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This paper presents the repeated filtering method for finding a

smoothed, Bayesian estimate of the path of a stochastic process over

a time interval [0, T] when one has used a particle filter to estimate

the state of the process. It provides good resolution over [0,T], is easy

to implement, and can be used with any sequential importance resam-

pling particle filter regardless of the probabilistic model employed by

the stochastic process.Repeated filtering is general, powerful, and sim-

ple. It does not require the restrictive assumptions or complex calcu-

lations of other methods. It is suitable for real-time operational use in

complex situations. We demonstrate the method on two single-target

tracking examples. The second of these tracking examples is very dif-

ficult to solve by any other method known to us. We then apply re-

peated filtering to a standard nonlinear time seriesmodel that has been

used extensively for testing numerical filtering techniques. To further

illustrate the power of repeated filtering, we show how adding reflect-

ing boundaries to this time series creates a process that is difficult to

smooth with existing techniques but simple with repeated filtering.

I. INTRODUCTION

Particle filters are powerful and general tools for
performing nonlinear, non-Gaussian filtering. For target
tracking, they provide an estimate of the distribution on
target state at the time of the last measurement. How-
ever, it is often desirable to compute the posterior dis-
tribution on the target’s path over an interval of time
[0,T ] given the measurements received in that interval.
The process of computing this distribution is called fixed
interval smoothing.

We present the repeated filtering method for
smoothing in the context of surveillance and tracking,
but the method is applicable to very general situations
where one can use a sequential importance resampling
(SIR) particle filter to estimate the history of the state
of a stochastic system. To illustrate this, we apply the re-
peated filteringmethod to smooth the nonlinear time se-
ries analyzed in Example 1 of [5]. According to [5], this
series has been used extensively for testing numerical fil-
tering techniques. In the final example,we add reflecting
boundaries to this time series.We show in Section IV-D
that this process is difficult to smooth using the methods
of [5], but simple with repeated filtering.

Repeated filtering is conceptually simple. Once
one has developed a particle filter for the problem of
interest, they have done the hard part. Repeated filter-
ing proceeds as follows. Run the particle filter on the
measurements received in [0,T ] while preserving the
path histories of the particles. Choose a smoothed path
from the filtered result at the end of the time interval
[0,T ]. Repeat the filtering process using the same mea-
surements as in the first run of the filter but using inde-
pendent random numbers to generate the particle paths.
Choose a smoothed path as before. Repeat this process
to obtain M independent draws from the posterior
distribution on the paths of the process, given the mea-
surements received in [0,T ]. This produces a discrete
sample path approximation of the posterior distribution.

Repeated filtering is simple and general. It can be
incorporated into operational systems and used by op-
erators who are not experts in tracking or data fusion.
Many operational problems require motion models that
are not Markovian or do not have a closed-form transi-
tion function as required by other particle filter smooth-
ing methods. Repeated filtering produces smoothed
paths, not just smoothed marginal distributions at dis-
crete times, as many smoothing techniques do. More-
over, repeated filtering can be applied to both discrete
and continuous time motion models. For continuous-
time models, the smooth paths are continuous time
paths.

Despite the conceptual simplicity of repeated filter-
ing, we have not been able to find a reference to it. The
first two authors spent over a year trying unsuccessfully
to solve a smoothing problem conceptually similar to the
surveillance problem in Example 2. The existing meth-
ods for smoothing particle filters, which are referenced
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below, require assumptions that do not fit this prob-
lem.We tried a method involving Markov Chain Monte
Carlo (MCMC) sampling, which was technically correct
but computationally complex and delicate. In addition,
it was unstable, producing qualitatively different results
from different starting paths.

Perhaps by adjusting some of the tuning parame-
ters of the MCMC, such as the acceptance probability
or the proposal distribution, we could have made the
MCMC method work. However, we decided that, even
if we could make the method work, it would not be
suitable for an operational system. By contrast, the re-
peated filtering method solved the problem easily and
quickly and has been incorporated into an operational
system. Its simplicity and robustness suggest that one
might want to consider this method for some particle
filter smoothing problems that can be solved by other
methods.

A. Smoothing Particle Filters

In tracking situations, one is often faced with non-
linear measurements, such as lines-of-bearing and non-
Gaussian motion models. The combination of nonlinear
measurements and non-Gaussian motion models means
that the traditional Kalman filter approach to tracking
does not work well in these situations. For bearings-only
tracking, particle filters have been shown [9] to outper-
form a Kalman filter as well as numerous nonlinear ex-
tensions of it.

