)).
Next wemaximizeQπ (π

∣∣T(n−1), te,(n−1)) with respect
to πi, while accounting for the constraint that the mix-
ing coefficients sum to 1. This can be achieved using a
Lagrange multiplier λ and maximizing the following
quantity:

QL
π (π

∣∣T(n−1), te,(n−1)) =
Ns∑
�=1

n�∑
j=1

N∑
i=0

ln (πi)w
(n−1)
� ji

+ λ

(
N∑
i=0

πi − 1

)

(50)

which gives

πi
(n) =

∑Ns
�=1

∑n�

j=1 w
(n−1)
� ji∑Ns

�=1

∑n�

j=1

∑N
i=0 w

(n−1)
� ji

. (51)

When Nfa is unknown, one can set pd(Ti) and Nfa

based on (51) as follows:

j = argmax
i,i�=0

πi (52)

pd(Ti) = πi

π j
, i �= j (53)

Nfa = π0

π j
(54)

which guarantees the constraints

pd(Ti) ≤ 1, i > 0. (55)

However,whenNfa is known, it is not always possible
to find pd(Ti) ≤ 1 such that (51) holds. For instance, the
following may not hold for π0 from (51) and a givenNfa:

π0 = Nfa∑N
i=1 pd(Ti) +Nfa

≥ Nfa

N +Nfa
. (56)

We need to maximizeQπ (π
∣∣T(n−1), te,(n−1)) with respect

to pd(Ti) subject to (55).
The Karush–Kuhn–Tucker (KKT) conditions [15]

give rise to the following proposition (see Appendix A
for proof):

Proposition 1 Let

S =
{
i

∣∣∣∣∣
Ns∑
�=1

n�∑
j=1

w
(n−1)
� ji Nfa >

Ns∑
�=1

n�∑
j=1

w
(n−1)
� j0

}
(57)

which can be an empty set, and its cardinality is denoted
by |S|. The optimal values of pd(Ti) are given by

p(n)d (Ti) =⎧⎪⎨
⎪⎩
1, if i ∈ S∑Ns

�=1

∑n�

j=1 w
(n−1)
� ji (|S| +Nfa)∑

k>0,k∈S
∑Ns

�=1

∑n�

j=1 w
(n−1)
� jk +∑Ns

�=1

∑n�

j=1 w
(n−1)
� j0

, if i /∈ S .

(58)

Therefore, by (25)

πi
(n) = p(n)d (Ti)∑N

i=0 p
(n)
d (Ti)

(59)

which can be verified to be identical to (51) when the set
S is empty.

The EM algorithm is terminated when the likelihood
function (41) converges, that is,∣∣ ln p(Z|T(n), te(n)

)− ln p
(
Z
∣∣T(n−1), te,(n−1))∣∣ ≤ ε (60)

where ε is a small number (e.g., 10−3).
One can use a fixed π throughout the EM iterations

and skip the update process in (51) under the assumption
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that both the detection probabilities and the false alarm
density are known.

D. Use of the Information Criterion for Cardinality
Selection

So far, we have assumed that the number of targets
is given. Since the number of targets is unknown,we can
use the above described procedure to estimate the pa-
rameters π and T given a specific cardinality, i.e., the
number of targets N. Now we are faced with a cardi-
nality selection problem, or a model selection problem
where the dimensionality of a model is the number of
targets. One of the most widely used criteria for model
selection problems is the Bayesian information criterion
(BIC) [22].

Let Mk = {π̂k, T̂k, N̂k} denote the set of estimated
parameters based on the kth cardinality. According to
BIC, we choose the model for which the following is
largest:

ln p
(
Z
∣∣Mk)− 1

2
dk ln(Nz) (61)

where from (41)

p
(
Z
∣∣Mk) =

Ns∏
�=1

n�∏
j=1

⎛
⎝ N̂k∑

i=0

π̂k
i g�i(z� j|T̂k)

⎞
⎠ (62)

and Nz is the total number of measurements across all
the sensors; dk is the total number of parameters to be
estimated based on the kth cardinality. In our case, dk is
4N̂k + 1 (2N̂k position coordinates for a problem in 2-
D, N̂k emission times, N̂k + 1 UGM coefficients includ-
ing the expected number of false alarms) if it is assumed
the detection probabilities and the false alarm density
are unknown. If the detection probabilities and the false
alarm density are assumed to be known, then dk is 3N̂k.

V. PPP MODEL

A. Formulation

Assume the number of targets, N, is given. Let w =
{wi, i = 1, . . . ,N}, where

wi = pd(Ti) (63)

are the detection probabilities. The number of measure-
ments n� and {z� j, j = 1, 2, . . . ,n�} obtained at the �th
sensor are jointly modeled as a realization of a PPP. The
measurement set at the �th sensor is denoted as

ψ� = {n�, z�1, z�2, . . . , z�n�

}
. (64)

In this case, the points z� j occur in the space S = {(θ, t) :
θ ∈ [−π, π ) , t ∈ [0,W ]} and their order is irrelevant.
The PPP is fully parameterized by its spatial intensity
function

μ�(z|T, te) =
N∑
i=0

pd(Ti) g�i(z) (65)

where, similarly to (26),

pd (T0) = Nfa. (66)

The number of points in the PPP is a Poisson random
variable with rate

∫
S
μ�(z)dz; that is, the probabilitymass

function of n� is

p(n�) =
( ∫

S
μ�(z)dz

)n�

n� !
exp

{
−
∫

S

μ�(z)dz
}
. (67)

The n� points are defined as independent and identically
distributed (i.i.d.) samples of a random variable with
probability density function

p(z) = μ�(z)∫
S
μ�(z)dz

=
∑N

i=0 pd(Ti) g�i(z)∑N
i=0 pd(Ti)

. (68)

The joint pmf–pdf of ψ� is

p
(
ψ�
) = exp

(
−
∫

S

μ�(z
∣∣T, te)dz

) n�∏
j=1

μ�(z� j
∣∣T, te).

(69)
The factorial term n� ! in (67) is canceled out because
there are n� ! permutations of an ordered list ofmeasure-
ments.

Let � denote the set of all measurement sets (from
the Ns sensors), i.e.,

� = {ψ1, ψ2, . . . , ψNs

}
. (70)

The independence of the Ns measurement sets yields

p
(
�
∣∣T, te

) =
Ns∏
�=1

p
(
ψ�

∣∣T, te
)
. (71)

Since the intensity function is amixture of uniformor
Gaussian pdf and the association is unknown, we model
the latent association variables as conditionally indepen-
dent random variables

κ� j ∈ {0, 1, 2, . . . ,N} (72)

that identify which component spawned the jth mea-
surement in the �th sensor. Here, κ� j = 0 indicates that
the measurement is generated by the clutter. The set of
latent variables for the �th sensor is denoted as

κ� = {κ�1, . . . , κ�n�
} (73)

such that the full set is

κ = {κ1, . . . , κNs}. (74)

The latent association variables may be regarded as
“marks” associated with each of the points in the PPP.
Define a mark space

M � {0, 1, 2, . . . ,N}. (75)

Now

ψM
� = {n�, (z�1, κ�1), . . . , (z�n�

, κ�n�
)
}

(76)

denotes a realization of the marked PPP for the �th sen-
sor,where “M” indicates that the associations are known
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(“marked”). Based on the marking theorem [17], the in-
tensity function of ψM

� is

μM
� (z, κ|T, te) = μ�(z|T, te)p� (κ|z,T, te) (77)

where p� (κ|z,T, te) denotes the conditional probability
of κ given z (without subscript here, for simplicity) with
κ = i indicating the probability of z originating from tar-
get i. Using the same reasoning as for the derivation of
(25), we have the prior probability of κ

p�(κ|T, te) = wκ∑N
i=0 wi

. (78)

Given that a point z in the PPP is associated with the κth
mixture component, the conditional intensity becomes

μ�(z|κ ) = wκ g�κ (z) (79)

and the conditional density of z given κ is

p�(z|κ,T, te) = g�κ (z). (80)

Using Bayes’ theorem

p� (κ|z,T, te) = p�(z|κ,T, te)p�(κ|T, te)
p�(z|T, te)

= wκg�κ (z)
μ�(z|T, te)

.

