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The Generalized Fibonacci
Grid as Low-Discrepancy Point
Set for Optimal Deterministic
Gaussian Sampling

DANIEL FRISCH
UWE D. HANEBECK

We propose a multivariate Gaussian sampling scheme. The sam-

ples exhibit an “optimal deterministic” configuration. This entails bet-

ter quadrature or cubature results than with random or quasi-random

samples. Our sampling is based on the generalized Fibonacci grid that

makes the remarkable properties of the well-known two-dimensional

Fibonacci grid applicable in higher dimensions. Two options for gener-

ating the multivariate generalized Fibonacci grid are presented, based

on a rotated grid and a linear programming counter, respectively. Var-

ious options for covariance matching are explored to obtain an un-

scented transform.

I. INTRODUCTION

A. Context

In many practical applications, such as nonlinear
filtering and control, moments of nonlinear functions
of Gaussian random vectors must be approximated in
real-time. Mathematically, this is a multidimensional
integration, or cubature, that can be computationally
very expensive. Nevertheless, filters and controllers of-
ten have to run under real-time constraints. A standard
way to perform such integration is throughMonte Carlo
simulation using random samples. However, the con-
vergence rate with independent samples is quite poor.
Variance reduction techniques help to improve the
efficiency of stochastic expectation value computations.
After giving an overview of state-of-the-art variance re-
duction methods,we introduce novel Gaussian sampling
schemes.

B. Considered Problem

We present a Gaussian sampling method for multi-
variate Gaussian densities based on a higher-
dimensional generalization of the two-dimensional
Fibonacci grid. See Fig. 1 for a visual comparison be-
tween random samples and proposed variance-reduced
samples.

C. State-of-the-Art

Variance reduction techniques for expectation value
calculations include antithetic variates [2], control vari-
ates [3], importance sampling [4], stratified sampling [5],
low-discrepancy or quasi-random sampling [6], [7], mo-
ment matching [8]–[10], localized cumulative distribu-
tion (LCD)-based sampling [11], [12], and Projected Cu-
mulative Distribution based sampling [13], [14]. These
methods can also be combined, for example,LCD-based
sampling with moment matching and antithetic vari-
ates [15]. In this work, we focus on Gaussian sampling
and therefore present various state-of-the-art methods
to obtain Gaussian samples in more detail.We comment
on sampling techniques in common Gaussian estima-
tors like the cubature Kalman filter (CKF), unscented
Kalman filter (UKF), and Gaussian particle filter (GPF)
and compare our proposed method against them.

The “standard” way of sampling from the normal
distribution employs independent and identically dis-
tributed (iid) samples, e.g., by transforming iid uniform
samples with the Box–Muller method [16]. This corre-
sponds to standard Monte Carlo simulation. According
to the central limit theorem (CLT) [17, p. 244], the stan-
dard deviation of the integration error equals the stan-
dard deviation of the integrand divided by the square
root of the number of samples used [18, Sec. 2.1]. This
slow convergence makes the computation inefficient.

Gauss–Hermite quadrature entails a finite set of
predefined, weighted evaluation points for integration.
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Fig. 1. Independent random samples (left) and Fibonacci-based
samples (right) approximating a Gaussian density with covariance

C = diag([1, 0.32]). A total of 300 samples are drawn.

It is ideally suited for scalar integrals of polynomial-
like functions multiplied with a univariate Gaussian
density function [19]. Extensions to higher dimensions
require a Cartesian product of the evaluation points [20,
Eq. (3.3)], [21], [22, Eq. (17)], so the number of required
points increases exponentially with the number of di-
mensions. Kalman filters using this method for moment
computation are called Gauss–Hermite quadrature fil-
ters (GHQF).

To avoid the “curse of dimensionality,”one can place
samples on the main axes only [23]. A more radical
variant is the UKF, where only two samples, “sigma
points,” are placed on each coordinate axis [8], [24],
plus one in the center, i.e., the number of samples is
L = 2D + 1 for dimension D. The distances are chosen
such that mean and covariancematch.Very similarly, the
third-order CKF places two samples on each coordinate
axis, without the sample at the mode, hence L = 2D
[25]. The fifth-order CKF employs instead L = 2D2 + 1
weighted samples [26], see also [27, Sec. 7], [28, Eqs. (48)
and (49)]. The smallest possible sample set suitable to
propagate mean and covariance has been explored in
[29], [30]—it takes onlyL = D+1 orL = D+2 samples.

All these filters belong to the class of linear regres-
sion Kalman filters (LRKFs), introducing the second
Gaussian assumption in the joint state and measure-
ment space and thus performing an implicit linearization
of the measurement equation. Particle filters avoid this
and follow Bayes’ theorem more directly. Thereby, the
GPF [31], [32], its progressive variant [33], [34],andmany
other particle filters [35] need to draw medium to high
numbers of samples from Gaussian priors, where our
proposed Gaussian sampling technique could increase
efficiency.

Now we focus on methods that allow the number of
samples to be flexibly adapted to the problem and the
desired accuracy. Given a suitable distance or optimal-
ity measure such as the LCD [11], optimal deterministic
Gaussian sample sets can be computed using gradient
optimization [36]. As this kind of sampling process is it-
self computationally expensive, for practical filtering it
is necessary to compile a library of standard normally
distributed samples beforehand, and transform them to
the desired arbitrary Gaussian density online using the
Cholesky factorization of its covariance matrix [12], [15],
[37]. After such a transformation, however, the samples
are usually no longer optimal as before [38,Figs. 4(a) and
5(a)].

Therefore, it is convenient to use low-discrepancy se-
quences. They are exactly made to achieve optimal con-
vergence when used for numerical integration—better
than the well-known convergence rate of 1√

L
for L sam-

ples obtainedwith independent random samples accord-
ing to the CLT. This is also referred to as quasi-Monte
Carlo integration [7]—as opposed to Monte Carlo in-
tegration with independent random samples. Refer to
Section IV-C2 for a formal definition of discrepancy (13)
and its relation to approximate cubature (14).

Low-discrepancy sequences can, under some con-
straints, be transformed to densities other than uniform
while preserving their low discrepancy. These point sets
have already successfully been applied to nonlinear fil-
tering problems [39], [40], yet not using a discrepancy-
preserving transformation as we propose; see Fig. 8 for a
visual comparison. In the one-dimensional case, equidis-
tant samples make the best possible low-discrepancy
point set. In higher dimensions, Frolov and Fibonacci
grids are the only low-discrepancy sequences known
to attain the theoretical optimum under very univer-
sal conditions [41]—they are, so to speak, the “lowest-
discrepancy grids.” Thus, we can expect them to pro-
vide results similar to the optimal deterministic samples
based on the LCDwith nonlinear optimization while be-
ing transformable without compromising quality.