In the case of a Kalman filter, there are efficient
methods for smoothing, for example, the Rauch–Tung–
Striebel smoother described in Section 3.2.3 of [12] or in
[10]. Smoothing a particle filter is more difficult. If the
particle filter preserves the full target path as the parti-
cles are split and reweighted during the resampling pro-
cess, then the surviving paths and their posterior weights
provide an estimate of the posterior distribution on the
target paths. The difficulty with this smoother is that re-
sampling particles usually leads to a set of surviving par-
ticles (paths) that descend from a small number of initial
paths,and in some cases,only one initial path.As a result,
this estimate loses resolution as one proceeds backward
in time.

This generates the need for a better method of es-
timating the smoothed (posterior) distribution on the
paths of a particle filter. Reference [10] provides a
succinct review of Bayesian smoothing methods and,
along with [5] and [8], provides an excellent overview of
smoothing methods for particle filters.

Forward–backward smoothing, as described in
Section 3.1.4 of [12] is a general solution to the smooth-
ing problem. The difficulty with this solution is that,
except in the case of Kalman filtering, one cannot
evaluate the integrals involved explicitly. As a result,
numerical methods are required for problems such as
smoothing the output of a particle filter.

References [8], [6], and [3] present numerical meth-
ods for smoothing discrete-time particle filters that are
aimed at producing marginal distributions on the state
of the smoothed process at the discrete times of the pro-
cess. These methods assume that the process is Marko-
vian with an explicit functional form for the transition
density.

Under these assumptions,Godsill et al. [5] developed
a numerical approach to forward–backward smoothing
called backward simulation. As with repeated filtering,
backward simulation begins with the output from a par-
ticle filter with particles that preserve the full path of
the particle. Backward smoothing produces a discrete
set of independent sample paths from the posterior dis-
tribution on sample paths given the measurements re-
ceived in [0,T ].By construction, the state of a smoothed
path at time t is equal to one of the states in the par-
ticle filter approximation to the distribution at time t.
References [1] and [2] remove this restriction to pro-
vide improved diversity and accuracy of the smoothing
approximation.

Unfortunately, the smoothing problem that we
wished to solve concerned a surveillance tracking sys-
tem that used a quite natural but somewhat complex,
continuous-time motion model that did not have a
closed-form transition function. Although we could not
use the methods referenced above, the structure of the
problem allowed us to apply an MCMC method for
generating the posterior distribution on target paths. In
Example 2 of [11],we applied this method to a simplified
version of this problem. Even for the simplified prob-
lem, the procedure was difficult and complex. Because
of the nature of the motion model, a reversible-jump
MCMC was required, which is even more complex than
a standard MCMC. See the Appendix of [11]. However,
the method obtained reasonable results on this difficult
problem. As part of the further analysis and testing of
this smoother, we examined the stability of the results.
To do this, we ran the MCMC for 1 million iterations to
estimate the posterior distribution on paths.This process
took 4 h or more on a modest laptop.To test the stability
of the procedure, we made a second MCMC run with 1
million iterations using the same inputs as the first run
but with a different starting path for the iterations. The
results were qualitatively different. The MCMC process
had not converged even after 1 million iterations.

Asmentioned above,we decided that theMCMCap-
proach is too complex and delicate for an operational
system. In its place, we developed the much simpler,
faster, more robust, and more general repeated filtering
approach presented here.Repeated filtering can be used
with any stochastic processmodel for which one can gen-
erate independent sample paths from the process distri-
bution. For measurements, the only requirement is that
one be able to calculate likelihood functions for them. In
Example IV.B, the repeated filtering method is applied
to the surveillance problem mentioned above, where it
performs well.
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B. Outline of Paper

Section II presents a quick overview of Bayesian par-
ticle filtering to establish the notation and terminology
used in this paper. Section III describes the repeated fil-
tering method of smoothing, and Section IV presents
four examples of the application of repeated filtering.
Examples 1 and 2 have the same settings as Examples
1 and 2 in [11], but the results are obtained by repeated
filtering. In Example 1, we apply repeated filtering to a
problem that has a Kalman smoother solution and show
that it produces a good approximation to that solution.
Example 2 is the surveillance problem to which we ap-
plied the MCMC method in [11]. We have no yardstick
by which to measure the accuracy of the solution we ob-
tained.However, by comparing the repeated filtering so-
lution to the actual target path,we show that thismethod
provides a reasonable and stable solution for this
problem.

Example 3 applies repeated filtering to smooth a
nonlinear time series not related to tracking. This is the
same problem as in Example 1 of [5], which obtained a
smoothed solution to the time series using methods that
require a discrete-time Markov process with a closed-
form transition density. We apply repeated filtering to
this problem and obtain results comparable to those in
[5]. We then modified the stochastic process by adding
reflecting boundaries, which produces a problem that is
very difficult to solve with the methods of [5] but is sim-
ple to solve using repeated filtering.

