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Absolute Calibration of Imaging
Sensors

DJEDJIGA BELFADEL

Despite the efforts for precise alignment of satellite-based imag-

ing sensors before launch, several factors may cause the values of the

calibration parameters to vary between the time of ground calibration

and on-orbit operation. This paper considers the problem of satellite-

based imaging sensors on-board calibration while estimating the posi-

tion and velocity of a target of opportunity. The pixel measurements

(estimated location of the target’s image in the focal-plane array) gen-

erated by these sensors are used to estimate the sensors’ pointing an-

gle biases, which is a key element of accurate tracking of a target in a

space-based system. The target is assumed to be seen by the sensors

from a changing direction as a function of the target position, allow-

ing the target in this nonlinear tracking system to be observable. The

evaluation of the corresponding Cramér–Rao lower bound on the co-

variance of the bias estimates and the statistical tests on the results

of simulations show that both the target trajectory and the biases are

observable and that this method is statistically efficient.

I. INTRODUCTION

Image registration is an important research topic
in many related areas, such as computer vision, auto-
matic object detection, remote sensing, image process-
ing, robotics, and medical imaging. Multisensor image
fusion is the process of combining relevant information
from several images into one image.The final output im-
age can provide more information than any of the single
images.

In the literature of computer vision, several cam-
era calibration methods exist. These methods are classi-
fied based on the calibration object used, such as stereo
calibration, plane calibration [13], line calibration [14],
and self-calibration [10]. However, it is important to
note that constraint conditions become weaker and pre-
cision decreases when the dimension is reduced. Thus,
if high-precision results are necessary, the latter two
methods may not be suitable. Furthermore, the three-
dimensional calibration block required for the third
method is challenging to make. Therefore, the plane cal-
ibration method is a widely used method in computer
vision due to its flexibility and simplicity [13].

In order to carry out image fusion, registration error
correction is crucial inmultisensor systems.This requires
estimation of the sensor measurement biases. Measure-
ment bias in target tracking problems can result from a
number of different sources. Some primary sources of
bias errors include measurement biases due to the dete-
rioration of initial sensor calibration over time, attitude
errors caused by biases in the gyros of the inertial mea-
surement units of (airborne or spaceborne) sensors, and
timing errors due to the biases in the onboard clock of
each sensor platform [9].

For angle-only sensors, imperfect registration leads
to line-of-sight (LOS) angle measurement biases in
azimuth and elevation. If not corrected, the registra-
tion errors can seriously degrade the global surveillance
system’s performance by increasing tracking errors and
even introducing ghost targets. In [7], the effect of sen-
sor and timing bias error on the tracking quality of a
space-based infrared (IR) tracking system that utilizes
a linearized Kalman filter (LKF) for the highly nonlin-
ear problem of tracking a ballistic missile was presented.
This was extended in [8] by proposing a method of us-
ing stars observed in the sensor background to reduce
the sensor bias error. In [5] simultaneous sensors bias
and targets position estimation using fixed passive sen-
sors was proposed. A solution to the related observabil-
ity issues discussed in [5] was proposed in [6] using space-
based sensors. In [4], a simultaneous target state and pas-
sive sensor bias estimation were proposed.

In this paper, imaging sensor bias estimation is inves-
tigated when only a single target of opportunity is avail-
able. The tracking system consists of two or three satel-
lites tracking a ballistic target. The sensors provide syn-
chronized focal-plane (pixel) measurements. The data
association is assumed to be correct, and the sensors’
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locations are known, and we estimate their orientation
biases while simultaneously estimating the state of the
target (position and velocity). Our new bias estimation
method is validated using a hypothetical scenario cre-
ated using the System Tool Kit (STK) [1]. Two cases are
considered. In the first case,we use three imaging sensors
to estimate the state of a ballistic target simultaneously
with the biases of the three sensors. In the second case,
we estimate the position and velocity of a single target of
opportunity simultaneously with the biases of two imag-
ing sensors [3].