In 2008, James Purser published generalized
Fibonacci grids for certain higher dimensions [42]. He
formulates the reason why two-dimensional grids are
optimal in such a deep way that higher-dimensional gen-
eralizations become tangible. The generalized Fibonacci
grid has already been applied to Gaussian sampling [1]
and rejection sampling [43].
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Fig. 2. Anisotropic scaling demonstration for Fibonacci grid (a) and regular grid (b). Scaling is altered exponentially along horizontal axis.
Blue dots indicate grid points; black net the Delaunay triangulation of the same points. Note how in (a) the grid rearranges itself into square
configurations of different sizes six times, evenly filling the space at any scaling, while in (b) there is only one square configuration (near the

center) and away from that points clump together into horizontal or vertical lines, yielding bad space filling. For more quantitative assessment,
maximum and minimum angle in Delaunay triangles, as well as maximum and minimum triangle side length (normalized to the side length of a

square of appropriate size) are shown as well.

D. Key Idea

To produce univariate Gaussian samples, uniform
samples can be transformed by the inverse Gaussian dis-
tribution. For multivariate Gaussians, this scalar trans-
formation is applied along the directions of the eigen-
vectors of the covariance matrix, respectively. By doing
so, the distribution of samples should stay locally homo-
geneous, i.e., without forming clumps or gaps. Therefore,
we need a uniform point set being collision-avoiding un-
der rescaling along certain axes.

An ideal candidate is the Fibonacci grid, as it can
be anisotropically rescaled along the main axes while
preserving the uniformity of points. Instead of collid-
ing, Fibonacci grid points automatically get new neigh-
bors, depending on the amount of rescaling. Refer to
Fig. 2(a) for a visual demonstration of how the well-
known two-dimensional Fibonacci grid remains uni-
form under inhomogeneous horizontal scaling, very
much unlike the axis-aligned regular grid in Fig. 2(b).
This remarkable property is what we take advantage

of in this work. Grids with equivalent properties also
exist in higher dimensions—the generalized Fibonacci
grids [42].

With a suitable mapping, these uniform samples can
be transformed to an arbitrary density, similar to the
well-known “inverse transform sampling” method. We
introduce such a mapping for the Gaussian density.
Refer to Fig. 3(a) for a visual demonstration of the map-
ping workflow using Fibonacci samples as compared to,
e.g., a regular grid Fig. 3(b). In addition, we introduce
some methods for moment matching so that the covari-
ance of the samples is accurate to machine precision.

E. Overview

This paper is structured as follows: After explaining
well-known and optimal two-dimensional uniform sam-
ples in Section II, we generalize to higher-dimensional
uniform samples in Sections III and IV. Then in
Section V, we explain how to obtain Gaussian instead
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Fig. 3. (a) Transformation workflow from uniform distribution to arbitrary Gaussian. As opposed to the commonly used transformation via
Cholesky factorization, see Fig. 8(a), our approach preserves the discrepancy of the input point set and is therefore better suited for

low-discrepancy sequences. (b) Same transformation is applied to an axis-aligned regular grid instead of low discrepancy. Note how resulting
Gaussian samples fill the space less homogeneously. (c) Gaussian copula, shown only for reference. Note that the first step in its transformation

pipeline is related to what we discuss here.

of uniform samples and evaluate their optimality in
Section VI.

The merits of our Gaussian samples lie in (i) pro-
viding superior coverage of the state space and (ii) free
choice of the number of samples.Thus, they can improve
the convergence and accuracy of algorithms that utilize
Gaussian samples, e.g., sample-based Gaussian state es-
timation filters and controllers.

II. THE TWO-DIMENSIONAL FIBONACCI GRID

Two-dimensional Fibonacci grids have been known
for a long time since they are ubiquitous in plant life.
Seed heads are often arranged as a polar Fibonacci grid.
Due to the size of its seeds, this is best seen in the
sunflower, but a close look reveals similar structures

in many other flower heads. It is well known that the
two-dimensional Fibonacci grid is the best possible low-
discrepancy point set [44, p. 186], [45, p. 61].

Arranging the seeds on a Fibonacci grid has two ad-
vantages. First, the space is well utilized and second, the
arrangement is flexibly scalable along the radius.The for-
mer is important to utilize biological resources as effi-
ciently as possible,and the latter is necessary because the
whole thing is growing, with bigger seeds on the outside
and younger, smaller seeds near the center. Although a
hexagonal arrangement would make even better use of
the space, this would require all seeds to always be of the
same size.

In summary, the polar Fibonacci grid can be aniso-
tropically rescaled along the radius—and the angle, for
that matter, i.e., both main axes of the polar coordinate

GENERALIZED FIBONACCI GRID AS LOW-DISCREPANCY POINT SET 19



Fig. 4. Fibonacci grids computed via the lattice rule (a)–(c) and Frolov method (d)–(e). Points are arranged uniformly in polar coordinates on
the left, in Cartesian coordinates in the middle, and in Gaussian density on the right.

Fig. 5. Volume of the smallest hypercube (blue) and smallest
hyperrectangle (yellow) that encloses the unit hypercube that is
rotated by V�. Note that there is no big difference between

hypercube and hyperrectangle. Note also that the ratio for both
increases exponentially with the dimension. For the linear

programming method, the ratio between surface (red) and volume is
more important. It increases much slower with the number of

dimensions.

system. In Cartesian coordinates, the Fibonacci grid al-
lows anisotropic scalings along the horizontal and ver-
tical axes. This can be seen in Fig. 2(a), where the hor-
izontal scaling of a Fibonacci grid is varied while the
vertical scaling stays constant. Instead of colliding, the
points change their neighborhood relationships periodi-
cally. Note how the Fibonacci grid repeatedly returns to
a “regular grid” configuration, i.e., the Delaunay interior
angles are 45◦ and 90◦, and the normalized side lengths
are 1 and

√
2 over and over again,only at different scales.

For comparison, the same anisotropic scaling performed
on a regular axis-aligned grid does produce point colli-
sions, Fig. 2(b).

A. Fibonacci Matrix

The Fibonacci numbers Fk are defined as [46,
Sec. 6.6]

Fk+1 = Fk + Fk−1 , F0 = 0 , F1 = 1 .

This recurrence can be expressed with the Fibonacci
matrix

M =
[
1 1
1 0

]
, (1)
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where Fibonacci numbers are then generated as
[
Fk+1

Fk

]
= M ·

[
Fk
Fk−1

]
.