II. BAYESIAN PARTICLE FILTERING

For this discussion, Bayesian particle filtering begins
with a prior distribution on a time-varying parameter
(e.g., target state) in the form of a stochastic process X
on the state space S. Time is continuous, running over
[0,T ], and the state space S can be continuous, discrete,
or a combination of the two. The modifications when
time is discrete will be obvious.

We approximate the prior stochastic process X (tar-
get motion model) by making a large number N of in-
dependent draws from the sample paths of the process.
These sample paths form a discrete path approximation
to the process. There may be times when it is more ef-
ficient to use a proposal distribution for obtaining in-
dependent sample paths from the process prior and to
weight these appropriately to obtain an approximation
of the stochastic processX.However,we do not consider
that possibility here.

Let {xn,n = 1, . . . ,N} be the set of N sample paths
that we have drawn from the processX.Each xn specifies
a possible target path with xn(t) ∈ S being the target
state at time t for t ∈ [0,T ]. We call xn a particle path
and xn(t) a particle state at time t. We assign probability
p(n) = 1/N to xn for n = 1, . . . ,N and define

PN = {
(xn, p (n)) ,n = 1, . . . ,N

}

to be the prior particle path distribution. This distribu-
tion is a discrete sample path approximation to the prior
distribution on the process X. The distribution PN pro-
duces a prior particle state distribution for each t ∈ [0,T ]
by

PtN = {
(xn (t) , p (n)) ,n = 1, . . . ,N

}
.

Bayesian particle filtering computes the Bayesian
posterior distribution on this discrete particle state ap-
proximation at time t given the measurements received
by time t.

In performingBayesian filtering on this discrete sam-
ple path approximation, we obtain a solution to the par-
ticle filtering problem that is an approximation to the
filtering problem on X. Thus, we find an exact solution
to a problem that approximates the problem we wish
to solve. The quality of this solution will depend on the
quality of the discrete sample path approximation used
to represent X.

A. Bayesian Recursion

We receive measurements at a discrete sequence of
possibly random times 0 ≤ t1 < t2 · · · < tK ≤ T. Let
Lk(yk|·) be the likelihood function for the measurement
Yk = yk received at tk. Specifically,

Lk (yk|s) = Pr
{
Yk = yk|X (tk) = s

}
for s ∈ S. (1)

Note,we use Pr to indicate probability or probability
density as appropriate.

Suppose we have received the measurementY1 = y1
at time t1. We compute

p (n|y1) = L1 (y1|xn (t1)) p (n)∑N
m=1 L1 (y1|xm (t1)) p (m)

for n = 1, . . . ,N

(2)
to obtain

PN (y1) = {
(xn, p (n|y1)) ,n = 1, . . . ,N

}
, (3)

which is the posterior particle path distribution given
Y1 = y1.

Define y1:k = {y1, . . . , yk} andY1:k = {Y1, . . . ,Yk} for
k = 1, . . . ,K. Suppose

PN (y1:k−1) = {
(xn, p (n|y1:k−1)) ,n = 1, . . . ,N

}

is the posterior particle path distribution givenY1:k−1 =
y1 k−1, and we receive the measurement Yk = yk at time
tk. We compute

p (n|y1:k) = Lk (yk|xn (t1)) p (n|y1:k−1)∑N
m=1 Lk (yk|xm (t1)) p (m|y1:k−1)

(4)

for n = 1, . . . ,N to obtain

PN (y1:k) = {
(xn, p (n|y1:k)) ,n = 1, . . . ,N

}
, (5)

which is the posterior particle path distribution given
Y1:k = y1:k.
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B. Resampling

A common problem with particle filters is that as
measurements are received and processed into the filter,
the posterior probability distribution tends to become
concentrated on a small number of particles, causing the
filter to lose resolution. This problem can be solved by
resampling.

When one must resample, the filtering process be-
comes more complicated than described above. Instead
of generating a set ofN complete paths at the beginning
of the filter, one must generate the paths sequentially in
time so that at the time of kth measurement, one has a
set of N paths (particles) over [0, tk] that provides good
resolution for the distribution on system state at time tk.

One method of resampling, described in Sections
3.3.3 and 3.3.4 of [12], splits high-probability particles
into multiple (almost identical) particles and “kills off”
low-probability particles in a manner that produces ex-
actly N particles. Each child particle inherits the path
history of its parent but has a slightly different state at
time tk. The resulting set of particles have probability
p(n|y1:l ) = 1/N for n = 1, . . . ,N.