First, we discuss the bias estimation for syn-
chronously biased imaging sensors in pixel coordinates.
Then we evaluate the corresponding Cramér–Rao lower
bound (CRLB) on the covariance of the bias estimates,
which is the quantification of the available information
on the sensor biases,and show via statistical tests that the
estimation is statistically efficient—it meets the CRLB.
Section II describes the problem formulation and

solution in detail. Section III describes the simulations
performed and gives the results. Finally, Section IV gives
the conclusions.

II. PROBLEM FORMULATION

To locate a target in world coordinates and to esti-
mate and correct the biases, one needs to transform the
pixels on the image plane to positions in world coordi-
nates and vice versa. Starting with a discussion on the
orientation of a spaceborne sensor, this section is de-
voted to defining the transformations used in the for-
mulation of the new method. The fundamental frame
of reference used in this paper is the Earth-centered in-
ertial (ECI) coordinate system. The ECI is defined by
the orthogonal set of unit vectors (ix, iy, iz). In a mul-
tisensor scenario, sensor platforms will typically have a
sensor reference frame associated with them (measure-
ment frame of the sensor) defined by the orthogonal set
of unit vectors (ixs, iys, izs). The origin of the measure-
ment frame of the sensor is a translation of the ECI ori-
gin, and its axes are rotated with respect to the ECI axes.
The rotation between these frames can be described by
a set of Euler angles.We will refer to these angles α+αn,
ε+εn,ρ+ρn of the sensor, as pitch, yaw, and roll, respec-
tively, where αn is the nominal pitch angle, α is the pitch
bias,etc.Each angle defines a rotation about a prescribed
axis in order to align the sensor frame axes with the ECI
axes. The xyz rotation sequence is chosen, which is ac-
complished by first rotating about the x axis by αn, then

Fig. 1. Sensor coordinates and azimuth pointing bias.

rotating about the y axis by εn, and finally rotating about
the z axis by ρn. The rotation sequence can be expressed
as

T (ρn, εn, αn) = Tz(ρn)Ty(εn)Tx(αn)

�=
⎡
⎣
cos ρn cos εn cos ρn sin εn sinαn − sin ρn cosαn cos ρn sin εn cosαn + sin ρn sinαn

sin ρn cos εn sin ρn sin εn sinαn + cos ρn cosαn sin ρn sin εn cosαn − cosψs sinαn

− sin εn cos εn sinαn cos εn cosαn

⎤
⎦ . (1)

Assume there are NS synchronized passive sen-
sors with known positions in ECI coordinates,
sps(k) = [es(k),ns(k),us(k)]′, s = 1, 2, . . . ,NS, k =
0, 1, 2, . . . ,K, tracking a single target at unknown posi-
tions x(k) = [x(k), y(k), z(k)]′, also in ECI coordinates.
With the previous convention, the operations needed to
transform the position of the target location expressed
in ECI coordinates into the sensor s coordinate system
(based on its nominal orientation) is

xns (k) = T (ωs(k))(x(k) − sps(k))

s = 1, 2, . . . ,NS, k = 0, 1, 2, . . . ,K, (2)

where ωs(k) = [αn
s (k), ε

n
s (k), ρ

n
s (k)]

′ is the nominal ori-
entation of sensor s, T (ωs(k)) is the appropriate rota-
tion matrix, and the translation (x(k) − sps(k)) is the
difference between the vector position of the target and
the vector position of the sensor s, both expressed in
ECI coordinates. The superscript “n” in (2) indicates
that the rotation matrix is based on the nominal sensor
orientation.

A. Measurement Model

In the process of optical imaging, a simplified model
of image formation is shown in Fig. 1. In this so-called
pinhole camera model, the lens is a single point.A given
scene is mapped onto the image plane by projection
through the optical center of the imaging lens. We shall
define the sensor coordinate system as having the hor-
izontal and vertical axes of the image plane labeled ξ

48 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 18, NO. 1 JUNE 2023



Fig. 2. Sensor coordinates and elevation pointing bias.

and η, respectively, and the “optical axis”, labeled ζ (as
shown in Figs.1 and 2).Assume that the origin of the sen-
sor coordinate system is the lens center, and fs is the fo-
cal length of the optical sensor, the distance from the lens
focal point to the image plane. The three-dimensional
coordinates (xs(k), ys(k), zs(k)) of a point target are
transformed to the image coordinates (ξs(k), ηs(k)) un-
der perspective projection. Then using the two similar
triangles, we can write the ξs(k) image coordinate in the
focal plane as