With the eigenvalue decomposition of the Fibonacci
matrix

M = V · D · V� , (2)

we define the orthogonal unitary matrix V containing
the eigenvectors of M, and diagonal matrix D contain-
ing the eigenvalues.

Note thatM is unimodular, i.e., it consists of integers
and has a unit absolute determinant. The former implies
that M transforms integer vectors z into other integer
vectors Mz, and the latter implies that convex sets of
integer vectors z stay convex after transformation, i.e.,
no empty holes would appear. When the entire integer
lattice Z

2 is transformed by M, exactly the same integer
lattice comes out, as lattice points are indistinguishable.
Relaxing the unit determinant restriction and includ-
ing intermediate configurations in between the square-
lattice configurations, we can apply continuous scaling,
as visualized in Fig. 2(a), where square lattice configura-
tions are reached at six instances.But the fact that we run
into square lattice configurations again and again guar-
antees that the points will always have a homogeneous
microstructure and never collide, as in Fig. 2(b).

B. Rank-One Lattice

Mathematically, the Fibonacci grid is often repre-
sented as a rank-1 lattice rule. To produce lattice point
xi, a generating vector is multiplied with an integer
index i, and the result is taken modulo 1

xi =
i

Fk+1
·
[
1
Fk

]
mod 1 , (3)

i = 0, 1, . . . ,Fk+1 − 1 ,

where Fk is the kth Fibonacci number [7, Ex. 2.8]. The
result is a Cartesian Fibonacci grid with Fk+1 samples in
[0, 1)2. An example with Fk = 144 is shown in Fig. 4(b).
The grid can not only be anisotropically rescaled along
its coordinate axes [as demonstrated in Fig.2(a)] but also
transformed to other coordinate systems while main-
taining its packing efficiency. Transformation to polar
coordinates (and proper scaling along the radius axis)
yields the conspicuous sunflower pattern; see Fig. 4(a).

C. Frolov Lattice

A slightly different Fibonacci grid can be computed
as a Frolov lattice. Here, the regular axis-aligned integer
grid Z

2 is rescaled with factor δ (to achieve the desired
number of points L) and linearly transformed with ma-
trixT (e.g., a rotationmatrix).The result is then confined
to the unit square [0, 1]2

{
xi
}L
i=1 = {T · δ · z : z ∈ Z

2} ∩ [0, 1]2 . (4)

Now,we use the eigenvectors of the Fibonacci matrix (2)
as the linear transformation T

T = V� , (5)

with V� meaning the transpose of V. This again yields a
two-dimensional Cartesian Fibonacci grid; see Fig. 4(e).
As opposed to (3), this grid is not periodic; therefore, a
transformation to polar coordinates is not smooth at the
angular coordinate’s transition between 0 and 2π ; see the
red box in Fig. 4(d).

In this work, we focus on the nonperiodic Fibonacci
lattice that is computed via Frolov-like construction.The
advantages of nonperiodic generalized Fibonacci grids
are their visually appealing symmetry, and that they can
be generated for arbitrary numbers of points. On the
downside, their generation becomes more difficult in
higher dimensions.

III. PURSER’S GENERALIZED FIBONACCI GRID

James Purser showed that higher-dimensional gen-
eralizations with optimality properties analogous to the
two-dimensional Fibonacci grid do exist [42]. Purser’s
higher-dimensional Fibonacci grid is based on a new the-
ory that captures the concept behind two-dimensional
Fibonacci grids on a deep level. From that perspective,
it is then easy to see how Fibonacci-type grids can be
conceptualized in higher dimensions as well. The theory
involves quasi-Fibonacci matrices that generalize (1) to
higher dimensions. Specific constructions are stated for
dimensionsDwith the restriction that (2D+1) is a prime
number.

A. The Quasi-Fibonacci Matrix

The D-dimensional quasi-Fibonacci matrix M ac-
cording to Purser [42, Appendix A] is given by

[M]i, j =
{
1, i+ j ≤ D+ 1
0, i+ j > D+ 1 , (6)

for example,

M(D=2) =
[
1 1
1 0

]
, M(D=3) =

⎡
⎣
1 1 1
1 1 0
1 0 0

⎤
⎦ .

Note that M(D=2), also (1), is known as “Fibonacci
Q-Matrix” [47], but attempts to generalize to higher di-
mensions, e.g., in [47] are different from the concept in
[42, Appendix A] that we pursue here. An eigenvalue
decomposition

M = V · D · V� ,

again splitsM into unitaryV and diagonalD. The eigen-
vectors V can also be obtained by properly normalizing
the unnormalized eigenvector matrix Vu, which is given
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in closed form by [42, Eq. (A.4)]

[Vu]i, j = cos
(

π

2
· (2i− 1) (2 j − 1)

2D+ 1

)
,

i, j ∈ {1, 2, . . . ,D} . (7)

B. Dimensions With (2D + 1) Prime

In dimensions where (2D + 1) is prime, the eigen-
vector matrix V of the generalized Fibonacci matrix M
is used in Frolov lattice creation (4) just as in the two-
dimensional case (5).

C. Other Dimensions

In dimensions where (2D + 1) is not prime, (6)
is not well suited: One column of V has entries with
identical fractional parts because in (7) the numerator
(2i−1) (2 j−1) “interferes”with the denominator 2D+1.
However, it is possible to search for alternative matrices.
An example for D = 4 is given in [42, Sec. 7] as

M(D=4) =

⎡
⎢⎢⎣
1 1 0 0
1 0 0 0
0 0 1 1
0 0 1 0

⎤
⎥⎥⎦ .

It consists of block-diagonal replications of M(D=2).

IV. OPTIMAL DETERMINISTIC UNIFORM
FIBONACCI GRIDS

In this section, we describe how to enumerate the
L samples xi of the generalized Fibonacci grid using
Frolov-like construction

{
xi
}L
i=1 = {V� · δ · z : z ∈ Z

D} ∩
[
−1
2
,
1
2

]D
,

where δ specifies the number of points L approximately
according to δ ≈ L−1/D, see Section IV-C for more de-
tails. Note that to simplify notation, we changed the unit
hypercube under consideration from [0, 1]D to

[− 1
2 ,

1
2

]D
.

The computation can be done by (i) enumerating the
grid points of a regular grid inside the rotated hypercube
or (ii) enumerating the grid points of a rotated regular
grid in an axis-aligned hypercube.