The paths of the resampled particles are then ex-
tended to the time tk+1 of the next measurement to ob-
tain Ptk+1

N (y1:k),the particle state distribution at time tk+1

given the measurements y1:k. When Yk+1 = yk+1 is re-
ceived,we compute the posterior distribution on the par-
ticle paths using (4), with k replaced by k + 1. Alter-
natively, one may want to use a proposal distribution in
place of Ptk+1

N (y1:k) to compute the posterior distribution
on the particle paths.

C. The Problem With Resampling

The above procedure is a bootstrap version of the
SIR particle smoother of Kitagawa [7]. This works well
to provide a high-resolution estimate of the posterior
distribution of the present target state at the time of the
last measurement. The difficulty is that the surviving re-
sampled particles tend to originate from a small number
of the original particles, so the posterior distribution on
sample paths lacks resolution as onemoves from present
time back to time 0.The set of particle paths obtained by
time T in this fashion form an estimate of the smoothed
distribution on sample paths. However, it is not a very
good estimate. See [3] and [4]. Simply increasing the ini-
tial number of sample paths is not an effective solution
to this problem in most cases; see [8]. Repeated filtering
was developed to solve this problemwithout theMarkov
or discrete-time assumptions required by othermethods.

III. REPEATED FILTERING

The increasing speed,memory capacity, and capabil-
ity of present-day computers allow us to propose the fol-
lowing method, which would not have been practical a
few years ago. The method is called repeated filtering. It

is implemented by the following recursion, which pro-
duces M independent sample paths from the smoothed
distribution on sample paths.

A. Repeated Filtering Recursion
� Step 1. Make an initial run of the particle filter, pro-
cessing the measurements received over the time in-
terval [0,T ] and resampling as necessary.

� Step 2. Resample the particles at time T to obtain
N equal probability particle paths {xn;n = 1, . . . ,N}.
Choose one of these paths at random, with each path
having probability 1/N of being chosen. Save the cho-
sen sample path x̄.

� Step 3. Rerun the particle filter with the same mea-
surements as in Step 1, but drawing particles that are
independent of those drawn in Step 1. This will ensure
that we choose new and independent samples of the
target state at time 0 and at the measurement times.

� Step 4.Make a randomdraw to choose one of the sam-
ple paths as in Step 2. Save this sample path.

� Step 5. Repeat Steps 3 and 4, using particles that are
independent of those drawn previously, until one ob-
tainsM smoothed sample paths x̄m form = 1, . . . ,M.

Define the particle path distribution

P̄N (y1:K) = {
(x̄m, 1/M) ;m = 1, . . . ,M

}
. (6)

Then P̄N(y1:K) is a discrete path approximation to the
posterior distribution on sample paths given the mea-
surements received in [0,T ].

The solution in (6) gives each smoothed path an
equal weight. We hypothesize that an alternate weight-
ing scheme applied to the smoothed paths in (6) would
produce a better solution. However, none of the meth-
ods we have tried have done this. This is an area for fur-
ther investigation.

B. Marginal Distributions

For any t ∈ [0,T ], we can obtain from P̄N(y1:K) a
particle state estimate for the smoothed marginal distri-
bution at time t as follows:

P̄tN (y1:K) = {
(x̄m(t), 1/M) ;m = 1, . . . ,M

}
. (7)

We often provide a visual representation of such a
distribution by imposing a grid of cells on the state space,
summing the probability of the points in each cell, and
color coding the cells to represent the probabilities in the
cells.

The ability to estimate the distribution of the state
of the smoothed process at a time between measure-
ments can be particularly important in situations where
there are large time gaps between measurements, as oc-
curs in some surveillance problems. In addition, having a
set of smoothed paths can be helpful in determining pat-
terns ofmotion.Moreover,as noted in [5],having sample
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paths also allows one to explore relationships between
the state of the process at different times.

C. Resolution of the Smoothed Solution

Resampling within each run of the particle filter is
necessary to preserve the resolution of the estimate of
the posterior distribution as the number of measure-
ments increases. Making independent runs of the parti-
cle filter in Step 3 to obtain M posterior sample paths
is necessary to preserve the resolution of the estimate
of the posterior as one goes back in time toward 0. De-
termining the number of particle filter runs required and
the number of particles for a run generally requires some
experimentation.

We expect that there is some limitation on the length
of the interval [0,T ] over which this process produces
solutionswith good resolution,ormore likely,as the time
interval gets longer, the number of particle filter runsM
may need to get larger.We have not explored this ques-
tion. Another possibility is to break the interval [0,T ]
into two or more subintervals and splice the solutions
from the subintervals together in some fashion.We have
not explored this possibility either.

D. Computation Time

The computation time to obtain a repeated filtering
solution depends on the time to perform one filter run,
which depends on the complexity of the problem. Gen-
erating M independent samples from the posterior will
take M times as long as a single filter run. If time be-
comes a problem, one can easily apply coarse grain par-
allel processing by allocating the repetition of Steps 3
and 4 across a number of processors.