ξs(k) = − fs
xs(k)
zs(k)

, (3)

where fs is the focal length of sensor s and the nega-
tive sign is due to the reversing of the image. Similarly,
as shown in Fig. 2, the ηs(k) coordinate of the image is
given by

ηs(k) = − fs
ys(k)
zs(k)

. (4)

For our bias estimation algorithm, the target measure-
ments will be generated in pixels ξs(k) and ηs(k). For
convenience, the xzy coordinate system is used, the
azimuth angle βs(k) is taken in the sensor xz plane be-
tween the sensor z axis and the line of sight to the target,
while the elevation angle γs(k) is the angle taken in the
Cartesian plane yz between the z axis and the line of
sight to the target, that is,

[
βs(k)
γs(k)

]
=

⎡
⎢⎣
tan−1

(
xs(k)
zs(k)

)

tan−1

(
− ys(k)√

x2s (k)+z2s (k)

)
⎤
⎥⎦ . (5)

Assuming a small clockwise roll of bρ about the ζ axis,
the resulting tilted (rotated) image has the focal plane
coordinates

ξ ′
s(k) = ξs(k) cos bρs + ηs(k) sinbρs , (6)

η′
s(k) = −ξs(k) sinbρs + ηs(k) cos bρs , (7)

where ξ ′
s(k) and η′

s(k) are the resulting pixel positions
after the rolling, and ξs(k) and ηs(k) are the ideal image
positions.As shown in Fig. 1, the azimuth bias bαs of sen-
sor s results in a horizontal bias in pixels of

�ξ s(k) = fs sinbαs

cosαs(k) cos(αs(k) − bαs )

= fs sinbαs

cosαs(k)(cosαs(k) cos bαs + sinαs(k) sinbαs )

= fs sinbαs

cos2 αs(k) cos bαs + cosαs(k) sinαs(k) sinbαs

= fs

cos2 αs(k)
cosbαs
sin bαs

+ cosαs(k) sinαs(k)

= fs
cos2 αs(k) cot bαs + cosαs(k) sinαs(k)

s = 1, 2, . . . ,Ns. (8)

Similarly, as shown in Fig. 2, the elevation bias bεs results
in a vertical bias in pixels of

�ηs(k) = fs sinbεs

cos εs(k) cos(εs(k) − bεs )

= fs
cos2 εs(k) cot bεs + cos εs(k) sin εs(k)

. (9)

The focal length is related to the horizontal field of view
2αmax and Nξ , the number of pixels along the horizontal
ξ axis.

fs = 1
2
Nξ

1
tanαmax

. (10)

Combining (7)–(10), the noiseless biased measurements
of the target from sensor s in pixels are

ξbs (k) = ξs(k) cos bρs

− fs
cos2 αs(k) cot bαs + cosαs(k) sinαs(k)

+ ηs(k) sinbρs , (11)

ηbs (k) = ηs(k) cos bρs

− fs
cos2 εs(k) cot bεs + cos εs(k) sin εs(k)

− ξs(k) sinbρs , (12)

where ξs(k) and ηs(k) are the ideal image pixel posi-
tions. bαs , bεs , and bρs are the azimuth, elevation, and
roll biases, respectively. The model for the biased noise
free focal-plane measurements expressed in pixels is
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then

h (xs(k),bs) =
[
ξbs (k)
ηbs (k)

]
=

[
ξs(k) cos bρs − fs

cos2 αs(k) cotbα s+ cosαs(k) sinαs(k)
+ ηs(k) sinbρs

ηs(k) cos bρs − fs
cos2 εs(k) cotbεs+ cos εs(k) sin εs(k)

− ξs(k) sinbρs

]

=

⎡
⎢⎢⎣

− fsxs(k)
zs(k)

cos bρs − fs
z2s (k)

x2s (k)+z2s (k)
cotbαs+ xs (k)zs (k)

x2s (k)+z2s (k)

− fsys(k)
zs(k)

sinbρs

− fsys(k)
zs(k)

cos bρs − fs

x2s (k)+z2s (k)
x2s (k)+y2s (k)+zs (k)

cotbεs+
zs (k)