A. Enclosing Hypercube Counter

The most simple and obvious method works as fol-
lows: Find the smallest axis-aligned hyperrectangle or
hypercube that encloses the desired rotated hypercube.
Iterate through all the points of the axis-aligned hyper-
rectangle or hypercube, check if the point is inside or
outside the rotated hypercube, and return all points that
are inside [1, Alg. 1].

How large is the smallest axis-aligned unit hyperrect-
angle enclosing a rotated unit hypercube? To find out it

Fig. 6. Fibonacci grid with unit cells of side length δ = 50−1/2,
calculated by Lvol = 50 according to (10). The actual number of grid

points turns out to be L2 = 49.

is sufficient to examine, the 2D corners xcrn of the cen-
tered rotated hypercube. Their coordinates are

xcrn,j = V · uj ,

uj ∈
{
−1
2
,
1
2

}D
,

j ∈ {1, 2, . . . , 2D} .

Therefore, the side lengths βd of the smallest enclosing
hyperrectangle are

βd =
D∑
j=1

∣∣Vd, j
∣∣ , d ∈ {1, 2, . . . ,D} ,

and the side length β of the smallest enclosing hypercube
is

β = max
d

⎧⎨
⎩

D∑
j=1

∣∣Vd, j
∣∣
⎫⎬
⎭ = ‖V‖∞ .

For simplicity, we will focus on the hypercube instead
of the hyperrectangle here, as for generalized Fibonacci
matrices obtained by (6), the smallest hyperrectangle is
very close to a hypercube; see Fig. 5.

We can now define a sampling vector r ∈ R
L1 with

centered, equidistant elements r j that represent the grid
coordinates along each dimension

r j = δ ·
(
j + 1 − L1

2

)
,

j ∈ {0, 1, . . . ,L1 − 1} . (8)

After replicating r, we obtain a regular grid with LD
1 el-

ements and spacing δ, stored column-wise in the matrix
Xreg ∈ R

D×LD
1 . IfL1 is odd, then there will be a sample at
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the origin, otherwise not. This grid is then transformed
according to V�Xreg, followed by a rejection of points

outside the centered unit hypercube
[− 1

2 ,
1
2

]D
. The re-

sult are L2 Fibonacci grid points XFib ∈ R
D×L2 that uni-

formly cover the centered unit hypercube
[− 1

2 ,
1
2

]D
. By

adding 1
2 , this can be transformed to cover the “stan-

dard” unit hypercube [0, 1]D. See Fig. 6 for a visualiza-
tion of the finally obtained samples inside the square for
D = 2.

The volume ratio between the smallest enclosing hy-
percube βD and a unit hypercube 1D = 1 increases ex-
ponentially with the dimensionD; see Fig. 5. This means
that the majority of samples are rejected in higher di-
mensions, and the method is applicable in dimensions
smaller than 10 only, refer to Fig. 11(c) for more details.

B. Linear Programming Counter

In this section, we describe a method that avoids the
excessive rejection of the enclosing hypercube counter.
It is based on linear programming. The complexity is re-
lated more to the surface of the unit hypercube than to
the volume of the enclosing hypercube; see Fig. 5. The
generalized Fibonacci grid can be written as a system

of linear inequalities for integer vectors that describe
a bounded polytope—so to speak, a “Diophantine in-
equality system,” yet with real (instead of rational) co-
efficients. In this perspective, the first step is to find all
integer vectors z such that

A z ≤ b , (9)

with coefficient matrix A ∈ R
Nc×D, desired vectors

z ∈ Z
D, and vector b ∈ R

Nc . Thereby, Nc is the number
of linear inequality constraints that define the bounded
polytope. For Fibonacci sampling, we define

A = δ ·
[

V�

−V�

]
, b = 1

2
·

⎡
⎢⎣
1
...
1

⎤
⎥⎦ ,

and find all integer vectors z withA z ≤ b .
The method to obtain these points can best be de-

scribed as a recursive procedure.Initially,we focus on the
first coordinate z1 and find its minimum and maximum
values inside the polytope A z ≤ b via linear program-
ming or integer linear programming. Then, recursively
for each integer value ẑ1,k between said minimum and
maximum: fix z1 = ẑ1,k as a constant temporally. In the

Fig. 7. Absolute difference between the expected number of points due to the volume and the obtained number of points in generalized
Fibonacci grids (solid lines). Dotted lines show bounds based on the CLT (a) and the point discrepancy (b). For all sets of curves, the lowest

dimension D = 2 appears at the bottom, with the higher dimensions following upwards according to the legend.
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Fig. 8. Low-discrepancy point set transformed from uniform to Gaussian via nondiscrepancy-preserving transformations [39], [40] (a) and via
discrepancy-preserving transformations as proposed here (b).While in (a), the sampling quality depends on the orientation of the Gaussian, in

(b), it is always the same.

thus defined polytope

A · z ≤ b ∩ z1 = ẑ1,k ,

find the minimum and maximum values of z2. Repeat
for all integer values ẑ2,k in that range. By doing so re-
cursively for all dimensions 1 . . .D, all L2 integer vec-
tors that fulfill (9) are visited and collected in a matrix
Z ∈ Z

D×L2 . The Fibonacci point set XFib ∈ R
D×L2 that is

uniform in
[− 1

2 ,
1
2

]D
can then be derived from the ob-

tained integral vectors Z via

XFib = V� · δ · Z .

An iterative version of this algorithm avoiding explicit
recursion has been implemented in this work. For bet-
ter efficiency it uses the GNU Linear Programming Kit
GLPK [48].

Fig. 9. Ratio of computation time between eigenvalue
decomposition and the faster Cholesky factorization of random

symmetric and positive definite matrices in Matlab.

Unfortunately, computational complexity increases
exponentially with the dimension here as well, but
slower than in the enclosing hypercube counter. This
method is practical for dimensions up to about 20; see
Fig. 11(c). Note that the samples, once created, can be
stored and used henceforth to obtain sample sets of the
same dimensionality.

C. Number of Points Obtained

In this section, we will elaborate on the number L2

of grid points that can be expected to be inside a ro-
tated hypercube, or, equivalently, howmany rotated grid
points can be expected inside an axis-aligned hypercube.
Of course, a rough estimate Lvol is the ratio between the
volume of a unit cell δD representing one sample and the
volume of the rotated hypercube,which is one, therefore

L2 ≈ Lvol = δ−D ,

δ = Lvol
−1/D . (10)

However, due to the rotation between unit cells and the
rotated hypercube, this estimate is not necessarily cor-
rect; see Fig. 6.