IV. EXAMPLES

This section presents four examples of estimating the
posterior distribution on sample paths in [0,T ] using re-
peated filtering. The first example compares repeated
filtering to a Kalman smoother where the exact solu-
tion is known. The second example involves a simpli-
fied surveillance situation where the target is moving
through an area in which it has to avoid certain regions.
Even though this is a simplified situation, it is still a chal-
lenge for smoothing. We use a motion model called a
generalized random tour (GRT), see [11] or Section 1.3.3
of [12], which is a special case of a variable rate parti-
cle filter. We incorporate avoidance regions to provide
a more realistic and challenging motion model. The last
two examples smooth a standard nonlinear time series
used to test particle filters.

A. Example 1: Comparison to a Kalman Smoother

For this comparison, the motion model is the almost-
constant velocity model described below, and the mea-
surements are position measurements with additive cir-

cular normal errors.We find a repeated filtering solution
for this example and compare it to the solution from the
Rauch–Tung–Striebel smoother [10, p. 135].

1) Almost Constant VelocityModel: The target state is
given by a position–velocity pair (x, v). The state at time
0 is

(x0, v0) ∼ η (·, (x̄, v̄), �0) , (8)

where we use η(·, μ,�) to denote a normal density func-
tionwithmeanμ and covariance�.Let� be a fixed time
increment.There are I time increments andT = I�.The
target proceeds at velocity v0 until time t1 = � at which
time a new velocity v1 is obtained by adding a small, in-
dependent,mean-zero,Gaussian distributed variation to
v0 to obtain v1. The target continues at this velocity until
the next time increment.Wemay express this mathemat-
ically as follows. Let (xi, vi) be the target state at time
ti = i�. Then

(
xi
vi

)
=

(
xi−1 + �vi−1

vi−1 + wi

)
for i = 1, 2 . . . , (9)

where {wi : i = 1, . . . , I} are independent, identically
distributed random variables with wi ∼ η(·, (0, 0),Q)
and Q is a “small” covariance matrix.

Let Im be the m-dimensional identity matrix. The pa-
rameters of the motion model are � = 1 hr,

x̄ = (0, 0) , v̄ = 7 kn (cos(θ ), sin(θ )) where θ = π

6

�0 =
[
σ 2
x I2 0
0 σ 2

v I2

]
where σx = 4 nm, σv = 1 kn

Q = σ 2
wI2,where σw = 1 kn. (10)

We use the abbreviations nm for nautical miles and
kn for knots. A knot equals 1 nm/h.

The target follows a slightly curved path starting at
the origin, as shown by the black line in Fig. 1. The time
duration is 10 h.There are eleven positionmeasurements
received at 1-h increments over the duration of the path.
The 2-sigma uncertainty ellipses for the measurements
are shown in black. The measurements have circular
Gaussian errors with a standard deviation of 4 nm.

2) Comparison of Kalman and Repeated Filtering
Smoothers: The Kalman smoother provides an ana-
lytic solution to this problem. The red ellipses are the
2-sigma ellipses from the Kalman smoother solution at
equally spaced times on the path.

Repeated filtering was applied to this problem by
drawing 10 000 particle paths from the almost-constant
velocity motion model and performing the recursion in
Section III to obtain 400 samples from the posterior
distribution on target paths. The green ellipses are the
2-sigma ellipses derived from the empirical means and
covariances of the path positions at the same times as
the Kalman smoother ellipses. As one can see, there is
good agreement between the two plots of 2-sigma el-
lipses. Note that agreement improves as time increases
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Fig. 1. Comparison of Kalman and repeated filtering smoothers. The
black line is the target’s path, which starts at (0,0); black circles are

2-σ uncertainty circles for measurements; red ellipses are 2-σ ellipses
for the Kalman smoother solution; green ellipses are 2-σ ellipses for

the repeated filtering smoother solution.

because the smoother has more history to use for the
smoothing.

Wemade the following computation tomeasure how
well repeated filtering approximated the optimal solu-
tion from the Kalman smoother. At each of the eleven
equally spaced points on the target track in Fig. 1, we
computed the mean squared distance from the point to
the bivariate normal distribution at that point computed
by theKalman smoother and to the bivariate normal dis-
tribution corresponding to the 2−σ ellipse for the re-
peated filtering result. We averaged these results over
the eleven points and took the square root of this av-
erage to obtain the square root of the average mean
squared missed distance for the Kalman and repeated
filtering smoothers.