√
x2s (k)+z2s (k)

x2s (k)+y2s (k)+z2s (k)

+ fsxs(k)
zs(k)

sinbρs

⎤
⎥⎥⎦

= fs

⎡
⎣ − xs(k)

zs(k)
cos bρs − ys(k)

zs(k)
sinbρs − x2s (k)+z2s (k)

z2s (k) cotbαs+xs(k)zs(k)
− ys(k)

zs(k)
cos bρs + xs(k)

zs(k)
sinbρs − x2s (k)+y2s (k)+z2s (k)

(x2s (k)+z2s (k)) cotbεs+zs(k)
√
x2s (k)+z2s (k)

⎤
⎦ , (13)

where [ξs(k) ηs(k)]′ is the focal-plane position of
the image of the target seen by sensor s, xs(k) =
[xs(k), ys(k), zs(k)] is the target position, and bs =
[bαs bεs bρs ]

′ is the bias vector of sensor s.
At time k, each sensor provides the noisy measure-

ments

zs(k) = hs (xs(k),bs) + ws(k), (14)

Let z be an augmented vector consisting of the batch-
stacked measurements from all the sensors up to time
K

z = [z1(1), z2(1), . . . , zNS (1), . . . , z1(K), z2(K), . . . ,

zNS (K)], (15)

and

ws(k) = [
wξ
s (k),w

η
s (k)

]′
. (16)

The measurement noises ws(k) are zero-mean, white
Gaussian with

Rs =
[
(σ ξ

s )2 0
0 (ση

s )2

]
s = 1, 2, . . . ,NS (17)

and are assumed mutually independent.
The problem is to estimate the bias vectors for all

sensors and the state vector (position and velocity) of
the target of opportunity, i.e.,

θ = [x(K), y(K), z(K), ẋ(K), ẏ(K), ż(K),b′
1, . . . ,b

′
NS
]′

(18)
from

z = h(θ ) + w, (19)

where

h(θ ) = [h11(θ )′,h21(θ )′, . . . ,hNS1(θ )
′, . . . ,

h1K(θ )′,h2K(θ )′, . . . ,hNSK(θ )
′]′, (20)

w = [w1(1)′,w2(1)′, . . . ,wNS (1)
′, . . . ,w1(K)′,

w2(K)′, . . . ,wNS (K)′]′, (21)

and the covariance of the stacked process noise (21) is
the (NsK ×NsK) block-diagonal matrix

R =

⎡
⎢⎢⎢⎣

R1 0 · · · 0
0 R2 · · · 0
...

...
...

...
0 · · · 0 RNS

⎤
⎥⎥⎥⎦ . (22)

We shall obtain the maximum likelihood (ML) estimate
of the augmented parameter vector (18), consisting of
the (unknown) target position, velocity, and sensor bi-
ases, by maximizing the likelihood function (LF) of θ

based on z

�(θ; z) = p (z|θ ) , (23)

where

p (z|θ ) = |2πR|−1/2 exp
(

−1
2
[z − h (θ )]′ R−1 [z − h (θ )]

)
,

(24)

and h is defined in (20)
The ML estimate (MLE) is then

θ̂ (z)
ML = argmax

θ
�(θ; z). (25)

In order to find the MLE, one has to solve a nonlinear
least squares problem. This will be done using a numeri-
cal search via the batch iterated least squares (ILS) tech-
nique.

B. Space Target Dynamics

The state-space model for a noiseless discrete-time
system1 is of the general form

x(k+ 1) = f [x(k),u(k)] k = 0, 1, 2, . . . ,K − 1. (26)

With small time steps (≤10 s), we can approximate the
motion model with the discrete-time dynamic equation

x(k+ 1) = Fx(k) +Gu(k), (27)

1Since we are dealing with exoatmospheric motion, it is reasonable to
assume that it is noiseless.
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where

x(k) = [x(k), y(k), z(k), ẋ(k), ẏ(k), ż(k)]′,

k = 0, 1, 2, . . . ,K (28)

is the six-dimensional state vector at time k, F is the
state-transitionmatrix, and u is a known input represent-
ing the gravitational effects acting on the target [given in
(31)]. The state-transition matrix for a target with accel-
eration due to gravity is