Therefore, we aim to quantify the worst case of how
many “missing” or “surplus” points we can expect in
L2 compared to Lvol. This is related to the Gauss cir-
cle problem, where the number of two-dimensional in-
teger lattice points inside a circle with a given radius is
determined or approximated. It is even more related to
the convergence rate of Monte Carlo and quasi-Monte
Carlo methods. To quantify this, we define a “hypercube
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Fig. 10. Cubic measurement update, system model as explained in Section VI-A. Out of 100 trials, minimum,maximum, and mean RMSE
between the estimated and true posterior mean are indicated, respectively. FibonacciD means diagonal variance matching according to (17);
the same correction method has been applied to the quasi-random Halton [55] samples. FibonacciE means exact covariance matching by the

eigenvalue method (19) that is however non discrepancy-preserving. FibonacciHQ means “high quality” covariance matching (21). Also
included are Unscented Kalman Filter (UKF) samples [9] with scaling such that they have equal weights, CKF3 samples [25], and CKF5

samples [26].

function” ha(·) centered around the origin

ha(x) =
{
1, |xi| < a

2 ∀ i ∈ [1,D]
0 otherwise ,

0 < a < 1 ,

and a centered unit-size hypercube

I =
[
−1
2
,
1
2

]D
.

1) CLT: The CLT states [18, Sec. 2.1] that the Monte
Carlo integration error εL, f of an arbitrary function f (x)
over a unit cube I

εL, f =
∣∣∣∣∣

(
1
L

L∑
n=1

f (xn)

)
−
(∫

I
f (x)dx

)∣∣∣∣∣

(with a large number L of i.i.d. uniform random samples
xn on I) is normally distributed with standard deviation
σ f · L−1/2, where

σ f =
√∫

I

(
f (x) −

(∫
I
f (x̃) dx̃

))2

dx .

Thus, relying on a c-sigma-bound, we may assume

εL, f ≤ c · σ f · L−1/2

with high probability. Now we multiply both sides with
L and insert ha for f . This yields

∣∣L2 − L · aD∣∣ ≤ c · σh ·
√
L ,

σh =
√
aD − a2D ,

and with Lvol = L · aD, we write
|L2 − Lvol| ≤ c ·

√
(1 − aD) · Lvol .

For a → 0, this finally becomes

|L2 − Lvol| ≤ c ·
√
Lvol ,

L2 ≥ Lvol − c ·
√
Lvol . (11)

Solving this for Lvol, we see that we should select

Lvol ≥ L2 + c2

2
+
√
L2 · c2 + c4

4
, (12)

and then δ according to (10), to always obtain at least the
desired number of samples L2. Fig. 7(a) shows a numer-
ical overview, where c = exp

{D+1
4

}
has been selected

heuristically as the y-intercept.Note that for largeL and
in dimensions lower than 10, the CLT is a rather conser-
vative estimate because the generalized Fibonacci points
have a lower discrepancy and therefore better conver-
gence rate than iid samples that the CLT assumes.

2) Discrepancy: We give an intuitive definition of the
discrepancy of a point set x̂i ∈ [0, 1]D, i ∈ [1, 2, . . . ,L].
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Fig. 11. (a) Fourier-based optimality measure with isotropic Gaussian. (b) Fourier-based optimality measure with strongly nonisotropic
Gaussian. The best, worst, and mean RMSE of 100 trials are shown, respectively. Note that for a given accuracy, far less Fibonacci samples than,
e.g., random samples are needed. (c) Calculation times for 1 000 optimal deterministic samples. Note that samples can be generated offline and
tabulated for given D and L, for subsequent real-time use. (d) The fastest optimal deterministic sampling method for given number of samples
and dimension. Fibonacci samples are only given for dimensions where 2D+ 1 is prime andD = 4, i.e., where suitable unimodular matrices are

currently known.

Consider the volume of a hyperrectangle spanned be-
tween the origin 0 and point x ∈ [0, 1]D. The pro-
portion of points inside this hyperrectangle minus its
volume yields the local discrepancy function �(x) of
the point set. Aggregating all local discrepancies via a
p-norm yields the discrepancy [7]

discrp =
(∫

x∈[0,1]D

∣∣�(x)
∣∣p
) 1

p

. (13)

According to the Koksma–Hlawka identity
∣∣∣∣∣
1
L

L∑
i=1

g(x̂i) −
∫
[0,1]D

g(x)dx

∣∣∣∣∣ ≤ discrp ·V (g) , (14)

i.e., the integration error is bounded by the discrepancy
of the point set times the variation V (g) of the inte-
grand,a constant that depends on the smoothness of g(·).
Hence, the discrepancy, as a function of the number of
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samples L, is a measure for integration error, similar to
the L−1/2 term in the CLT integration error estimate. A
proven lower bound on the L2 discrepancy of any finite
point set is [49, Sec. 2]

L · discr2 ≥ c · (logL)(D−1)/2
.

For D = 2, this is also known to be the best possible
bound [49, Sec. 3]. Unfortunately, there is currently no
known upper bound on theL∞ discrepancy.Conjectures
include

L · discr∞ ≤ c · (logL)D−1
,

L · discr∞ ≤ c · (logL)D/2
,

with respective unknown constants c that depend on
the dimension [50, Sec. 4.2]. In Fig. 7(b), we plot the
function

|L2 − Lvol| ≤ log(Lvol)
√
D−1 . (15)

It can be seen in Fig. 7(b) that (15) is an upper bound
only for higher numbers of samples, but there it is
a tighter bound than the CLT-based bound (11); see
Fig. 7(a).

3) Removing Excess Samples: If too many samples
have been generated, then the excess samples can eas-
ily be removed using the following strategy: Sort the
samples with respect to the value of the first coordinate.
Then, half the necessary number of points to remove
are deleted at the beginning and end of that sorted list
of samples, respectively. Finally, the first coordinate is
stretched to fully cover the unit cube again. This is simi-
lar to the process depicted in [1, Fig. 3(c) and (d)].

Removing samples equally on both ends, instead of
simply removing them at the end, preserves the symme-
try of the point set and also the first moment, which is
zero due to the symmetry. However, configurations with
an odd number of samples can only be reduced to other
odd configurations then. The same applies to even con-
figurations. For the enclosed hypercube method, an even
configuration is produced if the sampling vector (8) has
an even number of entries, i.e., ifL1 is even and therefore
has no entry at zero.For the linear programming counter,
an odd grid is produced when the integer vectors z ∈ Z

are offset by 1
2 .