The results were 3.97 nm for the Kalman smoother
and 4.61 nm for repeated filtering. The repeated filtering
result is only 16% larger than the Kalman result demon-
strating that repeated filtering provides a good approxi-
mation to the posterior path distribution in a case where
we can calculate the exact distribution. We produced
only 400 smoothed paths for this example. Using more
paths would improve the approximation.

B. Example 2: Surveillance Problem

As before, we use a target state space that is
2-dimensional in position and velocity and use (x, v) to
represent a position and velocity pair in this space. A

Fig. 2. Speed change distribution.

GRTmotionmodel is specified by first specifying a prob-
ability (density) function p0(x, v) on the position and ve-
locity (x0, v0) of the target at time 0.As time progress, the
target changes velocity (instantaneously) at the event
times of a Poisson process with rate λ.

Between velocity changes, the target follows a con-
stant velocity path at the previously chosen velocity.
When the target changes velocity, its new velocity vi is
drawn from a probability (density) function p(·|vi−1),
where vi−1 is the velocity just prior to the change. For
many tracking problems, theGRTmotionmodel is more
operationally realistic than the almost-constant veloc-
itymotionmodel or other often-usedGaussian-diffusion
motion models.

For this example, we set λ = 0.25/h and

p0 (x0, v0) = η
(
x0, (0, 0), (15 nm)2I2

)

× η
(
v0, (0, 0), (10 kn)

2I2
)

.

When a velocity change occurs, the new velocity is
chosen by making independent draws to determine the
changes to the speed and course of the target. The speed
change distribution is symmetric about zero. On each
side of zero, the distribution is proportional to that of a
truncated Gaussian whose mean has an absolute value
of 2 kn and a standard deviation of 1 kn, as shown in
Fig. 2. Similarly, the course change distribution is sym-
metric about zero, with each side being proportional to
a truncated Gaussian whose mean has an absolute value
of 60°and a standard deviation of 30°.

As the sample paths are generated, we ensure that
they stay clear of avoidance regions, as follows: When a
velocity change takes place, the time on that leg is drawn
as well as the new velocity. If the resulting leg hits an
avoidance region, a new velocity is drawn. This process
is repeated up to a maximum of 20 times until the re-
sulting leg does not intersect an avoidance region. If no
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Fig. 3. Slinky plot from the first run of the repeated filtering
smoother. The heavy blue line shows the target’s path, which starts at
(0, 0). The red dots show the measurements. The black circles show
discs of the regions that the target must avoid. The red ellipses are
2-sigma ellipses generated by the repeated filtering smoother. The

dashed circle shows the 2-sigma ellipse for the initial position
distribution at time 0.

such leg is found, then the path is discarded and a new
one generated in its place.

1) Scenario Description: The actual target path, shown
in blue in Fig. 3, has a fixed speed of 8 kn. It follows the
ladder path with long legs of 24 h duration and short legs
of 6 h duration.The black circles indicate regions that the
target must avoid as it traverses its path. The target path
starts near the origin. The total time is 240 h or 10 days.

The time to the first measurement is gamma-
distributed with a mean of 4 h and variance of (8/3) h2.
The time intervals between subsequent measurements
are independent with this same gamma distribution.The
measurements are of position with a circular Gaussian
error distribution having a standard deviation of 10 nm.
In Fig. 3, measurements are indicated by red dots, and
the dashed circle shows the 2-sigma ellipse of the initial
position distribution.

2)Repeated Filtering Smoother: For repeated filtering,
we ran the particle filter with N = 10 000 and at time T
randomly chose one of the paths, with each path having
an equal probability of being chosen.

We repeated Steps 3 and 4 in Section III-A to obtain
M = 400 sample paths from the posterior (smoothed)
distribution on the target paths. The 2-sigma ellipses for
the position estimates were calculated every 4 h.This se-
quence of ellipses, called a slinky plot, is shown in Fig. 3.
The ellipses represent normal approximations to the po-
sition distributions every 4 h. Thus, even though some
ellipses intersect an avoidance region, the paths them-
selves do not.

To illustrate the stability of the repeated filtering
method, we repeated this run a second time using the
same measurements as in the first run but using random
draws independent of those made for the first run. We
overlaid the slinky plots for the two runs in Fig. 4. As

Fig. 4. Comparison of the slinky plots from two runs of the repeated
filtering method using the same inputs but independent random

numbers. The blue line shows the target’s path.

the reader can see, there is little, if any, difference in the
plots, which gives us confidence in the stability of the
method.

A sample of the smoothed paths from repeated filter-
ing is shown in Fig. 5.Note that none of the sample paths
pass through the avoidance regions. Note also that there
is more uncertainty in the distribution of the smoothed
paths near (0,0), the target’s starting point at time 0, than
there is close to time T. It is not surprising that having
past history as well as future information is helpful in
estimating the target’s smoothed path.