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 �t 0 0
0 1 0 0 �t 0
0 0 1 0 0 �t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (29)

and the known input gainmatrix (multiplying the appro-
priate components of the gravity vector) is

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

�t2/2 0 0
0 �t2/2 0
0 0 �t2/2
�t 0 0
0 �t 0
0 0 �t

⎤
⎥⎥⎥⎥⎥⎥⎦

, (30)

where �t is the sampling interval. The gravity term is
given by

u(k) = g
xp(k)

a(xp(k))
, (31)

where xp is the position part of the state x in (28), g =
9.8 m/s2, and

a =
√
x(k)2 + y(k)2 + z(k)2 (32)

is the distance from the target to the origin of the coordi-
nates system. For simplicity, we assume g to be constant.
The ratio xp/a yields the time-varying components of the
gravity acting on the target and provides the scaling fac-
tor for the gravity term. Note that in view of (31), the
state model (27) is not linear.

C. Bias Estimability

Intuitively, the observability of a system guarantees
that the sensor measurements provide sufficient infor-
mation for estimating the unknown parameters. As dis-
cussed in [4], the two requirement for bias estimability
are:

First Requirement for Bias Estimability: Each sensor
provides a two-dimensional measurement (the two pixel
positions of the target in the sensor image) at timeK.We
assume that each sensor sees the target at all the times
0, 1, 2, . . . ,K. Stacking together all the measurements
results in an overall measurement vector of dimension
2KNS. Given that the position, velocity of the target,
and bias vectors of each sensor are three-dimensional,

and knowing that the number of equations (size of the
stacked measurement vector) has to be at least equal to
the number of parameters to be estimated (target state
and biases), we must have

2KNS ≥ 3NS + 6. (33)

This is a necessary condition but not sufficient because
(25) has to have a unique solution, i.e., the parameter
vector has to be estimable.This is guaranteed by the sec-
ond requirement.

Second Requirement of Bias Estimability: This is the
invertibility of the Fisher information matrix (FIM). In
order to have parameter observability, the FIM must be
invertible. If the FIM is not invertible (i.e., it is singu-
lar), then the CRLB (the inverse of the FIM) will not
exist—the FIM will have one or more infinite eigenval-
ues, which means total uncertainty in a subspace of the
parameter space, i.e., ambiguity [2].

For the example of bias estimability discussed in the
sequel, estimate the biases of 2 sensors (6 bias compo-
nents) and 6 target components (3 position and 3 veloc-
ity components), i.e., the search is in a 12-dimensional
space in order to meet the necessary requirement (33).
As stated previously, the FIM must be invertible, so the
rank of the FIM has to be equal to the number of param-
eters to be estimated (6 + 6 = 12 in the previous exam-
ple).The full rank of the FIM is a necessary and sufficient
condition for estimability. There exists, however, a sub-
tle unobservability for this example that will necessitate
the use of more measurements than the strict minimum
number of measurements given by (33).

D. Iterated Least Squares for Maximization of the
LF of θ

Given the estimate θ̂ j after j iterations, the batch ILS
estimate after the ( j + 1)th iteration will be

θ̂ j+1 = θ̂ j + [(H j)′R−1H j]−1(H j)′R−1[z − h(θ̂ j)], (34)

where

h(θ̂ j) = [h11(θ̂ j)′,h21(θ̂ j)′, . . . ,hNS1(θ̂
j)′, . . . ,h1K(θ̂ j)′,

h2K(θ̂ j)′, . . . ,hNSK(θ̂
j)′], (35)

where

H j = ∂h
(
θ j

)
∂θ

∣∣∣∣∣
θ=θ̂ j

(36)

is the Jacobian matrix of the vector consisting of the
stackedmeasurement functions (35) w.r.t. (18) evaluated
at the ILS estimate from the previous iteration j. In this
case, the Jacobianmatrix is,with the iteration index omit-
ted for conciseness,

H = [
H11 H21 HNS1 · · · H1K H2K HNSK

]′
, (37)

ABSOLUTE CALIBRATION OF IMAGING SENSORS 51



where

Hs(k) =
⎡
⎣

∂ξs(k)
∂x(k)