(81)
Substituting (81) into (77) yields

μM
� (z, κ|T, te) = wκg�κ (z). (82)

The joint probability density function of ψM
� is, similarly

to (69), given by

p
(
ψM

�

) = exp

(
N∑

κ=0

−
∫

S

μM
� (z, κ

∣∣T, te)dz

)

·
n�∏
j=1

μM
� (z� j κ� j

∣∣T, te). (83)

Now let the complete data from (76) be

�M = {ψM
1 , ψM

2 , . . . , ψM
Ns

}
. (84)

The conditional independence of the Ns measurement
sets yields the pmf–pdf for the complete data

p
(
�M|T, te

) = exp

(
−Ns

N∑
i=0

wi

)

·
Ns∏
�=1

n�∏
j=1

wκ� j g�κ� j (z� j|T, te) (85)

where we have used the fact
N∑

κ=0

(∫
wκg�κ (z|T, te)dz

)
=

N∑
i=0

wi. (86)

Dividing (85) by (71) leads to the density of the marks
conditioned on the observed measurements and the un-
known parameters

p(κ|Z,T, te) =
Ns∏
�=1

n�∏
j=1

p� (κ� j | z� j,T, te) (87)

where

p� (κ� j | z� j,T, te) = wκ� j g�κ� j (z� j|T, te)
μ�(z� j|T, te)

. (88)

In this PPP formulation, the goal is find the ML esti-
mate of T by maximizing (71), which can also be solved
using the EM algorithm.

B. Optimization

1) Initialization: In this paper, three initialization ap-
proaches are considered and will be discussed in Section
VI.D.

2) E Step: Let w(n−1),T(n−1), and te,(n−1) denote the es-
timates from the previous step. In the expectation step,
we use them to find p(κ|Z,T(n−1), te,(n−1)) and com-
pute the expected value of p

(
�M|T, te

)
conditioned on

p(κ|Z,T(n−1), te,(n−1)); that is, we evaluate

Q(T, te|T(n−1), te,(n−1))

= E

[
ln
(
p(�M

∣∣T, te)
) ∣∣p(κ ∣∣Z, T(n−1), te,(n−1))

]
= Qw(w|T(n−1), te,(n−1)) +QT (T, te|T(n−1), te,(n−1))

(89)

where

Qw(w|T(n−1), te,(n−1)) = −Ns

N∑
i=0

wi

+
Ns∑
�=1

n�∑
j=1

N∑
i=0

ln (wi)α
(n−1)
� ji

(90)

QT (T, te|T(n−1), te,(n−1)) =
Ns∑
�=1

n�∑
j=1

N∑
i=0

ln (g�i(z� j))α
(n−1)
� ji

(91)
and

α
(n−1)
� ji = p�(κ� j = i | z� j,T(n−1), te,(n−1))

= w
(n−1)
i g(n−1)

�i (z� j)∑N
i=0 w

(n−1)
i g(n−1)

�i (z� j)
. (92)

The weight α
(n−1)
� ji is the probability that the point z� j is

generated by the ith target given T(n−1) and te,(n−1).

3) M Step: The M step maximizes
Q
(
T, te|T(n−1), te,(n−1)

)
over all feasible values

for T and te. Inspection of (90) reveals that
Qw

(
w |T(n−1), te,(n−1)

)
depends only on the values

of pd(Ti) because wi = pd(Ti) for i = 1, . . . ,N. Like-
wise, QT

(
T, te|T(n−1), te,(n−1)

)
depends only on the

target locations and emission times through g�i(z� j).
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Therefore, maximization of Q
(
T, te|T(n−1), te,(n−1)

)
is

accomplished by maximizingQw

(
w |T(n−1), te,(n−1)

)
and

QT
(
T, te|T(n−1), te,(n−1)

)
separately.

The value ofQT
(
T, te|T(n−1), te,(n−1)

)
in (91) decom-

poses as

QT (T, te|T(n−1), te,(n−1)) =
N∑
i=0

QTi (Ti |T(n−1), te,(n−1))

(93)
where

QTi (Ti |T(n−1), te,(n−1)) =
Ns∑
�=1

n�∑
j=1

ln (g�i (z� j))α
(n−1)
� ji .

(94)
For i = 0, QTi

(
Ti |T(n−1)

)
is constant with respect to Ti

since the density is assumed known for the clutter.When
i �= 0, g�i (z� j) depends only on Ti through h�(Ti, tei );
thus, T (n)

i is determined by maximizing (94) separately
for each value of i.

The values of w
(n)
i are determined by maximizing

(90) given the fact that pd(Ti) = wi for k = 1, . . . ,N
and the assumption that they are scalar quantities. The
detection probabilities are also constrained to less than
or equal to 1. By setting up the Lagrange multipliers, it is
easy to see that the KKT conditions are satisfied when

wi
(n) = min

⎧⎨
⎩1, 1

Ns

Ns∑
�=1

n�∑
j=1

α
(n−1)
� ji

⎫⎬
⎭ . (95)

The EM algorithm is terminated when the likelihood
function (71) converges, that is,

| ln p(� |T(n), te(n))− ln p(� |T(n−1), te,(n−1))| ≤ ε. (96)

One can use a fixed w throughout the EM iterations
and skip the update process in (95) under the assumption
that both the detection probabilities and the false alarm
density are known.

C. Use of the Information Criterion for Cardinality
Selection

The EM algorithm will eventually converge to ŵk

and T̂k given the number of targets N̂k. Let the setMk
p =

{ŵk, T̂k, N̂k} denote the estimation result based on the
kth cardinality. The BIC selects the set Mk

p that mini-
mizes

− 2 ln p
(
�
∣∣Mk

p

)
+ d lnNz (97)

where from (71)

p
(
�
∣∣Mk

p

)
= exp

⎛
⎝−Ns

N̂k∑
i=0

wk
i

⎞
⎠ Ns∏

�=1

n�∏
j=1

N̂k∑
i=0

wk
i g�i(z� j |T̂k)

(98)
and d is the total number of parameters to be estimated.

Fig. 3. Overhead view of a ten-sensor four-target scenario.