3) MCMC Smoothing: In [11], we applied an MCMC
method to estimate the posterior distribution on the tar-
get paths for this example. The procedure was difficult
and complex. In the hope of ensuring the stability of the
results, we ran the MCMC for 1 million iterations to es-
timate the posterior distribution on paths. This process
took 4 h or more on a modest laptop. The results looked
reasonable, but to test the stability of the procedure,
we made a second MCMC run with 1 million iterations

Fig. 5. Smoothed sample paths selected by random draws from the
set of smoothed paths. Each path has an equal probability of being

chosen. Note that none of the sample paths pass through the
avoidance regions. The dashed line connects the measurements.
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using the same inputs as the first run but with a different
starting path for the iterations.As noted in the introduc-
tion, the results were qualitatively different.TheMCMC
had not converged even after 1 million iterations.At this
point, we abandoned the MCMC approach and devel-
oped the repeated filtering approach.

4) Discussion: We have no analytical method with
which to compare our smoothed solution in this exam-
ple. The solution appears reasonable compared to the
actual target path in this example, even though this is a
difficult problem and there is a mismatch between the
motion model and the target’s motion. The smoothed
paths stay out of avoidance regions, and the distribution
is repeatable up to the small differences that are to be
expected in Monte Carlo solutions.

We have used slinky plots to display the smoothed
solution. Alternatively, one could calculate a mean
smoothed path by finding themean of the position of the
paths at each time in a sequence of evenly spaced times
and displaying the line connecting these means. Or, one
could display both the mean path and the slinky plot.

C. Example 3: Smoothing a Nonlinear Time Series

In this example, we apply repeated filtering to
smooth the output of the stochastic nonlinear time series
model given in Example 1 of [5].Reference [5] describes
thismodel as a standard nonlinear time seriesmodel that
has been used extensively for testing numerical filtering
techniques.

The time series {X (t), t = 1, ..., 100} has for its initial
state X (1) ∼ η(·, 0, 10) and is defined for t ≥ 2 by

X (t) = X (t − 1)
2

+ 2.5X (t − 1)
1 +X 2(t − 1)

+ 8 cos (1.2t) + v (t)

v (t) ∼ η (·, 0, 10) , v (t) independent of v (s) for s �= t.

(11)

The measurements {Y (t), t = 1, ..., 100} are defined
by

Y (t) = X 2 (t)
20

+ w (t)

w (t) ∼ η (·, 0, 1) ,w (t) independent of w (s) for s �= t.

(12)

We cannot reproduce the results in Example 1 in [5]
exactly because we do not have access to the sample
path [5] of the process used for their example or the
series of measurements produced. While we cannot
reproduce this example exactly, we are able to produce
comparable results and similar figures, which leads us
to conclude that the repeated filtering method produces
results comparable to the method in [5], which is limited
to discrete-time Markov processes with closed-form
transition functions.

Fig. 6. Fifty smoothed paths are shown in black; the time series
values are in red.

1) Repeated FilteringApproach: To apply repeated fil-
tering,we simulated one sample path and set ofmeasure-
ments from the time series defined by (11) and (12). Us-
ing these as inputs, we ran a standard SIR particle filter
with 1000 particles resampling as described in Section II-
B.Weused the stochastic process defined in (11) and (12)
for our motion model for the filter. The particles were
resampled at each time step so that they all had equal
weight. At the conclusion of a filter run at time 100, we
selected one of these paths by making a draw from this
set of particles,with each particle having an equal proba-
bility of being drawn.This path was saved as a smoothed
path.We repeated the filtering process 1000 times, using
independent random numbers to produce the particles
and drawing one of them for a smoothed path. The re-
sulting set of 1000 independently drawn smoothed paths
constitutes our estimate of the posterior distribution on
the target paths given the measurements in [1,100].

Fig. 6 shows a sample of 50 smoothed paths in black
and the actual values of the time series in red. Look-
ing at the measurement equation (12), one can see that
a value x of the series will produce the same measure-
ment as −x. As more measurements are received, the
smoother (usually) sorts out this ambiguity. This ambi-
guity has produced the bimodal results near time 100.

Fig. 7 shows the smoother results when restricted to
the interval [0, 51]. The ambiguity in the smoothed solu-
tion near time 51 in this figure is resolved by time 100 in
Fig. 6.

Figs. 8–10 below are similar to Figs. 4, 5, and 7 in [5],
and the results are qualitatively similar. Since the sam-
pled time series andmeasurements in our data are some-
what different from those in [5], we do not expect an ex-
act match.