∂ξs(k)
∂y(k)

∂ξs(k)
∂z(k)

∂ξs(k)
∂ ẋ(k)

∂ξs(k)
∂ ẏ(k)

∂ξs(k)
∂ ż(k)

∂ξs(k)
∂bα1

∂ξs(k)
∂bε1

∂ξs(k)
∂bρ1

...
∂ξs(k)
∂bαNS

∂ξs(k)
∂bεNS

∂ξs(k)
∂bρNS

∂ηs(k)
∂x(k)

∂ηs(k)
∂y(k)

∂ηs(k)
∂z(k)

∂ηs(k)
∂ ẋ(k)

∂ηs(k)
∂ ẏ(k)

∂ηs(k)
∂ ż(k)

∂ηs(k)
∂bε1

∂ηs(k)
∂bε1

∂ηs(k)
∂bρ1

...
∂ηs(k)
∂bεNS

∂ηs(k)
∂bεNS

∂ηs(k)
∂bρNS

⎤
⎦ , (38)

The appropriate partial derivatives, in pixel measure-
ments, with respect to the target position and velocity
components are given in the appendix.

E. Initial Solution

Assuming that the biases are null, the LOS measure-
ments from the first and second sensors α1(k),α2(k), and
ε1(k) can be used to solve for each initial Cartesian tar-
get position in ECI coordinates using (39)–(41).The two
Cartesian positions formed from (39) to (41) can then
be differenced to provide an approximate velocity. This
procedure is analogous to two-point differencing [2] and
will provide a full six-dimensional state to initialize the
ILS algorithm.

x(k)0 = y2(k) − y1(k) + x1(k) tanα1(k) − x2(k) tanα2(k)
tanα1(k) − tanα2(k)

,

(39)

y(k)0 =
tanα1(k) (y2(k) + tanα2(k) (x1(k) − x2(k))) − y1(k) tanα2(k)

tanα1(k) − tanα2(k)
,

(40)

z(k)0 = z1(k) + tan ε1(k)

×
∣∣∣∣
(y1(k) − y2(k)) cosα2(k) + (x2(k) − x1(k)) sinα2(k)

sin (α1(k) − α2(k))

∣∣∣∣
k = 1, 2, . . . ,K.

(41)

The CRLB provides a lower bound on the covariance
matrix of an unbiased estimator [2] as

E{(� − �̂)(� − �̂)′} ≥ J(�)−1, (42)

where � is the true parameter vector to be estimated, �̂
is the estimate, and J is the FIM given as

J(�) = E
{
[∇� ln�(�)] [∇� ln�(�)]′

}∣∣
�=�true

= �′
(
R−1

)
�

∣∣∣
�=�true

, (43)

where � is given by (37) and R given by (22).

F. Statistical Test for Efficiency With Monte Carlo Runs

As discussed in [2], the normalized estimation error
squared (NEES) for the parameter � (under the hy-
pothesis of efficiency), defined as

γ� = (� − �̂)′P−1(� − �̂) = (� − �̂)′J(�)(� − �̂)
(44)

is Chi-square distributed with n� (the dimension of �)
degrees of freedom, assuming that estimation errors are
Gaussian, that is,

γ� ∼ χ2
n�

. (45)

The hypothesis test whether efficiency can be accepted,
i.e., that P = J−1, is discussed in [2] and outlined next.
The NEES is used in simulations to check whether the
estimator is efficient. In practice, to check the estimator
efficiency, we use the sample average NEES from N in-
dependent Monte Carlo runs, defined as

γ̄� = 1
N

N∑
i=1

γ i
�. (46)

The quantity Nγ̄� is Chi-square distributed with Nn�

degrees of freedom.

III. SIMULATIONS

We simulate a space-based tracking system tracking
a ballistic missile. The missile and satellite trajectories
are generated using STK.2 The target modeled repre-
sents a ballistic missile with a flight time of about 20 min.
STK provides the target and sensor positions in three-
dimensional Cartesian coordinates at 1 s intervals. The
target launch time is chosen so that the satellite sensors
are able to follow the missile’s trajectory throughout its
flight path. The missile and satellite trajectories repre-
sent 5 min of flight time (exoatmospheric).