VI. SIMULATION RESULTS

A. Scenario

Assume there are four targets (N = 4). The emission
times of the acoustic events at the target locations are
0.2, 0.25, 0.3, and 0.35 s, respectively. The speed of the
acoustic signal is assumed to be 342 m/s. The measure-
ment noise covariance matrix is

R� =
[
7.6 × 10−5 0

0 2.5 × 10−5

]
(99)

i.e., the bearing standard deviation amounts to√
76mrad = 0.5o and the time of arrival measure-

ment standard deviation amounts to 5 ms, assumed
to be the same for all targets. The time window W is
chosen to be 1 s and the density of the false alarms is
set to be 0.32 s−1rad−1 such that the expected number
of false alarms at each sensor is 1. The field view of each
sensor is from 0 to π . Fig. 3 shows one example using ten
sensors to localize these four targets. In the simulation,
the targets and the sensors are arranged in the way such
that the angle between two LOS from two neighbor-
ing targets to any sensor is 2o, which is four times the
standard deviation of LOS measurement noise.

B. Performance Metrics

The performance metrics of interest for NMC Monte
Carlo runs include

1) ϕover: fraction ofNMC runs for whichN (the number
of targets) has been overestimated;

2) M̄over: average magnitude of estimation error for N
from NMCϕover runs;
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TABLE II
SEQ[m(2-D)] Assignment Performance Using Differentm for Known pd

pd 0.7 0.8 0.9
m 1 2 4 1 2 4 1 2 4

ϕover 1.6% 1.2% 0.9% 0.9% 0.8% 0.7% 0.6% 0.6% 0.4%
M̄over 1 1 1 1 1 1 1 1 1
TRMSE
over (m) 2.86 5.13 3.01 1.97 1.63 1.72 2.19 2.19 1.98

θRMSE
over (o) 0.289 0.460 0.298 0.255 0.251 0.262 0.272 0.272 0.274

ϕunder 3.2% 2.3% 2.1% 0.2% 0 0 0 0 0
M̄under 1 1 1 1.5 N.A. N.A. N.A. N.A. N.A.
TRMSE
under (m) 2.58 2.69 2.69 4.50 N.A. N.A. N.A. N.A. N.A.

θRMSE
under (o) 0.296 0.299 0.298 0.411 N.A. N.A. N.A. N.A. N.A.

ϕexact 95.2% 96.5% 97.0% 98.9% 99.2% 99.3% 99.4% 99.4% 99.6%
TRMSE
exact (m) 2.92 2.81 2.76 3.23 2.59 2.59 1.99 1.96 1.96

θRMSE
exact (o) 0.329 0.320 0.313 0.329 0.282 0.282 0.239 0.236 0.236

TRMSE
all (m) 2.91 2.85 2.76 3.23 2.58 2.58 1.99 1.96 1.96

θRMSE
all (o) 0.328 0.322 0.313 0.328 0.282 0.282 0.239 0.236 0.236
t (s) 0.068 0.142 0.310 0.077 0.166 0.353 0.084 0.186 0.394

3) TRMSE
over : root mean squared error (RMSE) of the tar-

get location estimate from NMCϕover runs;
4) θRMSE

over : RMSE of the bearing estimate from
NMCϕover runs;

5) ϕunder: fraction of NMC runs for which N has been
underestimated;

6) M̄under: averagemagnitude of estimation error forN
from NMCϕunder runs;

7) TRMSE
under : RMSE of the target location estimate from
NMCϕunder runs;

8) θRMSE
under : RMSE of the bearing estimate from
NMCϕunder runs;

9) ϕexact: fraction of NMC runs for which N has been
correctly estimated;

10) TRMSE
exact : RMSE of the target location estimate from
NMCϕexact runs;

11) θRMSE
exact : RMSE of the bearing estimate from
NMCϕexact runs;

12) TRMSE
all : RMSE of the target location estimate from

all NMC runs;
13) θRMSE

all : RMSE of the bearing estimate from allNMC

runs.
14) t: average processing time in a single run.

For all the simulations in this paper, NMC = 1000
unless otherwise specified. In the overestimation cases,
RMSE is calculated by mapping the best (yielding the
minimumRMSE) subset of estimated targets to true tar-
gets. In the underestimation cases, RMSE is calculated
by mapping the estimated targets to the best subset of
true targets. The bearing estimate is examined here, be-
cause in some applications (for instance, shooter local-
ization), bearing accuracy is more critical than location
accuracy.

C. Assignment Algorithms

The multidimensional assignment problem (17),
which is solved by the two assignment algorithms—the
S-D assignment algorithm and the SEQ[m(2-D)] algo-
rithm, assumes a Bernoulli measurement model that the
number of measurements from a real target received by
a sensor is a Bernoulli random variable whose parame-
ter equal to the probability of detection pd. For the eval-
uation of these two assignment algorithms in this sec-
tion, the target measurements are generated according
to this Bernoulli measurement model; specifically, one
measurement from each target is generated for each sen-
sor with a probability pd or nothing with a probability
1 − pd. The false alarms are generated for each sensor
according to the Poisson model (6) and (7).

Note that the values of the probability of detection,
pd, and the expected number of false alarms,Nfa, are re-
quired to generate the target measurements. The assign-
ment algorithms do not need to know the value of Nfa

but need to know the value of pd. However, the assign-
ment algorithms are shown to be robust to incorrect pd
(see Table IV).

Table II shows the effects of the algorithm param-
eter m, the number of best assignments to be kept at
each step, and pd, probability of detection, on the per-
formance of the SEQ[m(2-D)] assignment algorithm in
a scenario using ten sensors to locate four targets. The
true probability of detection is assumed to be known.
Once the assignment algorithm is finished, any associ-
ation with less than three (τ = 3) real measurements is
discarded. For each pd, keeping more (larger m) top as-
signments at each 2-D step makes it more likely to find
the best assignment; therefore, a larger m gives better
estimates for the number of targets, the locations of the
targets, and the directions to the targets (for counterfire).
In fact, if the association between themeasurements and

52 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 1 JUNE 2019



Fig. 4. Two cardinality overestimation situations.

the targets is known, the values of θRMSE
all would be 2.50,

2.15, and 1.91 m in the three scenarios with pd varying
from 0.7 to 0.9. The sequential algorithm with m = 4
yields very good association accuracy since the values of
θRMSE
all are very close to these lower bounds. The perfor-
mance gain is at the expense of a higher computational
cost, which, however, is acceptable for real-time applica-
tions. For a fixed value ofm, the algorithm performs bet-
ter when the probability of detection increases. Lower
pd makes it more likely for the final association to have
fewer real measurements, which could fail in the real
threshold test; therefore, there are more cases when the
number of targets is underestimated at pd = 0.7. There
are two situations when the number of targets is over-
estimated. The first one is “target splitting”; that is, one
real target is perceived as two (or more) targets that are
close to each other as shown in Fig. 4a, where the targets
at location (−10, 99) are split into the targets at locations
(−14, 89) and (−21, 125). The second one is when three
(or more) false measurements are perceived to be from
a real target as shown in Fig. 4b at location (82, 4). Both
situations are more likely to occur at a lower pd, so there
are slightly fewer overestimation cases as pd increases,
as shown in Table II. When pd is higher, there could be
more real measurements available,which, if correctly as-
sociated, can lead to more accurate location and direc-
tion estimates. This is also at the expense of a slightly
longer processing time.