4) Sample Library: Since sample computation using
Frolov-like methods as proposed here is quite expen-
sive in higher dimensions, it makes sense to calculate
and save the samples in advance for each dimension
in an odd and an even configuration, respectively. The
CLT formula can be solved in closed form (12) and
hence allows direct computation of a scaling factor such
that at least the wanted number of samples is generated
in any case and therefore helps to avoid “trial and er-
ror” in producing the desired number of samples. In the
real-time application, the respective number of samples
can then be extracted from this library as described in
Section IV-C3.

V. OPTIMAL DETERMINISTIC GAUSSIAN
FIBONACCI GRIDS

At this point, it has been shown how to find a given
number L of uniform Fibonacci samplesXFib ∈ R

D×L in
the unit hypercube I. Now, we will see how these can be
transformed into Gaussian samples with various levels
of sophistication.

A. Types of Transformations

The Fibonacci grid has the unique property that
point collisions are avoided under anisotropic rescaling
along certain directions. We begin with reiterating two
common conditions on transformations before quantify-
ing the “discrepancy-preserving” property that we need
here.

1) Rigid transformations preserve angles and dis-
tances. They are in the class of linear transformations,
where the determinant of the transformation matrix is
either 1 or−1.Rigid transformations are translations, ro-
tations, and reflections.

2) Conformal maps preserve angles locally. Every-
where, the respective local Jacobianmatrices are orthog-
onal matrices multiplied by a scalar.

3) Discrepancy-preserving transformations preserve
the uniformity of Fibonacci grids. Therefore, their Jaco-
bian matrices must be orthogonal matrices multiplied
with a diagonal matrix from left. That is, the right angles
between the main axes are preserved.

In the following, we describe a discrepancy-
preserving mapping that transforms the uniform density
on I to arbitrary Gaussian densities.

B. Standard Normal Samples

First of all, we apply the usual inverse transform to
obtain standard normal samples

[Xstd]d,i =
√
2 · erf−1(2 · [XFib]d,i) ,

with the Gauss error function

erf(z) = 2√
π

∫ z

0
exp
{−t2} dt .

This transformation maps samples uniform in
[− 1

2 ,
1
2

]D
to standard normal samples in R

D. Refer to Fig. 4(f) for
a visualization.

C. Variance Correction

Due to the discrete sample locations, the diagonal
elements of the covariance matrix Cstd of the resulting
point set Xstd are only approximately one, and the off-
diagonal elements are only approximately zero. We can
easily correct the former because rescaling along the co-
ordinate axes, i.e., multiplication with a diagonal ma-
trix, is a discrepancy-preserving transformation. So, we
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calculate the variances

νd = 1
L

L∑
i=1

[Xstd]2d,i (16)

and correct the variance of the samples accordingly by
rescaling the coordinates individually

[XstdD]d,i = [Xstd]d,i√
νd

. (17)

D. Arbitrary Gaussian Samples

Nowwe want to transform the standard normal sam-
plesXstdD with a covariance of approximately I (the off-
diagonals are not entirely zero) to a sample set with a
given, arbitrary positive definite covariance C ∈ R

D×D.
Usually, this is done via the Cholesky decomposition
C = L · L� according to XGauss = L · XstdD. However,
this transformation is not discrepancy-preserving as the
orthogonality of theDmain axes is not being preserved;
see Fig. 8(a). Therefore, we have to calculate the eigen-
value decomposition V ·D ·V� = C, with V orthogonal
andD diagonal, and transform the samples according to

XGauss1 = V ·
√
D · XstdD . (18)

Refer to Fig. 3(a) for a visual description of the trans-
formation workflow.While Cholesky decomposition re-
quires 1

3D
3 floating point operations, eigenvalue decom-

position is an iterative procedure with computational
complexity O(D3) per iteration step. A quick test in
Matlab showed that the eigenvalue decomposition takes
up to 70 times longer than the Cholesky decomposition;
see Fig. 9. This is a small disadvantage that we have to
accept when working with Fibonacci grids or other low-
discrepancy point sets.

E. Fast Cholesky Covariance Correction

Because the off-diagonals of CstdD are not exactly
zero, CGauss1 in (18) will not mach C exactly. We
can correct this by using a transformation that is not
discrepancy-preserving. As the amount of correction is
rather small, the downside that the transformation is not
discrepancy-preserving should have a rather small ef-
fect. We determine CStdD and its Cholesky decomposi-
tion LStdD

CStdD = 1
L

· XStdD · X�
StdD = LStdD · L�

StdD

and perform the correction

XGauss = V ·
√
D · L−1

StdD · XStdD ,

resulting in unscented samples XGauss with matching co-
variance.

F. Fast Eigenvalue Covariance Correction

Instead of the Cholesky decomposition of CstdD, we
can also use its eigenvalue decomposition

CStdD = VStdD · DStdD · V�
StdD

and obtain unscented samples XGauss via

XGauss = V ·
√
D · VStdD ·

√
D−1

StdD · V�
StdD · XStdD .

(19)

Again, this transformation is not discrepancy-preserving,
but due to the rather small amount of correction neces-
sary, this should not cause real problems.

G. Discrepancy-Preserving Covariance Correction

Now we will derive a different covariance correction
method that is discrepancy-preserving. Recall that the
problem with CstdD from (17) was that the off-diagonals
are not exactly zero. That is, there are small correla-
tions present that are expressed in inequality of eigenval-
ues, i.e., the Gaussian contour map looks like an ellipse
(ellipsoid, hyperellipsoid) instead of a circle (sphere,
hypersphere)—where the principal axes of the ellipse
(ellipsoid, hyperellipsoid), i.e., the eigenvectors of the
covariance matrix, do not coincide with the principal
axes of the coordinate system. If we only manage to de-
form that covariance in a discrepancy-preserving way
such that the eigenvalues match the wanted eigenvalues
inD, then we can easily find an appropriate rotation that
puts the covariance in the right orientation subsequently.

Therefore, we have to findD deformations along the
coordinate axes, collected in the vector a ∈ R

D, such that
the eigenvalues of

Cstd,a = a� Cstd � a� , (20)

where � is the pointwise product, i.e., the Hadamard
product, match the targeted eigenvalues inD.

Note that eigenvalues must be compared with a
Wasserstein or earth mover’s distance, i.e., the eigenval-
ues from both sets have to be associated appropriately.
For real eigenvalues, this can be done by sorting both sets
of eigenvalues [51, Sec. 3].

The search for a is now a gradient-based nonlinear
optimization problem with D variables. Derivatives of
eigenvalues can be calculated analytically [52, Eq. (11)],
[53, Eq. (5)]

∂λ

∂a
= V� · ∂C

∂a
· V ,

where V is the normalized right eigenvector matrix of
symmetric matrix C, and λ the corresponding eigenval-
ues. With the optimal deformation vector â obtained
by nonlinear optimization, and the eigenvector matrix
Vstd,â ofCstd,â,we get the transformedGaussian samples

XGauss = V · V�
std,â · (â� Xstd) ,
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where V is again the eigenvector matrix of the wanted
covariance C.