A. Three-Sensor Case

We simulated three space-based imaging sensors at
various known orbits, observing a target of opportunity
at unknown locations. In this case, a 15-dimensional pa-
rameter vector is to be estimated. The horizontal and
vertical fields of view of each sensor are assumed to be
60◦.Themeasurement noise standard deviation σs (iden-
tical across sensors for both horizontal and vertical axes
of the image plane ξ and η measurements,σ ξ

s = σ
η
s = σs)

was assumed to be 0.3 pixel. As shown in Fig. 3, these
satellite orbits enabled maximum visibility of the missile
trajectory from multiple angles. As discussed in the pre-
vious section, the three sensor biases are roll, pitch, and
yaw angle offsets. Table I summarizes the bias values (in
mrad).

2STK is registered trademark of Analytical Graphics, Inc.
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Fig. 3. Target and satellite trajectories for the three-sensor case.

B. Statistical Efficiency of the Estimates for the
Three-Sensor Case

In order to test for the statistical efficiency of the
estimate [of the 15-dimensional vector (18)], the NEES
[2] is used,with the CRLB as the covariance matrix. The
sample average NEES over 100 Monte Carlo runs cal-
culated using the FIM evaluated at the true bias values
and target locations is approximately 14.3, and the sam-
ple average NEES calculated using the FIM evaluated
at the estimated biases and target locations is approx-
imately 14.6, and both fall in the interval given below.
According to the CRLB, the FIM has to be evaluated at
the true parameter. Since this is not available in practice,
however, it is useful to evaluate the FIM also at the es-
timated parameter, the only one available in real-world
implementations [11], [12]. The 95% probability region
for the 100-sample average NEES of the 15-dimensional
parameter vector is [13.95, 16.09]. This NEES is found
to be within this interval, and the MLE is therefore
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Fig. 4. Sample average bias NEES (CRLB evaluated at the
estimate), for each of the nine biases, over 100 Monte Carlo runs

(three-sensor case).

Fig. 5. Target and satellite trajectories for the two-sensor case.

Table I
Sensor Biases (mrad) for the Three-Sensor Case

α ε ρ

Sensor 1 2.90 2.80 3.40
Sensor 2 3.33 2.90 3.00
Sensor 3 3.03 3.00 2.90

statistically efficient. Fig. 4 shows the individual bias
component NEES. The 95% probability region for the
100-sample average single component NEES is
[0.74, 1.29]. The NEES values are found to be within this
interval.

C. Two-Sensor Case

We simulated two satellite-based imaging sensors at
various locations, observing a single target of opportu-
nity. The sensor satellites are in circular orbits of 550 km
and 675 km altitude with 0◦ and 45◦ inclination, respec-
tively. The horizontal and vertical fields of view of each
sensor are assumed to be 60◦. The measurement noise
standard deviation σs (identical across sensors for both
horizontal and vertical axes of the image plane ξ and
η measurements, σ

ξ
s = σ

η
s = σs) was assumed to be

0.3 pixel. As shown in Fig. 5, these satellite orbits en-
abled maximum visibility of the missile trajectory from
multiple angles.As discussed in the previous section, the
three sensor biases were pitch, yaw,and roll angle offsets.
Table II summarizes the bias values (in mrad).

Table II
Sensor Biases (mrad) for the Two-Sensor Case

α ε ρ

Sensor 1 2.90 2.80 3.40
Sensor 2 3.33 2.90 3.00
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Fig. 6. Sample average bias NEES for each of the six biases.

D. Statistical Efficiency of the Estimate for the
Two-Sensor Case

In order to test for the statistical efficiency of the es-
timate [of the 12-dimensional vector (18)], the NEES
is used, with the CRLB as the covariance matrix. The
sample average NEES over 100Monte Carlo runs calcu-
lated using the FIM evaluated at the true bias values, tar-
get position, and velocity is approximately 11.24, and the
sample average NEES calculated using the FIM evalu-
ated at the estimated biases, target position, and veloc-
ity is approximately 11.45, both fall in the interval given
below. According to the CRLB, the FIM has to be eval-
uated at the true parameter. Since this is not available in
practice, however, it is useful to evaluate the FIM also at
the estimated parameter, the only one available in real
world implementations [12]. The results are practically
identical regardless of which values are chosen for the
evaluation of the FIM. The 95% probability region for
the 100-sample averageNEES of the 12-dimensional pa-
rameter vector is [11.20, 12.81]. This NEES is found to
be within this interval, and the MLE is therefore sta-
tistically efficient. Fig. 6 and Table III show the individ-
ual bias component, NEES. The 95% probability region
for the 100-sample average single component NEES is
[0.74, 1.29]. These NEES are found to be within this
interval.