Table III shows how the performance of the
SEQ[m(2-D)] assignment algorithm with m = 4 varies
with the number of sensors for three levels of known pd
in the scenario with four real targets. For the threshold
test, any associations with less than three real measure-
ments are discarded.For each pd, it is observed that using

a smaller number of sensors leads to more cardinality
underestimation cases and fewer overestimation cases.
This is so because the chance that only one sensor de-
tects a real target is higher when a smaller number of
sensors are used. On the other hand, a larger number
of sensors in the presence of false alarms make it more
likely to associate false measurements into a ghost like
the situation in Fig. 4b. However, with a larger number
of sensors, the decrease in the occurrence of overestima-
tion cases is more significant than the increase in the un-
derestimation cases. In addition, deploying more sensors
could give rise to moremeasurements for a target,which
in return generate more accurate location and direction
estimates. In general, it is more beneficial to use a larger
number of sensors.

The calculation of the cost (11) requires the knowl-
edge of pd. In practical scenarios, the actual value of pd
may not be available, in which case one has to use an
estimated value of pd. Table IV shows that the perfor-
mance of the SEQ[m(2-D)] assignment algorithm is al-
most insensitive to the mismatch between the assumed
value and the true value of pd when they are close (up
to 0.1 difference) in the scenario where ten sensors are
used to locate four targets.

Fig. 5 shows the performance of the SEQ[m(2-D)]
assignment algorithm for a wider range of true pd. The
quality of cardinality, location, and bearing estimates is
almost independent of the assumed pd value when the
true pd is from0.6 to 0.9.When the true pd is as low as 0.5,
the quality of those estimates will vary with the assumed
pd value. A good location or bearing estimate requires
at least three real measurements to be associated cor-
rectly; however, the probability that at least three out of
ten sensors have detected the same target is only around
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TABLE III
SEQ[m(2-D)] Assignment Performance Using Different Ns for Known pd With m = 4

pd 0.7 0.8 0.9
Ns 6 8 10 6 8 10 6 8 10

ϕover 0.1% 0.4% 0.9% 0.2% 0.6% 0.7% 0.4% 0.5% 0.4%
M̄over 1 1 1 1 1 1 1 1 1
TRMSE
over (m) 4.37 4.50 3.01 3.90 2.87 1.72 4.21 2.98 1.98

θRMSE
over (o) 0.453 0.386 0.298 0.361 0.294 0.262 0.302 0.289 0.274

ϕunder 28.2% 7.8% 2.1% 7.8% 1% 0 0.4% 0 0
M̄under 1.12 1.01 1 1.04 1 N.A. 1 N.A. N.A.
TRMSE
under (m) 5.95 3.89 2.69 4.93 4.11 N.A. 4.64 N.A. N.A.

θRMSE
under (o) 0.402 0.344 0.298 0.347 0.328 N.A. 0.330 N.A. N.A.

ϕexact 71.7% 91.8% 97.0% 92% 98.4% 99.3% 99.2% 99.5% 99.6%
TRMSE
exact (m) 7.26 4.37 2.76 5.66 3.41 2.59 4.42 2.76 1.96

θRMSE
exact (o) 1.03 0.442 0.313 0.369 0.310 0.282 0.314 0.266 0.236

TRMSE
all (m) 6.99 4.35 2.76 5.62 3.42 2.58 4.42 2.76 1.96

θRMSE
all (o) 0.931 0.437 0.313 0.368 0.310 0.282 0.314 0.266 0.236
t (s) 0.132 0.212 0.310 0.158 0.274 0.353 0.183 0.277 0.394

TABLE IV
SEQ[m(2-D)] Assignment Performance Using Different Assumed Values for Unknown pd

True pd 0.7 0.8 0.9
Assumed pd 0.6 0.7 0.8 0.7 0.8 0.9 0.8 0.9 0.95

ϕover 1.0% 0.9% 0.8% 0.8% 0.7% 0.5% 0.5% 0.4% 0.2%
M̄over 1 1 1 1 1 1 1 1 1
TRMSE
over (m) 3.12 3.01 2.14 2.40 1.72 1.71 1.97 1.98 2.12

θRMSE
over (o) 0.314 0.298 0.252 0.315 0.262 0.249 0.263 0.274 0.270

ϕunder 1.7% 2.1% 2.2% 0 0 0.1% 0 0 0
M̄under 1 1 1 N.A. N.A. 1 N.A. N.A. N.A.
TRMSE
under (m) 2.80 2.69 2.79 N.A. N.A. 2.91 N.A. N.A. N.A.

θRMSE
under (o) 0.311 0.298 0.317 N.A. N.A. 0.325 N.A. N.A. N.A.

ϕexact 97.3% 97.0% 97.0% 99.2% 99.3% 99.4% 99.5% 99.6% 99.8%
TRMSE
exact (m) 2.76 2.76 2.80 2.60 2.59 2.60 1.96 1.96 1.96

θRMSE
exact (o) 0.313 0.313 0.318 0.284 0.282 0.282 0.236 0.236 0.236

TRMSE
all (m) 2.76 2.76 2.80 2.60 2.58 2.59 1.96 1.96 1.96

θRMSE
all (o) 0.313 0.313 0.317 0.284 0.282 0.282 0.236 0.236 0.236
t (s) 0.307 0.310 0.316 0.353 0.353 0.350 0.394 0.394 0.392

0.80 at true pd = 0.5. In other words, at true pd = 0.5 in
about 200 simulation runs either there is at least one tar-
get missing or there is at least a false association, which
could cause very different performances at different as-
sumed pd values. It gets worse at lower pd values such
as 0.4 and 0.3. Therefore, given a fixed number of sen-
sors, there is a lower bound on the true pd, below which
it is very difficult to achieve good location and bearing
estimates.

Fig. 6 shows the dependence of the performance of
the SEQ[m(2-D)] assignment algorithm on the expected
number of false alarms per sensor when ten sensors are
used to localize four targets with known pd values at 0.7,
0.8, and 0.9. In the final assignment, the least number
of real measurements required to be associated with a

real target is 3.As expected, the performance gets worse
when the false alarm rate is higher. When the true pd is
0.8 or 0.9, the localization results are reliable even for
Nfa = 4 (the total expected number of false alarms is
larger than the total expected number of real measure-
ments). When the expected number of false alarms per
sensor is very large (Nfa = 8), there aremore false targets
in the final assignment, leading to a worse performance.
Setting a higher number for the requiredminimumnum-
ber of real measurements reduces the number of false
targets but will also miss real targets in a scenario, espe-
cially for a low pd value.