The transformation (20) can only increase the ratio
between eigenvalues. Therefore, if some eigenvalues of
C are equal or nearly equal, the optimization cannot
match the eigenvalues perfectly, and some residual dis-
tance to the desired eigenvalues remains.Again, this can
be fully matched via a nondiscrepancy-preserving trans-
formation

XGauss = V · (b� V�
std,â · (â� Xstd)

)
, (21)

with nondiscrepancy-preserving deformation vector b

b =
√
diag(D) � diag(V�

std,âCstd,âVstd,â) ,

where � denotes element-wise division. The amount
of nondiscrepancy-preserving deformation encoded in b
that is needed to match the covariance exactly is rather
small, so point collisions will not occur.

VI. EVALUATION

The application we had in mind when developing
this method are the “unscented transform” for nonlin-
ear Gaussian filtering. Approximating first and second
moments, i.e., means and covariances of nonlinear
functions of Gaussian random variables, facilitates
probabilistic Kalman filtering based on stochastic lin-
earization, i.e., the various forms of LRKFs and also
GPFs. Low-discrepancy sequences like the proposed
Fibonacci grid and other deterministic sampling meth-
ods like LCD allow for better accuracy by using more
samples than onlyL = 2 ·D as in the standard unscented
transform. In [1, Sec. IV], we used one specific nonlinear
function to compare various deterministic sampling
methods. After showing a similar, simple evaluation, we
evaluate Gaussian sample sets based on a linear space
of nonlinear functions.

A. Simple Evaluation

To evaluate different sampling methods, we define a
nonlinear system model with additive noise

yyy = ∥∥xxx∥∥33 + vvv , E{vvv} = 0 , E
{
vvv2} = 302 .

Given prior moments

xp =
[
2

−2

]
, Cp =

[
12 0
0 52

]

and the measurement

ŷ = 30 ,

we compute a UKF as well as a Gaussian Filter update
step with various methods for Gaussian sampling.

For the UKF case, we take Gaussian samples x̂i, i ∈
{1, . . . ,L} from the prior Gaussian N (x; xp,Cp) us-
ing the respective sampling method, insert them into
the measurement equation, add samples from the

measurement noise, compute the empirical moments in
the joint state and measurement space

zp =
[
xp

yp

]
, Cz =

[
Cp Cxy

Cyx Cyy

]
,

and obtain the posterior estimate

xe = xp + CxyC−1
yy (ŷ− yp) .

Refer to Fig. 10(a) for a quantitative evaluation of the
root mean square error (RMSE) of the estimated pos-
terior. Note that the real bottleneck here is the second
Gaussian assumption, i.e., the statistical linearization be-
tween state space x and measurement y.

For GPF-style filtering, we take again L Gaussian
samples x̂i from the prior Gaussian N (x; xp,Cp) using
the respective sampling method and apply individual
sample weights wi according to the likelihood function
value at the respective sample

wi ∝ N
(
ŷ; ∥∥x̂i

∥∥3
3 , Cv

)
,

L∑
i=1

wi = 1.

The posterior mean is then approximated as the empiri-
cal average of the weighted samples. Refer to Fig. 10(b)
for a quantitative evaluation of the RMSE of the esti-
mated posterior.

B. Measure of Quality

In this section, we will define a general quality mea-
sure for Gaussian samples. It describes how well the ex-
pected values of Gaussian random variables are esti-
mated using the respective sample sets. Thereby, instead
of focusing on one specific nonlinear function, e.g., ‖xxx‖33

� =
∣∣∣E
{∥∥xxx∥∥33

}
− Ê

{∥∥xxx∥∥33
}∣∣∣ ,

where E{·} is the true expected value, Ê{·} is the sam-
ple approximation, and � is an optimality measure for
the employed samples, we take a broad class of smooth
nonlinear functions into account.

1) Harmonic Expectations: The expectation value of
the function g(·) of a random variable xxx is

E
{
g(xxx)

} =
∫

RD
g(x) · f (x) dx,

where xxx ∼ f (x), and g(·) is a smooth nonlinear func-
tion. Numerical approximation of this integral with un-
weighted samples x̂i, i ∈ {1, . . . ,L} goes like

Ê
{
g(xxx)

} =
∫

RD
g(x) · f̂ (x) dx

=
∫

RD
g(x) · 1

L

L∑
i=1

δ(x− x̂i) dx

= 1
L

L∑
i=1

g(x̂i) .
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To obtain a representative comparison, we take into
account all possible smooth functions g(x) by using a
Fourier basis

gt (x) = exp
{
i t · x}

= cos(t · x) + i sin(t · x) . (22)

The true expected value of a harmonic function of xxx,

E
{
gt (xxx)

} =
∫

RD
gt (x) · f (x) dx

=
∫

RD
exp
{
i t · x} · f (x) dx

= F (t) ,

is the characteristic function F (t) of the density f (x).
Furthermore, the approximated expectation

Ê
{
gt (xxx)

} = 1
L

L∑
i=1

gt (x̂i)

= 1
L

L∑
i=1

exp
{
i t · x̂i

}

= F̂ (t)

is the characteristic function of f̂ (x).

2) Distance Measure: Now by averaging over all spa-
tial frequencies in domain T

�2 =
∫
T

∣∣E{gt (xxx)
}− Ê

{
gt (xxx)

}∣∣2 dt

=
∫
T

∣∣F (t) − F̂ (t)
∣∣2 dt , (23)

we obtain distancemeasure� that quantifies the approx-
imation error of expectation values in the function space
of band-limited nonlinear functions. In other words, �

quantifies the average accuracy of an expectation value
estimate of a sample set for band-limited functions.Note
that (23) computes the square sum of the real and imag-
inary parts from (22), representing cosine and sine parts
appropriately, according to

|a+ ib|2 = (a+ ib)(a− ib) = a2 + b2 .