IV. CONCLUSIONS

In this paper, we presented an algorithm that uses a
single target of opportunity for the estimation of mea-

Table III
Sample Average Bias NEES (CRLB Evaluated at the Estimate), for

Each of the Six Biases, Over 100 Monte Carlo Runs

Biases α1 ε1 ρ1 α2 ε2 ρ2

NEES 1.2461 0.9891 1.2043 1.0711 1.0430 0.9734

surement biases. The first step was deriving a general
bias model for synchronized imaging sensors. Based on
this derivation, we formulated a nonlinear least-squares
estimation scheme for concurrent estimation of the
Cartesian position and the velocity in three-dimensional
of the target and the angle biases of the sensors. The ILS
estimatewas shown to be a statistically efficient estimate,
and the residual biases are negligible in view of the mea-
surement noise.As such, the covariance matrix from the
CRLB can be used as the measurement noise covari-
ance matrix for the resulting composite measurement in
a tracking filter. This composite measurement can then
be used (with a linear measurement equation) for dy-
namic state estimation, where position measurements in
Cartesian space are preferable to pixel measurements.

APPENDIX

The partial derivatives of (38), in pixel measure-
ments, with respect to the target position and velocity
components are

∂ξs(k)
∂xs(k)

= −cos bρs

zs(k)
− 2xs(k)

q1
+ zs(k)(x2s (k) + z2s (k))

q12

∂ξs(k)
∂ys(k)

= − sinbρs

zs(k)

∂ξs(k)
∂zs(k)

= xs(k) cos bρs + ys(k) sinbρs

z2s (k)
− 2zs(k)

q1

+ (x2s (k) + z2s (k))(xs(k) + 2zs(k)cot bαs )
q21

∂ξs(k)
∂ ẋs(k)

= �t
∂ξs(k)
∂xs(k)

∂ξs(k)
∂ ẏs(k)

= 0

∂ξs(k)
∂ żs(k)

= �t
∂ξs(k)
∂zs(k)

∂ξs(k)
∂bαs

= −z2s (k)(x
2
s (k) + z2s (k))
q21

∂ξs(k)
∂bρs

= xs(k) sinbρs + ys(k) cos bρs

zs(k)

∂ηs(k)
∂xs(k)

= sinbρs

zs(k)
− xs(k)

r2q2

+
r2

(
2xs(k) cot bεs + xs(k)zs(k)√

x2s (k)+z2s (k))

)

q22

∂ηs(k)
∂ys(k)

= −cos bρs

zs(k)
− ys
r2q2

∂ηs(k)
∂zs(k)

= ys(k) cos bρs − xs(k) sinbρs

z2s (k)

54 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 18, NO. 1 JUNE 2023



+
r2

(
2zs(k) cot bεs + √

x2s (k) + z2s (k) + zs2√
x2s (k)+z2s (k)

)

q22

− zs(k)
r2q2

∂ηs(k)
∂bεs

= − r2(x2s (k) + z2s (k))(cotb
2
εs

+ 1)

q22

∂ηs(k)
∂bρs

= xs(k) cos bρs + ys(k) sinbρs

z2s (k)

∂ηs(k)
∂ ẋs(k)

= �t
∂ηs(k)
∂xs(k)

∂ηs(k)
∂ ẏs(k)

= �t
∂ηs(k)
∂ys(k)

∂ηs(k)
∂ żs(k)

= �t
∂ηs(k)
∂zs(k)

,

where

q1 = cot bαsz
2
s (k) + xs(k)zs(k),

and

q2 = cot bεs (x
2
s (k) + z2s (k)) + zs(k)

√
x2s (k) + z2s (k)
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