Fig. 7a shows the processing time (averaged over 100
Monte Carlo runs) of the S-D assignment algorithm and
the SEQ[m(2-D)] (m = 4) assignment algorithm in
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Fig. 5. The performance (in terms of ϕexact,TRMSE
all , and θRMSE

all ) of the SEQ[m(2-D)] assignment algorithm using different assumed values of
unknown pd for true pd values ranging from 0.3 to 0.9.

scenarios with the probability of detection pd = 0.9
and the expected number of false alarms (per sensor)
Nfa = 1.When the number of targets,N, is 4, the process-
ing time using the S-D assignment algorithm with seven
sensors is around 20 s, which is too long as far as real-
time applications are concerned. This is due to the fact
that the processing time of the S-D assignment algorithm
scales exponentially with the number of sensors while
the sequential processing time scales quadratically with
the number of sensors in the worst case. In terms of the
localization performance, the S-D assignment algorithm
is also shown to be inferior to the sequential m-best as-
signment algorithm.

Wemust note that both algorithms are very different
suboptimal solutions to the problem (17).The sequential
m-best assignment algorithm makes efficient use of the
modified auction algorithm in a sequential manner. As
a greedy algorithm, it solves a locally optimal solution
based on two lists of measurements followed by consid-
ering one more list of measurements at a time until a
final solution is obtained for all lists of measurements. It
uses a suitably large value of the parameter m with the
hope that the optimal solution is kept in the search space
at all times and the final solution is close to optimal.

In contrast, the S-D assignment algorithm is a much
more sophisticated, iterative technique as shown in
Fig. 1. However, it was shown in [8] that the S-D assign-
ment algorithm could be underperforming in challeng-
ing localization scenarios where the association graph is
strongly connected and the number of candidate asso-
ciations is huge. In a scenario with pd = 0.9 where five
targets and seven sensors are placed such that the worst
angular intertarget separations as seen by the seven sen-
sors are 2, 3.5, 5, 6.5, 5, 3.5, and 2 standard deviations of
the bearingmeasurement noise, the association accuracy
of the S-D assignment algorithm is shown to be 74%.
In our simulation scenario, the worst angular intertar-
get separation is four standard deviations for every sen-
sor, which poses a similar challenging situation in terms
of the density of the association graph (or the number
of candidate associations). Therefore, the somewhat in-
ferior localization performance of the S-D assignment
algorithm at pd = 0.9 is not unexpected.

As suggested in [8], the algorithmic parameters are
selected such that the algorithm is terminated if the rela-
tive approximate duality gap is less than 5% or the num-
ber of iterations exceeds 100. Although the chance is
very small, it is still possible that the algorithm already
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Fig. 6. The performance (in terms of ϕexact,TRMSE
all , and θRMSE

all ) of the SEQ[m(2-D)] assignment algorithm in scenarios with different known
expected number of false alarms (0.25, 0.5, 1, 2, 4, and 8) for known pd values at 0.7, 0.8, and 0.9.

Fig. 7. Performance comparison between the S-D assignment algorithm and the SEQ[m(2-D)] assignment algorithm for pd = 0.9 and Nfa = 1.
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TABLE V
Comparison Between S-D Assignment and Sequentialm-Best (SmB)
2-D Assignment Performance for pd = 0.9 (Assumed Unknown)

S-D SmB(m = 4)
Assumed pd 0.8 0.9 0.99 0.8 0.9 0.99

ϕover 1.8% 2.0% 3.3% 0.4% 0.4% 0.2%
M̄over 1 1 1 1 1 1
TRMSE
over (m) 14.88 14.24 6.93 3.68 3.55 3.64

θRMSE
over (o) 0.714 0.640 0.459 0.309 0.306 0.241

ϕunder 9.7% 1.9% 0.8% 0.4% 0.3% 0.3%
M̄under 1.06 1 1 1 1 1
TRMSE
under (m) 30.67 18.14 8.72 3.08 2.91 2.91

θRMSE
under (o) 1.17 0.792 0.518 0.272 0.286 0.286

ϕexact 88.5% 96.1% 95.9% 99.2% 99.3% 99.5%
TRMSE
exact (m) 10.47 9.44 4.87 4.91 4.42 4.43

θRMSE
exact (o) 1.14 0.832 0.348 0.325 0.318 0.319

TRMSE
all (m) 13.14 9.74 4.98 4.90 4.42 4.42

θRMSE
all (o) 1.14 0.828 0.354 0.325 0.318 0.319
t (s) 0.549 0.568 0.541 0.166 0.162 0.160

terminates at the 100th iteration and the relative approx-
imate duality gap has not been reduced to 5%. Even if
the relative approximate duality gap is less than 5% long
before the 100th iteration, it is still possible that the al-
gorithm stops at a local minimum of the objective func-
tion (17) and, although it has a similar association cost to
the optimal solution, it yields different target locations.
In addition, the more false alarms the sensors detect, the
more likely that the algorithm terminates at a local min-
imum.

As the number of sensors increases, the association
graph becomesmore dense and the number of candidate
associations explodes combinatorially and it becomes
more difficult for the S-D assignment algorithm to solve
the association problem. Therefore, it is not practical to
apply the S-D assignment algorithm directly9 when the
number of sensors is large. We suggest the use of the
sequential m-best assignment algorithm in applications
with a large number of sensors.

For additional comparison, the performance of both
the S-D assignment and the sequential m-best assign-
ment algorithms for different pd in a scenario with four
targets and six sensors is listed in Tables V–VII.

D. EM-Based Algorithms

In Sections IV and V, we have considered the Pois-
son measurement model for each target, which leads to
either theUGMor the PPP formulation.Both are solved
using the EM algorithm. For the evaluation of these two
EM-based algorithms in this section, the target measure-
ments are generated according to this Poisson measure-

9One possible practice is to use the S-D assignment algorithm on a
subset of sensors followed by sequential processing as in [23].

TABLE VI
Comparison Between S-D Assignment and Sequentialm-Best (SmB)
2-D Assignment Performance for pd = 0.8 (Assumed Unknown)

S-D SmB(m = 4)
Assumed pd 0.7 0.8 0.9 0.7 0.8 0.9

ϕover 0.7% 0.6% 0.9% 0.4% 0.4% 0.4%
M̄over 1 1 1 1 1 1
TRMSE
over (m) 33.13 4.21 15.96 6.74 6.74 6.74

θRMSE
over (o) 0.882 0.302 0.829 0.421 0.421 0.421

ϕunder 31.1% 25.4% 11.8% 7.6% 7.5% 7.5%
M̄under 1.24 1.23 1.03 1.03 1.03 1.03

TRMSE
under (m) 31.40 30.12 20.52 5.46 5.49 5.88

θRMSE
under (o) 1.53 1.58 0.989 0.366 0.367 0.380

ϕexact 68.2% 74.0% 87.3% 92% 92.1% 92.1%
TRMSE
exact (m) 12.69 12.86 18.51 5.11 5.11 5.11

θRMSE
exact (o) 1.10 1.06 1.10 0.359 0.359 0.359

TRMSE
all (m) 19.08 17.49 18.67 5.14 5.14 5.16

θRMSE
all (o) 1.22 1.18 1.09 0.360 0.360 0.361
t (s) 0.415 0.420 0.413 0.142 0.141 0.150

ment model; specifically, if a sensor has a certain pd, the
number of measurements originated from a target is a
Poisson random variable with parameter pd. The clutter
follows a Poisson model with parameter Nfa.

Note that the values of the probability of detection,
pd, and the expected number of false alarms,Nfa, are re-
quired to generate the target measurements. However,
these EM-based algorithms do not need to know the val-
ues of Nfa and pd. They adapt to these values by “learn-
ing them.”