We consider spatial frequencies t in a certain domain
T ,

T =
{
t

∣∣∣∣∣
D⋂
d=1

t (d) ∈ [−τ, τ ]

}
, (24)

around the origin, i.e.,we focus on all sufficiently smooth
functions g(x), where the Fourier transform G(x) does
not have significant energy outside T .From theNyquist–
Shannon sampling theorem, we can try to derive a suit-
able bound for τ .GivenL optimal deterministic uniform
samples on [0, 1], their spacing is aboutL−1.When trans-
forming these to arbitrary densities by inverse transform
sampling, the spacing of the transformed samples at the
point of maximum density is (L · fmode)

−1, where fmode

is the maximum derivative of the cumulative density,
i.e., the density value at the mode. Therefore, the “sam-
pling rate” is L · fmode at the mode, and lower elsewhere.
Thus, according to Nyquist–Shannon, we may conclude
that the maximum spatial frequency that can be repre-
sented by these samples is τ = L · fmode/2. In higher
dimensions, the hypercubic cell representing one sample
has volumeL−1.Using the inverse function theorem, the
volume of this cell is transformed by the inverse of the
Jacobian determinant 1/det(J(x)) of the mapping func-
tion that maps f (x) to a uniform density. As a result,
the new side length is (L · det(J(x)))−1/D, and we can
choose τ = (L · det(J(x)))1/D/ 2.

In our application, f (x) is a Gaussian density

f (x) = N
(
x;μ,C

)

= 1√|2π C| exp
{
−1
2

(
x− μ

)�
C−1

(
x− μ

)}
,

with μ ∈ R
D, and positive definite component covari-

ance matrix C ∈ R
D×D. The characteristic function of

f (x) is

F (t) = exp
{
iμ· t − 1

2
t�C t

}
.

To simplify the solution of (23), we choose

μ = 0 ,

Ck = diag(σ 2
1 , σ 2

2 , . . . , σ 2
D) (25)

without restriction of generality, as the basis system and
origin of the coordinate system can always be chosen ap-
propriately.We obtain

�2 =
∫
T

∣∣∣∣∣exp
{
−1
2
t�C t

}
− 1
L

L∑
i=1

exp
{
i t · x̂i

}
∣∣∣∣∣
2

dt

= �xx − 2�xy + �yy ,

where

�xx =
∫
T
exp
{−t�C t} dt ,

�xy = 1
L

∫
T
exp
{
−1
2
t�C t

}
·

L∑
i=1

cos(t · x̂i) dt ,

�yy = 1
L2

∫
T

L∑
i=1

L∑
j=1

exp
{
i t · (x̂i − x̂ j)

}
dt .

For diagonal covariances (25) and T according to (24),
this can be simplified to

�xx = πD/2
D∏
d=1

erf(τ · σd)
σd

,

�xy = (2π )D/2

L

L∑
i=1

D∏
d=1

1
σd

exp

{
−1
2

x2i,d
σ 2
d

}

�

30 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 18, NO. 1 JUNE 2023



· real
{
erf
(

τσ 2
d + i · xi,d√

2 σd

)}
,

�yy = 2D

L2

L∑
i=1

L∑
j=1

D∏
d=1

sin
((
xi,d − x j,d

) · τ
)

xi,d − x j,d
.

The integration domain could be chosen as

τ =
√

π

2
·
(
L ·

D∏
d=1

σd

)1/D

according to considerations relating to the sampling the-
orem.However, we choose τ constant to make the opti-
mality measure better comparable over different L.

C. Gaussian Sampling Comparison

Now we will compare various Gaussian sampling
methods for their suitability for numerical approxima-
tion of expectation values of band-limited nonlinear
functions of Gaussian densities. The state-of-the-art we
compare against includes LCD samples from the non-
linear estimation toolbox [54] and the Halton sequence
[55], a well-known low-discrepancy sequence, that is
transformed from uniform to Gaussian just as explained
for the proposed Fibonacci grids in (16).

In Fig.11(a),we show howwell the differentmethods
can approximate the three-dimensional standard normal
density, i.e., the isotropic case.We can see there that the
LCD method (yellow) generally provides the best re-
sults, closely followed by the Fibonacci methods with co-
variance matching (cyan, green). Note that L = 10 LCD
or Fibonacci samples with moment correction are as ef-
fective as L = 200 samples from the Halton sequence,
or more than 1 000 iid samples.

Fig. 11(b) shows the same for an anisotropic
Gaussian with covariance C = diag([1, 0.1, 0.01])2.
Here we see that the Fibonacci and Halton samples gen-
erally provide the best results, closely followed by LCD
samples. This difference compared to the standard nor-
mally distributed case is because these LCD samples
are produced by anisotropic transformation of standard
normal ones, where some optimality is lost. Fibonacci
grids, however, can be rescaled without any quality
loss.

Fig. 11(c) visualizes the computational effort to com-
pute L = 1 000 LCD samples and Fibonacci sam-
ples computed via the enclosing hypercube enumeration
from Section IV-A and linear programming enumera-
tion from Section IV-B, respectively, for various dimen-
sions. For dimensions D < 6, the enclosing hypercube
method is fastest; for dimensions 6 ≤ D ≤ 15, the lin-
ear programming counter; and for D > 15, the LCD
samples. Note that for all three methods, samples can be
computed beforehand and stored for later real-time use.
LCD samples have to be generated for every desired di-
mensionD and number of samplesL, respectively,while
Fibonacci grids have to be generated separately for ev-

ery dimensionD only, because subsets of Fibonacci grids
can easily be used; see Section IV-C.

Fig. 11(d) shows the overall fastest sampling method
out of LCD, Fibonacci linear programming, and Fi-
bonacci hypercube for various dimensions and various
numbers of samples. Again, we find that the Fibonacci
enclosing hypercube method is fastest for smaller di-
mensions, and LCD for higher dimensions, and Fi-
bonacci linear programming in between. Note that for
D = 7 and D = 10, where 2D + 1 is not prime, suit-
able generalized Fibonacci matrices are not yet known;
therefore, LCD is available only. Note also that LCD
with symmetric samples from the nonlinear estimation
toolbox [54] requires L ≥ 2D.

VII. CONCLUSION

We presented a new enumeration method for Fi-
bonacci grids that is based on linear programming. It
is faster than the existing enclosing hypercube method
for dimensions D ≥ 6. Furthermore, we introduced
different methods for covariance correction, including
a simple and fast Cholesky correction and a slower
discrepancy-preserving method. We have also investi-
gated the possible range of enumerated points given
a certain scaling factor. The evaluation that was per-
formed for a broad function class suggests that Fibonacci
samples, together with the state-of-the-art LCD samples,
yield the best approximations of nonlinear Gaussian
expectations.

In the future, we will look for generalized Fibonacci
matrices for dimensions where (2D + 1) is prime. We
will also look for lattice rule versions of the gener-
alized Fibonacci grid, as they are faster to compute,
and the number of resulting samples is exactly known
beforehand.

The authors acknowledge support by the state of
Baden–Württemberg through bwHPC.
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