Fig. 8 shows a histogram of the smoothed distribu-
tion values at each of the 100 times. As [5] notes, one
of the advantages of finding smoothed paths rather than
marginal distributions at each time is the ability to an-
alyze joint densities of values at two different times.
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Fig. 7. Smoother results for [0,51]. Smoothed paths are in black.
Time series values are in red.

Figures 9 and 10 show examples of these joint densities
and exhibit behavior similar to that seen in [5].

D. Smothing a Nonlinear Time Series With Reflecting
Boundaries

This example adds reflecting boundaries at +15 and
−15 to the nonlinear time series example in Section
IV-C. Smoothing of this process is easily performed us-
ing repeated filtering but is difficult to do using themeth-
ods of [5]. Equations (13)–(15) in the Appendix give the
revision to the equation forX (t) produced by the reflect-
ing boundaries.

One can see from these equations that for each tran-
sition, one must allow for the reflection off one or more
boundaries to determine the distribution of X (t) given
X (t − 1). In fact, since the term, v(t) is drawn from a
Gaussian distribution, the transition function involves

Fig. 8. Histogram of smoother values. Dark grey indicates
higher-density areas. Red stars show the actual values of the time

series.

Fig. 9. Joint density plot for the values of the smoothed time series
at times 8 and 9. Note the multimodal distribution.

summing an infinite number of terms to account for the
number of possible reflections!

To smooth this process,wemodified the particle filter
in Section IV-C by adding the reflective boundaries and
performed repeated filtering as above.

Fig. 11 shows 50 smoothed sample paths from this
process. The smoothed paths are shown in black, and
the red dots indicate the values of the process. Note the
ambiguity at time 100. The value of the process is ap-
proximately −10, but the smoother shows an ambiguity
about 0 because of the measurement model. This ambi-
guity will not be resolved until more data is received. If
one truncated the time series at time 50,as in Fig.12, then
one would see a similar ambiguity that is resolved as the
filter receives more data.

Fig. 13 shows the joint density of the smoothed paths
at times 99 and 100.As one can see from this figure, if the
series is positive (negative) at time 99, it will be positive
(negative) at time 100.

Fig. 10. Joint density plot for times 77 and 78. This density is
unimodal but not Gaussian.
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Fig. 11. Smoothed paths for time series with reflecting boundaries.
Smooth paths are shown in black; times series values in red.

Fig. 12. Smoothed paths resulting from stopping the series at
time 50.

Fig. 13. Joint density at times 99 and 100.

V. CONCLUSIONS

This paper presents the repeated filtering smoother,
which is a simpler method than most smoothing meth-
ods and can be applied to any SIR particle filter.Like the
method in [5], the smoother produces sample paths from
the smoothed distribution, allowing for more detailed
analysis of path behavior than can be obtained from
smoothers that produce only marginal distributions. The
only restriction on the stochastic process defining the
motion model used for the particle filter is that one must
be able to draw independent sample paths from the pro-
cess and that these paths can be produced sequentially
in time. In particular, the process does not have to be
Markovian in its state space.

We have demonstrated the repeated filteringmethod
on a Kalman filter problem and shown that it produces
comparable results. We demonstrated the method on
a tracking problem with a motion model whose tran-
sition function does not have a closed analytical form,
and which has unusual features such as avoidance areas.
Next, we demonstrated the repeated filtering method
on a standard nonlinear time series problem used to
test many particle filters. We also performed repeated
smoothing on a modification of this time series with re-
flecting boundaries. The smoothing was performed on
this example by simply putting reflecting boundaries on
the time series and applying the repeated filtering. By
contrast, the method in [5] would require substantial ad-
ditional effort.

In all four examples, the repeated filtering method
performed well and required only modest amounts of
computational effort. We stress again the simplicity
and generality of this method. If one can construct a
good particle filter for the process, one can easily find
smoothed sample paths using repeated filtering. The
computational load is easy to estimate. If you want M
smoothed paths, the computational effort will be M
times the effort required for a single run of the particle
filter.

APPENDIX

EQUATION FOR TIME SERIES WITH REFLECTING
BONDARIES

This appendix derives the modifications to (11)
resulting from adding the reflecting boundaries in
Example 4.

If v(t) > 0, let

Z (t) = X (t − 1)
2

+ 2.5X (t − 1)
1 +X 2(t − 1)

+ 8 cos (1.2t) . (13)

If v(t) ≤ 15 − Z(t), then

X (t) = Z (t) + v (t) . (14)
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If v(t) > 15 − Z(t), let

R (t) = v (t) − (15 − Z(t))

n (t) = ⌊
R (t) /30

⌋

f (t) = v (t) − [30n (t) + (15 − Z(t))] .

Then

X (t) = (−1)n(t) (15 − f (t)) . (15)

If v (t) ≤ 0, then one obtains a similar set of equa-
tions for X (t).
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