The EM-based algorithm starts with an initialization,
which determines whether the objective function can
converge to the global maximum or a local maximum.

TABLE VII
Comparison Between S-D Assignment and Sequentialm-Best (SmB)
2-D Assignment Performance for pd = 0.7 (Assumed Unknown)

S-D SmB(m = 4)
Assumed pd 0.6 0.7 0.8 0.6 0.7 0.8

ϕover 0.5% 0.3% 0.2% 0 0 0
M̄over 1 1 1 N.A. N.A. N.A.
TRMSE
over (m) 5.93 6.30 6.80 N.A. N.A. N.A.

θRMSE
over (o) 0.360 0.382 0.395 N.A. N.A. N.A.

ϕunder 62.6% 57.4% 52.2% 27.5% 27.5% 27.5%
M̄under 1.45 1.46 1.39 1.14 1.14 1.14
TRMSE
under (m) 35.39 35.24 34.48 6.93 6.97 6.59

θRMSE
under (o) 2.14 2.19 2.20 0.398 0.400 0.402

ϕexact 36.9% 42.3% 47.6% 72.5% 72.5% 72.5%
TRMSE
exact (m) 14.78 14.90 14.92 6.96 6.96 6.96

θRMSE
exact (o) 0.941 0.911 0.910 0.860 0.860 0.860

TRMSE
all (m) 27.41 26.29 24.99 6.95 6.96 6.88

θRMSE
all (o) 1.67 1.63 1.58 0.784 0.785 0.785
t (s) 0.318 0.318 0.322 0.131 0.127 0.131
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TABLE VIII
UGM/EM and PPP/EM Performance Using Different Initialization (“I:”) Approaches for Unknown pd = 0.7

I: Truth I: Clustering I: SmB(m = 1) I: SmB(m = 2)
UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 0.1% 0 49.7% 50.5% 19.4% 19.3% 19.8% 19.7%
M̄over 1 N.A. 1.57 1.51 1.14 1.14 1.15 1.15
TRMSE
over (m) 4.96 N.A. 36.69 28.51 3.46 3.47 3.34 3.35

θRMSE
over (o) 0.535 N.A. 2.23 2.37 0.493 0.494 0.449 0.451

ϕunder 0.6% 0.7% 29.7% 30.5% 23.4% 23.4% 23% 22.9%
M̄under 1 1 1.52 1.48 1.10 1.10 1.09 1.08
TRMSE
under (m) 3.06 2.57 34.21 31.8 8.28 8.30 2.88 3.04

θRMSE
under (o) 0.403 0.352 3.66 3.30 0.442 0.449 0.347 0.357

ϕexact 99.3% 99.3% 20.6% 19% 57.2% 57.3% 57.2% 57.4%
TRMSE
exact (m) 3.05 3.01 70.95 52.96 5.56 5.54 5.53 5.55

θRMSE
exact (o) 0.351 0.347 5.38 5.27 0.615 0.615 0.615 0.620

TRMSE
all (m) 3.05 3.01 46.37 35.69 5.81 5.81 4.74 4.78

θRMSE
all (o) 0.351 0.347 3.49 3.38 0.563 0.564 0.543 0.548
t (s) 2.52 2.40 4.72 4.32 1.23 1.21 1.31 1.31

Three initialization approaches are considered in this pa-
per.

The first approach is to initialize the target locations
and the emission times using their true values. This ini-
tialization approach works well as shown later; however,
it critically depends on the truth,which is not available in
the real world.Nevertheless, it provides a benchmark on
how well the EM-based algorithms can perform. Since
the number of targets N is unknown, one needs to eval-
uate a range of values for N and the algorithm selects
the bestN based on BIC. Such possible values forN can
be selected based on the number of measurements ob-
tained at each sensor; five values (2–6) are chosen for
the four-target scenario considered here.When the eval-
uated number of targets is less than the true value, a sub-
set of the true targets is used for initialization.When the
evaluated number of targets is more than the true value,
auxiliary targets in addition to the true ones are used for
initialization.

The second approach is based on the k-means clus-
tering algorithm. Any two bearing (or LOS) measure-
ments from two different sensors can lead to a potential
target. In the absence of measurement noise, the LOS
measurements coming from the same target intersect at
a single point. In the presence of measurement noise,
the LOS measurements originating from the same tar-
get should intersect with each other in a close neighbor-
hood.Therefore, the points of intersection from the LOS
measurements of any two sensors are clustered and the
centroids of each cluster are used to initialize the target
locations. The emission times are initialized in the same
way. As in the first approach, five values are evaluated
for N.

The third approach is based on the SEQ[m(2-D)]
assignment algorithm. The associations with more than
two real measurements correspond to potential targets.
Let Nmax denote the number of such associations. These

associations are ranked in terms of the association cost.
A range of values from 1 toNmax will be evaluated forN,
and the top N associations will be used to initialize the
EM-based algorithm.

Tables VIII–X present the performance of the EM-
based algorithm with both UGM and PPP formulations
(UGM/EM and PPP/EM) using different initialization
approaches at three levels10 of pd with a known false
alarm rate (Nfa = 1) in a scenario where ten sensors are
used to locate four targets.

Initialization at the truth enables the EM-based al-
gorithm to estimate the number of targets, target loca-
tions, and target directions accurately and the estimation
becomes more accurate as pd increases. In this case, the
global maximum is attained.

The clustering-based initialization is very prone to
ghosting and therefore results in very large errors in
terms of the number of targets, target locations, and tar-
get directions. It also takes a longer processing time with
such a poor initialization. In this case, the algorithm ter-
minates at a local maximum.

The assignment-based initialization overcomes the
ghosting problem. With m = 2 in the SEQ[m(2-D)] as-
signment, the target direction errors are less than the
standard deviation of the bearing measurement noise
and the target location errors are close to those ob-
tained using initialization at the truth. At a higher pd,
the number of overestimation cases increases.This is due
to double counting of the same target by the assignment
algorithmwhen two acoustic events occur at the same lo-
cation. The assignment algorithm does not differentiate
the acoustic events that occurred at the same location.

10The probability of detection is set to be the same for each target in
the simulation studies only for simplicity; theEM-based algorithms can
deal with the case that the probabilities of detection for different tar-
gets are distinct.
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TABLE IX
UGM/EM and PPP/EM Performance Using Different Initialization (“I:”) Approaches for Unknown pd = 0.8

I: Truth I: Clustering I: SmB(m = 1) I: SmB(m = 2)
UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 0 0 51.5% 54.8% 26.9% 27.1% 27.5% 27.8%
M̄over N.A. N.A. 1.53 1.52 1.21 1.21 1.23 1.23
TRMSE
over (m) N.A. N.A. 30.97 40.07 2.84 2.87 2.85 2.88

θRMSE
over (o) N.A. N.A. 2.14 2.17 0.391 0.405 0.394 0.409

ϕunder 0.1% 0.1% 29.6% 27.1% 14.2% 14.0% 14.1% 13.8%
M̄under 1 1 1.50 1.46 1.09 1.09 1.10 1.09
TRMSE
under (m) 0.69 0.74 33.60 29.94 2.58 2.57 2.57 2.57

θRMSE
under (o) 0.0886 0.0903 3.28 3.09 0.317 0.316 0.317 0.316

ϕexact 99.9% 99.9% 18.9% 18.1% 58.9% 58.9% 58.4% 58.4%
TRMSE
exact (m) 2.55 2.52 46.88 47.86 3.06 3.06 2.97 2.98

θRMSE
exact (o) 0.306 0.303 4.60 4.64 0.431 0.430 0.429 0.428

TRMSE
all (m) 2.55 2.52 35.44 40.07 2.95 2.96 2.89 2.91

θRMSE
all (o) 0.306 0.303 3.06 3.00 0.409 0.412 0.408 0.412
t (s) 2.17 2.16 4.51 4.62 1.69 1.71 1.85 1.84

TABLE X
UGM/EM and PPP/EM Performance Using Different Initialization (“I:”) Approaches for Unknown pd = 0.9

I: Truth I: Clustering I: SmB(m = 1) I: SmB(m = 2)
UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 0 0 52.1% 53.8% 33.6% 33.6% 34.7% 34.7%
M̄over N.A. N.A. 1.60 1.59 1.26 1.27 1.26 1.27
TRMSE
over (m) N.A. N.A. 37.92 29.36 2.44 2.46 2.49 2.50

θRMSE
over (o) N.A. N.A. 1.99 1.89 0.321 0.321 0.331 0.331

ϕunder 0.3% 0.3% 28% 27.2% 9.9% 9.9% 8.9% 8.9%
M̄under 1 1 1.48 1.48 1.03 1.03 1.03 1.03
TRMSE
under (m) 1.41 1.40 27.82 25.97 2.55 2.58 2.29 2.36

θRMSE
under (o) 0.245 0.244 2.68 2.52 0.281 0.284 0.263 0.269

ϕexact 99.7% 99.7% 19.9% 19% 56.5% 56.5% 56.4% 56.4%
TRMSE
exact (m) 2.23 2.22 43.77 52.87 2.95 2.96 2.99 3.00

θRMSE
exact (o) 0.275 0.273 4.39 4.35 0.377 0.380 0.388 0.391

TRMSE
all (m) 2.23 2.21 37.59 35.14 2.76 2.77 2.77 2.79

θRMSE
all (o) 0.275 0.273 2.83 2.71 0.352 0.354 0.361 0.364
t (s) 2.22 2.22 4.88 4.92 1.97 1.95 2.21 2.19

Although it indicates that there are more targets than
the truth, all real targets have actually been identified.

Fig. 8 compares the performance of the EM-based
algorithm with both UGM and PPP formulations
(UGM/EM and PPP/EM) with initialization at the truth
for different known expected numbers of false alarms
(or false alarm rate) in a scenario where ten sensors are
used to locate four targets. The quality of the cardinality,
location, and bearing estimates using both formulations
is almost identical for the same pd value, which demon-
strates the effectiveness of the UGM formulation to in-
corporate the false alarm rate when it is known.

E. Assignment Algorithms and EM-Based Algorithms

In Sections VI-C and VI-D, the two types of
algorithms—the assignment algorithms and the EM-

based algorithms—were evaluated separately accord-
ing to their assumed target-originated measurement
models (Bernoulli and Poisson, respectively). Since the
Bernoulli measurement model is the more realistic one,
the target measurements are generated in the next eval-
uation according to this Bernoulli measurement model
for comparing all the algorithms. Therefore, there is no
measurement model mismatch for the assignment algo-
rithms, but there is a measurement model mismatch for
the EM-based algorithms.

Tables XI–XIII compare the assignment algorithms
andEM-based algorithmswith assignment-based initial-
ization. In this case, one may consider the EM-based al-
gorithms as postprocessing procedures. Such a process-
ing increases the entire processing time and only leads to
an insignificant improvement of the estimation accura-
cies. However, it reflects the capability of the EM-based
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Fig. 8. The performance (in terms of ϕexact,TRMSE
all , and θRMSE

all ) of UGM/EM and PPP/EM in scenarios with different known expected
number of false alarms (0.25, 0.5, 1, 2, 4, and 8) for true pd values at 0.7, 0.8, and 0.9.

TABLE XI
Performance Comparison Among S-D Assignment, Sequential m-Best (SmB) 2-D Assignment, and EM-Based Algorithms (With Different

Initializations “I:”) for pd = 0.9 (Ns = 6)

Assignment I: SmB(m = 2) I: SmB(m = 4)
S-D SmB(m = 2) SmB(m = 4) UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 2.0% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4%
M̄over 1 1 1 1 1 1 1
TRMSE
over (m) 14.24 3.55 3.55 3.54 3.54 3.54 3.54

θRMSE
over (o) 0.640 0.306 0.306 0.307 0.307 0.307 0.307

ϕunder 1.9% 0.4% 0.3% 0.4% 0.4% 0.3% 0.3%
M̄under 1 1 1 1 1 1 1
TRMSE
under (m) 18.14 2.86 2.91 2.86 2.86 2.91 2.91

θRMSE
under (o) 0.792 0.279 0.286 0.279 0.279 0.286 0.286

ϕexact 96.1% 99.2% 99.3% 99.2% 99.2% 99.3% 99.3%
TRMSE
exact (m) 9.44 4.42 4.42 4.41 4.41 4.40 4.40

θRMSE
exact (o) 0.832 0.318 0.318 0.318 0.318 0.318 0.318

TRMSE
all (m) 9.74 4.41 4.42 4.40 4.40 4.40 4.40

θRMSE
all (o) 0.828 0.318 0.318 0.318 0.318 0.318 0.318
t (s) 0.568 0.096 0.162 0.181 0.190 0.249 0.247
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TABLE XII
Performance Comparison Among S-D Assignment, Sequential m-Best (SmB) 2-D Assignment, and EM-Based Algorithms (With Different

Initializations “I:”) for pd = 0.8 (Ns = 6)

Assignment I: SmB(m = 2) I: SmB(m = 4)
S-D SmB(m = 2) SmB(m = 4) UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 0.6% 0.5% 0.4% 0.4% 0.3% 0.3% 0.3%
M̄over 1 1 1 1 1 1 1
TRMSE
over (m) 4.21 6.75 6.74 5.69 6.27 6.26 6.26

θRMSE
over (o) 0.302 0.423 0.421 0.367 0.395 0.396 0.395

ϕunder 25.4% 7.2% 7.5% 7.2% 7.2% 7.5% 7.5%
M̄under 1.23 1.03 1.03 1.03 1.03 1.03 1.03
TRMSE
under (m) 30.12 5.55 5.49 5.19 5.19 5.14 5.14

θRMSE
under (o) 1.58 0.369 0.367 0.359 0.359 0.358 0.358

ϕexact 74.0% 92.3% 92.1% 92.4% 92.5% 92.2% 92.2%
TRMSE
exact (m) 12.86 5.15 5.11 5.08 5.08 5.05 5.05

θRMSE
exact (o) 1.06 0.362 0.359 0.358 0.358 0.356 0.356

TRMSE
all (m) 17.49 5.18 5.14 5.09 5.09 5.06 5.06

θRMSE
all (o) 1.18 0.362 0.360 0.358 0.359 0.356 0.356
t (s) 0.420 0.070 0.141 0.151 0.148 0.231 0.237

TABLE XIII
Performance Comparison Among S-D Assignment, Sequential m-Best (SmB) 2-D Assignment, and EM-Based Algorithms (With Different

Initializations “I:”) for pd = 0.7 (Ns = 6)

Assignment I: SmB(m = 2) I: SmB(m = 4)
S-D SmB(m = 2) SmB(m = 4) UGM/EM PPP/EM UGM/EM PPP/EM

ϕover 0.3% 0 0 0 0 0 0
M̄over 1 N.A. N.A. N.A. N.A. N.A. N.A.
TRMSE
over (m) 6.30 N.A. N.A. N.A. N.A. N.A. N.A.

θRMSE
over (o) 0.382 N.A. N.A. N.A. N.A. N.A. N.A.

ϕunder 57.4% 27.6% 27.5% 27.6% 27.6% 27.5% 27.5%
M̄under 1.46 1.14 1.14 1.14 1.14 1.14 1.14
TRMSE
under (m) 35.24 7.10 6.96 5.69 5.68 5.65 5.65

θRMSE
under (o) 2.19 0.402 0.400 0.383 0.383 0.381 0.382

ϕexact 42.3% 72.4% 72.5% 72.4% 72.4% 72.5% 72.5%
TRMSE
exact (m) 14.90 7.44 6.96 7.27 7.27 6.88 6.86

θRMSE
exact (o) 0.911 0.872 0.860 0.864 0.864 0.851 0.851

TRMSE
all (m) 26.29 7.37 6.96 6.96 6.96 6.63 6.62

θRMSE
all (o) 1.63 0.795 0.785 0.786 0.786 0.775 0.775
t (s) 0.318 0.058 0.127 0.126 0.133 0.191 0.196

algorithm to solve the data association problem.Associ-
ating the measurements with a good degree of accuracy
requires a good initialization, such as the assignment ap-
proach. In this case, although there is a mismatch in the
measurement model, the EM-based algorithms estimate
the number of targets, target locations, and target direc-
tions quite accurately due to the fact that the initializa-
tion by the SEQ[m(2-D)] assignment algorithm is close
to the truth.

VII. CONCLUSION

This paper considers the problem of multiple tran-
sient emitter localization using a network of passive sen-

sors. It is assumed that the number of targets as well
as the association between measurements and targets
is unknown and in the presence of missed detections
and false alarms. Two different measurement models—
the Bernoulli measurement model and the Poisson mea-
surement model—are considered for each target and
two types of algorithms—assignment- and EM-based—
are presented, one for each measurement model. Sim-
ulation studies show that the SEQ[m(2-D)] assignment
algorithm has very promising performance and can be
employed in real-time applications.While the EM-based
algorithms have the capability of solving the data as-
sociation problem, simulation results suggest that they
require the right initial estimates to provide reliable
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localization results and the processing time could be
longer than required. The fusion algorithms discussed in
this paper assume that there is a fusion center to which
each sensor can communicate. Fusion algorithms, which
assume that no such fusion center exists and allow dis-
tributed processing and only single-hop communication,
are developed in [10].

APPENDIX A PROOF OF PROPOSITION 1

For notational simplicity, let us denote

ai =
Ns∑
�=1

n�∑
j=1

w
(n−1)
� ji , i = 0, 1, . . . ,N (100)

pi = pd(Ti), i = 1, 2, . . . ,N (101)

p = [p1, p2, . . . , pN] (102)

hi(p) = pi − 1. (103)

Substituting (25) into (45), the problem becomes

maximize
p

f (p) = a0 lnNfa +
N∑
i=1

ai ln pi

−
( N∑

i=0

ai

)
ln
( N∑

i=1

pi +Nfa

)

subject to hi(p) ≤ 0, i = 1, . . . ,N. (104)

Let μi be a Lagrange multiplier corresponding to pi ≤ 1
and μ = [μ1, μ2, . . . , μN]. The Lagrangian is

L(p, μ) = f (p) +
N∑
i=1

μi(0 − hi(p)). (105)

From the KKT conditions, the optimal values of p and
μ satisfy the following system of equations and inequal-
ities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = ∂ f
∂pi

− μi
∂hi
pi

= ai
pi

−
∑N

i=0 ai∑N
i=1 pi +Nfa

− μi,

i = 1, 2, . . . ,N (106)

0 = μihi(p) = μi(pi − 1), i = 1, 2, . . . ,N (107)

0 ≤ μi, i = 1, 2, . . . ,N. (108)

We need to break the analysis into cases according to
(107).

Case 1: If

μi = 0, i = 1, 2, . . . ,N (109)

then (106) is simplified to

pi = ai
(∑N

k=1 pk +Nfa
)

∑N
i=0 ai

. (110)

Summing over i from 1 to N, we have

N∑
i=1

pi =
N∑
k=1

pk =
∑N

i=1 ai
(∑N

k=1 pk +Nfa
)

∑N
i=0 ai

(111)

which can be simplified to

N∑
k=1

pk =
∑N

i=1 aiNfa

a0
. (112)

Substituting (112) into (110), we have

pi = aiNfa

a0
. (113)

The feasibility of this solution depends on whether
aiNfa/a0 is greater than 1. Let

S = {i |aiNfa > a0}. (114)

If the set S is empty, (113) will be the optimal solution
for p. If the set S is not empty, then we must have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = μihi(p) = μi(pi − 1), i /∈ S (115)

0 ≤ μi, i /∈ S (116)

0 = pi − 1, i ∈ S (117)

0 < μi, i ∈ S. (118)

Case 2: If⎧⎪⎨
⎪⎩

0 = μi, i /∈ S (119)

1 = pi, i ∈ S (120)

then (106) is simplified to

pi = ai
(∑

k/∈S pk + |S| +Nfa
)

∑N
i=0 ai

, i /∈ S. (121)

Summing over i that is not in the set S and solving for∑
i/∈S pi, ∑

i/∈S
pi =

∑
i>0,i/∈S ai(|S| +Nfa)∑

i>0,i∈S ai + a0
. (122)

Substituting (122) into (121), we have

pi = ai(|S| +Nfa)∑
i>0,i∈S ai + a0

, i /∈ S. (123)

Since

aiNfa > a0, i ∈ S (124)

we have ∑
i>0,i∈S

aiNfa > |S|a0 (125)

∑
i>0,i∈S

aiNfa + a0Nfa > |S|a0 + a0Nfa (126)
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Nfa

a0
>

|S| +Nfa∑
i>0,i∈S ai + a0

. (127)

Since

aiNfa ≤ a0, i /∈ S (128)

we have

pi = ai(|S| +Nfa)∑
i>0,i∈S ai + a0

<
aiNfa

a0
≤ 1, i /∈ S (129)

which verifies the feasibility of the solution consisting of
(120) and (123).One can summarize the two cases as fol-
lows:

pi =
⎧⎨
⎩
1, if i ∈ S
ai(|S| +Nfa)∑
i>0,i∈S ai + a0

, if i /∈ S (130)

which is equivalent to (58) because of (100) and (101).
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